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Self-Organization in Catalytically Active Mixtures

Abstract

Living systems are intrinsically out of equilibrium, whichmakes their physical description
challenging. This has led to the emergence, over the past thirty years, of a new field of physics,
active matter, which studies collectives whose components dissipate energy to performwork.

Two common features of biological and artificial active matter systems are their ability
to respond to environmental stimuli through gradient-following behavior, and to affect the
fields whose gradients they respond to. The interplay between these two phenomena lead to
the emergence of intrinsically out-of-equilibrium field-mediated interactions, which are long-
ranged and potentially non-reciprocal, and can lead to spectacular self-organization behavior.
Field-mediated interactions are relevant tomany biological systems, for instance populations
of bacteria and mixtures of catalytic enzymes, and are likely to be involved in intracellular
organization processes.

Previous studies on the collective behavior of non-reciprocally interacting agents have fo-
cused on short-range interactions. The effect of long-range, intrinsically out-of-equilibrium
interactions at the collective level is meanwhile still not fully understood. In this thesis, we
thus study the self-organizationof catalytic systemswhich exhibit field-mediatednon-reciprocal
interactions using analytical and numerical tools.

Webeginwith anoverviewof the concepts approached in this thesis. Wedescribe themech-
anisms through which active particles can interact with, create and respond to field gradients,
explain how these two abilities lead to effective interactions between active particles and their
relevance to intracellular behavior. Throughout this introduction, we introduce minimal
models describing the self-organization of catalytic particles, which serve as a starting point
for the rest of the thesis.

We then characterize the consequences of using a detailed description of the catalytically
active particles under study. We do so by adding a Michaelis-Menten-like substrate concen-
tration dependence to the catalytic activity, and by taking into account the effect of size dis-
persity. Our analytical calculations show that these two ingredients strongly enrich the phe-
nomenology of catalytic phase separation.

In the second part, we switch our focus to the study of catalytically active particles involved
in model metabolic cycles, in which the product of a given catalytic species is the substrate
of the next. We analytically and numerically characterize the behavior of a metabolic cycle
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involving an arbitrary number of catalytically active and chemotactic particles with identical
parameters. We find that cycles with an even number and an odd number of catalytic species
show a qualitatively different behavior, with the latter being able to develop oscillatory steady
states.

We then study metabolic cycles of three species with arbitrary parameters. We discover
that the resulting network effects can give rise to clustering of active species which are all self-
repelling, the conditions for which we calculate analytically and confirm numerically.

Going beyond this result, we perform a classification of all the three-species metabolic net-
works depending on their ability to self-organize. Coarse-graining the interactions between
the active species leads to the identification of the inter-species interactionmotifs which tend
to stabilize or destabilize a metabolic cycle. Generic cycles can be mapped to a small subset of
elementary cycles, whose stability is obtained based on the decomposition into single-species
and pair interaction motifs.

Finally, we summarize in detail the results obtained in this thesis, and propose some direc-
tions for future research.
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1
Introduction

1.1 Phoretic and chemotactic active matter

Biological systems self-organize at all scales, from flocks of birds 1 and fish 2 to ordered struc-

tures within cells 3. Starting from the seminal work of Vicsek et al.4, a physical framework

has emerged to describe such behavior: active matter 5–7, a rapidly expanding field concerned

with the study of collectives which dissipate energy at the component level in order to per-

form work6. In the most common subclass of active matter models, this work is used to

drive self-propelled motion, as described by the famous active Brownian particle model and

its declinations 8. Two broad approaches can be distinguished in active matter theory. First,
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the use of minimal agents-based descriptions, of which the Vicsekmodel4 is an example, as it

analyzes the collective behavior of self-propelled particles which attempt to align with their

neighbours. The second approach is the formulation of continuum field theories which cap-

ture the essential features of the system under study. For instance, Toner and Tu9 wrote a

hydrodynamic description of the Vicsek model, which obeys the same symmetries, features

a similar phase transition, and can be derived by coarse-graining a Vicsek-like microscopic

model 10.

One of the defining features of biological organisms, which extends to active systems, is

the sensing and processing of, as well as the subsequent adaptation to, stimuli 11. A particu-

larly biologically relevant example of this is chemotaxis, a gradient-sensing behavior used by

organisms to forage for nutrients, initiate social behavior, or escape harmful environments 12.

1.1.1 Chemotaxis of microorganisms

The ability of organisms to move in response to environmental cues is essential to their sur-

vival, which has led to the emergence of a variety of mechanisms to perform these functions.

For instance,macroscopic animals forage for foodby followingolfactory trails, which involves

intermittent signal acquisition by a complex sensory apparatus and information processing

by the brain 13. Microorganisms share similar concerns: they need to find nutrient sources and

avoid toxins, which entails directed motion as a response to chemical gradients using simpler

tools than the ones available to more complex organisms.

One issue faced by microorganisms is that they live in a world dominated by viscous ef-

fects 14, which creates challenges that larger organisms do not encounter in their locomotion.

Purcell elegantly formulated this idea in his celebrated Scallop theorem 15, which states that
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Figure 1.1: Bacterial swimming and chemotaxis. Left: In an uniform concentration profile, a bacterium swims through

a series of linear runs, interrupted by tumbling periods during which it randomly reorients. The net effect is a random

walk. Right: In the presence of a chemoattractant concentration gradient∇c, the bacterium biases its random walk,

going towards the higher attractant concentrations.

swimming at low Reynolds number is impossible with a single degree of freedom. Evolu-

tion has nonetheless provided microorganisms with elegant solutions to solve this problem,

by actuating an organelle or a group of organelles in a time-asymmetric stroke 16. For exam-

ple, many species of bacteria (most famously E. Coli 17) swim using flagella driven by a rotary

motor embedded in their cell wall 18.

Many species of bacteria swim according to a “run and tumble” pattern 17: they move

straight for some period of time, then stop and reorient before starting to swim again, per-

forming a random walk in the absence of stimuli 19,20. In the presence of a concentration

gradient of a food chemical or secreted attractant, these bacteria change their running time

to move towards higher food concentrations, biasing their random walk in a manner which

results in chemotaxis 17,21. Many other stimuli can trigger directedmotion, for instance light 22

(phototaxis) or temperature gradients 23 (thermotaxis). Chemotaxis allows microorganisms

to efficiently manage the amount of resources at their disposal 24, or to assemble into multi-

cellular structures 25, among other functions 26. Its usefulness naturally makes chemotaxis a

common behavior in different kinds of cells: lymphocites chemotax as a part of immune re-

sponse 27–29, cancer cells use chemotaxis to direct their migration 30, and eukaryotic amoebae
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move in response to chemical signals left by their kin 31, among many other examples.

The chemotaxis of unicellular organisms results fromtheoperationof intricate sensing and

locomotion mechanisms. For instance, in E. Coli, the activation of membrane-embedded

sensors modulate the activation of the flagella 32,33, biasing the random walk these bacteria

perform towards sources of nutrients. Describing the action of this machinery in detail is a

complex task, for which several timescales must be taken into account, from the stochastic

activation of the chemotactic receptors to the resulting motion 34. Phenomenologically, its

effect can be described as follows 35: at long enough time and length scales, a biological system

undergoing chemotaxis in an external concentration gradient ∇c can be described with a

chemotactic drift velocityV along the gradient

V = −µ∇c. (1.1)

The drift velocity given by Eq. (1.1) is proportional to a mobility µ. If negative, it leads to

motion towards higher concentrations of the chemical, and if positive, it makes the cell swim

away from the chemical source *.

The term chemotaxis is used in literature to describe different behaviors. In some cases,

it designates the ability of agents to move along a concentration gradient, irrespective of the

mechanisms through which this movement occurs 37–40. Some other sources have a more re-

strictive definition, and make the difference between chemotaxis, which is the reorientation

of a swimmer’s swimming direction to follow concentration gradients, and “chemokinesis”, a

concentration-dependent modulation of the velocity magnitude which also results in a drift

*In general, the chemotactic mobility is concentration-dependent 35 µ(c), which reflects the change in re-
ceptor sensitivity with chemoattractant/repellent concentration 36. Here, for simplicity, we do not include that
dependence.
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in gradients41,42. In this thesis, we will use a more permissive definition, and designate as

chemotactic any object which develops a net drift velocity in concentration gradients.

1.1.2 Phoretic microswimmers

Artificial swimmers able to propel themselves and follow concentrations gradients are useful

model systems for swimming microorganisms and have a staggering wealth of potential ap-

plications, from the removal of environmental contaminants43,44 to biomedical applications

such as targeted drug delivery45 or sensing of biomarkers46. While some artificial swimmers

have successfully been designed tomove using the same principles asmotile cells47,48, another

entirely different – and more easily implemented – swimming method has also been success-

ful: the use of phoretic effects to drive motions in self-induced gradients.

Figure 1.2: Diffusiophoretic drift of a spherical colloid. Left: the interaction potentialW (r) between an interface and
a solute diluted in a fluid (gray spheres) creates a flow over a slip layer of thickness δ. At the boundary between the slip
layer and the rest of themedium, the fluid has a velocityvs given by Eq. (1.2). Right: The surfaceS of a spherical colloid

of radiusR can be decomposed into surface elementsdS which have the behavior shown in the left panel. Due to these

phoretic effects, in a solute gradient, the colloid develops a translational velocityV given by Eq. (1.3) and a rotational

velocityΩ given by Eq. (1.4).

Phoresis is themotion of a body through interfacial effects driven by the gradient of a scalar

field Φ49–51, which can for instance represent temperature 52,53 (thermophoresis), electric po-

tential 54–56 (electrophoresis), or concentration of a solute 57–61 (diffusiophoresis). Consider an
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interface immersed in a fluid and in the presence of a field gradient ∇Φ. The interface per-

turbs the fieldΦ, which applies a body force to the fluid in the vicinity of the interface, result-

ing in a fluid flow whose expression depends on the nature of Φ 51. If Φ is the concentration

c(r, t) of a solute diluted in the fluidmedium, the interface has a short-range interactionwith

the solute particles over a characteristic distance δ which locally changes their concentration,

giving rise to a pressure gradient which causes a flow over a layer of thickness δ (Fig. 1.2, left)49.

Electrophoresis, on the other hand, relies on the existence of a thin layer of ions around the

interface 51, which experiences a force when an electric field is applied leading to the develop-

ment of a flow over the Debye screening length δ = κ−1.

Different kinds of phoretic effects then result in the apparition of a slip velocity over the

distance δ (Fig. 1.2, left), which in its general form can be written as 51,

vs = m∇||Φint, (1.2)

whereΦint is the value of the field at the interface between the slip layer and the outer fluid,∇||

represents the spatial gradient parallel to the interface, and m is the local phoretic mobility,

which can be derived using a hydrodynamic49–51 or a stochastic many-body approach49,62.

In the case of a spherical colloid of radiusR ≫ δ and surfaceS with a position-dependent

mobilitym(rs ∈ S) (Fig. 1.2, right), we can obtain the drift velocity of the colloid by using

the slip velocity vs as a boundary condition and the Lorentz reciprocal theorem63:

V = −⟨vs⟩S = − 1

4πR2

∫∫
S

m(rs)∇||Φ(rs) dS, (1.3)

where ⟨·⟩S is the averaging operator over the colloid surface, and dS is a surface element. If
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the colloid has an asymmetric coating, it also experiences a rotational velocity49,51:

Ω =
3

2R
⟨vs × n⟩S =

3

8πR3

∫∫
S
m(rs)

(
∇||Φ(rs)× n

)
dS. (1.4)

withn the normal unit vector to the surface element dS. For an isotropically coated colloid,

and in the limit of a system size large compared toR, Eq. (1.3) reduces to Eq. (1.1) 38 , where µ

takes the role of the local phoretic mobility averaged over the colloid surface.

Thephoretic phenomenawedescribedhere are drivenbutpassive, allowingdiffusiophoretic

colloids to follow external concentration gradients and accumulate in regions of higher or

lower concentrations of some chemicals 57,64. Biological systems, meanwhile, are active: they

consume energy to locomote, and respond to gradients by adjusting their propulsion direc-

tion or speed 17. To accurately model biological systems, phoretic colloids must then bemade

active.

Phoretic transport phenomena are force-free65, i.e. no net force is applied on the system

composed of the colloid and its slip boundary layer. This makes them a good candidate for

self-propelled swimmers, provided that they can create and sustain a gradient which puts

them inmotion66–68. Inorder for aphoretic particle to swim, this gradientmustbe anisotropic,

which is typically achieved through an asymmetric particle structure67,69,70. However, isotrop-

ically coated spherical colloids can also self-propel using alternate mechanisms which include

symmetry-breaking of the field gradients through advection71 and the formation ofmotile as-

semblies72–76. The first described self-propelled phoretic swimmers consisted of micrometer-

long cylinders composed of a gold-coated half and a platinum-coated half70, which develop

motion along their central axis in the presence of hydrogen peroxide. This motion is fueled

by the catalyzed decomposition of hydrogen peroxide at the platinum end of the rod and the
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Figure 1.3: Self-diffusiophoretic Janus swimmer, composed of an inert half (right) and a catalytic half (left). The catalytic

hemisphere catalyzes the conversion of a substrate S into a product P, creating a gradient of their respective concentra-

tions∇cS and∇cP. The concentration gradients, according to Eq. (1.3), result in a swimming speedVself.

recombination of the resulting hydrogen ions at the gold end77, which generates an electric

field around the rod and leads to its motion via self-electrophoresis78. Another extensively

studied class of phoretic swimmers are spherical diffusiophoretic Janus colloids, composed

of one inert hemisphere (for instance polystyrene79) and one active hemisphere (for instance

platinum79) which catalyzes a chemical reaction67,69 (Fig. 1.3).

Diffusiophoretic Janus swimmers exhibit greatly enhanced diffusive motion at long times

in an homogeneous fuel concentration79, and couple their translational (Eq. (1.3)) and ro-

tational (Eq. (1.4)) degrees of freedom to fuel gradients, resulting in a drift velocity and ro-

tation speed whose directions are determined by the material properties and the pattern of

the colloid coating 80,81. Self-phoretic particles have indeed been shown to align their swim-

ming directionwith external fuel gradients, 38,81–83, offering a good analogue to cellular chemo-

taxis without the complex biochemical machinery cells use. Similar mechanisms have been

exploited to design thermophoretic light-activated Janus swimmers 84.
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1.1.3 Swimming at the nanoscale: the case of active enzymes

Catalytic enzymes are proteins which accelerate chemical reactions by lowering the corre-

sponding energy barrier, leading to an exponential increase in reaction rate 85, and have been

conceptualized as nanomotors and an example of active matter 86–88.

Figure 1.4: Microfluidic measurement of enzyme chemotaxis. An enzyme is introduced in the right input and its sub-

strate or a buffer in the left input. The introduction of substrate induces an increased enzyme concentration in the left

of themicrofluidic channel compared to the buffer. Reprintedwith permission from “EnzymeMolecules asNanomotors

”, Samudra Sengupta, Krishna K. Dey,Hari S. Muddana, Tristan Tabouillot, Michael E. Ibele, Peter J. Butler, and Ayusman

Sen, J. Am. Chem. Soc. 2013, 135, 4, 1406–1414 89. Copyright 2013 American Chemical Society.

Microfluidics assays (Fig. 1.4) have shown that enzymes perform collective directedmotion

in concentration gradients of their substrate, both towards higher 86,90–92 and lower87,93 con-

centrations. This constitutes a form of chemotaxis at the nanoscale, the mechanism behind

which is currently under debate. One proposed explanation is based on an active process 87,93,

and relies on the idea that enzymes perform “leaps” every time they catalyze a reaction which

propels them ballistically over short timescales. Another explanation 39,62 relies on the com-

petition between two passive effects: diffusiophoresis (Section 1.1.2) and a change in enzyme

diffusion coefficient upon the reversible binding with its substrate †. As opposed to the leap
†In general, the enhanced diffusion of enzymes 94 is a controversial topic. Its very existence is still currently
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hypothesis, these twophenomena are both equilibrium, anddonot necessitate the enzyme to

perform catalysis. One argument in favor of the latter mechanism is that it explains the seem-

ingly contradictory behaviors of the enzyme urease, in different experiments chemotax either

towards higher91 or towards lower93 substrate concentrations. The equilibrium-effects-based

theorydescribes enzyme chemotaxis as resulting from the competitionbetween two contribu-

tions, and features a crossover between positive and negative chemotaxis at a critical concen-

tration62 which reconciles these two observations. Overall, while experimental data clearly

indicates that enzymes perform chemotaxis, the mechanism behind this is still unclear, and

needs further theoretical and experimental efforts to be fully uncovered. Possible biological

consequences of enzyme chemotaxis are discussed in Section 1.3.2.

1.2 Field-mediated interactions of active particles

We have so far focused on the response of individual particles, either biological or artificial, to

external concentration gradients. If the particles are chemically active, for instance catalyst-

coated colloids, then they also create such gradients, in turn inducing a response in other par-

ticles. Several catalytically active and chemotactic particles then develop effective interactions,

mediated by the concentration fields upon which they act68.

