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Abstract

Majority of the theory on cell polarization and the understanding of cellular sensing and

responsiveness to localized chemical cues has been based on the idea that non-polarized

and polarized cell states can be represented by stable asymptotic switching between them.

The existing model classes that describe the dynamics of signaling networks underlying

polarization are formulated within the framework of autonomous systems. However these

models do not simultaneously capture both, robust maintenance of polarized state longer

than the signal duration, and retained responsiveness to signals with complex spatial-tem-

poral distribution. Based on recent experimental evidence for criticality organization of bio-

chemical networks, we challenge the current concepts and demonstrate that non-

asymptotic signaling dynamics arising at criticality uniquely ensures optimal responsiveness

to changing chemoattractant fields. We provide a framework to characterize non-asymptotic

dynamics of system’s state trajectories through a non-autonomous treatment of the system,

further emphasizing the importance of (long) transient dynamics, as well as the necessity to

change the mathematical formalism when describing biological systems that operate in

changing environments.

Author summary

During wound healing or embryonic development, cells in tissues or organs migrate over

large distances by sensing local chemical cues. The migration response is based on cell

polarization—the formation of a distinct front and back of the cell in the direction of the

chemical cues. These cues are however disrupted and have a complex spatial-temporal

profile. This suggests that cell polarity must be robustly established in signal direction, but

also flexibly adapt when signals change. A large diversity of abstract and biochemically

detailed models have been proposed to explain cell polarity, but they cannot fully describe

the experimental observations. Here, we argue that cell polarization is a highly dynamic

transient process, and must be studied via an explicit time-dependent form. We demon-

strate that criticality organization uniquely enables formation of metastable polarized

states that can be robustly maintained for a transient period even when the signals are
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University: Pazmany Peter Katolikus Egyetem,

HUNGARY

Received: February 17, 2023

Accepted: July 25, 2023

Published: August 14, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011388

Copyright: © 2023 Nandan, Koseska. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All codes are

available on Github: https://github.com/

akhileshpnn/SubPB-mechanism.

https://orcid.org/0000-0003-4263-2340
https://doi.org/10.1371/journal.pcbi.1011388
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011388&domain=pdf&date_stamp=2023-08-14
https://doi.org/10.1371/journal.pcbi.1011388
https://doi.org/10.1371/journal.pcbi.1011388
https://doi.org/10.1371/journal.pcbi.1011388
http://creativecommons.org/licenses/by/4.0/
https://github.com/akhileshpnn/SubPB-mechanism
https://github.com/akhileshpnn/SubPB-mechanism


disrupted, but also enable rapid adaptation to temporal or spatial signal changes. Using a

combination of bifurcation and quasi-potential landscape analysis, we provide a frame-

work to characterize non-asymptotic transients explicitly, and thereby further emphasize

the necessity to change the mathematical formalism when describing biological systems

that operate in changing environments.

Introduction

During embryogenesis, wound healing, or cancer metastasis, cells continuously sense and che-

motactically respond to dynamic spatial-temporal signals from their environment [1–5]. This

response is based on cell polarization—the formation of a distinct front and back of the cell

through stabilization of polarized signaling activity at the plasma membrane. Broad range of

cells, including epithelial or nerve cells, fibroblasts, neutrophils, Dictyostelium discodeum etc.,

display multiple common polarization features: quick and robust polarization in the direction

of the localized signal, sensing of steep and shallow gradients (and subsequent amplification of

the internal signaling state between the opposite ends of the cell), as well as threshold activa-

tion as a means to filter out noise [6, 7]. Moreover, polarity and thereby directional migration

is transiently maintained after the trigger stimulus is removed (memory in polarization), but

the cells remain sensitive to new stimuli, and can rapidly reorient when the signal’s localization

is changed. In response to multiple stimuli such as two sources with varying concentrations,

rapid resolution with a unique axis of polarity towards the signal with higher concentration is

ensured [7].

A large diversity of models, both abstract and biochemically detailed have been proposed,

that however cannot fully describe the experimental observations. For example, the local exci-

tation global inhibition model (LEGI) [8, 9] and its variants [10–12] rely on an incoherent

feed-forward motif, whose dynamics doesn’t account for transient memory in polarization.

The Turing-like models based on a local activation long-range inhibition (activator-inhibitor

system) [13, 14] are not robust to noise, cannot resolve simultaneous signals in physiologically

relevant time frame [6], or maintain responsiveness to upcoming signals with same or different

spatial localization. The Wave-pinning model on the other hand is based on a higher-order

nonlinear positive feedback [15–18], and in contrast to the Turing-like models, can account

for cell re-polarization (polarity reversal) upon change of signal localization. The robustness of

the re-polarization is however conditioned on the signal strength and width [19]. However, it

has not been studied whether the Wave-pinning model allows to integrate signals that do not

change in space but are disrupted over time, as expected during a cell migration in complex tis-

sue environment. To address in particular cell responsiveness to disrupted and/or signals with

complex temporal and spatial distribution, we have recently proposed a mechanism, referred

to as a SubPB mechanism, that relies on critical organization to a saddle-node which stabilizes

a subcritical pitchfork (PB) bifurcation (SNPB) [20]. We have demonstrated also experimen-

tally using the Epidermal growth factor receptor (EGFR) network, that the SubPB mechanism

enables navigation in complex environments due to the presence of metastable “ghost” of the

polarized state, which gives the system both a memory of previous signals, but also flexibility

to respond to signal changes.

We take here the conceptual basis of polarity one step further: we argue that cell polariza-

tion and responsiveness necessary for navigation in changing spatial-temporal chemoattrac-

tant fields is a highly dynamic transient process, and must be studied via an explicit time-

dependent form, or as a non-autonomous process. For non-autonomous systems, both the
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number and the position of steady states change, implying that the steady-state behavior alone

does not fully capture the dynamics of the system. What is most relevant are therefore the tra-

jectories representing the change of the state of the system that follow the steady-state land-

scape changes. This conceptual shift enables to consider transients explicitly, and we

demonstrate that a pure non-autonomous succession of steady states, as characteristic for the

LEGI, Turing-like or Wave-pinning models cannot explain both transient memory in cell

polarization and cellular responsiveness to upcoming signals. On the other hand, non-asymp-

totic transient states that arise due to organization at criticality, as in the SubPB mechanism

enable to maintain the dynamics of the sensing network away from a fixed point, and uniquely

confer optimal sensing and responsiveness to cells that operate in a changing environment.

We therefore argue that the formal descriptions how cells sense and respond to dynamic sig-

nals must be modified to consider also (long) non-asymptotic transient processes.