Tounderstand the elementary features of these interactions, wewrite a simplemodel. Con-

sider an isolated active particle with a local surface activity a(rS) corresponding to the rate

of production (if a > 0) or consumption (if a < 0) of a field Φ that can describe the con-

centration of a solute for chemotactic colloids or cells69 or a temperature difference for ther-

mophoretic colloids97. For simplicity, we assume that the field obeys diffusive dynamics de-

debated, as different single-molecule measurements either observe it 95 or don’t 96. Its origins are also still being
discussed 94, with the leaps invoked in the study of enzyme chemotaxis also being proposed as a mechanism 87.
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scribed as partial differential equation67

∂tΦ = DΦ∇2Φ, (1.5)

whereDΦ is the diffusion coefficient of the field, with the boundary condition

−DΦn · ∇c(rs) = a(rs), (1.6)

wheren is the normal vector to the sphere surface, which describes the activity of the particle.

Figure 1.5: Chemical-field-mediated interactions between two catalytically active and chemotactic colloids. Left: parti-

cle 1 (light blue) produces a chemical at a rateα1 through its chemical activity, perturbing the associated concentration

field c. Particle 2, which is at a distance r21 from particle 1, responds to this perturbation through its chemotactic mo-

bilityµ2. Right: the parameters of particles 1 and 2 are chosen so that 1 produces the chemical field, 2 consumes it, and

they both chemotax towards higher concentrations. This leads tomotion of particle 1 towards particle 2, and particle 2

away from 1, constituting an example of chasing interactions.

Eq. (1.5) can be solved in order to obtain the perturbation of the field created by the particle.

For an isotropically coated spherical colloid designated as “particle 1”, we calculate the steady-

state profile of the field by setting the left-hand term in Eq. (1.5) to zero, yielding the Laplace
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equation which has the textbook solution

Φ(r) =
α1

4πDΦ

1

r
, (1.7)

whereα1 = a14πR
2 is the overall activity of particle 1 and r the distance to its center (Fig. 1.5).

A second phoretic particle placed at a distance r21 (oriented towards the center of particle 2,

see Fig. 1.5, left) develops a phoretic response given by Eq. (1.1) (Fig. 1.5) which reads:

V21 =
α1µ2

4πDΦ

r21
r321

. (1.8)

The expression given in Eq. (1.8) involves some key simplifying assumptions. One condition

for its validity is that the particles are far enough to neglect near-field chemical and hydrody-

namic effects, which can change their qualitative behavior at low separations98. If the active

particles have anisotropic activities and mobilities, for instance if they have a Janus geometry,

a rotational response additionally needs to be calculated99. As we calculated the field profile

given by Eq. (1.7) in the steady state, Eq. (1.8) also implicitly involves a quasi-static approxi-

mation which breaks down in the limit of a slow-diffusing chemical 100.

Eq. (1.8) reveals two key features of phoretic interactions: they are long-ranged and non-

reciprocal. In the absence of screening, which can originate from the degradation of a chemi-

cal if Φ is a concentration field 37, the interaction between the two colloids decays as a power

law and corresponds to a scale-free, and therefore long-ranged, interaction. The long-ranged

nature of field-mediated interactions canbe exploited by chemotactic cells to signal each other

over long distances, and leads to system-wide instabilities in mixtures of active colloids (Sec-

tion 1.2.3). From Eq. (1.8), we also see that the direction of the induced velocity V21 depends
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on the sign of the product α1µ2. If α1µ2 < 0 , particle 2 moves towards particle 1, corre-

sponding to an attractive interaction, while ifα1µ2 > 0 , particle 2 moves away from particle

1, and the interaction is repelling. On the other hand, the nature of the response of particle 1

to particle 2 is determined by the sign of α2µ1, which in general is different from α1µ2: the

interaction between the two particles is then non-reciprocal (Fig. 1.5). In particular, if the two

particles’ responses have opposite signs, they behave as predator and prey 101.

1.2.1 Non-reciprocal interactions

One of the foundations of classical mechanics is Newton’s third law, often summarized as

“action equals reaction”. It states that, if a body A applies a force FAB on another body B,

then B applies an equal and opposite force on A: FBA = −FAB. A feature of active matter

systems which has been the source of recent interest 102 is the ability of their components to

break this action-reaction symmetry, which is only possible in non-equilibrium conditions 103

‡ .

Active chemotactic particles interacting through concentration fields constitute an exam-

ple ofmulti-speciesmixtureswhose components interact non-reciprocally75,105,106. Othermulti-

species systems which break action-reaction symmetry have been shown to self-organize into

so-called chiral phases 104, for instance corresponding to the emergence of spontaneous rota-

tion in Vicsek-like flocking models. Another recent body of work concerns descriptions of

scalar fields which interact through short-ranged, non-reciprocal interactions 107–109 and can

form self-propelled moving bands and oscillating spots.
‡Action-reaction symmetry is only broken at the level of the effective interactions between components,

i.e. once the interactions between the active particles and the surroundingmediumwhichmediates the effective
interactions have been coarse-grained 104. Newton’s third law is still obeyed if the whole system is described.
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Non-reciprocity can also be present in single-component systems, i.e. in which all agents

have the same properties. One such example is the case of “social-like” interactions, in which

individuals react to another agent only if the latter is located in a limited vision cone 110–112, sim-

ilar tomodels used to describe the collective behavior of human crowds 113. Agents with social-

like interactions can form cohesive groups 114 or to organize into different patterns based on

the size of their vision cones 110. In the context of a modified XY model, they can also form a

long-ranged phase, seemingly breaking theMermin-Wagner theorem 112. An analogousmode

of interaction can be obtained for thermophoretic Janus colloids under directional illumi-

nation, which shade the colloids below them in a non-reciprocal manner97. Interestingly,

vision-cone-based interactions have also been implemented in a suspension of colloids which

can be programmedwith arbitrary interactions, constituting an ideal experimental system for

the aforementioned models 114.

1.2.2 Smallscalebehaviorofactivephoreticparticles: colloidalmolecule

formation

Thenon-reciprocity of the interactions between active chemotactic particles have far-reaching

consequences, which we will explore at two levels of description: first systems of low particle

number or density, and, in the next paragraph, densermixtures with a larger particle number.

Consider a dilute mixture of two species of active particles which chase after each other, i.e.

particles of species 1 goes towards particles of species 2, which in turn move away from parti-

cles of species 1 101. Such a system can be for instance realized using spherical, uniformly coated

colloids which obey Eq. (1.8) with αµ products of opposite signs. In this situation, particle-

basedmodels can still be approached froman analytical angle72,73. In someparameter regimes,
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the particles can assemble into objects with dynamics emerging from the chasing interactions.

The formation of such structures was theoretically formulated for uniformly coated chemo-

tactic colloids,72,73, and has been experimentally observed in systems of active droplets 106 and

light-controlled active colloids75,105. These “colloidal molecules” develop different modes of

motion depending on their stoichiometry (the ratio between species populations) and the

spatial arrangement of their constituents, with observed behaviors including spinning, linear

translation, rotational movement, and periodic beating72,73,75.

Janus particles, meanwhile, have an intrinsic polarity which leads to orientational interac-

tions and consequently to richer dynamics99. For instance, a pair of Janus colloids can form

bound states in which they move in a correlated manner and orbit around each other over

long time scales99,115.

1.2.3 Large-scale behavior: the Keller-Segel model and beyond

Large or dense systems of chemotactic particles can be described using coarse-grained theories

involving a particle density field, themost famous example of which is the Keller-Segel model

of slime mold aggregation 37.

Chemical-field-mediated interactions are an essential tool for the collective organization of

microorganisms. Many social species secrete chemoattractant signals to guide other cells to

them, such as the amoebaDictyostelium discoideum 31. In the Keller-Segel model, these amoe-

bae are described by a time- and space-dependent concentration ρ(r, t), and locally produce

the signaling chemical acrasin (concentration c(r, t)) at a rate α > 0. The production of

acrasin is counteracted by its degradation at a rate kdeg by an enzyme which the amoebae

slowly secrete. The cells follow acrasin concentration gradients by developing a chemotactic
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velocity given by Eq. (1.1) with a mobility µ < 0which, according to Eq. (1.8), tends to bring

them together. The coupled dynamics of the amoeba and acrasin concentration fields can

then be written in its simplest form § as 37:

∂tρ = ∇ · [Dρ∇ρ+ µρ∇c]

∂tc = Dc∇2c+ αρ− kdegc,

(1.9)

where Dρ is the diffusion coefficient of the active particles and kdeg is a rate of spontaneous

field degradation.

A linear stability analysis of Eq. (1.9) shows that perturbing an initially homogeneous den-

sity of cells and acrasin can lead to an instability in which the amoebae aggregate if

µα/(Dρkdeg) < −1 37. As reflected by this condition, the mechanism behind aggregation is

that amoebae, by following the acrasin concentration gradient (µρ∇c term), tend to increase

their density ρ and thus the local attractant production αρ, leading to a positive feedback

loop. Chemotactic aggregation is meanwhile inhibited by the cell diffusive flux−Dρ∇ρ and

the acrasin degradation −kdegc which both smooth out concentration gradients and must

then be overcome for the amoebae to aggregate.

The Keller-Segel model also qualitatively captures other collective behaviors of microor-

ganisms, such as the migration of bacteria in concentration gradients 116,117, and has also been

applied to the collective dynamics of fast-aligning autophoretic Janus particles 82,118. Many

variations of Eq. (1.9) have been studied which add biologically and physically relevant ingre-

dients 119, for instance excluded volume effects to avoid a blowup of the cell density field ρ 120.
§Compared to the original equations written by Keller and Segel, we neglected for simplicity the depen-

dence of the quantities α, µ and kdeg on the concentrations ρ and c. We invite the reader to read the original
publication 37 for the analysis of the full equation.
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Themean-field nature of Eq. (1.9) 121 also implies that theKeller-Segelmodel does not account

for stochastic effects. To incorporate these, stochastic field equations must be derived from

the Langevin dynamics of individual chemotactic particles 121,122, in the context of which addi-

tional physical ingredients have been considered, for instance the birth and death 123,124 or the

polarity 125 of chemotactic cells.

Another example of chemical signaling is provided by some species of bacteria which both

secrete and follow a slow-diffusing polymer trail 126. The deposition of these trails strongly in-

fluences the motion of individual bacteria 127 and leads to collective dynamics 126 which drive

the formation of multicellular structures 100. A similar trail-leaving mechanism was recently

reproduced in an artificial system of micelles which leave behind a chemorepellent, leading

to caged dynamics 128. More indirectly, field-mediated interactions are also achieved through

quorum sensing, a phenomenon in which bacteria measure their density by secreting and

sensing a signaling molecule 129. It is used a switch for collective behavior 130: above a concen-

tration threshold, bacteria start regulating the expression of various genes, including some re-

lated to motility 131–133. A simple concentration-based motility response has been reproduced

in systems of Janus colloids 134, providing a model system for the study of quorum-sensing.

Besides biological and bio-inspired systems, artificial colloids with field-mediated inter-

actions also exhibit fascinating collective dynamics. A possible behavior, first observed in

monodisperse suspensions of Janus swimmers, is dynamic clustering: the formation of clus-

terswhich grow to a fixed size, dynamically exchangeparticleswith their surroundings,merge,

and break apart 38,118,135–137. Suspensions of phoretic or chemotactic active particles can also un-

dergo large-scale instabilities97 which can result in the formation of self-propelled aggregates,

as demonstrated for thermophoretic Janus colloids 138 and isotropically coated catalytic parti-
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cles 139. For the particular case of Janus particles, a more careful treatment of the orientational

dynamics through a gradient expansion procedure leads to a wide variety of collective behav-

iors 80,140, in particular oscillatory dynamics.

1.3 Dense, active intracellular matter

Our focus over the last two sections has mostly been on microscopic objects, typically cells

and colloids. The physical phenomena we previously described also apply to lower length

scales, more specifically to chemotactic enzymes (Section 1.1.3) which thus should be able to

develop field-mediated interactions similar to the ones described in Section 1.2.1. In order to

understand the possible consequences of these effects in biological systems, we describe here

how the intracellular environment is shaped by various active processes.

The inside of a cell is a dense and dynamic environment, in which a large variety of pro-

cessesmust occur simultaneously in a space- and time-localizedmanner 141. Control over these

processes is intrinsically active, typically fueled by adenosine triphosphate (ATP) hydrolysis,

and involves, among many other examples, the dynamic formation and dissolution of mem-

braneless organelles (Section 1.3.1), the spatial localization of catalytic enzymes for increased

reaction efficiency (Section 1.3.2), and a variety of efficient intracellular transport processes.

A famous example of intracellular transport is the use by eukaryotic cells of ATP-powered

molecular motors, which glide along cytoskeletal filaments in order to quickly and selectively

move objects between organelles 85. Prokaryotes do not possess these motor proteins and

must then mostly rely on diffusion for intracellular transport 142. However, the bacterial

cytoplasm is particularly crowded 143, which would lead to glassy dynamics at equilibrium

and strongly hinder the motion of objects inside bacterial cells 144. Metabolic activity has
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been found to restore efficient intracellular transport by fluidizing the cytoplasm, 144, a phe-

nomenon which is currently studied using non-motile active matter models 145,146.

1.3.1 Biomolecular condensates

As a part of their functioning, cells must perform a staggering variety of biochemical pro-

cesses, many of which compete for the same resources or necessitate different chemical en-

vironments. In order to simultaneously support all these processes, cells are divided into

compartments, also called organelles. Many of these compartments are separated from the

cell cytoplasm by a lipid membrane, most famously the eukaryotic nucleus in which DNA

transcription occurs 141.

A second class of organelles, which has garnered significant amounts of attention over the

past decade, is membraneless 147. These structures, called biomolecular condensates 148, have

liquid-like rheological properties such as flowing, surface tension, and coalescence 149. They

are formed through liquid-liquid phase separation 149–151, which allows the cell to control their

assembly and disassembly through active processes 152. For instance, the formation of conden-

sates can be triggered by increasing the concentration or the transcription rate of RNAs 153,154.

Both the formation and dissolution of condensates are also possible by tuning the interac-

tionsbetween their components,which cells candynamically do throughpost-transcriptional

modifications 155.

Strikingly, whereas droplets formed through equilibrium liquid-liquid phase separation

undergo a coarsening process which results in a single large droplet, biomolecular conden-

sates grow until they reach a fixed size 156. This arrested coarsening phenomenon can be ex-

plained by adding out-of-equilibrium chemical reactions to models of liquid-liquid phase
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separation 156, suggesting that condensates are intrinsically active objects. Out-of-equilibrium

condensates, also called active droplets or active emulsions, can additionally be positioned by

external concentration gradients 157, echoing the spatial localization of biomolecular conden-

sates 149, and can in some conditions undergo division 158,159, hinting at a possible role in the

origin of life.

Condensates concentrate dozens 160 tohundreds 161 differentprotein,DNA, andRNAspecies,

which, according to the theory of multi-component phase separation, allows for varied mor-

phologies 151,162. The interplay between cell biology, soft matter, and out-of-equilibrium sta-

tistical physics is then very strong in these systems: as an illustration, the complex geometries

obtained by multicomponent liquid-liquid phase separation can be exploited to spatially ar-

range successive steps of self-assembly chemical reactions in a structure akin to a molecular

assembly line 163.

1.3.2 Collective behavior of enzymes

Catalytic enzymes are the workhorse of metabolism, participating in intricate biochemical re-

action pathways which involve up to an order of ten steps and as many intermediates 141. As a

part of their function as reaction crucibles, it is then natural to expect biomolecular conden-

sates to include enzymes, the intrinsically active nature of which influences their behavior.

Many enzymes are alreadyknown to self-assemble into transient structures calledmetabolons,

first conceptualized by Paul Srere 164, in the presence of their substrate 165. While the character-

ization of their role is still an ongoing task, one broadly accepted function of metabolons is

substrate channeling, the efficient transfer of a reaction intermediate between two successive

enzymes in a chain of reactions 166.

20



Substrate channeling has initially been studied in the context of complexes of physically

linked enzymes, this particular case being called direct channeling, and involving the directed

transfer of a reaction intermediate from one enzyme to the active site of the next through a

physical “tunnel” 167. Counterintuitively, this process only transiently increases a pathway’s

output rate, and does not increase the reaction output at the steady state 165,168. Instead, direct

channeling is effective at preventing the escape of reaction intermediates 168, which could serve

to avoid their use in unwanted reaction pathways or their spontaneous degradation during

diffusive transfer 167.

Another kind of substrate channeling, more relevant to condensate-sized clusters , is prob-

abilistic channeling 165, in which different enzymes participating in the same pathway colocate

to efficiently transfer an intermediate. This mode of substrate channeling has been shown to

increase efficiency of metabolic pathways 169 and to provide a mechanism for the selection of

a path in a branching point 169,170.

A particularly relevantmetabolon in the context of this section is the purinosome 171, which

concentrates the enzymes involved in the ten-step de novo purine biosynthesis pathway. Puri-

nosomes have all the hallmarks of biomolecular condensates: they are spherical, membrane-

less structures with a 0.1 - 1 micron radius 172,173 and liquid-like properties 174. While the proper-

ties and the biological functions of the purinosome are still not fully understood, its existence

hint at an important role of enzymes in the formation and function of condensates 171.

Recent works have started exploring the possible consequences of the presence of enzymes

inside condensates. In an experimental realization of enzyme-containing, condensate-like

droplets 175, it was found that enzymes had a significantly increased reaction rate compared

to an homogeneous phase. This, coupled with very low activity levels outside droplets, high-

21



Figure 1.6: Enzyme aggregation driven by out-of-equilibrium catalytic activity. Left: By driving the conversion of a sub-

strateS into itsproductPoutofequilibrium(a), enzymesEcancreategradientswhich leads to their self-organization into

a condensate-like cluster (b). Right: The non-reciprocal interactions described by Eq. (1.8) can lead to aggregation of a

mixture of two catalytically active species, onewhich produces a chemical and the otherwhich consumes it, for instance

representing two successive enzymes in ametabolic pathway. Brownian dynamics simulations show the active particles

form a cluster which, due to the chasing nature of the interactions (Fig. 1.5), spontaneously breaks symmetry and self-

propels. Left panel reproduced from ”Catalysis-Induced Phase Separation and Autoregulation of Enzymatic Activity”,

MatthewW. Cotton, Ramin Golestanian, and Jaime Agudo-Canalejo, Phys. Rev. Lett. 129, 158101 (2022). Licensed un-

der a Creative Commons Attribution 4.0 International License. Original article available at https://doi.org/10.
1103/PhysRevLett.129.158101. Link to license: https://creativecommons.org/licenses/by/4.0/
legalcode

lights the usefulness of enzyme-rich condensates as fast and selective reaction crucibles. En-

zymatic activity inside of condensates can also lead to the emergence of qualitatively new be-

haviors, being experimentally found to induce hydrodynamic flow inside droplets 175, and the-

oretically predicted to lead to diffusiophoresis-like interfacial effects and the ability to divide

through a shape instability 176.

Besides the emergence of new effects in already-formed droplets, enzymes might also be

involved in the formation and control of membraneless organelles. By catalyzing chemical

reactions, they offer for instance a mechanism for the size control of condensates, and can

arrest their coarsening by generating diffusive fluxes 177. While condensate formation is gen-

erally understood to be a result of attractive equilibrium interactions 151, theoretical models

have predicted that enzymes can drive the assembly of condensates purely thanks to their

catalytic activity 178 (Fig. 1.6, left). This catalysis-induced phase separation results in a droplet

with reduced chemical reaction flux compared to an homogeneous phase, thus constituting
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a possible self-regulation mechanism of enzymatic activity.

The chemotactic properties of enzymes (Section 1.1.3) might play a role in their biological

activity, e.g. by driving their collective motion towards regions of low substrate concentra-

tion 179 which would, according to the Michaelis-Menten law 141, decrease their catalytic activ-

ity. Recent experimental92,180 and theoretical 139 work has meanwhile shown that chemotaxis

can promote the assembly of enzymes involved in successive catalysis steps (Fig. 1.6, right).

Thismotivates further investigation into the role of chemotaxis in condensate formation and

function, both as a physical and a biological problem.

1.4 Thesis outline: spatio-temporal self-organization of chemophoretic

agents

The spatial self-organization of catalytically active particles is, at the same time, a fascinating

physical problem to tackle, and an important phenomenon for cellular function.

A possible approach to this problem is tomodify the Keller-Segel equations Eq. (1.9) to de-

scribe a mixture of several active and chemotactic species with long-range and non-reciprocal

interactions similar to Eq. (1.8). A mixture ofM enzyme species interacting through a single

chemical field without degradation obeys the system of equations 139:

∂tρm = ∇
[
Dp∇ρm + µmρm∇c

]
∂tc = D∇2c+

M∑
m=1

αmρm.
(1.10)

Performing a linear stability analysis around a homogeneous set of catalyst concentrations

ρ0m, it was found 139 that the catalytic mixture undergoes self-organization through a macro-
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scopic instability if
∑M

m=1 αmµmρ0m < 0, i.e. if the mixture is overall self-attracting. At the

onset of instability, two species with the same mobility sign were found to aggregate, while

species with opposite mobility signs were found to separate. Particle-based Brownian dy-

namics simulations (Fig. 1.6, right) showed that an unstable mixture of two non-reciprocally-

interacting particles can organize into a self-propelled, comet-like structure.

This thesis extends the Keller-Segel-like formalism developed in Ref. 139 by taking into

account a number of key physical ingredients that are essential to biologically relevance, and

which lead to new phenomenology. The rest of the thesis is structured as follows:

In Chapter 2, we take a more detailed description of the catalytic particles, taking into ac-

count the dependence of the reaction speedon the substrate concentration and the size disper-

sity of different catalytic species. We find that these ingredients lead to a rich phenomenology,

which we characterize analytically. This chapter is reproduced from Ouazan-Reboul et. al.,

Eur. Phys. J. E, 44 9 (2021) 113 ¶.

In Chapter 3, we consider the possible role of catalytic and chemotactic particles in an ori-

gin of life scenario. We assume the existence of a primitive metabolic cycle involving an arbi-

trary number of catalytic species with identical parameters, and characterize analytically and

numerically its ability to self-organise into protocell-like structures. This chapter is repro-

duced from a revised version of the preprint Ouazan-Reboul et al, ArXiv:2303.09832 (2023)

‖ , currently under review at Nature Communications.

In Chapter 4, we also study the self-organization of a simple metabolic cycle, which con-
¶Copyright Vincent Ouazan-Reboul, Jaime Agudo-Canalejo, Ramin Golestanian. Licensed under a Cre-

ative Commons Attribution 4.0 International License. Original article available at https://doi.org/10.
1140/epje/s10189-021-00118-6 . Link to license: https://creativecommons.org/licenses/by/
4.0/legalcode

‖Revised manuscript reused with the permission of the authors
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tains a fixed number of species with arbitrary parameters, allowing for a larger variation of in-

teractionpatterns. Wediscover that these general interaction rules allow for the self-organization

of catalytic species which are all self-repelling, which constitutes a new behavior in such sys-

tems. This chapter is reproduced from the preprint Ouazan-Reboul et al, ArXiv:2303.09832

(2023) ** , currently under review at Physical Review Letters.

In Chapter 5, we further characterize the system first described in Chapter 4. We exhaus-

tively study all the possible interaction networks that three-species metabolic cycles can de-

velop, and classify them according to their ability to become unstable and the associated

instability conditions. This chapter is reproduced from the preprint Ouazan-Reboul et al,

ArXiv:2305.05472 (2023) ** , which has been submitted to the New Journal of Physics.

** Copyright JaimeAgudo-Canalejo. Licensed underArxiv non-exclusive license to distribute, which can be
found at https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html. Reused with
permission from the submitting author.
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2
Non-equilibrium phase separation in

mixtures of catalytically active particles: size

dispersity and screening effects

This chapter is reproduced from Ouazan-Reboul et. al., Eur. Phys. J. E, 44 9 (2021) 113 181. I

took part in the design of the research, performed the analytical and numerical calculations,

and participated in the redaction of the paper.
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Abstract Biomolecular condensates in cells are often rich in catalytically active enzymes. This is partic-
ularly true in the case of the large enzymatic complexes known as metabolons, which contain different
enzymes that participate in the same catalytic pathway. One possible explanation for this self-organization
is the combination of the catalytic activity of the enzymes and a chemotactic response to gradients of
their substrate, which leads to a substrate-mediated effective interaction between enzymes. These inter-
actions constitute a purely non-equilibrium effect and show exotic features such as non-reciprocity. Here,
we analytically study a model describing the phase separation of a mixture of such catalytically active
particles. We show that a Michaelis–Menten-like dependence of the particles’ activities manifests itself
as a screening of the interactions, and that a mixture of two differently sized active species can exhibit
phase separation with transient oscillations. We also derive a rich stability phase diagram for a mixture
of two species with both concentration-dependent activity and size dispersity. This work highlights the
variety of possible phase separation behaviours in mixtures of chemically active particles, which provides
an alternative pathway to the passive interactions more commonly associated with phase separation in
cells. Our results highlight non-equilibrium organizing principles that can be important for biologically
relevant liquid-liquid phase separation.

1 Introduction

Enzymes, which are chemically active proteins that
catalyse metabolic reactions, have been found to exhibit
non-equilibrium dynamical activity [1]. As part of their
biological function, they are also known to self-organize
into clusters called metabolons, which contain different
enzymes that participate in the same catalytic path-
way [2]. One possible theoretical explanation for this
process is based on the ability of enzymes to chemotax
in the presence of gradients of their substrate, which
has been experimentally observed in recent years for a
variety of enzymes [3–7]. The mechanisms underlying
enzyme chemotaxis, however, are as of yet still unclear,
with diffusiophoresis and substrate-induced changes in
enzyme diffusion being possible candidates [7–11]. In
a recent publication [12], it was shown that the inter-
play between catalytic activity and chemotaxis can lead
to effective non-reciprocal interactions [13–15] between
enzyme-like particles, resulting in an active mechanism
for the phase separation of such particles. This active
phase separation is distinct from the non-equilibrium
phase separation models that have been more com-

a e-mail: ramin.golestanian@ds.mpg.de (corresponding
author)

monly put forward in the cell biological context [16],
where the interactions between the different compo-
nents are equilibrium ones, and the non-equilibrium
aspect comes from fuelled chemical reactions that act as
a source or sink of some of the phase-separating compo-
nents. In contrast, in the model of Ref. [12], the phase-
separating components are conserved, and it is the effec-
tive interactions between them that represent an intrin-
sically out-of-equilibrium phenomenon. For the partic-
ular case of a suspension of a single type of enzymes,
the resulting aggregation process was later studied the-
oretically in more detail in Ref. [17]. An interesting
non-biological model system to study these effects is
provided by catalyst-coated synthetic colloids [18,19]
and chemically active droplets [20], which have experi-
mentally been shown to form aggregates via chemical-
mediated effective interactions [21–26].

Here, we will generalize the model studied in Ref.
[12], by accounting for size polydispersity of the catalyt-
ically active particles involved in the mixture, as well as
for the dependence of catalytic activity on the concen-
tration of substrate. We show that taking into account
the dependence on substrate concentration leads to
screening effects, which put a stricter activity thresh-
old for the occurrence of a spatial instability. Moreover,
we show that a mixture of different-sized catalytically
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active particles can undergo both local and system-wide
self-organization, with the latter possibly showing oscil-
latory phenomena. A model that simultaneously takes
into account both of these effects is finally shown to
exhibit a rich phase diagram, ranging from non- to par-
tially to fully oscillatory.

The paper is organized as follows. In Sect. 2, we
explain the model describing the chemically active par-
ticles, and summarize previous results on the simplest
version of this model [12]. In Sect. 3, we reveal a screen-
ing effect created by a dependence of the catalytic activ-
ity on the concentration of substrate, and conclude
that this effect leads to an instability threshold and
a local (as opposed to system-wide) instability. Then,
in Sect. 4, we study the effect of a difference in the
sizes of different particle species, which enters the the-
ory as a difference in their diffusion coefficient. We show
that under these conditions, the stability phase diagram
of the particle mixture shows an extended instabil-
ity region corresponding to a local instability, and can
also exhibit transient oscillations during a system-wide
instability. Finally, in Sect. 5, we consider both screen-
ing and size dispersity effects combined, which leads to
a complex stability phase diagram, which includes fully,
partially, and non-oscillatory local instabilities.

2 Linear stability analysis of a chemically
active mixture

2.1 Model for chemically active particles

We study chemically active particles (for instance,
enzymes or catalyst-coated colloids) whose chemical
activity is characterized by a parameter α, which is the
rate at which they consume (α < 0) or produce (α > 0)
a given chemical. If we denote c the concentration of
this chemical species, the presence of an isolated active
particle creates a long-ranged perturbation to the con-
centration field of the chemical, which in steady state
goes as δc ∝ α

r (Fig. 1a).
The considered active particles are also chemotac-

tic: in a concentration gradient of the chemical they
act on, they develop a velocity v ∝ −μ∇c (Fig. 1b),
which drives them towards high concentrations if μ <
0 (chemotaxis), and low concentrations if μ > 0
(antichemotaxis). Synthetic colloids can be engineered
to be chemotactic, for instance using phoretic effects
[27,28]. Meanwhile, many enzymes have been reported
to chemotax in gradients of their substrate [3–7], with a
variety of mechanisms having been proposed to explain
the phenomenon [1,7–11].

These two properties give rise to effective particle-
particle interactions mediated by the chemical field,
which takes the form of a velocity developed by par-
ticle i in the presence of particle j given by [12–14]

vij ∝ −αjμi

r3ij
rij (1)

(c)

1 2

1 2

(a) (b)

1

2

Fig. 1 Model for chemically active particles. a Chemical
activity: particles 1 and 2 respectively produce and con-
sume a chemical species (orange), perturbing its concentra-
tion profile around them. b Chemotaxis: the two species
develop a velocity in response to concentration gradients of
the same chemical they act on, in this case towards higher
concentrations. c Particle–particle interactions arising from
the combination of these two properties. Each particle both
perturbs the chemical field and responds to the other’s per-
turbation, leading to non-reciprocal interactions character-
istic of active mixtures. In this case, species 1 is repelled
by species 2, which is itself attracted by 1, giving rise to a
chasing interaction

with rij = ri−rj the inter-particle distance vector. Note
that as the perturbation of and the response to the con-
centration field obey to different parameters, this inter-
action is in general non-reciprocal: vji �= −vij , leading
for instance to the possibility of chasing interactions
(Fig. 1c). This non-reciprocity, characteristic of active
matter systems [12–15,29–32], can give rise to interest-
ing many-body phenomena, which we will study here.

2.2 Linear stability analysis

We wish to study the ability of a mixture of these
active particles to self-organize. To do so, we consider
M species of particles, each with an activity αm and
a mobility μm, and described by a concentration field
ρm (r, t). All the species act on the same chemical field,
which we may refer as the messenger chemical. The
active species concentrations evolve according to the
Smoluchowski equation:

∂tρm(r, t) = ∇ · [Dm∇ρm + μm(∇c (r, t))ρm (r, t)]
(2)

with Dm the diffusion coefficient of species m and c (r, t)
the concentration of the chemical.
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The concentration of the chemical, meanwhile, obeys
a reaction–diffusion equation:

∂tc (r, t) = d∇2c +
M∑

m=1

(
αm(c)ρm (r, t)

)
(3)

where we allow for the activity of the active particles to
be a function of the chemical concentration, and with
d the diffusion coefficient of the chemical.

We perform a linear stability analysis by consid-
ering perturbations around a spatially homogeneous
steady state, writing: ρ (r, t) = ρ0,m + δρ (r, t) and
c (r, t) = cH(t) + δc (r, t) with cH(t) the (potentially
time dependent) homogeneous concentration of the
messenger chemical. Indeed, this concentration may be
time-dependent in cases where the stationarity condi-
tion

∑
m αm(cH)ρ0,m = 0 cannot be satisfied, as may

occur in systems with nonzero net catalytic activity
such as e.g. producer-only or consumer-only mixtures.

We then expand (2) and (3) to the first order in
the perturbations, while also performing a quasi-static
approximation ∂tδc (r, t) � 0 in (3). This approxima-
tion corresponds to the assumption that the chemi-
cal diffuses over timescales much shorter than those
associated with the motion of the active particles,
both through diffusion and chemotaxis; as well as
with the changes in the overall chemical concentra-
tion in mixtures with net catalytic activity. We also
expand the activities to the first order in concentration:
αm(c) � αm(cH(t))+(∂cαm)|cH δc (r, t), approximating
for instance a Michaelis–Menten-like dependence on the
concentration c for the activities.

Note that in systems with net catalytic activity, the
parameters αm ≡ αm(cH(t)) and (∂αm) ≡ (∂cαm)|cH(t)

have an implicit time dependence. Depending on the
sign of the total activity

∑
m αmρ0,m, the system either

homogeneously consumes or produces the messenger
chemical, leading to activity parameters that evolve in
time. Only in the special case

∑
m αmρ0,m = 0, we find

a “neutral” mixture with no net production or con-
sumption of the chemical. As we only care about the
stability of the system in a given homogeneous state,
we will ignore this time dependence in the following.
The time dependence can be brought back into the pic-
ture a posteriori, for a chosen functional dependence
αm(c), by considering the trajectories that such a sys-
tem would describe in parameter space over time.

We look for solutions of the form:

δρm (r, t) =
∑

q,λ

δρm,q,λ eλt+iq·r

δc (r, t) =
∑

q,λ

δcq,λ eλt+iq·r (4)

where the q, λ indices will be omitted in what follows,
for readability. By plugging these expressions into the
linearized evolution equations, we find the eigenvalue

problem:

λδρm = − q2

dq2 + η

M∑

n=1

[αnμmρ0,m

+Dm(dq2 + η)δmn]δρn (5)

with η ≡ −∑
m(∂αm)ρ0,m a screening parameter, that

is present only when the activities are concentration-
dependent. We note that this screening parameter is
generally positive. Indeed, by analogy with Michaelis–
Menten kinetics, the activity of a producer does not
depend on the concentration of its product, and thus
∂αm ≡ 0 when αm > 0, while the activity of a consumer
increases with substrate concentration, and thus ∂αm <
0 when αm < 0.

Note also that screening may arise in a different way,
if we consider that the chemical may undergo sponta-
neous decay. Such a situation can be taken into account
by adding a term −κc in the right-hand side of (3), in
which case one finds that the screening parameter is
rescaled to η → η + κ.