Results

Studying cell polarity response as transients in non-autonomous systems

To investigate the dynamical characteristics of polarization, we consider a generalized reac-

tion-diffusion (RD) system in a one-dimensional domain with two components u and v,

@uðy; tÞ
@t

¼ fuðu; vÞ þ Du
@

2u
@y

2
þ sðy; tÞv

@vðy; tÞ
@t

¼ fvðu; vÞ þ Dv
@

2v
@y

2
� sðy; tÞv

ð1Þ

where (θ, t) 2 R are angular position on the plasma membrane of a cell with respect to its cen-

ter and time, fu, fv: R × R! R are the reaction terms of u and v respectively, Du and Dv—the

diffusion constants, and s(θ, t)—the distribution of the external chemoattractant signal with

respect to the cell. The reaction term fu(u, v) is chosen as for the Wave-pinning model [15],

exemplifying a Rho-GTPase cycle with an inter conversion between its active, membrane

bound (u) and inactive, cytosolic (v) components (Fig 1A, top):

fuðu; vÞ ¼ ðk0 þ gu2=ðK2 þ u2ÞÞv � du ð2Þ

and fv = −fu due to mass conservation
R L

0
ðuþ vÞ dl ¼ Lctotal, with L = 2πRμm—the total length

of the one-dimensional domain of the cell perimeter, R—cell radius. The positive feedback

from u onto its own production (via GEFs) is represented by a Hill function of order 2 with

maximal conversion rate γ and saturation parameter K, k0 is a basal GEF conversion rate and δ
is the constant inactivation rate (via GAPs). This model exhibits a subcritical pitchfork bifurca-

tion [16].

To analyze the dynamical features of the system from aspect not only of the bifurcation

structure, but also the quasi-potential landscapes as a means to characterize the system’s transi-

tions in the presence of complex spatial-temporal signals, we have simplified the cell geometry

by considering a one-dimensional projection consisted of two bins (left, right) such that uL,

uR, vL, vR can be exchanged, mimicking species’ diffusion (Fig 1A bottom). When subjected to

an analytical treatment, the resulting ODE system Eq (3) demonstrates the existence of a sub-

critical pitchfork bifurcation, equivalently to the full RD model ([16], Methods). Additionally,

numerical bifurcation analysis [21] of the system Eq (3) in absence of a signal shows that the

subcritical PB is stabilized via SNPBs at a critical total concentration of the system’s constituents

(ccriticaltotal , Fig 1B). The PB generates a transition from a non-polar or homogeneous steady state

(HSS, uL,s = uR,s, vL,s = vR,s), to a polar state represented as a inhomogeneous steady state
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(IHSS). The IHSS is manifested via two symmetric branches—a combination of a high u at the

cell left and low at the right side of the cell (uR< uL or left-polarized, top branch), and uR> uL
or right-polarized (lower branch). Thus, depending on ctotal, 4 distinct organization regimes

are possible (I-IV in Fig 1B).

To study how the system responds to transient gradient stimulus for organization in the dif-

ferent regimes, we calculated the kymographs representing the spatial-temporal u distributions

using the RD simulations (Eq (1)), the signal s(θ, t) is introduced as a Gaussian distribution

along the circular membrane (S1(A) Fig, Methods). Moreover, we also tracked the changes in

the system’s dynamics by estimating the quasi-potential energy landscape changes [22, 23]

using the one-dimensional projection model (Eq (3)) with a signal introduced as a step-like

function with amplitudes (sL, sR) (S1(B) Fig, Methods). When the system is organized in region

I, a transient gradient stimulus does not lead to robust polarization (kymograph in Fig 1C).

The quasi-potential landscapes demonstrate that increasing the signal amplitude only shifts

the position of the stable homogeneous steady state (the geometry of the landscape changes, S1

(C) Fig, top). This leads to a marginal local increase in u, without breaking the system’s sym-

metry. In region III on the other hand, a transient gradient signal irreversibly shifts the system

to the stable polarized state (Fig 1C). Formally, this regime corresponds to the previously

described Wave-pinning model [15–17]. In this region, both the non-polar (homogeneous)

and the polarized (inhomogeneous) steady states coexist (Fig 1B). Thus in absence of a signal,

the quasi-potential landscape is characterized by three minima—one corresponding to the

HSS (circle), and the other two corresponding to the IHSS branches (left- and right-polarized

states, S1(C) Fig, middle). Upon signal addition, the minimum corresponding to the HSS dis-

appears, leaving a one-well quasi-potential landscape of the stable polar state. Signal removal

reverts the system to the the three well quasi-potential landscape, however the system remains

in the IHSS well, leading to a sustained polarization. Similar steady state transitions are also

observed for organization in region IV, however the systems here starts from a pre-polarized

state, as only the IHSS is stable (Fig 1C and S1(C) Fig, bottom). Formally, this regime corre-

sponds to a Turing-like mechanism of polarization [16]. Thus for organization in regions III

and IV, the system doesn’t reset to basal non-polar state after a transient stimulus.

Fig 1. Describing polarization response using transients in a non-autonomous system. (A) Top: Schematic representation of

the two component (u(θ, t)—membrane bound, v(θ, t)—cytosolic) reaction-diffusion system Eq (1) of a circular cell stimulated

with spatial chemoattractant gradient s(θ, t). (0–2π): angular positions with respect to cell center. Solid/dashed arrows: causal/

conversion link. Bottom: respective one dimensional projection of the model Eq (3), with left (L) and right (R) bin. Double-

headed arrows: diffusion-like exchange. (B) Bifurcation diagram of the system in (A), Eq (3), with respect to the total protein

concentration ctotal, in absence of a signal. Dotted lines: regions I-IV with qualitatively different dynamical response; solid /dashed

lines: stable/unstable homogeneous (black) and inhomogeneous (red) steady states. Insets: schematic representations of the

homogeneous (non-polar)/inhomogeneous (polar) states. PB: Pitchfork bifurcation, SNPB: Saddle-node of a pitchfork bifurcation.

Shaded region: criticality/SubPB mechanism. Parameters: k0 = 0.067s−1, γ = 1s−1, K = 1μM, δ = 1s−1, ~Du ¼ 0:01sec� 1,
~Dv ¼ 10sec� 1. (C) Spatial chemoattractant distributions (top) and the corresponding kymograph of u(θ, t), obtained using the RD

model Eq (1), for organization in regions I-IV in (B). Green horizontal lines: gradient duration. For all RD simulations, the width

at half maximum of s(θ, t) is set to 25% of the cell perimeter (unless specified). ctotal = 2.1;2.21;2.26;2.32μM for regions I-IV

respectively, Du = 0.1μm2/sec, Dv = 10μm2/sec, and other parameters as in (B). (D) Top: Time series of u (corresponding to region

II in (B)). Green shaded region: signal interval. Circle/square/triangle: non-polar/polar/transient-polar (memory) state. Bottom:

Respective quasi-potential landscape transitions. Coloured contour maps: landscape projections in uL-uR plane. Green/black

arrows:transitions during signal presence/absence. (E) Unfolding of the PB in the presence of a spatial step-like signal (sR = 0.0).

The bifurcation diagram for each step-wise increment is shown. Green/black arrows as in (D). Gray line: marginally asymmetric

steady state, line descriptions as in (B). (F) Representation of Gaussian curvature estimate of a quasi-potential landscape (top),

schematic representation of the subsequent slope distributions for distinct landscape regions (middle) and resulting contours

determining the phase space region characterised with asymptotic behavior of the system’s trajectory (bottom). See also S1(D) Fig.