Equation (5) features the growth rate λ of a given
mode as the eigenvalue, whose sign will inform us about
the stability of the system. If at least one eigenvalue is
positive, the homogeneous state is unstable and the sys-
tem shows spatial self-organization, typically into dense
clusters as seen in particle-based Brownian dynamics
simulations of the system [12].

At the onset of such an instability, the eigenvector
components δρm inform us about the stoichiometry of
the growing perturbation, that is, which species tend
to aggregate together (and in which proportion), and
which species tend to separate.

2.3 Simplest case: similarly sized species without
screening

We summarize here the result of the stability anal-
ysis for a particularly simple case which was previ-
ously studied in Ref. [12]. If we consider species with
concentration-independent activities (η = 0) and equal
sizes (D1 = D2 = · · · = DM = D), (5) reduces to an
eigenproblem involving a rank one matrix, with M − 1
degenerate eigenvalues λ− and one unique eigenvalue
λ+:

λ− = −Dq2

λ+ = −Dq2 −
M∑

m=1

αmμmρ0,m

d

(6)

Of the two, only λ+ can be positive, according to the
criterion:

M∑

m=1

αmμmρ0,m < 0 (7)
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corresponding to the mixture of active particles being
overall self-attractive. Notice that the only requirement
is for the overall sum to be negative, implying that any
arbitrarily small amount of attraction is sufficient to
trigger an instability. This is a consequence of the long-
ranged, unscreened nature of the interactions.

When condition (7) is satisfied, the q2 = 0 mode is
the fastest-growing one, and the instability is therefore
always system-wide. The corresponding eigenvector is:

(δρ1, δρ2, . . . , δρM ) = (μ1ρ0,1, μ2ρ0,2, . . . , μMρ0,M )
(8)

The stoichiometry at instability onset is then deter-
mined by the mobilities, independently of the activities.
In particular, species with equal sign of the mobility
tend to aggregate together, whereas those with oppo-
site sign tend to separate.

The behaviour of a two-species mixture can be cap-
tured in a two-dimensional phase diagram, plotted in
(|αi|μiρ0,i) coordinates for given signs of the activities,
i.e. independently for mixtures of producers and con-
sumers, or for mixtures of two consumers (Fig. 2).

In the following, we will show that accounting for
screening effects due to concentration-dependent activ-
ities as well as for different-sized particles leads to sig-
nificant departures from this simple behaviour, includ-
ing the existence of a minimum activity threshold for
an instability to occur, and the possibility of oscillatory
instabilities.

3 Screening-induced stability threshold

3.1 Arbitrary number of species

In the presence of screening (η > 0), but for identi-
cally sized particles (D1 = D2 = ... = DM = D), the
eigenvalue problem (5) becomes:

λδρm = − q2

dq2 + η

M∑

n=1

[αnμmρ0,m + D(dq2 + η)δmn]δρn

(9)

which, as in the case described in Sect. 2.3, can be
reduced to a rank one matrix eigenvalue problem, with
eigenvalues:

λ−(q2) = −Dq2

λ+(q2) = −Dq2 − q2

dq2 + η

M∑

m=1

αmμmρ0,m

(10)

Once again, only λ+ can positive, but this time under
the condition:

M∑

m=1

αmμmρ0,m < −ηD (11)

This instability criterion corresponds to a stricter ver-
sion of (7), with the activity dependence on concentra-
tion appearing as a screening term. As a consequence,
there is now a threshold value of overall self-attraction
required for an instability to occur.

An intuitive way of understanding the more strin-
gent instability criterion is as arising from a feedback
effect affecting consumer species, which are the only
ones contributing to η. Indeed, these are self-attracting
only if they verify μ > 0, i.e. if they are antichemotac-
tic. This implies that in the context of self-attraction,
these particles migrate towards zones of lower chemical
concentration, which in turn lowers their activity, and
thus their self-attraction. In the self-repelling case, the
opposite happens, with a positive feedback on the self-
interaction which amplifies the inter-particle repulsion
as particles get further away from each other.

Another key difference to the case without screen-
ing is that the unstable eigenvalue now has a non-
monotonic dependence on the wave number q2. Indeed,
we now find λ+(q2 = 0) = 0 always, and the eigenvalue
is maximum at

q2 = d−1

(√
−η

∑
m αmμmρ0,m

D
− η

)
(12)

which gives a finite wave length to the fastest-growing
perturbations. With regard to the stoichiometry of the
instability, we will show later that the sign of the eigen-
vector components is still determined by the sign of the
mobilities, as before.

3.2 Two species: phase diagram

Figure 3 shows the phase diagram for a mixture of two
similarly sized particles with screening. Comparing it
to Fig. 2, we see that the instability line is shifted, cor-
responding to the screening-induced instability thresh-
old. Moreover, the eigenvalue plots also highlight the
fact that while the lower eigenvalues show the same
behaviour in both cases, in the screened case, the upper
eigenvalue is zero at q2 = 0 and goes through a max-
imum at a finite q2, while in the unscreened case, it
monotonically decreases from a nonzero value at q2 = 0.

4 Differently sized particles: local instability
and oscillations

4.1 Macroscopic and local instabilities

We now turn to the case of concentration-independent
activity (η = 0), but differently sized particle species.
The eigenvalue problem (5) becomes:

λδρm = −
M∑

n=1

[αnμmρ0,m

d
+ Dmq2δmn

]
δρn (13)
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(a) (b) (c)

Fig. 2 Behaviour of a mixture of two same-sized species
with concentration-independent activities [12]. a Phase dia-
grams for two consumers. b Phase diagram for one producer,
one consumer. In (a) and (b), numbers in parentheses refer
to the corresponding equations in the text. c Selected eigen-

value plots as a function of the squared wave vector q2.
Coloured lines correspond to the upper eigenvalues of the
phase diagram points marked in (a). Black line corresponds
to the lower eigenvalue, shared by all points in the phase
diagram

(a) (b) (c)

Fig. 3 Behaviour of a mixture of two same-sized species
with concentration-dependent activities. a Phase diagram
for two consumers. b Phase diagram for one producer, one
consumer. In (a) and (b), numbers in parentheses refer to
the corresponding equations in the text. c Eigenvalue plots

as a function of the squared wave vector q2. Coloured lines
correspond to the upper eigenvalue, taken at several loca-
tions in (a) Black line represents the lower eigenvalue, which
does not depend on phase space location

involving an arbitrary matrix, now that the diffusion
coefficients Dm are species-dependent. The problem is
then intractable in general, and we turn to the two-
species case, which is solvable analytically. From here
on, we choose the convention D1 > D2 without loss of
generality.

Solving for λ, we find the eigenvalues:

λ±(q2) = − 1
2d

(
γ1 + γ2 + (D1 + D2)dq2

)

± 1
2d

√
[γ1 − γ2 + (D1 − D2)dq2]2 + 4γ1γ2

(14)

with γm = αmμmρ0,m the self-interaction of species m.
The instability conditions can be obtained by develop-

ing the eigenvalues to the first order in q2:

λ+(q2) = −γ1D2+γ2D1
γ1+γ2

q2 + O(q4)

λ−(q2) = −γ1+γ2
d − γ1D1+γ2D2

γ1+γ2
q2 + O(q4)

(15)

λ− is unstable when γ1 + γ2 ≤ 0, or equivalently

α1μ1ρ0,1 + α2μ2ρ0,2 ≤ 0 (16)

which coincides with (7), and leads to a system-wide
instability (maximum at q2 = 0). However, even when
λ− is negative, the system can still be unstable, as λ+

can have a positive initial slope when the less strict
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condition γ2 ≤ −D2
D1

γ1, which we can write as:

α2μ2ρ0,2 ≤ −D2

D1
α1μ1ρ0,1 (17)

is verified. In this case, the instability is only at finite
wavelengths as in the screened case, with λ+(q2 = 0) =
0 and maximum λ+ at a finite value of q2.

There is therefore a wider range of conditions under
which a mixture can become unstable if the particles
are differently sized, with the caveat that this extended
range only leads to a finite wave length instability
rather than a system-wide one.

4.2 Transient oscillations

We can also extract the range of parameters for which
the two eigenvalues in (14) become a complex conjugate
pair, which results in the condition γ2 ≥ −(D1/D2)2γ1,
or equivalently

α2μ2ρ0,2 ≥ −
(

D2

D1

)2

α1μ1ρ0,1 (18)

where the real parts are positive for a finite range of
wavevectors whenever (16) is satisfied. The different
particle sizes can thus lead to oscillatory instabilities
for a finite range of perturbation wave lengths. Note,
however, that the most unstable wave length (eigen-
value with largest real part) still always corresponds to
a real eigenvalue, suggesting that any oscillatory phe-
nomena will be at most transient.

The overall behaviour of the system is summed up in
the phase diagrams and eigenvalue plots of Fig. 4. Note
some marked differences with the cases of Sects. 3.2
and 2.3, most importantly the apparition of a vari-
ety of unstable regions with distinct behaviours. If
γ1 ≥ 0, γ2 ≤ 0 (upper-left quadrant in Fig. 4a, upper-
right in 4b), λ+ shows similar behaviour to the screened
case, being zero at q2 = 0 with a maximum at finite q2,
while λ− has a non-null value at q2 = 0 (all lines of
Fig. 4d). If (17) is verified, the situation is similar to
Fig. 3: λ+ is the unstable eigenvalue, and leads to a local
instability (up- and right-pointing triangles on Fig. 4d).
However, if (16) is verified, then λ− becomes positive
and has a positive value at q2 = 0, leading to a situation
similar to the one in Fig 2, with one key difference: the
positive eigenvalue is non-monotonic, having a maxi-
mum at a nonzero wave vector (left-pointing triangle in
Fig. 4d). The system should then show an initial, local
instability phenomenon followed by system-wide self-
organization. If γ1 < 0 (right and left halves on Fig. 4a
and b respectively), the different-sized species mixture
shows an entirely new behaviour, with the eigenvalue
being real from q2 = 0 to a finite wave vector, then com-
plex (all lines on Fig. 4c). In the region where the eigen-
values are real, the behaviour of the largest one is simi-
lar to Fig. 2, being non-null at q2 = 0 and monotonically
decreasing. This behaviour carries over to the real part

of the complex eigenvalue, which decreases monotoni-
cally as well, implying that the instability will always
be system-wide with the q2 = 0 mode dominating. We
distinguish between the non- and partly oscillatory sec-
tions of the phase diagram by considering whether or
not there exists a region where the eigenvalue is com-
plex with a positive real part (star label in Fig. 4d is
non-oscillatory, plus and cross labels are oscillatory).
Finally, the stoichiometry sign for non-oscillatory insta-
bilities is the same as in Sect. 2.3, as will be shown in
the next section.

5 Variety of behaviours for differently sized
species with screened interactions

5.1 Local instability

Finally, we turn to the most general version of the
eigenvalue problem (5). Once again, it is analytically
intractable for an arbitrary species number M , and we
turn to the M = 2 case. The solution to (5) writes:

λ± =
1
2

q2

dq2 + η

{
− (γ1 + γ2) − (D1 + D2)(dq2 + η)

±
√

[γ1 − γ2 + (D1 − D2)(dq2 + η)]2 + 4γ1γ2

}

(19)

We can look for an instability condition either by pro-
ceeding as in 4.1 and developing the expressions to first
order, or by calculating the range of squared wave vec-
tors for which the eigenvalues are positive. Imposing
λ+ ≥ 0 leads to two possible conditions, which corre-
spond to two distinct instability lines. Since only one
of the conditions needs to be satisfied in order for the
instability to occur, we only need to consider the largest
of the two instability lines in a given region. The two
lines intersect at the branching point given by

(
(α1μ1ρ0,1)B , (α2μ2ρ0,2)B

)
=

( −ηD2
1

D1 − D2
,

ηD2
2

D1 − D2

)

(20)

leading to the two instability conditions

α2μ2ρ0,2 ≤ −α1μ1ρ0,1 − η(D1 + D2)
(21)

for α1μ1ρ0,1 ≤ (α1μ1ρ0,1)B , and

α2μ2ρ0,2 ≤ −D2

D1
α1μ1ρ0,1 − ηD2 (22)

for α1μ1ρ0,1 ≥ (α1μ1ρ0,1)B . These two lines recover
both the screening-induced shift of the instability line,
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Fig. 4 Behaviour of a
mixture of two differently
sized species with
concentration-independent
activities. a Phase diagram
for two consumers. b
Phase diagram for one
producer, one consumer. In
(a) and (b), numbers in
parentheses refer to the
corresponding equations in
the text. c Eigenvalue plots
along the transition from
stable (blue) to partially
oscillatory (orange, green)
to real unstable (red). Full
lines correspond to the
eigenvalue real parts,
dashed lines to the
imaginary part. d
Eigenvalue plots along the
transition from stable
(blue) to local (orange,
green) and then to
macroscopic (red)
instability

(a) (b)

(c) (d)

as well as the extension of the instability region caused
by the different species sizes. However, as opposed to
the eigenvalues (14), here both eigenvalues are null at
q2 = 0: the eigenvalue has the same behaviour in the
extended instability region as in the standard one, and
the instability is always local.

5.2 Partial and fully oscillatory instabilities

Proceeding similarly to Sect. 4.2, we now look for com-
plex eigenvalues. In phase space, the parameters allow-
ing for complex solutions correspond to a “fork” which
opens in the instability line for γ1 ≤ γ1,B , from the
branching point defined in (20). By comparing the max-
imal unstable wavevector to the range of wavevectors
for which the eigenvalues are complex, we find a variety
of possible behaviours. When the condition

α2μ2ρ0,2 >
(√−α1μ1ρ0,1 −

√
η(D1 − D2)

)2

(23)

is verified, the full range of wavevectors that are unsta-
ble (eigenvalue with positive real part) have complex
conjugate eigenvalues, and we term this a “fully oscil-
latory” instability. Another kind of instability, which we
call “partially oscillatory”, is observed if condition (23)

is not satisfied and instead:

α2μ2ρ0,2 > −
(

D2

D1

)2

α1μ1ρ0,1 (24)

in which case there are two ranges of unstable wave
vectors, one with real and one with complex conjugate
eigenvalues, each of which features a local maximum of
the real part of the eigenvalue. Far away from the lower
bound given by (24), the fastest growing mode is still
complex, and so the instability process should still be
mainly oscillatory. Below a line which can be calculated
numerically, as we approach the lower bound given by
(24), the two maxima cross over, and the global maxi-
mum of the real part occurs for a real eigenvalue, so that
the non-oscillatory instability should dominate. Finally,
if the condition (24) is not satisfied, then all unstable
modes are real and the instability should display no
oscillations whatsoever.

The behaviour of the system is shown in Fig. 5. As we
now have incorporated both screening and size disper-
sity effects, the resulting behaviour can be seen as a mix
of the two individual cases. Contrast the phase diagram
and plotted eigenvalues of Fig. 5 to the ones in Fig. 3:
thanks to the screening effects, we recover the shifted
instability line and the fact that the eigenvalues are
null at q2 = 0, stopping system-wide instabilities from
occurring. On the other hand, similarly to Fig. 4, the

123



113 Page 8 of 10 Eur. Phys. J. E (2021) 44 :113

(a) (b)

(c) (d)

Fig. 5 Behaviour of a mixture of two differently sized
species with concentration-dependent activities. a Phase
diagram for two consumers. b Phase diagram for one pro-
ducer, one consumer. c Structure of the phase diagram near
the branching point for two consumers, corresponding to the
zoomed-in dashed square in (a). In (a), (b) and (c), num-
bers in parentheses refer to the corresponding equations in
the text. d Eigenvalue plots (see (a) and (c) for marker

locations in phase space) along the transition from stable
(blue) to fully oscillatory (orange) to partially oscillatory
with dominant oscillatory modes (green) and then dominant
non-oscillatory modes (red), and finally to non-oscillatory
(purple). Only the upper eigenvalue is plotted, for readabil-
ity. Full lines correspond to the eigenvalue real parts, dashed
lines to the imaginary part. Wave vectors are normalized by
the largest unstable wave vector q2(0), if applicable

eigenvalues can be complex, but with major differences.
Instead of necessarily having a real positive region, the
eigenvalues in Fig. 5 can be complex with a positive real
part over the whole range of unstable wave vectors, cor-
responding to a fully oscillatory instability. Moreover,
in the partially oscillatory regime, the upper eigenvalue
exhibits two maxima, one in the real region and one in
the complex region, whereas in the case without screen-
ing it only had a maximum at q2 = 0. This implies
that in this regime, the maximally growing mode can
be either oscillatory or non-oscillatory, based on which
of these two maxima is the global one.