(G) Corresponding instantaneous phase portraits with the integrated progression of the trajectory (blue line) during the last 40s

before signal change. Pink arrow: current trajectory position and direction. Black/grey circles: HSS/saddle; squares—IHSS;

triangles—dynamical “ghost” / memory state. For (D-G), equations and parameters as in (B).

https://doi.org/10.1371/journal.pcbi.1011388.g001
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In contrast, when the system is organized at criticality (before SNPB, shaded region II in Fig

1B, what we refer to as the SubPB mechanism), a transient gradient stimulus leads to rapid u
polarization in the direction of the maximal chemoattractant concentration. The polarized

state is only transiently maintained after signal removal, corresponding to a temporal memory

of the signal direction (Fig 1C and 1D (top)). The changes in the quasi-potential landscape fur-

ther clarify these tranistions: in absence of a signal, only the HSS (the non-polar state, single

well) is stable (Fig 1D, HSS: circle). However, since the system is positioned close to the critical

transition towards the IHSS, the landscape also has an area with a shallow slope. Upon signal

addition, the topology of the landscape changes. The HSS is lost and the IHSS (Fig 1D, square)

is stabilized, causing the transition to the newly established well. The opposite transition then

takes place upon signal removal, but in this case, the system is initially transiently trapped in

the region with the shallow slope (Fig 1D, triangle), which is manifested as a transient memory

of the polarized state. This transient trapping dynamically occurs from a “ghost” of a saddle-

node bifurcation which is lost when the signal is removed [20, 24].

These observed change of the topology of the system’s phase space suggests that cell polari-

zation should be formally treated as a non-autonomous process. In general, in non-autono-

mous systems, either the geometry (change in the positioning, shape and size of the attractors),

or the topology (change in the number or stability of the attractors) of the underlying phase

space is altered [22]. To gain deeper insight in the quasi-potential landscape changes in the

presence of a transient signal, we calculated next the bifurcation diagrams during the subse-

quent increase/decrease in the signal amplitude. Even a low-amplitude spatial signal (step (i))
introduces an asymmetry to the system and thereby a universal unfolding of the PB [25], such

that a marginally asymmetric steady state (Fig 1E, gray solid lines) replaces the HSS (black

solid lines in signal absence). Moreover, for the same parameter values, now also the IHSS (a

remnant of the PB that disappeared) is also stable. Increasing the spatial signal’s amplitude in

the next steps leads to an increase in the extent of the unfolding, rendering the IHSS as the

only stable solution at the maximal signal strength (step (iii) in Fig 1E). This solution corre-

sponds to the single-well landscape in Fig 1D, representing a robust polarization of the system.

Decreasing the signal amplitude in the same step-wise manner results in the reversed changes

in the bifurcation diagram structure, thereby explaining the resetting the system to the non-

polar HSS after signal removal.

The non-autonomous treatment of the systems thus allowed us to track the changes in the

number and stability of the attractors, however the fixed point analysis does not capture the

full dynamics of the system, as the memory emerging from the SNPB ‘ghost’ cannot be exam-

ined in this analysis. This implies that the transient dynamics of the system must be considered

explicitly, through the trajectories of the system which represent the change of the state of the

system. To classify the nature of the transients, it is necessary to quantify the phase space

regions in which the steady states asymptotically bind the trajectories. For this, we calculated

the Gaussian curvature of the quasi-potential landscapes for each step of the signal (schematic

in Fig 1F, top). A surface has a positive curvature (K> 0) at a point if the surface curves away

from that point in the same direction relative to the tangent to the surface, a negative (K< 0)

—if the surface curves away from the tangent plane in two different directions, and a K* 0—

a flat surface. Complementing the curvature calculations with the slopes along each point (e.g.

for a well, positive curvature and slope values distributed around 0 are a unique identifier, Fig

1F, middle and S1(D) Fig) allowed to identify the phase space region where the trajectory

asymptotically moves towards the steady state (contour plot in Fig 1F, right). Thus, movement

of the system’s trajectory in areas outside of these regions correspond to a non-asymptotic,

transient dynamics of the system. Detailed phase plane analysis of the system for each signal

amplitude showed that during transition (i), the marginally asymmetric steady state and the
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IHSS are stable (as shown in as in Fig 1E), whereas the system’s trajectory is trapped in the for-

mer one (Fig 1G). In the next steps (ii, iii), only the IHSS attractor is stable but moves its posi-

tion. The trajectory’s current state falls behind and reacts by travelling towards the moving

attractor. Since the flow rate along the trajectory is smaller than the velocity of the attractor

movement, the system is not able to catch up with the moving steady state and temporally

reverts from asymptotic to transient behaviour. The trajectory is asymptotically bounded to

the IHSS only at the highest signal strength (step (iv)). Decreasing the signal strength leads to

re-appearance of the marginally asymmetric state, whereas the IHSS moves from the previous

step, such that the trajectory reverts the direction to follow the attractor (step (v)). At a zero

signal amplitude, the topology of the landscape changes again such that a single stable HSS is

generated. In the position where the IHSS attractor was lost however, the landscape is charac-

terized with a shallow slope (“ghost” of the SNPB, triangle in Fig 1G). This lies right outside the

border determining the asymptotic behavior, and the system’s trajectory not only lags behind,

but it is effectively trapped in this state for a transient period of time ((vi1, vi2)) resulting in

transient memory of the polarized state, before it reverts to the HSS attractor ((vi3)). Thus,

examining transient dynamics during the signal-induced transition reveals important details

that shape the trajectory, and hence the response of the system, that could not be understood

by focusing only on the steady state behaviour.

Non-autonomous succession of steady states underlies the dynamics of the

existing polarity models

We next examined the dynamical mechanisms underlying the LEGI, Turing-like and the

Wave-pining cell polarity models. The bifurcation analysis was performed using the linear per-

turbation analysis LPA, [26, 27], which allows to identify the dynamical transitions in RD

models characterized with large disparity between the diffusivity of the system’s components

(see Methods for details). As can be already deduced by the LEGI network topology—the inco-

herent feed-forward motif, this model (Eq (18) has a single HSS (Fig 2A, shaded region:

respective parameter organization as used in the literature [8, 10]). The Turing-like model

(Eqs (16) and (20)) on the other hand displays a transcritical bifurcation (TC) at a critical total

concentration of the system’s constituents. The TC marks a transition from non-polar HSS to

a polarized, symmetry-broken state. In the literature [13, 14], the model is parameterized after

the TC, where the HSS is unstable (Fig 2B, shaded region: parameter organization). Such orga-

nization makes the Turing model dynamically equivalent to organization in region IV in Fig

1B. The Wave-pinning model, as described in [15], corresponds to organization in the region

where the HSS and the IHSS co-exist (Fig 2C, shaded region; equivalent to region III in Fig

1B). RD simulations of these models, consistent with previous findings, demonstrate that

upon transient gradient stimulation, the LEGI model shows a transient polarization that

decays to homogeneous non-polar state immediately after stimulus removal. In contrast, both

the Turing-like and the Wave-pinning models showed a long-term maintenance of the polar-

ized state after signal removal (S2(A) Fig).

Considering the time-dependence explicitly in the analysis shows that the trajectory

describing the state of the LEGI model exposed to transient spatial signal asymptotically fol-

lows the change in the position of the only steady state of the system, thereby marking the

steady-state as the only relevant behavior (Fig 2D and 2E and S2(B) Fig). As noted by the bifur-

cation analysis, the Turing-like model is organized in the stable symmetry-broken state,

thereby cannot describe a stable non-polar state. Thus, the non-autonomous analysis in this

case is equivalent to that of the SubPB model for organization in region IV (S1(C) Fig). Due to

the organization in the region where the HSS and the IHSS coexist on the other hand, the
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Wave-pinning model can explain both, the non-polar and the polar state [15]. Non-autono-

mous analysis of the Wave-pinning model however demonstrates that it is fully characterized

by an asymptotic behavior, realized through non-autonomous switching between the available

steady states (Fig 2F). Thus, the LEGI, Turing-like and Wave-pinning models are characterized

by a qualitatively different dynamics in comparison to the SubPB model: asymptotic behavior

towards the available steady states in contrast to the non-asymptotic, transient dynamics com-

plemented with transient trapping by the dynamical “ghost”, which temporarily maintains the

system away from the steady state.

Responsiveness to spatial-temporal signals is optimally enabled by the

transient dynamics and metastable state in the SubPB model

To investigate the difference in basic polarization features for the different models, we quanti-

fied next from the RD simulations a polarization ratio (
uy¼p
uy¼0

) to steep and shallow gradients

which are quantified via a stimulus difference, sd = (sθ = π − sθ = 0) × 100; time to reach stable

polarization at a threshold signal amplitude that induces polarization, and polarization ratio in

response to signals with an increasing offset. Scaling of the models to reflect physiological

time-scales was implemented as in [6].

The RD simulations showed that for the LEGI and Turing-like models, polarization can

be induced even when the gradient steepness is < 0.5% between the front and the back of the

cell (Fig 3A). However, the polarization ratio achieved by the LEGI-type model is relatively

small (� 1), indicating that the LEGI mechanism cannot account for signaling amplification

when sensing shallow gradients. This is a direct consequence of the underlying dynamical

mechanism: an external signal triggers a continuous and reversible re-positioning of the only

stable attractor, and therefore cannot account for signaling amplification (Fig 2A, 2D and

2E). The Turing-type model also showed polarization for very low stimulus differences,

which results from organization after the TC, region where the non-polar state is unstable.

The Wave-pinning model on the other hand effectively generated robust polarization

response. However, the response could be triggered even for low gradient amplitudes. This

can be explained again by the dynamical structure: due to the organization where HSS and

IHSS coexist, a “hard” signal-induced transition effectively results in a threshold activation

(sdthresh = 0.3%). That the Turing and the Wave-pinning models could be activated at low

stimulus difference across the cell suggests that these models are also susceptible to spurious

activation. This could be further demonstrated in the presence of fluctuations around the

homogeneous steady state (mimicking noisy initial conditions, S3(A) Fig, Methods). Thus,

these models do not exhibit reliable threshold activation and are thereby not robust to noise.

In terms of the polarization times on the other hand, the LEGI- and Turing-type models

Fig 2. Dynamical characteristics of the LEGI, Turing-like and Wave-pining polarity models. (A) Top: topology of interaction of LEGI

model. Color coding and arrows as in Fig 1A. Bottom: corresponding bifurcation diagram and the respective parameter organization in

signal absence. Simulations have been performed using Eq 18, and ku = k−u = 2s−1, kv = k−v = 1s−1, kw = k−w = 1μM−1s−1. (B), (C) same as

in (A) but for Turing and Wave-pinning models, respectively. The simulations of the Turing model correspond to Eqs (16) and (20), with

a1 = 2.5, a2 = 0.7, and for the Wave-pinning model, Eqs (2) and (16) and parameters as in Fig 1B. In (A)-(C), shaded region: parameter

organization, TC: Transcritical bifurcation, PB: pitchfork bifurcation, SNPB: saddle-node; u/w are membrane bound, and v—cytosolic

component, ulocal: local variable associated with u from LPA analysis, line description as in Fig 1B. (D) Quasi-potential landscapes

calculated for the LEGI model (Eq 19) subjected to a transient signal. Landscapes in absence and maximal signal strength are shown.

Transitions in signal presence/absence: green/black arrows. Coloured contour maps: landscape projection in uL-uR plane. (E)

Corresponding instantaneous phase portraits and system’s trajectory (as in Fig 1G). Black circles: stable steady states. Transitions in

signal presence/absence: green/black arrows. (F) Same as in (E) only for the Wave-pinning model. Grey circles: saddles; black squares:

IHSS.

https://doi.org/10.1371/journal.pcbi.1011388.g002
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polarized on a time scale longer than 6min, whereas the Wave-pinning model displayed

rapid polarization (< 3min, Fig 3B). Moreover, testing the polarization responses to gradi-

ents with different offset demonstrated that, with exception of the LEGI, the remaining mod-

els robustly polarized under these conditions (Fig 3C and S3(B) Fig). The equivalent

quantifications for the SubPB model on the other hand show that it responds to steep and

relatively shallow gradients, threshold activation and thereby robustness to noisy signal acti-

vation (sdthresh = 1.2%), rapid polarization times (<3min), and robust polarization to

Fig 3. SubPB mechanism enables optimal responsiveness to spatial-temporal chemoattractant signals. (A) Average polarization ratio (
uy¼p
uy¼0

) as a function of a stimulus

difference across the cell (sd = (sθ = π − sθ = 0) × 100)). Mean ± s.d from 10 RD simulation repetitions. (B) Minimal threshold that activates the system (sdthresh) and time to

achieve stable polarization (Methods). (C) Polarization ratios upon stimulation with a gradient with an offset (S3(B) Fig). For (B-C), colours as in (A). (D) Left: schematic

representation of gradient reversal across the cell, and respective representation of the spatial profiles of u(θ, t) and s(θ, t). Right: Quantification of polarization reversal

time and the respective polarization amplification (
uy¼0

uy¼p
) upon stimulation with

sy¼0

sy¼p
¼ 2. LEGI and Turing-like models did not demonstrate re-polarization in time-

interval of 1000 sec. (E) Left: Schematic representation for numerical stimulation protocol with simultaneous signals localized on opposite ends, and corresponding

schematic spatial profile of u(θ, t) and s(θ, t). Right: Quantification of the time necessary to achieve unique polarization axis and the corresponding polarization

amplification, for stimulus ratio
sy¼0

sy¼p
¼ 2. (F) Top: Schematic representation for numerical stimulation protocol with consecutive transient gradient stimuli from same

direction. Bottom: Corresponding quantification of signal integration index (see Methods). See also S3 Fig.

https://doi.org/10.1371/journal.pcbi.1011388.g003
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gradients with offset (Fig 3A–3C and S3(A) and S3(B) Fig). That the SubPB model displays

optimal polarization features can be explained with the criticality organization: in absence of

a signal, the non-polar state is the only stable steady state, thus threshold activation can be

robustly achieved, whereas the subcritical nature of the PB gives rise to the signal amplifica-

tion to shallow signals. Taken together, these results demonstrate that SubPB enables optimal

polarization response.