5.3 Stoichiometry

We finally turn to the study of the eigenvectors, more
precisely the ratio S2/1 ≡ δρ2/δρ1, the sign of which
will inform us about the tendency of the two species in
an unstable binary mixture to aggregate (if positive) or
separate (if negative). We only study the eigenvector
corresponding to the upper eigenvalue λ+, as it is the

one driving the instability. Calculating the eigenvector
in (5) leads to the expression:

S2/1 = − 1
2γ2

γ2ρ0,2

γ1ρ0,1

[
(γ1 − γ2) + (D1 − D2)(dq2 + η)

+
√

[γ1 − γ2 + (D1 − D2)(dq2 + η)]2 + 4γ1γ2

]

(25)

It can be shown that the term in brackets keeps a con-
stant sign as a function of q2. By distinguishing between
the γ2 > 0 and γ2 < 0 cases, we can systematically cal-
culate the sign of S1/2 in the regions where the eigen-
value is real and unstable, leading to the conclusion:

sign(S2/1) = sign(μ2/μ1) (26)

Thus, similar to the simple case studied in Sect. 2.3,
the sign of the stoichiometry only depends on the sign
of the mobilities, with species having the same mobility
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sign tending to aggregate, and species having opposite
mobility signs tending to separate. Note that this result
applies to all the cases studied in this paper. The phase
diagrams in Figs. 3, 4 and 5 are then plotted using
the same procedure as in Sect. 2.3: the instability lines
are functions of the αmμmρ0,m, and the stoichiometry
depends on the mobilities signs only, so the phase dia-
grams can be plotted as a function of |αm|μmρ0,m for
fixed signs of the activities.

6 Discussion

In this work, we have explored a general model for
the stability of a mixture of active particles based on
the linear stability analysis of continuum equations.
The model studied was a generalization of a simpler
model introduced in Ref. [12], in which case the mix-
ture was found to show a system-wide instability if it
was overall self-attracting. We have shown that if the
catalytic activities of the particles have a dependence
on the concentration of their substrate, the interactions
become screened, leading to the emergence of a mini-
mum threshold of self-attraction for the instability to
occur, and to the inhibition of system-wide instabilities,
which become local (finite wave length). Accounting for
dispersity in the sizes of the active particles, mean-
while, can either lead to the same system-wide insta-
bility observed in the simple model, or to the appari-
tion of an extended, local instability regime with a less
strict requirement for the instability. The existence of
size dispersion also allows for the possibility of system-
wide, transient oscillations during a global instability.
Finally, combining both screening and size dispersity
effects leads to a wide variety of behaviours. Due to the
screening, the instability can only be local, but oscilla-
tions are also possible and, depending on the location in
phase space, can either represent the dominant unstable
mode, or transiently coexist with a more dominant non-
oscillatory instability. For each of these cases, we have
obtained exact analytical conditions that fully describe
the resulting phase diagrams and can be used as guid-
ance in future experimental or simulation studies. In
all the studied cases, the stoichiometry of the grow-
ing instability is purely a function of the signs of the
species’ mobilities, implying that chemotactic species
and antichemotactic species tend to separate from each
other and aggregate among themselves.

The instabilities that we predict here at the linear
level may also be explored beyond this regime, by means
of numerical solution of the continuum equations, or
particle-based simulations. Such simulations will allow
for the study of the kinetics of the self-organization pro-
cess, as well as the resulting steady-state configurations
of the system. Of particular interest is the presence or
absence of transient oscillations in the instability pro-
cess. While our linear stability analysis can yield com-
plex eigenvalues with positive real part, we cannot con-
clude whether long-lived oscillations will be observed.
In general, the behaviour of the system beyond the

onset of instability will depend on factors outside the
scope of this analysis, among others the feedback of
changes in substrate concentration on the activity and
nonlinear effects not captured at the linear stability
level. Another limitation of our model is the quasi-static
approximation performed for the messenger chemical,
implying that we limit ourselves to cases where the
motion of the catalysts is much slower than the dif-
fusion of their substrates and products.

While this paper focused on catalytic particles, many
bacteria are known to chemotax in response to chemi-
cals they themselves secrete or consume, leading to pat-
tern formation [33–38]. In particular, Ref. [36] explores
the influence of concentration-dependent chemotactic
drift, stemming from the microscopic characteristics
of bacterial receptors, on pattern formation. Such a
concentration-dependent chemotactic mobility could
also be incorporated into our model. In turn, our
concentration-dependent activity would correspond to
cases where the bacteria modulate their production
or consumption of chemoattractant or chemorepellant
based on local concentration. Our model could further
be applied to bacterial ecosystems in which different
species of bacteria coexist, resulting in inter-species
interactions which may be non-reciprocal.

Coming back to the applications at the subcellular
level, a natural step for future work is to allow for the
enzymes to participate in catalytic cycles, in which the
product of one enzyme becomes the substrate of the
next enzyme in the cycle [39], given that such cycles
are ubiquitous in metabolic pathways in the cell. Fur-
thermore, it will be interesting to explore the effect
of self-organization on the yield of the associated cat-
alytic reactions. In Ref. [12], it was shown that mix-
tures of producers and consumers tend to form clus-
ters with just the right stoichiometry that allows for
perfect channelling of the chemical released by the pro-
ducers to be taken up by the consumers in the cluster.
The effect of concentration-dependent activities on this
phenomenon, as well as the implications on the overall
catalytic yield remain to be explored. On the experi-
mental side, a deeper exploration of the dynamics dur-
ing the formation of metabolons or enzyme-rich con-
densates may help elucidate whether non-equilibrium
chemical-mediated interactions are at play, perhaps in
conjunction with passive interactions.
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ABSTRACT

One of the greatest mysteries concerning the origin of
life is how it has emerged so quickly after the forma-
tion of the earth. In particular, it is not understood
how the intricate structures of metabolic cycles, which
power the non-equilibrium activity of cells and support
their functions under homeostatic conditions, have come
into existence in the first instances. These structures
have emerged from a dilute primordial soup of chem-
icals that have turned out to be suitable partners in
certain reactions in the roles of reactants and catalysts.
While it is generally expected that non-equilibrium con-
ditions would have been necessary for the formation of
these primitive metabolic structures, the focus has so far
been on externally imposed non-equilibrium conditions,
such as temperature or proton gradients. Here, we pro-
pose an alternative paradigm in which naturally occur-
ring non-reciprocal interactions between catalysts that
can potentially partner together in a cyclic reaction lead
to their rapid recruitment into self-organized functional
structures. We uncover different classes of self-organized
cycles that form through exponentially rapid coarsening
processes, depending on the parity of the cycle and the
nature of the interaction motifs, which are all generic
but have readily tuneable features. Our results also shed
light on possibilities that may be explored in designing
efficient synthetic cycles.

MAIN TEXT

Since Oparin [1] proposed a picture to describe how
early forms of living matter might have emerged from
what Haldane described as the prebiotic soup [2], there
has been a significant amount of progress in our un-
derstanding of the physical aspects of the origin of life
[3]. Recent examples of such studies include sponta-
neous emergence of catalytic cycles [4, 5], spontaneous
growth and division of chemically active droplets [6–8],
programmable self-organization of functional structures
under non-equilibrium conditions [9, 10], and controllable
realization of metabolically active condensates [11]. A
striking generic observation that has emerged in a vari-
ety of different scenarios is that the introduction of non-
equilibrium activity in the form of catalytic activity, or
a primitive form of metabolism, can be a versatile driv-
ing force for functional structure formation [12–17] with
manifestations of lifelike behaviour [18–26]. It has also

been demonstrated that the structured catalytic activ-
ity that would support the required non-equilibrium pro-
cesses for primitive cells can be successfully coupled with
the condensation of appropriate functional nucleotide
and peptide components in membrane-free systems [27–
29], as well as lipid components in protocells with func-
tionalized membranes [30, 31].

Living systems necessarily involve a set of auto-catalytic
chemical reactions [32], which have been theoretically
shown to spontaneously emerge in a population of
polypeptide-like structures that could assemble in a pri-
mordial soup setting [33–36]. A candidate metabolic cy-
cle that may have served a key role in the early stages
of life formation is the citric acid cycle, which consists
of 11 catalysts and exhibits evolutionary robustness and
universality [37, 38]. Candidates for pre-RNA and pro-
tein autocatalytic chemical networks have been identi-
fied from early microbial organisms [39], and mixtures
of RNA fragments have been experimentally observed to
organize into self-replicating and catalyzing reaction net-
works [40–43].

The physicochemically motivated ideas initiated by
Oparin and Haldane were critically debated for much of
the past century by proponents of the perspective that
(genetic) information should be considered as the main
organizer of matter that forms life [32, 44, 45]. As a mod-
ern interpretation of these considerations, we note that
the current accepted paradigm assumes that the ingre-
dients that would later join up to form intricate com-
ponents of living systems first come together by ad hoc
physical forces without any input from the information
that will eventually be at work in their hierarchical self-
organization. The information-based organization is ex-
pected to occur when the system has already made physi-
cal condensates. However, this paradigm has so far been
unable to answer two important questions. Firstly, as
we know from the physics of phase separation, physically
formed condensates such a coacervates are fundamentally
very slow, almost glass-like, in their dynamics, even if
they are driven by external non-equilibrium forces like
temperature and proton gradients. Therefore, the idea
that such dense and glassy condensates that are formed
randomly would have been able to intelligently evolve to
form information-based functional structures via random
searches does not appear to plausibly match the time
scale that has taken life to emerge after the formation of
the earth. It is not clear how this important problem has
been solved at the origin of life. Secondly, it is an estab-
lished fact that the physics of condensation is governed
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FIG. 1. Properties and interactions of catalytically-active particles. (a): The particles convert substrate (s) into

product (p) with a rate given by the activity α (top) and respond to gradients of these chemicals with mobilities µ(s) and

µ(p) (bottom). (b): M active particle species are arranged in a model catalytic cycle, in which the product of species m is
the substrate of species m + 1. (c): Non-reciprocal interactions between particles of the same or adjacent species. Direction
and colour of arrows indicate the attractive (blue, inwards arrowhead) or repulsive (red, outwards arrowhead) nature of the
interaction. (d): Phase diagram of interaction motifs. Each region constrains the mobilities so that one interaction has a
higher magnitude than the others, as highlighted by a full arrowhead. The grey asterisk indicates the location in parameter
space of the interactions pictured in (c). The green line separates the self-attracting and self-repelling regions. The sign triplets

correspond to the signs of (µ(s), µ(p), µ(p)−µ(s)). (e): Cluster growth dynamics for a cycle of M = 5 (blue, see Fig. 3a and Movie
7) and M = 6 (orange, see Fig. 3b and Movie 3) species, showing super-exponential coarsening dynamics of the condensate
formation. For M = 5 species, the mean cluster size saturates at a value corresponding to the total particle population divided
by M (grey dotted line). For M = 6, it saturates at half the particle population (dashed grey line).

by relatively slow power law coarsening dynamics such
as the Lifshitz-Slyozov (∼ t1/3) law [46], even in exter-
nally driven non-equilibrium cases. Then, it is hard to
imagine how such a process has given rise to such a rapid
formation of intelligent life through slow coarsening into
inherently slow condensates.

In connection with the above considerations and to
broaden the scope of the research on the physical aspects
of the origin of life, we pose the following question: how
can we envisage pathways in which the information con-
tained in chemical reaction networks from which primi-
tive forms of metabolism can emerge would lead to struc-
tural self-organization of the corresponding components?

Here, we propose a strategy that can achieve this task
by employing the naturally occurring non-reciprocal in-
teractions between catalysts that can form a cyclic reac-
tion network. We show that model catalytically-active
particles participating in a metabolic cycle are able to
spontaneously self-organize into condensates, which may
aggregate or separate depending on the number of parti-
cle species involved in the cycle, and exhibit chasing, pe-
riodic aggregation and dispersal, as well as self-stirring,
thus providing a generic mechanism for spontaneous for-
mation of metabolically-active protocells. While the
observed (super-) exponential coarsening law offers a sig-
nificantly faster alternative for the formation of conden-
sates (see Fig. 1), the information-driven dynamics leads
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to formation of structurally active and functional con-
densates that exhibit lifelike behaviour already at the
outset.

Non-reciprocal interactions have been shown to gener-
ically emerge in active matter in the context of non-
equilibrium phoretic interactions between catalytically
active colloids and enzymes [47]. Let us consider a set
of M species of chemically-active particles (Fig. 1a, top),
representing catalyst molecules or enzymes. Each of the
particles converts a substrate (s) into a product (p) at a
rate α. At steady state, they create perturbations in the
concentration field of the corresponding substrate that
decays with distance r as δc(s) ∝ −α/r, and a corre-
sponding change in the concentration of the correspond-
ing product as δc(p) ∝ α/r (Methods). These particles
are also chemotactic (Fig. 1a, bottom): when subjected
to a concentration gradient of their substrate, they de-
velop a velocity v ∝ −µ(s)∇c(s) with µ(s) the chemotactic
mobility for the substrate, which is negative or positive if
the particle is attracted to or repelled from the substrate,
respectively. Similarly, the particles are able to chemotax
in response to gradients of their products, with a mobility
µ(p).

To create a model for primitive metabolism, we consider a
simplified catalytic cycle (Fig. 1b), in which the substrate
of the catalyst species m, which we denote as chemical
(m), is the product of species m− 1. To close the cycle,
species 1 has the product of species M as its substrate.
For simplicity, we take all catalyst species to have the
same parameters α, µ(s) and µ(p), and to be present in
the system at identical initial concentrations. The cycle
can achieve a steady state without net chemical produc-
tion or consumption. Due to their chemical activity and
chemotactic mobilities, the particle species can interact
with one another through chemical fields (Fig. 1c). For
instance, if we consider two particles of species m and
m−1, then the particle of species m−1 creates, through
its chemical activity, a concentration gradient of the sub-
strate of the particle of species m, to which the latter
responds by developing a velocity directed towards the
particle of species m − 1, vm,m−1 ∝ αµ(s)r̂, where r̂ is
the unit vector pointing from the particle that creates
the perturbation to the particle that responds to the
perturbation (Methods). On the other hand, the par-
ticle of species m consumes the product of m − 1, and
thus the particle of species m − 1 develops a velocity
vm−1,m ∝ −αµ(p)r̂ towards the other particle. As a con-
sequence, the interactions between the particles of species
m and m− 1 are non-reciprocal, i.e. vm,m−1 ̸= −vm−1,m

(see Fig. 1d for different possibilities). This effective vio-
lation of action-reaction symmetry is a signature of non-
equilibrium activity, leading to non-trivial many-body
behaviour as has been shown for chemically-active parti-
cles interacting through a single chemical [24, 48], active
mixtures interacting through generic short-range interac-
tions [49, 50], complex plasmas [51], and other systems
[52–54]. Particles of the same species also self-interact

by consumption of their substrate and creation of their
product, with a velocity vm,m ∝ α(µ(p)−µ(s))r̂. We note
that these effective non-reciprocal interactions mediated
by chemical fields are long-ranged, with the induced ve-
locities going as 1/r2 (Methods).

We consider the evolution equations for the concentration
fields of the active species ρm and their substrates c(m),
given by the coupled system of 2M equations

∂tρm(r, t) = ∇·[Dp∇ρm+(µ(s)∇c(m)+µ(p)∇c(m+1))ρm],
(1a)

∂tc
(m)(r, t) = D∇2c(m) + α (ρm−1 − ρm) . (1b)

Equation (1a) describes the conserved dynamics of the
catalysts, with a diffusion term involving a species-
independent coefficient Dp and a chemotactic drift term
in response to both substrate and product gradients.
The substrate concentrations evolve according to the
reaction-diffusion equation (1b), with a diffusion coeffi-
cientD, and a reaction term corresponding to the activity
of the catalysts.

The time evolution of equation (1) naturally leads to
the formation of clusters, akin to active phase separa-
tion [24, 48]. The clusters are formed through a partic-
ularly fast and efficient coarsening process that exhibits
exponential growth rather than the commonly occurring
power law form, associated with processes such as Ost-
wald ripening, as can be seen in Fig. 1e (see Methods).
This behaviour can be characterized using a simple scal-
ing argument. When particles are collapsing onto a clus-
ter, the rate of growth for the cluster can be estimated
as dN

dt =
∮
S
ρv · dS where the velocity v = −µ∇c can be

expressed in terms of the particle concentration by using
Gauss theorem and the relation −∇2c = αρ/D, which
yields dN

dt = µα
D ρN . This expression can be integrated

to obtain N(t) = N0 exp
(

µα
D

∫ t

0
dt1ρ

)
≃ N0 exp

(
µα
D ρt

)
,

which predicts an exponential growth law for constant
ρ and allows for super-exponential growth if the density
increases with time, which matches well with the results
presented in Fig. 1e. This observation suggests that non-
equilibrium phoretic interactions have the ability to guide
formation of dense clusters in a fast and efficient manner,
and as such, can be strong candidates for creating the
appropriate conditions for the emergence of early func-
tionalized protocells.

A linear stability analysis on equation (1) (Methods)
around a spatially-homogeneous solution leads to the
following eigenvalue equation for the macroscopic (long-
wavelength) particle density modes

−
M∑
n=1

Λm,nδρn = λδρm. (2)

The matrix Λm,n describes the velocity response of
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FIG. 2. Stability diagrams for catalytic cycles. The
cycles contain an even (a) or an odd (b) number of catalytic
species. The interaction motifs in each quadrant of the pa-
rameter space are the same as those displayed in Fig. 1d.
Details of the behaviour in each phase are given in the text.
In both the self-propelled and rotating molecule phases, the
molecules exchange particles with one another. Molecule ro-
tation does not occur along the dashed lines corresponding to
null imaginary part in the unstable eigenvalue.

species m to species n, and is defined as follows
Λm,m−1 = αµ(s)ρ0/D,

Λm,m = α
(
µ(p) − µ(s)

)
ρ0/D,

Λm,m+1 = −αµ(p)ρ0/D,

Λm,n/∈{m,m±1} = 0,

(3)

where ρ0 represents the initial homogeneous concentra-
tions. By definition, Λm,n is negative, or positive, if m is
attracted to, or repelled from, n, respectively. The form
of Λm,n suggests a classification scheme as there are six
possible interaction motifs (Fig. 1d), representing the in-
teractions of each species with itself as well as with its
two neighbours in the catalytic cycle. The signs of the
interactions are represented diagrammatically, following
the conventions defined in Fig. 1c and d.