We next tested the re-polarization capabilities of each of the models by subjecting the sys-

tems in the RD simulations to a spatial gradient until stable polarization was achieved, after

which the gradient direction was reversed and its maximal amplitude was set to 2 × sdthresh.

The Turing- and Wave-pinning-type models did not re-polarize (in physiologically relevant

time-frame, Fig 3D and S3(C) Fig). This can be understood from the non-autonomous anal-

ysis of the system (Fig 2F): the trajectory remained trapped in the symmetry-broken state

after signal removal, such that rapid re-polarization cannot be achieved. The LEGI model re-

polarized in a time-frame >3min, but the polarization ratio did not depend on the signal

amplitude. The SubPB on the other hand, not only enabled rapid re-polarization to spatially

reversed gradient signals (<1 min, Fig 3D and S3(C) Fig), but the polarization response was

also sensitive to the amplitude of the reversed signal as reflected in the polarization amplifi-

cation. In contrast to the Wave-pinning model, re-polarization for the SubPB mechanism is

possible due to organization at criticality—after signal removal, the system is maintained in

the dynamical “ghost” state (in contrast to the stable IHSS for the Wave-pinning model),

thus the system can rapidly respond to the reversed signal and thereby quickly re-polarize.

Additional analysis on the Wave-pinning and the SubPB model by systematically scanning

the stimulus width and maximal amplitude of the re-polarization gradient showed that re-

polarization in the Wave-pinning model is possible only for signals� 7 × sdthresh. In contrast,

the re-polarization in the SubPB mechanism can be achieved for reversed gradients with

wide range of widths and amplitudes (S3(D) Fig). When presented with two simultaneous,

but distinctly localized signals with different amplitudes, only the SubPB and Wave-pinning

mechanisms demonstrated effective resolving and rapid and robust polarization in the direc-

tion of the stronger signal (Fig 3E and S3(E) Fig). In contrast, both LEGI-, Turing- models

required more than four times longer time to resolve the signals and polarize in direction of

the stronger signal.

We next tested how the models respond to consecutive transient gradient stimulation

from same direction, mimicking signals that are disrupted. This reflects the capability of the

models to integrate signals with complex temporal profile, and adapt the duration of the

polarized state accordingly. The response in the LEGI model rapidly decayed after signal

removal, demonstrating complete absence of memory. Thus the system responds to each gra-

dient independently (S3(F) Fig), as also reflected in the low signal integration index (Fig 3F).

The Turing and the Wave-pinning models maintain the polarized state on a long-term after

signal removal, thus they are insensitive to consecutive gradient signal stimulation from

same direction: stimulation with a single or multiple consecutive signals does not change the

total duration in which the polarized state is maintained, resulting in a constant signal inte-

gration index. In contrast, the SubPB model displays signal-integration features, adapting

the polarization duration depending on the number of consecutive stimuli. These results

therefore demonstrate that the SubPB mechanism uniquely enables sensing and responsive-

ness to dynamic signals, as a result of the critical organization that allows utilizing transient

dynamics via the presence of a dynamical “ghost” state to adapt to dynamic signals in the

environment.
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Discussion

We have demonstrated that it is necessary to consider transient dynamics and explicit time-

dependence in order to describe cellular responsiveness to spatial-temporal chemoattractant

signals. The current models in the literature rely on an autonomous system’s description,

where the system’s topology determines the number, stability and type of available steady-

states, whereas the external signals are thought only to induce switching between them.

Description of the asymptotic behavior at or near a steady state is also attractive from mathe-

matics point of view, as it provides a tractable analysis of the system using linear stability analy-

sis [28]. However, this view only accounts for robustness of regulatory processes, ignoring the

temporal system’s changes. As we have shown here, the steady-state view cannot account for

cellular responsiveness to dynamic cues or how cells resolve simultaneous signals, crucial fea-

tures of cells that operate in the dynamic environments of tissues and organs.

In contrast, one of the basic characteristics of non-autonomous systems is that the quasi-

potential landscape is dynamic itself under time-varying signals, resulting in changes in the

number and stability of the steady states. These landscape changes thus guide the movement of

the system’s trajectory. For system’s organization at criticality, as demonstrated here, a non-

asymptotic transient behavior emerges upon the landscape changes, enabling the system to

maintain both robustness (i.e. by transient trapping or slow motion in specific landscape

region), while maintaining flexibility in the responses to upcoming cues. Indeed, recent experi-

mental evidence has demonstrated that cell’s protein activity dynamics is maintained away

from steady state, thereby enabling them to retain transient memory of the previous signal’s

localization, while being responsive to newly perceived signals [20].

However, a general theory to analyze or formally describe non-asymptotic transient

dynamics is lacking, and current analysis has been mostly limited to systems with regular

external forcing [29], or numerical investigation of simple two dimensional models [22]. Here,

we provide an additional tool (although also applicable mainly to low-dimensional systems)

based on combination of extended bifurcation analysis and quantification of the Gaussian cur-

vature of the landscape and the corresponding point-wise slope distribution, to separate quan-

titatively asymptotic from non-asymptotic behavior. Importantly, this framework enables to

identify manifolds with a specific topology that maintain the system for a prolonged period of

time away from the steady state. Such long non-asymptotic transients have been characterized

in neuronal networks and have been particularly informative, not only about the identity and

temporal features of the external signals [30], but also about basic forms of learning such as sig-

nal associations [31]. Stable heteroclinic channels have been proposed as an underlying

dynamical mechanism that generates long stable transients in neuronal models [32]. More-

over, transient phenomena with much longer time scales have been also described in the con-

text of regime shifts due to anthropogenic global changes in ecological systems [33]. We

hereby argue that it is necessary to shift the description of biochemical computations in single

cells towards non-autonomous system’s description and focus on the role of transient dynam-

ics for processing and interpreting spatial-temporal varying signals.

Methods

Analytical treatment of the SubPB model

Let us consider the system Eq (1) with reaction terms as in Eq (2). This describes the Wave-

pinning model [15], and the SubPB model discussed here. To identify analytically the existence

of a sub-critical PB, as well as to further calculate the quasi-potential landscapes, we consider a

simplified one-dimensional projection where the cell constitutes of two bins (left, right)
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between which the species can be exchanged:

duL

dt
¼ G1ðuL; vL; uRÞ ¼ fuðuL; vLÞ � ~DuðuL � uRÞ

dvL
dt
¼ G2ðuL; vL; vRÞ ¼ fvðuL; vLÞ � ~DvðvL � vRÞ

duR

dt
¼ G3ðuL; uR; vRÞ ¼ fuðuR; vRÞ � ~DuðuR � uLÞ

dvR
dt
¼ G4ðvL; uR; vRÞ ¼ fvðuR; vRÞ � ~DvðvR � vLÞ

ð3Þ

The subscripts L and R stand for the two bins (Fig 1A, bottom), ~Du and ~Dv are the diffu-

sion-like terms, and G1—G4 combine the reaction-diffusion terms. Let Us ¼

uL;s; vL;s; uR;s; vR;s �
T�

be the stable homogeneous steady (non-polar) state of the system (uL,s =

uR,s, vL,s = vR,s). Stability of this state can be probed using a linear perturbation of the form U(t)
= Us + δ U(t), where dU ¼ duL; dvL; duR; dvR �

TexpðltÞ
�

, is a small amplitude perturbation

with growth rate λ. Plugging this into Eq (3) gives the linearized equation:

l

duL

dvL
duR

dvR

2

6
6
6
6
4

3

7
7
7
7
5
expðltÞ ¼ J0

duL

dvL
duR

dvR

2

6
6
6
6
4

3

7
7
7
7
5
expðltÞ ð4Þ

where J0 is evaluated at Us, and is given by:

J0 ¼

@G1

@uL

@G1

@vL

@G1

@uR
0

@G2

@uL

@G2

@vL
0

@G2

@vR
@G3

@uL
0

@G3

@uR

@G3

@vR

0
@G4

@vL

@G4

@uR

@G4

@vR

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð5Þ

The occurrence of zero-crossing eigenvalues leads to either pitchfork or saddle-node bifur-

cations, and the solution for λ = 0 can be readily obtained by taking the well-defined limit λ!
0 [34]. The existence of the PB bifurcation is related to the odd mode of the perturbation (δuL
= −δuR and δvL = −δvR) due to the symmetry of this bifurcation. Substituting these constrains

in Eq (4) gives:

0 ¼ J0

duL

dvL
� duL

� dvL

2

6
6
6
6
4

3

7
7
7
7
5

ð6Þ
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The symmetry in the perturbation further reduces the dimensionality of the Eq (6):

0 ¼ Fl
duL

dvL

" #

ð7Þ

where

Fl ¼

@G1

@uL
þ
@G3

@uR
Þ � ð

@G1

@uR
þ
@G3

@uL
Þ ð

@G1

@vL
þ
@G2

@vR
Þ

ð
@G2

@uL
þ
@G4

@uR
Þ ð

@G2

@vL
þ
@G4

@vR
Þ � ð

@G2

@vR
þ
@G4

@vL
Þ

2

6
6
6
4

3

7
7
7
5

ð8Þ

The linear system in Eq (7) has non-trivial solution only if the determinant of Fλ = 0:

jFlj ¼

�
�
�
�
�

ð
@G1

@uL
þ
@G3

@uR
Þ@ð

@G1

@uR
þ
@G3

@uL
Þ ð

@G1

@vL
þ
@G2

@vR
Þ

ð
@G2

@uL
þ
@G4

@uR
Þ ð

@G2

@vL
þ
@G4

@vR
Þ � ð

@G2

@vR
þ
@G4

@vL
Þ

�
�
�
�
�
¼ 0 ð9Þ

where |.| denotes the determinant of the matrix. The parameter values of Eq (3) that satisfies

the condition in Eq (9) corresponds to the symmetry breaking PB.

To identify next whether the PB is of sub-critical type, and thereby identify the presence of

a SNPB, a weakly nonlinear analysis of system Eq (1) must be performed to obtain a description

of the amplitude dynamics of the inhomogeneous state. This can be achieved using an approxi-

mate analytical description of the perturbation dynamics based on the Galerkin method [35–

37]. For simplicity, we outline the steps for a reaction-diffusion system in a one-dimensional

domain. As we are interested in the description of a structure of finite spatial size (i.e. finite

wavelength k of the symmetry-broken state), the final solution of the system Eq (1) is expanded

around the fastest growing mode, km into a superposition of spatially periodic waves:

uðy; tÞ ¼ �ðtÞeikmy þ �∗ðtÞe� ikmy þ u0ðtÞ þ
X3

n¼2

ðunðtÞe
nikmy þ u∗nðtÞe

� nikmyÞ

vðy; tÞ ¼ �ðtÞeikmy þ �∗ðtÞe� ikmy þ v0ðtÞ þ
X3

n¼2

ðvnðtÞe
nikmy þ v∗nðtÞe

� nikmyÞ

ð10Þ

where u(v)n(t) is the complex amplitude of the nth harmonics. The expansion is taken to

n = 3rd order, rendering an amplitude equation of 5th order. For simplification, the Hill func-

tion in fu(u, v) is approximated by assuming (K/u)>> 1 to yield fuðu; vÞ ¼ ðk00 þ g
0u2Þv � du

where k0
0
¼

k0

K2 and g0 ¼ g

K2. Substituting Eq (10) in Eq (1) gives,

d�
dt

eikmy þ
du0

dt
þ :: ¼ k0

0
ð�eikmy þ v0::Þ þ g

0ðð3j�j
2
�þ 2u0v0�Þeikmyþ

þ2ðu0 þ v0Þj�j
2
þ . . .Þ � dð�eikmy þ u0 þ ::Þ � Duðk2

m�e
ikmy þ v0 þ ::Þ

ð11Þ
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Collecting coefficients of harmonics up to first order on either side gives an equation that

governs the evolution of the amplitude:

d�
dt
¼ ðk0

0
� ðDuk2

m þ dÞÞ�þ 3g0j�j
2
�þ 2g0u0v0�

du0

dt
¼ ð2g0j�j

2
� dÞu0 þ ðk00 þ 2g0j�j

2
Þv0

ð12Þ

The complex coefficients of the n = 0th harmonics is next approximated as power series of

ϕ(t) [35]:

u0ðtÞ � uð2Þ0 j�j
2
þ . . .

v0ðtÞ � vð2Þ0 j�j
2
þ . . .

ð13Þ

Eq (13) is then substituted into Eq (12) giving:

d�
dt
¼ ðk0

0
� ðDuk2

m þ dÞÞ�þ 3g0j�j
2
�þ 2g0uð2Þ0 vð2Þ0 j�j

4
�

du0

dt
¼ ð2g0j�j

2
� dÞuð2Þ0 j�j

2
þ ðk0

0
þ 2g0j�j

2
Þvð2Þ0 j�j

2

ð14Þ

Higher order amplitudes were assumed to be in quasi-steady state, thus
du0

dt ¼ 0, rendering

vð2Þ0 / � u
ð2Þ

0 . Substituting this into Eq (14) yields an approximated expression for ϕ:

d�
dt
¼ c1�þ c2�

3
� c3�

5 ð15Þ

where c1 ¼ ðk00 � ðDuk2
m þ dÞÞ, c2 = 3γ0 and c3 ¼ 2g0ðuð2Þ0 Þ

2
. Eq (15) is of Stuart-Landau type

and represents a normal form of a sub-critical pitchfork bifurcation. Taken together, this guar-

antees the existence of SNPB for system Eq (3).