The eigenvalues λℓ (ℓ ∈ {1, . . . ,M}) allow us to predict
the stability of the system: Re(λ) > 0 for any eigenvalue
λ indicates an instability, whereas Re(λ) < 0 for all eigen-
values implies a stable homogeneous state. The eigenvec-
tor δρℓm, in turn, gives the stoichiometry at the onset of
instability, i.e. the ratio of the different species within the
growing perturbation, which may be positive, for species
that aggregate together, or negative, for species that sep-
arate.

The topology of the catalytic cycle strongly influences
its self-organization. As a point of comparison, we con-
sider a non-cyclic system, in which M catalytic species
all act on a single chemical field. In this case, all the
coefficients of the interaction matrix are equal to αµρ0,
leading to a system with only one nonzero eigenvalue
λ = −Mαµρ0/D. The corresponding instability condi-
tion is αµ < 0, and the instability is equivalent to the
Keller-Segel model [24, 55]. The model catalytic cycle
studied here, however, presents a different category. As
the interaction matrix (3) is a circulant matrix, its eigen-
values are easily calculated as{

Re(λℓ) = −αρ0

D

(
µ(p) − µ(s)

)
[1− cos(2πℓ/M)] ,

Im(λℓ) = αρ0

D

(
µ(s) + µ(p)

)
sin(2πℓ/M),

(4)

(see Supplementary Information for graphical representa-
tions of the eigenvalue spectra for different species num-
bers). There are now M − 1 nonzero eigenvalues, which
come as pairs of complex conjugate numbers with the
possible exception of λM/2 for M even. In stark con-
trast with the non-cyclic system, the complex charac-
ter of these eigenvalues opens the door to oscillatory be-
haviour. The instability condition, obtained by imposing
that the real part of at least one eigenvalue is larger than
zero, in turn corresponds to

µ(p) − µ(s) < 0, (5)

i.e. the catalytic species have to be self-attracting for an
instability to occur. This is represented in the phase dia-
grams of Fig. 2: all interaction networks above the green
line are unstable. If the condition is not satisfied, the sys-
tem remains homogeneous, with several possible states:
the particles can form transient self-propelled molecules
(Extended Data Fig. E2a, Movie 1, see Methods for the
parameters of all Movies), or form more long-lived, rotat-
ing molecules (Extended Data Fig. E2b, Movie 2) which
exchange particles without growing, as found in particle-
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based Brownian dynamics simulations of the same system
(Methods).

Remarkably, we find key differences between cycles with
even or odd number of species. In the case of an even
species number M = 2K, the eigenvalue with largest real
part (which dominates the instability) is real and given
by

λK = −2
αρ0
D

(
µ(p) − µ(s)

)
, (6)

implying that the instability is non-oscillatory with the
corresponding eigenvector

δρK = (1,−1, 1,−1, · · · ,−1) . (7)

Thus, at onset of instability, all the species with equal
parity tend to aggregate together and to separate from
the species of opposite parity (Fig. 2a, above the green

line). Brownian dynamics simulations show that this pre-
diction carries over to the final phase-separated state; an
example is shown in Fig. 3a (Movie 3). These simula-
tions show an initial exponential growth of M clusters,
each containing all the particles of a given species. The
steady state for an even number of self-attracting, cross-
repelling species is two large “clusters of clusters”, one
encompassing clusters of the even-labelled species, the
other of the odd-labelled species. Both the transient and
the steady state are captured by the growth dynamics
shown in Fig. 1e, with the average cluster size initially
growing exponentially and saturating at half of the total
particle population.

A variety of behaviour is observed in the case with chas-
ing interactions among neighbours, based on the relative
values of the chasing strength |µ(s)+µ(p)| as compared to
the self-attraction strength |µ(p)−µ(s)|. If both values are
of the same order of magnitude, the system behaves simi-



6

Time

1

2
34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

4

5

3

3

1

2

4

5

3 5
2 4

1

352 14

32 4
15

352 4
1

52 413

3 5
12

4

FIG. 4. Oscillatory dynamics for an odd number
of species with chasing cross-interactions. A schematic
representation of the oscillatory dynamics (left), snapshots
of molecular dynamics simulations (middle, see also Movie
8), and a diagram of the corresponding species interactions
and pairing (right) are shown side by side. Here, dashed and
dotted lines represent respectively the pairs on the left and
right of the schematic representation. The eigenvalues of the
system are as in Fig. 3b, but now Re(λ) < Im(λ) for the most
unstable conjugate pair, so that the dynamics of the system
are oscillatory.

larly to the cross-repelling case, except that the resulting
clusters can chase each other or rotate in place (Extended
Data Fig. E1a and Movie 4). For the cases where the
value of the self-attraction is much lower than the chas-
ing strength, fully-hybrid clusters containing all species of
the same parity form over longer timescales, as opposed
to “clusters of clusters” as in the cross-repelling case
(Movie 5). Finally, for almost negligible self-attraction
transient oscillations are observed before cluster forma-
tion (Extended Data Fig. E1b, Movie 6).

For cycles with an odd number of speciesM = 2K+1, the
largest real part corresponds to the complex conjugate
pair of eigenvalues (see Supplementary Information)

λK+ 1
2±

1
2
=− αρ0

D

(
µ(p) − µ(s)

)[
1 + cos

(
π

2K + 1

)]
∓ i

αρ0
D

(
µ(s) + µ(p)

)
sin

(
π

2K + 1

)
,

(8)
suggesting the potential for long-lived oscillations, or
even oscillatory steady states, with the real part corre-

sponding to the growth rate of the perturbation and the
imaginary part to its oscillation frequency.

The corresponding eigenvectors δρK+ 1
2±

1
2 are also a pair

of complex conjugates, with components given by

δρ
K+ 1

2±
1
2

m = (−1)m−1

[
cos

(
(m− 1)π

2K + 1

)
± i sin

(
(m− 1)π

2K + 1

)]
,

(9)
for m = 1, ..., 2K + 1. The species are out of phase by
2π/(2K + 1) with respect to their second-nearest neigh-
bour during the oscillations. Since the number of species
is odd, parity-based cluster aggregation is not possible:
if two clusters attempt to come together, a third will
systematically come to break them apart. For cross-
repelling species, this leads to a segregation into single-
species clusters which separate in a way that minimizes
their overall repulsion (Fig. 3b, Movie 7). Similarly to
the even case with M = 2K, this behavior is captured
by the growth statistics displayed in Fig. 1e, where mean
cluster size exhibits an initial exponential growth and
saturates at a value corresponding to the formation of
M individual clusters.

In the case of chasing cross-interactions, oscillations be-
come visible when the growth rate is slower than the
oscillation frequency, which corresponds to the condition

−µ(p) ≲ −µ(s)

1 + cos
(

π
2K+1

)
∓ sin

(
π

2K+1

)
1 + cos

(
π

2K+1

)
± sin

(
π

2K+1

)
 , (10)

which defines the orange region in Fig. 2b. We note that
this inequality only sets an order of magnitude for the
transition from oscillatory to non-oscillatory dynamics,
rather than a sharp boundary. The behaviour of the sys-
tem again depends on the relative values of the self at-
traction magnitude

∣∣µ(p) − µ(s)
∣∣ and the chasing strength∣∣µ(p) + µ(s)

∣∣. When self-attraction is weaker than the
chasing strength (i.e. close to the instability line), Brow-
nian dynamics simulations indeed show a persistent os-
cillatory dynamical behaviour with the following chore-
ography for the case in which each species chases after
the previous one: a single-species cluster of a species m
forms transiently, and is then “invaded” by species m+1,
leading to an explosion that disperses speciesm back into
the solution. Species m then invades a cluster of species
m−1, and so on, in a sequential order until M explosion
events have occurred and the cycle starts again. In the
case with M = 5 (Fig. 4 and Movie 8; see Supplemen-
tary Information for a quantification of the oscillation
dynamics), we observe that the system comes back to a
state similar to the initial one, except for a swap in the
locations of the clusters. This change occurs because the
clusters of the second-nearest-neighbour species in the
cycle tend to form pairs. One component of one of these
pairs is replaced in every explosion event by the species
preceding it in the cycle, such that, after five explosions,
the pairs have been switched in space. The reverse dy-
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namics (species m invading species m + 1) are observed
if the signs of µ(s) and µ(p) are reversed, so that each
species chases the next one in the cycle.

For even weaker self-attraction or stronger chasing, the
clusters do not have time to form. In this case, oscilla-
tions are observed in a dilute mixture of catalytic par-
ticles, where clusters are replaced by transient zones of
higher concentration (Movie 9). This can create a self-
stirring solution, favouring the mixing and assembly of
solution components in time scales considerably shorter
than those allowed by passive diffusion. Lastly, if the per-
turbation growth rate is instead larger than its oscillation
frequency (red region in Fig. 2b), then the dynamics leads
to formation of stable clusters. We have observed in sim-
ulations the formation of chasing hybrid clusters similar
to the case with even number of species (Extended Data
Fig. E3, Movie 10).

These results can be contrasted with the behaviour of
reaction-diffusion systems, which can also undergo insta-
bilities as first formulated by Turing [56], and extensively
studied for both non-mass-conserving [57–59] and mass-
conserving [60, 61] reactions. Such systems have been
shown to exhibit pattern formation, macroscopic phase
separation, or travelling wave fronts. In contrast, the
model we study in this work is able to exhibit a larger va-
riety of complex behaviour, because of the non-reciprocal
interactions.

Our work shows that catalytically-active and chemotactic
particles participating in a primitive metabolic cycle ex-
hibit a variety of structural complex collective behaviour.
Due to the nature of the gradient-mediated interactions
involved, such particles are able to interact over large dis-
tances, and undergo spontaneous and exponentially rapid
cluster formation that serves to support their metabolic
function. This feature can help overcome the barrier of
the time needed for the right types of molecules to meet
by chance at sufficiently high concentrations in the first
place, and selectively drives the formation of functional
metabolic condensates based on the information embed-
ded in the chemical reaction network kinship of the com-
ponents. This suggests that naturally occurring phoretic
transport mechanisms might be able to equip the biolog-
ical paradigm of liquid-liquid phase separation with an
information-controlled strategy for metabolic structure
formation. Moreover, since the overall chemical activity
of enzymes can be enhanced with suitable clustering be-
haviour [14, 62], the ability to engineer complex cluster-
ing features such as those reported here may help improve
the design and efficiency of synthetic reaction networks.

Depending on the parity of the number of different
species involved in the cycle and on their chemotactic
parameters, these clusters might consist of a single or

several species, thereby accommodating a range of design
strategies for metabolic structure formation. If the num-
ber of species in the cycle is odd, chasing interactions
may emerge at the macroscopic level, similar to those
that have been observed in recent experiments [25, 26],
although in this case leading to long-lived, system-wide
oscillations. Our work suggests that a metabolic cy-
cle consisting of an odd number of catalysts may have
an advantage (over a cycle with an even number of cat-
alysts) due to the formation of the explosive oscillatory
stationary state. It remains to be seen whether the fact
that the universal citric acid cycle consists of eleven cat-
alysts can in some way be related to this observation.
The observed variety of emergent structural behaviour
with highly precise control over the composition of the
constituents of the metabolically active clusters hints at a
significant possible role for catalytically active molecules
at the origin of life: the molecules that are metabolically
connected to each other will preferentially and efficiently
form active clusters together, hence serving as potential
candidates for the nucleation of early forms of life.

What is remarkable about our proposal to use non-
reciprocal interactions in this context is that such interac-
tions generically emerge in non-equilibrium systems with
chemical catalytic activity [63], which are abundantly
present in the cell (enzymes involved with metabolic ac-
tivity) and can be easily synthesized in artificial systems
(catalytic colloids) for controlled in vitro experiments. In
this sense, the theoretical developments that have led to
significant progress in the field of active matter in the
laboratory setting can now be used to guide new experi-
mental strategies for research in the field of origin of life.
Our work offers a theoretical and conceptual platform
towards developing this possibility.
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METHODS

Linear stability analysis. We consider a system
of M catalytically-active particles described by concen-
tration fields ρm (r, t). A given species m converts its
substrate, chemical (m) described by a concentration
field c(m) (r, t), into its product, which will in turn be
the substrate (m + 1) of the catalytic species m + 1.
This conversion takes place at a rate α > 0, which we
take to be constant (i.e. catalysis is assumed to take
place in the substrate-saturated regime), and equal for
all species. The particles are also chemotactic for their
substrate and their product, with respective mobilities
µ(s) and µ(p), again chosen to be equal for all species. We
start from the evolution equations for the substrate and
product concentrations given in (1). We then consider
the effects of a time- and space-dependent perturbation
(δρm (r, t) , δc(m) (r, t)) around an initially homogeneous
state (ρ0, c0). We also assume a separation of timescales:
as the substrates are typically much smaller than the cat-
alytic particles and thus diffuse faster, we assume that
their concentrations equilibrate more quickly to a quasi-
steady state for a given configuration of the fields ρm,
meaning that we set ∂tc

(m) ≃ 0. Fourier-transforming
the linearized equations with respect to space leads to
the following equation for the δc(m) mode with wavevec-
tor q:

Dq2δc(m) (q, t) = α (δρm−1 (q, t)− δρm (q, t)) . (11)

Reintroducing this perturbation into the linearized equa-
tion (1a), which we Laplace-transform with respect to
time, leads to the system of equations for the different
modes with growth rate λ and wavevector q:

(λ+Dpq
2)δρm (q, λ) = −αρ0

D

[
µ(s)δρm−1 (q, λ)

+(µ(p) − µ(s))δρm (q, λ)−µ(p)δρm+1 (q, λ)
]
,
(12)

which is an eigenvalue equation. It is readily seen that
the fastest growing mode is the q = 0 mode. Therefore,
we focus on this mode throughout the paper. The sys-
tem is unstable when Re(λ(q = 0)) > 0. Denoting the
interaction matrix as Λmn (as defined in equation (3)),
we obtain the result in equation (2).

Pair interactions between spherical catalytically-
active particles. In order to perform Brownian dy-
namics simulations of the system, we calculate the effec-
tive interaction between two spherical catalytically-active
particles in the far-field approximation, which we do in
two steps.

We first consider an isolated particle of species m, with
activity α and radius R, taken to be equal for all species.
We place the particle at the origin, and use spherical
coordinates. The perturbation δc(n) induced by the par-
ticle, which is assumed to equilibrate quickly with respect
to the motion of all particles, is a solution of the Laplace

equation:

0 = D∇2δc(n). (13)

The corresponding boundary conditions, however, de-
pend on whether the chemical is the substrate (n = m),
the product (n = m+ 1), or neither. Indeed, the bound-
ary condition is determined by the diffusive fluxes across
the particle surface due to its chemical activity, resulting
in

−4πR2D
∂δc(n)

∂r

∣∣∣∣
r=R

=


−α if n = m,

α if n = m+ 1,

0 otherwise.

(14)

The corresponding solutions for the perturbations are
given as

δc(n)(r) =


− α

4πD
1
r if n = m,

α
4πD

1
r if n = m+ 1,

0 otherwise.

(15)

Now consider a second particle of species n placed at a
location r. Its velocity vn,m(r) in response to the per-
turbation created by the particle of species m will be

vn,m(r) =


−µ(s)∇δc(n) if n = m+ 1,

−µ(p)∇δc(n+1) if n = m− 1,

−µ(s)∇δc(n) − µ(p)∇δc(n+1) if n = m,

0 otherwise.

(16)
Using equation (15), the responses can be explicitly writ-
ten as

vn,m(r) =


αµ(s)

4πD
r
r3 if n = m+ 1,

−αµ(p)

4πD
r
r3 if n = m− 1,

α(µ(p)−µ(s))
4πD

r
r3 if n = m,

0 otherwise,

(17)

which may be directly compared to the interaction ma-
trix in equation (3) of the main text. Note that in general
vn,m(r) ̸= −vm,n(−r) when n ̸= m, which again high-
lights the non-reciprocal nature of the interactions.

Brownian dynamics simulations. We perform
Brownian dynamics simulations using a custom program
written in the Julia language. We simulate N parti-
cles equally distributed among M species. Particles are
started out randomly distributed in space, corresponding
to a homogeneous state.