Local perturbation analysis (LPA)

Local perturbation analysis is a method to identify dynamical transitions in spatially-extended

system [26, 27]. The method can be applied to any system where the two species ((u, v)) are

characterized with at least order-of-magnitude difference between their diffusivity, i.e Dv>

>Du. In such a case, it is possible to consider the limit Du! 0, Dv!1, further allowing to

probe the stability of the HSS of the PDE system under study (Eq (1) for s(θ, t) = 0) with

respect to a local perturbation in the form of a narrow peak of the slow variable with a negligi-

ble total mass. Thus, the height of this peak can be represented as a local variable (ulocal(t)) that

does not spatially spread. Due to the fast rate of diffusion of v, it can be represented by a uni-

form global quantity vglobal(t). Since u does not spread and v is uniform on the domain, u can

then be represented on the remainder of the domain (away from the perturbation) by a global

quantity, uglobal(t), which for mass-conservation systems as in Eq (1) also captures the
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evolution of vglobal(t):

dulocal

dt
¼ fuðulocal; ðctotal � uglobalÞÞ

duglobal

dt
¼ fuðuglobal; ðctotal � uglobalÞÞ

ð16Þ

Such systems can be further analyzed by means of classical (numerical) bifurcation analysis.

Description of the different cell polarity models

LEGI model. The LEGI-type model system is characterized by an incoherent feed forward

loop topology, where w is the membrane bound activator, v is the cytosolic inhibitor and u is

the membrane bound response component [8]. The equations are given by,

@wðy; tÞ
@t

¼ fwðwÞ þ kwsðy; tÞ þ Dw
@

2w
@y

2

@vðy; tÞ
@t

¼ fvðvÞ þ kvsðy; tÞ þ Dv
@

2v
@y

2

@uðy; tÞ
@t

¼ fuðw; u; vÞ þ Du
@

2u
@y

2

ð17Þ

with fw(w) = −k−ww, fv(v) = −k−vv, fu(w, u, v) = kuw(utotal − u) − k−uvu, and s(θ, t) is the external

stimulus.

Applying LPA on this system, we obtain:

dwlocal

dt
¼ fwðwlocalÞ;

dwglobal

dt
¼ fwðwglobalÞ

dvglobal
dt
¼ fvðvglobalÞ

dulocal

dt
¼ fuðwlocal; ulocal; vglobalÞ

duglobal

dt
¼ fuðwglobal; uglobal; vglobalÞ

ð18Þ

The one dimensional projection of LEGI model is given by,

duLðtÞ
dt
¼ fuðw

qss
L ; uL; v

qssÞ � ~DuðuL � uRÞ

duRðtÞ
dt
¼ fuðw

qss
R ; uR; v

qssÞ � ~DuðuR � uLÞ

ð19Þ

with

vqss ¼ 0:5
kv
k� v
ðsL þ sRÞ

wqss
R ¼

kw
k� w
ðsL þ sRÞ � wqss

L
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wqss
L ¼

kw
ð2~Dw þ k� wÞ

ðsL þ
~DwðsL þ sRÞ

k� w
Þ

This two component simplification was obtained from Eq (17) after a quasi-steady state

approximation of v and w.

Turing model. For the Turing-like model, the reaction term was taken from [13]:

fuðu; vÞ ¼ a1ðv �
ðuþ vÞ

ða2ðuþ vÞ þ 1Þ
2
Þ ð20Þ

with fv = −fu (mass conservation). The external signal s(θ, t) was introduced same as in Eq (1),

in contrast to [13], where s(θ, t) was introduced in the denominator of the reaction term.

Estimating quasi-potential landscapes

In order to obtain the quasi-potential landscapes for the systems Eqs (3) and (19), the method

described in [23] is adopted. For non-equillibrium systems, the underlying potential that

defines the state-space flows cannot be obtained by integrating the force terms (the reaction

terms of the ODE system). This issue can be bypassed by introducing stochasticity into the sys-

tem. In a stochastic system, each state x (here x = (x, y) = (uL, uR)) is described using a proba-

bility in time and state space position x, P(x, t). The time evolution of the P(x, t) not only

depends on the forces that drive the system, but also the stochastic transitions between adja-

cent points in the state space. This can be formalized using a Fokker-Planck equation that cap-

tures the interplay between deterministic and stochastic nature of the system and is given by,

@PðuL; uR; tÞ
@t

¼ �
@ðG1PÞ

uL
�
@ðG3PÞ

uR
þ ð

@
2

@u2
L

þ D
@

2

@u2
R

ÞP ð21Þ

where D is the diffusion constant associated with stochastic transitions, G1 and G3—as in Eq

(3). By numerically solving Eq (21), the asymptotic state of the probability distribution, Pss,
given by the limit P(x, t!1), is estimated. Analogous to the equilibrium state, an approxi-

mate expression for the quasi-potential is then given by, Q(x)� − ln(Pss). The Fokker-Planck

equations were solved numerically using the Python package provided in [38], with D = 0.02.

The two dimensional grid on which the system is solved has a spatial step size 0.02.

To quantify the landscapes, the Gaussian curvature K of the landscapes given by:

Kðx; yÞ ¼
QxxQyy � Q2

xy

ð1þ Q2
x þ Q2

yÞ
2 ð22Þ

is used, where Qx ¼
@Q
@x , Qxx ¼

@Qx
@x , Qy ¼

@Q
@yy, Qy ¼

@Qy
@y , Qxy ¼

@Qx
@y are the first and second order

partial derivatives of the quasi-potential surface. State space regions with positive K values

were identified using a threshold given by Kmean + 0.1Kstd. The boundary that determines the

asymptotic behavior of the trajectory in the vicinity of a steady state, Qbound, is estimated as the

mean of the quasi-potential values at the boundary of the identified region that satisfies the

condition that the slopes are distributed around zero (Fig 1F).

Model implementation

The models were implemented using a custom-made Python code. The PDE solving method

that we have used is as follows. Given a generic reaction diffusion system on a 1D domain

(equivalent to Eq (1), where θ 2 [θmin, θmax], the domain is first discretized to N = 20 spatial
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bins with uniform bin size δθ = θi+1 − θi for i = 1, 2, . . ., N − 1. The discretized version of the

PDE then becomes

@ui

@t
¼ fuðui; viÞ þ Du

@
2ui

@
2
y

@vi
@t
¼ fvðui; viÞ þ Dv

@
2vi
@

2
y

ð23Þ

where ui = u(θi, t), vi = v(θi, t). Conversion of this PDE to ODE is then done using the method

of lines [39] where the second order partial derivative terms are approximated using finite dif-

ference method. This enables us to rewrite the equations with partial derivatives in t as total

derivatives,

dui

dt
¼ fuðui; viÞ þ

Du

dy
2
ðuiþ1 � 2ui þ ui� 1Þ þ Oðdy2

Þ

dvi
dt
¼ fvðui; viÞ þ

Dv

dy
2
ðviþ1 � 2vi þ vi� 1Þ þ Oðdy2

Þ

ð24Þ

Depending on the type of boundary conditions, equations at the boundary bins i = 1 and i
= N are fixed. For example, for periodic boundary conditions, two fictitious bins θ−1 and θN+1

with constrains θ−1 = θN and θN+1 = θ1 are considered, which allows to re-write the equations

at the boundary as:

du1

dt
¼ fuðu1; v1Þ þ

Du

dy
2
ðu2 � 2u1 þ uNÞ þ Oðdy2

Þ

dv1

dt
¼ fvðu1; v1Þ þ

Dv

dy
2
ðv2 � 2v1 þ vNÞ þ Oðdy2

Þ

ð25Þ

and

duN

dt
¼ fuðuN ; vNÞ þ

Du

dy
2
ðuNþ1 � 2uN þ u1Þ þ Oðdy2

Þ

dvN
dt
¼ fvðuN ; vNÞ þ

Dv

dy
2
ðvNþ1 � 2vN þ v1Þ þ Oðdy2

Þ

ð26Þ

This set of equations can now be solved using any standard numerical solver for ODEs. In

order to ensure numerical stability of the solutions, we have used explicit Runge-Kutta method

of order 5(4) with adaptive time step dt (implemented using solve_ivp package in Python).

Truncation error of the order O(dt6) was sufficient to capture sharp transitions.

The external perturbations into the system of ODEs is modeled as a Wiener process where

Gaussian white noise is introduced as an additive term at each time step. This results in a sto-

chastic differential equation (SDE) in the Ito form

dui ¼ ½fuðui; viÞ þ
Du

dy
2
ðuiþ1 � 2ui þ ui� 1Þ�dt þ sdWð0; 1Þ

dvi ¼ ½fvðui; viÞ þ
Dv

dy
2
ðviþ1 � 2vi þ vi� 1Þ�dt þ sdWð0; 1Þ

ð27Þ

where dW(0, 1) is the Gaussian white noise term with unit variance and σ is the noise intensity.

Euler-Maruyama algorithm (implemented using sdeint package in Python) was then used to

solve this system. For the RD simulations, the stimulus gradient was generated using Gaussian
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function from scipy.signal.windows in Python. This package truncates the Gaussian function

which otherwise extends from −1 to +1 within a given window. For a window of length N

(in our case N = 20), Gaussian profile is constructed using the expression sðnÞ ¼ s0e
� 1
2

n
wð Þ

2

where n 2 ½� N� 1

2
: N� 1

2
�, s0 is the signal amplitude, and the variance is w ¼ N� 1

2a
. Varying the

value of the constant α results in Gaussian profile of varying spread. The generated Gaussian

will be maximum at the center and when overlayed on the membrane (S1(A) Fig top, bottom)

results in a maximum at θ = π with negligible discontinuity at θ = 0, 2π. For Figs 1C and 3

(except differently specified), s0 = 0.02 and α = 2 is fixed to have 25% of width at half maxi-

mum. For the RD simulations in Fig 3A, s0 is systematically varying while keeping α fixed,

whereas for S3(D) Fig, α is systematically varied. For simulation of the one dimensional projec-

tion models, a step like signal function was used (S1(B) Fig), with signal amplitude sL and sR
(generally set to 0).

Model comparison

In order to compare polarization features arising from the different types of dynamical mecha-

nisms, we quantified several metrics: polarization ratio (
uy¼p
uy¼0

) to steep and shallow gradients

quantified via a stimulus difference (sd = (sθ = π − sθ = 0) × 100), time to reach stable polariza-

tion at a threshold signal amplitude inducing polarization (sdthresh), polarization ratio to signals

with increasing offset, time necessary for polarization reversal/resolving simultaneous stimuli

and subsequent polarization amplification, and response to consecutive stimuli (using signal

integration index). In order to estimate the polarization time (Fig 3A), u(θ, t) was normalized

between max and min values to enable model comparison. Polarization time was then esti-

mated as the first time point at which the normalized response reaches within a small window

(±10−2) around the mean of the last 100 time points during gradient stimulation. The thresh-

old for activation (sdthesh) represents the minimal stimulation amplitude for which stable

polarization was achieved, and was estimated from Fig 3A as the sd where 50% of the maxi-

mum polarization ratio is reached. sdthresh was manually set for the LEGI model to 0.5%, and

for the Turing-model to 0.1%, as both systems exhibit spurious activation to noise. For model

responsiveness to signals with an offset, the maximal signal amplitude was systematically var-

ied by adding an increasing off-set amplitude to the sdthresh. Polarization reversal and resolving

times were estimated equivalently to the polarization time. For the reversed polarization in Fig

3D, the Turing and the Wave-pinning models are not depicted, as they did not re-polarize in

the time frame of 1000s. The signal integration index in Fig 3F is estimated as
ð½uy¼p;a �� ½sy¼p �Þ

tmax

where [uθ = π, a] is the total duration in which uθ = π> 0.5, [sθ = π] is the total duration of signal

gradient stimulation, and tmax is the total simulation time. The spurious activation in the

absence of signal in S3(A) Fig is performed by considering a random perturbation around the

homogenous steady state (us, vs) which is implemented as (us + ξperr, vs − ξperr) where r is a ran-

dom number between [0, 1]. For the LEGI model, the perturbation is also implemented on the

ws variable.

Supporting information

S1 Fig. Characterizing non-autonomous state transitions for the model in Fig 1A. Sche-

matic representation of the gradient signal implementation in (A) the RD simulations, corre-

sponding to Eq (1), and (B) the one-dimensional projection model, corresponding to Eq (3).

(C) Time series of u and the quasi-potential landscape transitions during a transient step-like

stimulation for organization in region I (top), III (middle) and IV (bottom) corresponding to

Fig 1B (same equations and parameters). Green shaded region: signal interval. Circle/square/
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triangle: non-polar/polar/transient-polar (memory) state. (D) Exemplary estimate of Gaussian

curvature (middle) and corresponding slopes distribution in (x, y) = (uL, uR) direction for each

of the identified regions. Slopes distribution around 0 in both direction in conjunction with

positive curvature uniquely determines a well (stable steady state) in the potential landscape.

Description as in Fig 1F.

(TIF)

S2 Fig. Polarization response of the LEGI, Turing-like and Wave-pinning models. (A) Spa-

tial-temporal response (kymographs) of the membrane-bound active component of the three

models. Parameters as in Fig 2, except for Du = Dw = 0.5μm2s−1, Dv = 10μm2s−1 for the LEGI,

and Du = 0.1μm2/sec, Dv = 10μm2s−1 for the Turing and Wave-pinning models. (B) Temporal

u profile for the LEGI model, corresponding to Fig 2D and 2E.

(TIF)

S3 Fig. Spatial-temporal responses of the four different polarity models. (A) Quantification

of spurious activation for increasing perturbation amplitude around the homogeneous steady

state. Colors as in Fig 3A. (B) Schematic representation of gradient stimulation with an

offset along the cell membrane contour. (C) Kymographs depicting the spatial-temporal

response of each of the models to reversal of gradient stimuli (black horizontal line). Red hori-

zontal line: time point when stable reversed polarity is established. (D) Comparison of re-

polarization in the Wave-pinning (left) and the SubPB (right) models, for varying stimulus

width and maximal stimulus amplitude. (E) Kymographs depicting the spatial-temporal

response of each of the models stimulated with simultaneous signals with different amplitudes

from opposite cell ends. Red horizontal line: time point where stable polarization with unique

axis was established. (F) Exemplary temporal response to consecutive signals from same direc-

tion (left: LEGI, Wave-pinning and SubPB; right: Turing model).

(TIF)
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