The equations of motion used in our simulations are

ṙi(t) =
N∑
j=1
(j ̸=i)

vS(i),S(j)(ri − rj) +
√

2Dp ξi, (18)
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Movie number M µ̃(s) µ̃(p) dτ τtot

1 5 -1.05 -1 0.001 2666
2 6 -0.5 1 0.0005 900
3 6 0.5 -1 0.0005 900
4 6 -0.5 -1 0.0005 900
5 6 -0.7 -0.8 0.001 8000
6 6 -0.95 -1 0.001 3200
7 5 0.5 -1 0.0005 900
8 5 -0.929 -1.07 0.001 2000
9 5 1.05 1 0.001 2666
10 5 -0.1 -0.2 0.001 6666

TABLE I. Simulation parameters for the movies referenced in
the main text.

where i ∈ {1, 2, . . . , N}. Here, S(i) gives the species in-
dex corresponding to the particle index i, the velocities
calculated using equation (17), Dp is the diffusion coef-
ficient of the particles, and ξi corresponds to a Gaussian
white noise with zero mean and unit variance acting on
particle i.

The equations of motion are integrated using a forward
Euler scheme. At every integration step, an overlap cor-
rection is then performed to account for hard-core re-
pulsion between the spheres, using the “elastic collision
method” [64]. We simulate the system in a three dimen-
sional box of side length L with periodic boundary condi-
tions, and interactions are treated according to the min-
imum image convention. Note that we do not use Ewald
summation in our numerical simulations, which would be
relevant if our goal was to simulate system sizes consid-
erably larger than currently considered in our study.

The particle diameter, σ, which is taken to be the same
for all species, sets the basic length scale of the simula-
tion. We can define reference activity and mobility scales,
respectively α0 and µ0, from which we build a velocity
scale V0 = α0µ0/(4πDσ2). From these scales, we can de-
fine dimensionless time τ = tV0/σ, activity α̃ = α/α0,
and mobility µ̃ = µ/µ0 scales. Finally, we define a

reduced particle diffusion coefficient D̃p = Dp/(V0σ),
which serves as an effective noise intensity or temper-
ature.

Simulation parameters. All simulations have been
performed with a box size L/σ chosen such that the
total volume fraction of the particles is ϕ = 0.005, as
well as the choice of activity α̃ = 1, and noise strength

D̃p = 0.02. Simulations of respectively M = 5 (M = 6)
species are performed with N/M = 333 (N/M = 400)
particles per species. We use the following rule of thumb
for parameter choices: the products in the form of α̃µ̃ are
chosen to be of order unity, while the time step is chosen
such that dτ ≤ 0.001. The total simulation times are
usually of the order of τtot ≈ 102 − 103. In the Supple-
mentary Information, we describe each simulation movie.
For the specific parameters used in each simulation, see
table I.

Cluster growth law determination. In order to qual-
itatively determine the cluster growth law for both an
even (see Fig. 3a of the main text and Movie 7) and an
odd (see Fig. 3b of the main text and Movie 3) num-
ber of species, we use a simple clustering algorithm im-
plemented in the Julia programming language: starting
from each individual particle regarded as a cluster of size
1, we assign two particles to be in the same cluster if
their distance is below a threshold, which we choose to
be 1.1 times the particle diameter σ. In order to speed up
the calculations, we additionally use a link-list algorithm
with a cell size 1.1σ, which only requires calculation of
the distance of each particle to the particles in its vicin-
ity. We run 100 simulations using the parameters given
in the previous subsection for Movies 3 and 7, with a
longer total time t̃total = 400. We then perform an en-
semble average on these data to obtain the growth laws
shown in Fig. 1e.

DATA AVAILABILITY

The data supporting the main findings of this study are
available in the paper and its Supplementary Informa-
tion. Any additional data can be made available upon
request.

CODE AVAILABILITY

The algorithms for the codes supporting the main find-
ings of this study are available in the paper and its
Supplementary Information. Any additional information
concerning the code can be made available upon request.

EXTENDED DATA
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FIG. E1. Chasing regime for M = 6 particle species. (a): Weak chasing, strong self-attraction regime (Movie 4). Species
aggregate in mixed clusters without oscillations. Each cluster is composed of a majority species and a minority species that
chases the majority one. Because of their mixed composition, the clusters chase each other over long timescales. Transient
aggregation of the clusters is observed. (b): Strong chasing, weak self-attraction regime (Movie 6). After transient oscillations,
two clusters form, one containing a mixture of all even species, the other of all odd species.

a b

FIG. E2. Different types of homogeneous steady states. (a): Self-repelling, cross-chasing regime (Movie 1). Particles
form short-lived, self-propelled molecules, which swap particles with each other. (b): Self-repelling, cross-attracting regime

(Movie 2). Particles form larger, long-lived, rotating molecules. If µ(s) = −µ(p), rotation is suppressed.
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FIG. E3. Non-oscillatory steady state for M = 5 particle species. Species aggregate into mixed clusters, which then
chase each other (Movie 10).
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I. EIGENVALUE SPECTRA

In Fig. S1, we plot in the complex plane the spectrum of the stability matrix (equation (3) of the main text) for
different numbers of species M , which corresponds to the M eigenvalues given in equation (4) of the main text. These
spectra illustrate the key difference between even and odd species numbers, as highlighted in the main text: for cycles
involving an even number of species, the fastest growing mode is associated to a real eigenvalue, while for cycles
involving an odd number of species, the fastest growing mode is associated to a complex conjugate pair of eigenvalues.
In the latter case, the ratio between the magnitudes of the real and imaginary parts (see the full expression given in
equation (8) of the main text) determines whether the system exhibits long-lived oscillations.
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FIG. S1. Eigenvalue spectra for M = 3 to 8 species, in units of −(µ(p) −µ(s))αρ0/D for the real part and −(µ(s) +µ(p))αρ0/D
for the imaginary part. The eigenvalue (for an even number of species) or pair of eigenvalues (for an odd number) with the
largest real part is coloured in red.
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FIG. S2. Oscillation dynamics for M = 5 species (see Fig. 4 of the main text and Movie 8). Left: full time span of the
simulation. Centre: five oscillation cycles. Right: two oscillation cycles.

II. OSCILLATORY DYNAMICS FOR AN ODD NUMBER OF CHASING SPECIES

Using the clustering scheme described in Methods, we quantify the oscillation dynamics shown in Fig. 4 of the main
text and Movie 8. For each species, we plot in Fig. S2 the normalized mean size of the clusters containing at least one
particle of that species, excluding individual particles (i.e. clusters of size 1). A uniform moving average is applied
over a 10-point window in order to smooth out high-frequency variations.

In accordance with Fig. 4 of the main text and Movie 8, we observe successive formation and dissolution of large
clusters containing a given species, in the order · · · → 5 → 4 → 3 → 2 → 1 → 5 → . . . . These formation and explosion
events are regularly spaced in time, and can be interpreted as constituting an oscillatory steady state. At their largest,
the clusters span 20 to 30 % of the total particle population, reflecting the fact that two clusters of species of the
same parity might be in contact right before an explosion event, as shown in Fig. 4 of the main text.

III. DESCRIPTION OF THE MOVIES

• Movie 1 Linearly stable mixture of self-repelling species in the chasing regime, resulting in the formation of
transient self-propelled colloidal molecules. See Extended Data Fig. 2a.

• Movie 2 Linearly stable mixture of self-repelling, cross-attracting particle species, which form long-lived rotating
molecules. See Extended Data Fig. 2b.

• Movie 3 Unstable mixture of an even number of self-attracting, cross-repelling particle species undergoing
parity-based aggregation. See Fig. 3a of the main text.

• Movie 4 Linearly unstable mixture of an even number of self-attracting, cross-chasing species for which the
magnitude of the chasing interaction is comparable to the self-attraction. The mixture self-organizes into hybrid
clusters composed of a majority and a minority species which chase each other. See Extended Data Fig. 1a.

• Movie 5 Same as Movie 4, but with the magnitude of the chasing interaction being larger than the self-
attraction. Two hybrid clusters, each containing all the species of a same parity, form and separate.

• Movie 6 Same as Movie 4, but with self-attraction negligible compared to chasing interactions. The system
behaves similarly to Movie 5, with transient oscillations observed as the clusters form. See Extended Data
Fig. 1b.

• Movie 7 Linearly unstable mixture of an odd number of self-attracting, cross-repelling species. The particles
separate into single-species clusters, in order to minimize overall repulsion. See Fig. 3b of the main text.

• Movie 8 Linearly unstable mixture of an odd number of self-attracting, cross-chasing species, with a magnitude
of the self-attraction smaller, but on the same order as the chasing interaction. The system exhibits long-lived
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oscillations in which species successively form clusters which then get dissolved and replaced by a chasing species.
See Fig. 4 of the main text.

• Movie 9 Same as Movie 8, but with the self-attraction magnitude taken much lower than the chasing interaction.
The system behaves similarly to Movie 8, with the clusters being replaced by regions of transiently increased
concentration.

• Movie 10 Same as Movie 8, but in a parameter regime for which the instability growth rate is larger than
its oscillation frequency. The particles phase-separate into hybrid clusters of two species without exhibiting
oscillations. See Extended Data Fig. 3.
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Network effects lead to self-organization in metabolic cycles of self-repelling catalysts
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Mixtures of particles that interact through phoretic effects are known to aggregate if they belong
to species that exhibit attractive self-interactions. We study self-organization in a model metabolic
cycle composed of three species of catalytically-active particles that are chemotactic towards the
chemicals that define their connectivity network. We find that the self-organization can be controlled
by the network properties, as exemplified by a case where a collapse instability is achieved by design
for self-repelling species. Our findings highlight a possibility for controlling the intricate functions
of metabolic networks by taking advantage of the physics of phoretic active matter.

Introduction.— Catalyzed chemical reactions are in-
trinsically and locally out of equilibrium, making cat-
alytic particles a paradigmatic example of systems in
which the physics of active matter comes into play [1].
In particular, catalytic activity coupled to a chemotac-
tic, gradient-response mechanism such as diffusiophoresis
[2, 3] enables the self-propulsion of individual colloidal
particles via self-phoresis [4, 5], as well as collective be-
haviour mediated by effective interactions between active
colloids [6–10]. In addition, catalytic activity is essential
to the function of biological systems, allowing for the
occurrence, as a part of metabolism, of reactions that
would otherwise be kinetically inhibited [11]. Metabolic
processes often require enzymatic catalysis to occur in
a space- and time-localized manner, necessitating some
degree of self-organization of the participating enzymes
[12–19]. In particular, many enzymes have been shown
to spontaneously form transient aggregates, known as
metabolons [20].

Simple cases of spontaneous self-organization in mix-
tures of several catalytic components have been previ-
ously studied both in theory [21–26] and in experiment
[27–31]. However, the influence of the sometimes complex
topology of reaction networks on the self-organization of
the metabolic components has not yet been elucidated.
Indeed, many catalytic processes of biological and indus-
trial significance—from cellular metabolism [32] to car-
bon fixation [33]—involve a closed chain of catalytic re-
actions, where the product of one catalyst is passed on as
the substrate of the next one, i.e. a metabolic cycle. Be-
cause the spatial arrangement of catalysts may strongly
affect the overall rate of the reactions [17, 18, 26], it is
important to understand under which conditions such
spatial reorganization may happen spontaneously, and
whether it can be triggered in generically stable systems
via network-mediated effects. In this Letter, we study the
chemotactic self-organization of three species of catalyti-
cally active particles that participate in a model catalytic
cycle. We find that a mixture of only self-repelling cat-
alytic species can undergo self-organization via network
effects emerging from the metabolic cycle topology.

Model.—We consider catalytically-active particles

which produce and consume a set of chemicals, with

activities α
(k)
m corresponding to the rate of production

(if positive) or consumption (if negative) of chemical k
by active species m. These particles are also chemotac-
tic: synthetic colloids typically move via hydrodynamic-
phoretic mechanisms [1, 27, 28, 31]; whereas the mecha-
nism underlying the observed chemotaxis of biological
enzymes is still debated [34–42]. In a concentration
gradient of chemical k, species m develops a velocity

v
(k)
m = −µ(k)

m ∇c(k), where µ
(k)
m is a mobility coefficient.

The combination of catalytic and chemotactic activities
results in effective interactions between the active species

going as vm,n ∝
∑
k α

(k)
n µ

(k)
m , where vm,n represents

the velocity of m in response to the presence of n; see
Fig. 1(a). Importantly, these interactions are nonrecip-

(a)

(b)

(c)
= Attraction

= Repulsion

FIG. 1. (a) Emergence of field-mediated, nonreciprocal inter-
actions between particle n, which perturbs the chemical field
c(k) around itself, and particle m, which develops a velocity
in response to the resulting chemical gradient. (b) Metabolic
cycle of three species. Each converts their substrate into a
product which acts as the substrate of the next species, and
moves in response to gradients of both chemicals. (c) Ex-
ample of a set of species-species interactions emerging from
the combination of effective field-mediated interactions and
metabolic cycle topology. With this particular choice of pa-
rameters, each species is self-repelling, and the species pair
1-3 exhibits chasing interactions.
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rocal, in the sense that we generically have vm,n 6= −vm,n
[21].

We use a continuum model for the concentration ρm of
the active species m and the chemical concentration c(k),
which reads

∂tρm(r, t) = ∇ ·
[
Dp∇ρm +

∑

k

µ(k)
m (∇c(k))ρm

]
, (1a)

∂tc
(k)(r, t) = D(k)∇2c(k) +

∑

m

α(k)
m ρm. (1b)

Here, Eq. (1a) is a continuity equation with Dp being the
diffusion coefficient of the colloidal particles, which we as-
sumed to be equal for all active particles for simplicity,
and the drift velocity following the concentration gradi-
ents of all chemicals. Moreover, Eq. (1b) is a reaction-
diffusion equation for the chemicals, with D(k) represent-
ing the diffusion coefficient of chemical (k), and the reac-
tion term accounting for the local activity of all catalytic
species.

To determine when such a mixture undergoes an in-
stability, we perform a linear stability analysis of these
equations [43]. We find that a perturbation (δρm, δc

(k))

around an initially homogeneous state (ρ0m, c
(k)
h ) fol-

lows the general eigenvalue equation −∑M
n=1 Λm,nδρn =

[
λ+Dpq

2
]
δρm where Λm,n =

∑
k
α(k)

n µ(k)
m

D(k) ρ0m represents
the response of species m to species n, mediated by all

chemical fields, and λ(q) is the growth rate of a perturba-
tion with wave number q. The coefficient Λm,n is negative
(positive) if species m is attracted to (repelled by) species
n. Throughout the rest of this Letter, we rescale the mo-

bility coefficients for brevity, such that µ
(k)
m /D(k) → µ

(k)
m .

The system undergoes an instability if any mode has a
positive growth rate λ > 0. We focus on the eigenvalue
with the highest growth rate associated with the q2 = 0
mode, corresponding to the longest wavelength, which
represents a macroscopic instability.

Metabolic cycles.—We focus on the particular case of
metabolic cycles composed of 3 active species (Fig. 1(b)),
where species m converts its substrate sm into its product

pm = sm+1, with an activity αm = α
(m+1)
m = −α(m)

m >
0, as depicted in Fig. 1(b). As the cycle is closed, the
species indices are periodic, with species 4 being identical
to species 1, and species 0 to species 3.

The species have a chemotactic response to both their

substrate and product, with respective mobilities µ
(s)
m ≡

µ
(m)
m and µ

(p)
m ≡ µ(m+1)

m . The resulting interaction matrix
has the following (non-vanishing) coefficients (Fig. 1(c)):

Λm,m−1 = αm−1µ
(s)
m ρ0m, Λm,m = αm∆µmρ0m, and

Λm,m+1 = −αm+1µ
(p)
m ρ0m, where ∆µm ≡ µ(p)

m −µ(s)
m , and

is in general asymmetric, reflecting the non-reciprocal na-
ture of the interactions between the catalytic species.

We now calculate the eigenvalues λ(q = 0) for Λm,n as
defined above, and find two eigenvalues given by [43]

λ± = −1

2

3∑

m=1

αm∆µmρ0m ±
1

2

√√√√
(

3∑

m=1

αm∆µmρ0m

)2

− 4
3∑

m=1

αmαm+1

(
∆µm∆µm+1 + µ

(p)
m µ

(s)
m+1

)
ρ0mρ0m+1, (2)

as well as one null eigenvalue λ0 = 0. The system will
be linearly unstable when (the real part of) the largest
eigenvalue λ+ becomes positive.

Substrate-sensitive species.—A simple class of cycles
whose parameter space can be explored in full generality
involves those in which the catalytic particles are only

chemotactic towards their substrate, i.e. µ
(p)
m = 0. We

thus have three activities αm and three substrate mobili-
ties µ

(s)
m , with the mobility difference reducing to ∆µm =

−µ(s)
m . Species in such a cycle then only interact with

the previous species in the cycle and with themselves,

with Λm,m−1 = αm−1µ
(s)
m ρ0m, Λm,m = −αmµ(s)

m ρ0m, and
Λm,m+1 = 0. Note that the self-interaction always has
the opposite sign to the interaction with the previous
species in the cycle, which further limits the possible in-
teraction patterns the catalytic species can exhibit.

In the context of this reduced parameter space, and
assuming species 1 is self-repelling (i.e. α1∆µ1 > 0),
one can solve Re(λ+) > 0 for all parameter values, yield-

ing a comprehensive two-dimensional stability phase di-
agram as shown in Fig. 2 [43], which depends only the

normalized self-interactions
α2∆µ2ρ02
α1∆µ1ρ01

and
α3∆µ3ρ03
α1∆µ1ρ01

.

The corresponding parameter-free instability line is plot-
ted as a dashed line on Fig. 2, with the dark orange
and light orange regions below that line corresponding
to unstable metabolic cycles. As the instability line is
above the light orange region corresponding to overall
self-attracting mixtures in Fig. 2 (

∑3
m=1 Λm,m < 0), we

uncover that it not necessary for the metabolic cycle to
be composed of overall self-attracting species in order to
self-organize, as opposed to mixtures involving simpler
interaction schemes [22, 25, 44]. This result does not,
however, extend to cycles composed only of self-repelling
species (Λm,m > 0 for all m), which are always stable,
as shown by the fact that the corresponding top right
quadrant in Fig. 2 is always above the dashed stability
line. This implies that some amount of self-attraction is
still necessary for the catalytic particles to self-organize
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FIG. 2. Stability phase diagram for cycles involving at least
one self-repelling species. Species 1 taken to be self-repelling
(α1∆µ1 > 0). Full line: Stability line in normalized self-
interaction plane for a specific choice of parameters. Dashed
line: Parameter-free instability line below which cycles with

null product mobilities µ
(p)
1,2,3 = 0 are unstable. Note that this

line always below the the top-right, all-self-repelling quadrant.
Dash-dotted line: boundary between an overall self-attracting
and self-repelling catalytic mixtures. Gray markers: coordi-
nates of Brownian dynamics simulations, found to be unsta-
ble if the marker is a circle or stable if it is a triangle. The
blue marker corresponds to the coordinates of the simulation
shown in Fig. 3. For the expressions of the stability lines and
the values of the parameters, see the Supplemental Material
[43].

in this limited interaction topology.
Self-organization of purely self-repelling species—We

now consider the general case with both nonzero sub-
strate and product mobilities, for which each species in-
teracts with both the previous and the next species in
the cycle according to a pattern set by its substrate mo-
bility µ(s), its product mobility µ(p), and their difference
∆µ. By solving for Re(λ+) > 0 in Eq. (2), we find that a
cycle which is overall self-repelling can be made unstable
provided the following condition is satisfied

3∑

m=1

αm∆µmρ0m · αm+1∆µm+1ρ0m+1

< −
3∑

m=1

αmµ
(s)
m+1ρ0m+1 · αm+1µ

(p)
m ρ0m.

(3)

The condition (Eq. (3)), which involves terms mix-
ing pairs of catalytic species, can be rewritten as

∑
Λm,mΛm+1,m+1 <

∑
Λm,m+1Λm+1,m, and thus sets

a bound on the self-interactions of pairs of species rela-
tive to their cross-interactions. This inequality implies
that, in the case of an overall self-repelling cycle where∑3
m=1 Λm,m > 0, the presence of species pairs which in-

teract reciprocally offer an alternate route to instability.
We find that a striking new feature of this general case

is that cycles composed only of self-repelling species can
be unstable according to the condition given in Eq. (3) if
any self-repelling species m verifies one of the following
inequalities [43]:

αm+1µ
(p)
m+1ρ0m+1 > αm∆µmρ0m, (4a)

µ(s)
m > 0, (4b)

1

αmµ
(s)
m ρ0m

[
αm−1µ

(p)
m−1ρ0m−1αmµ

(s)
m ρ0m

+ αm+1µ
(p)
m+1ρ0m+1

(
αmµ

(p)
m ρ0m

+ αm−1µ
(p)
m−1ρ0m−1

)]
> 0. (4c)

This behavior is illustrated, for a particular set of pa-
rameters for which species 1 obeys inequalities Eqs. (4a)
and (4c), by the stability phase diagram shown in Fig. 2.
For this choice of parameters, the stability line is con-
tained in the top-right quadrant, which corresponds to
a mixture of three self-repelling species. Thus, in some
regions of the parameter space (Fig. 2, dark red), the
destabilizing pair interactions are able to overcome self-
repulsion, and lead to the formation of a cluster of three
species in the absence of self-attraction. We recall that
cycles of strictly substrate-sensitive species, which are
stable above the dashed line drawn in Fig. 2, exhibit
no such region independently of the choice of parame-
ters. An increased complexity of interactions is therefore
needed in order to overcome self-repulsion. We have con-
firmed this analytical prediction using Brownian dynam-
ics simulations (Fig. 2, grey circles and triangles). By
scanning the coordinates of Fig. 2 for a set of parameters
given in [43], we broadly recover the predicted instability
line.

The results of a simulation of an unstable cycle of three
self-repelling species, with parameters corresponding to
the blue point in Fig. 2 and the interactions shown in
Fig. 1(c), are shown in Fig. 3 (see [43] for simulation pa-
rameters). In panels (a1) to (a3), we find that each cat-
alytic species taken on its own does not cluster, because
of being self-repelling. Panels (b1) and (b3) demonstrate
that mixtures of particles belonging to species pairs (1,2)
and (3,1), when considered together, are also stable, and
lead to the formation of small dynamic molecules. How-
ever, as shown in panel (b2), mixtures of particles of
species 2 and 3 are unstable, and lead to the formation
of a mixed clusters coexisting with a dilute phase. A
favourable choice of parameters allows species 2 and 3 to
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(a1)

(b1)

(a2)

(b2)

(a3)

(b3)

(c)

FIG. 3. Instability of a generic three-enzyme cycle triggered by the presence of a single instability-favouring pair. (a1–a3) All
particle species are self-repelling, and thus single-species suspensions stay homogeneous. (b1–b3) Of the two-species mixtures,
1-2 and 3-1 mixtures form small molecules but remain homogeneous, while 2-3 is unstable and results in the formation of a 2-3
cluster coexisting with a gas of species 2. (c) Despite all species being self-repelling, the instability of the 2-3 pair causes the
instability of the full three-species mixture resulting in the formation of a cluster, which coexists with a gas of species 2. Note
that species 1 (red) also participates in the cluster, despite not aggregating with either of the other species (b1, b3). See also
Movies 1–7 and the Supplemental Material [43] for a description of the simulation parameters and movies.

destabilize the whole ternary (1,2,3) mixture of catalysts,
despite the stabilizing effects of the individual species and
the rest of the species pairs. The resulting structure is a
cluster mixing all three species coexisting with a dilute
phase.

Discussion.—Using a simple model, we have shown
that three catalytically active species involved in a model
metabolic cycle are able to undergo a self-organizing in-
stability through chemical field-mediated effective inter-
actions. In the case of a cycle involving species which are
only chemotactic towards their substrates, we find that
while self-organization is possible if the mixture of cat-
alytic species is overall self-repelling, at least one of the
species must be self-attracting for the instability to occur.
However, in contrast to this case and to what was pre-
viously known for phoretic particles [22, 25, 44], we find
that the system can self-organize even when all species
are self-repulsive through instability-favouring pair inter-
actions, in the general case of species chemotactic to both
their substrates and products.

We found here that the topology of interactions
between catalytically active particles can lead to en-
tirely new forms of collective behaviour, namely self-
organization of self-repelling particles. While we con-
sidered minimal catalytic cycles with only three species,
our work also shows that the number of species in the
cycle can have a strong effect on the resulting dynamics,
with cycles of even and odd number of species displaying
entirely different behaviour [44]. Future work may con-

sider more complex and biologically relevant topologies
of the catalytic network (e.g. branched), as well as the
effect of self-organization on the metabolic properties of
the system [15, 17–19]. Furthermore, our work may find
application in engineering synthetic functional structures
with shape-shifting capacity at the molecular scale [45].
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which are jointly funded by the Federal Ministry of Edu-
cation and Research (BMBF) of Germany, and the Max
Planck Society.
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I. LINEAR STABILITY ANALYSIS FOR THREE-SPECIES CYCLES

To calculate the eigenvalues of the matrix Λm,n in the main text, we construct the associated characteristic polynomial,
which reads

χ−Λ(λ) =

∣∣∣∣∣∣∣

−α1∆µ1ρ01 − λ α2µ
(p)
1 ρ01 −α3µ

(s)
1 ρ01

−α1µ
(s)
2 ρ02 −α2∆µ2ρ02 − λ α3µ

(p)
2 ρ02

α1µ
(p)
3 ρ03 −α2µ

(s)
3 ρ03 −α3∆µ3ρ03 − λ

∣∣∣∣∣∣∣
. (S1)

Performing the operations C1 ← C1 + α1

α2
C2 + α1

α3
C2 on the columns Ci of the matrix, we obtain

χ−Λ(λ) =

∣∣∣∣∣∣∣

−λ α2µ
(p)
1 ρ01 −α3µ

(s)
1 ρ01

−α1

α2
λ −α2∆µ2ρ02 − λ α3µ

(p)
2 ρ02

−α1

α3
λ −α2µ

(s)
3 ρ03 −α3∆µ3ρ03 − λ

∣∣∣∣∣∣∣
, (S2)

which can be further manipulated to give the following polynomial

χ−Λ(λ) = −λ
[
λ2 + (α1∆µ1 + α2∆µ2 + α3∆µ3)λ

+α1α2

(
∆µ1∆µ2 + µ

(p)
1 µ

(s)
2

)
+ α2α3

(
∆µ2∆µ3 + µ

(p)
2 µ

(s)
3

)
+ α3α1

(
∆µ3∆µ1 + µ

(p)
3 µ

(s)
1

) ]
.

(S3)

We can now solve χ−Λ(λ) = 0 to obtain Eq. (2) in the main text and λ = 0.

∗ ramin.golestanian@ds.mpg.de
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II. STABILITY CONDITION FOR SUBSTRATE-SENSITIVE SPECIES

Here we consider the case of a cycle with three species, with activities αm, substrate mobilities µ
(s)
m , and no product

mobilities. The corresponding interaction matrix has the two non-null eigenvalues:

λ± = −1

2

3∑

m=1

αm∆µmρ0m ±
1

2

√√√√
(

3∑

m=1

αm∆µmρ0m

)2

− 4
3∑

m=1

αm∆µmρ0m · αm+1∆µm+1ρ0m+1, (S4)

with ∆µm = −µ(s)
m . In the particular case for which α1∆µ1 > 0, solving λ+ > 0 leads to two possible parameter-free

instability conditions, which can be written as

α3∆µ3ρ03

α1∆µ1ρ01
< −

(
α2∆µ2ρ02

α1∆µ1ρ01
+ 1

)
(S5)

and

α3∆µ3ρ03

α1∆µ1ρ01

(
1 +

α2∆µ2ρ02

α1∆µ1ρ01

)
< −α2∆µ2ρ02

α1∆µ1ρ01
, (S6)

with Eq. (S5) corresponding to an overall self-attracting mixture and Eq. (S6) corresponding to a self-repelling one.

We can show that, if
α2∆µ2ρ02

α1∆µ1ρ01
< −1, then the conditions given in Eq. (S5) and Eq. (S6) are complementary, and

the cycle is always unstable. If, however,
α2∆µ2ρ02

α1∆µ1ρ01
≥ −1, then Eq. (S6) is the least strict stability condition and

thus determines the overall stability of the cycle. This boundary is plotted as the dashed line in main text Fig. 2,
with cycles having parameters below that line being unstable. It can be shown that the condition given in Eq. (S6)
is not achievable for a cycle of three self-repelling species.

III. SELF-REPELLING METABOLIC CYCLES

We use a similar approach to Section II in order to find the instability conditions for a cycle of three self-repelling
species with non-null product mobilities µ(p). We seek to solve Re(λ+) > 0 (see main text Eq. (3)), under the

assumption that the mixture of catalysts is self-repelling, i.e. the following condition holds
∑3
m=1 αm∆µmρ0m > 0.

In order to obtain expressions in the normalized self-interaction plane

(
α2∆µ2ρ02

α1∆µ1ρ01
,
α3∆µ3ρ03

α1∆µ1ρ01

)
, we rewrite main

text Eq. (3) in terms of the ∆µm and µ
(p)
m . For brevity, we introduce the notations ∆m ≡

αm∆µmρ0m

α1∆µ1ρ01
and

pm ≡
αmµ

(p)
m ρ0m

α1∆µ1ρ01
. This results in the following form for the instability condition

(∆2 − p2 + 1) ∆3 < (p1 − 1) ∆2 −
3∑

m=1

pmpm+1 + p3, (S7)

which we can plot in normalized self-interaction coordinates ∆2,∆3 by taking p1, p2, p3 as arbitrary parameters.
Defining

f{pm}(∆2) ≡ (p1 − 1)∆2 −
∑3
m=1 pmpm+1 + p3

∆2 − p2 + 1
, (S8)

and rewriting Eq. (S7) as

{
∆3 < f{pm}(∆2) if ∆2 > p2 − 1,

∆3 > f{pm}(∆2) if ∆2 ≤ p2 − 1,
(S9)
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(p)
1 ρ01
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α2µ
(p)
2 ρ02

α1∆µ1ρ01
= 0.6315, and

α3µ
(p)
3 ρ03

α1∆µ1ρ01
= −2.684, without an unstable

region for all-self-repelling catalytic species.

we can then determine the conditions for which Eq. (S9) can be satisfied if all three species are self-repelling, i.e.
∆2 > 0 and ∆3 > 0.

This statement is equivalent to having at least part of the instability line located in the ∆2 > 0,∆3 > 0 domain of
the reduced self-interaction plane in which we plot the instability line. Thus, if there is at least one ∆2 > 0 such that
f{pm}(∆2) > 0, an instability can be obtained for a set of three self-repelling species.

The function f{pm} features two asymptotes, a vertical one with value p2 − 1 and a horizontal one with value p1 − 1.
If either of these asymptotes are positive, then the existence of a region of ∆2 > 0 such that f{pm}(∆2) > 0 is
guaranteed, leading to the first two conditions written in main text Eqs. (4a) and (4b). If the two asymptotes

are negative, there is still a possibility for all-self-repelling instabilities, as f{pm} features a zero with value ∆
(0)
2 =

(
∑3
m=1 pmpm+1 − p3)/(p1 − 1). If ∆

(0)
2 > 0, f exhibits a sign change in the right half-plane and is guaranteed to be

positive-valued in parts of it. We rewrite the ∆
(0)
2 > 0 inequality in terms of activities, mobilities, and homogeneous

concentrations, and present a compact form of it in main text Eq. (4c). As main text Eq. (3) is invariant by cyclic
permutation of the catalytic species, the obtained conditions generalize to any of the three species index m ∈ {1, 2, 3},
as long as the corresponding species is self-repelling. In the conditions written in main text Eq. (4a-c), we then replace
species 1 by an arbitrary species m, species 2 with species m+ 1, and species 3 with m− 1.

In main text Fig. 2, we plot the stability line corresponding to p1 = 0.473, p2 = 6.315, and p3 = −5.684. As p1 < 1
and p2 > 1, the horizontal and vertical asymptotes of the stability function f are, respectively, negative and positive.

Furthermore, as the corresponding value of ∆
(0)
2 is positive, the stability function exhibits a sign change in the right

half-plane. Note that we only plot the stability line for ∆2 > p2 − 1, as the values of f{pm} for ∆2 ≤ p2 − 1 are
systematically below the overall-self-attracting line and thus irrelevant.

On the other hand, if we choose for instance p1 = 0.473, p2 = 0.6315, and p3 = −2.684, both asymptotes are negative
and the sign change of f{pm} occurs in the right half-plane, as shown in Fig. S1.

IV. BROWNIAN DYNAMICS SIMULATIONS

To study the system beyond the linear regime, we perform Brownian Dynamics simulations. We simulate the dynamics
of chemically active and chemotactic spherical particles, the effective interactions among which we derive in the
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following. We first consider an isolated particle of species m, with activity αm and radius R. We place the particle

at the origin, and use spherical coordinates. The perturbation δc
(k)
m induced by the particle to chemical k, which

is assumed to equilibrate quickly with respect to the motion of the particle, is given by the solution of the Laplace
equation:

0 = ∇2δc(k)
m . (S10)

The corresponding boundary conditions, however, depend on whether the chemical is the substrate of species m (i.e.
k = m), its product (i.e. k = m + 1), or neither. Indeed, the boundary condition must balance the diffusive fluxes
across the particle surface with its chemical activity, resulting in:

− 4πR2D(k) ∂δc
(k)
m

∂r

∣∣∣∣∣
r=R

=





−αm if k = m,

αm if k = m+ 1,

0 otherwise.

(S11)

The corresponding solutions for the perturbations are then

δc(k)
m (r) =





− αm

4πD(k)
1
r if k = m,

αm

4πD(k)
1
r if k = m+ 1,

0 otherwise.

(S12)

Now consider a second particle of species n placed at a location r. Its velocity vn,m(r) in response to the perturbation(s)
created by the particle of species m will be:

vn,m(r) =





−µ(s)
n ∇δc(m+1)

m if n = m+ 1,

−µ(p)
n ∇δc(m)

m if n = m− 1,

−µ(s)
n ∇δc(m)

m − µ(p)
n ∇δc(m+1)

m if n = m,

0 otherwise.

(S13)

Using Eq. (S12), the responses can be explicitly written as:

vn,m(r) =





αm

4π
µ(s)
n

D(n)
r
r3 if n = m+ 1,

−αm

4π
µ(p)
n

D(n+1)
r
r3 if n = m− 1,

αm

4π

(
µ(p)
n

D(n+1) − µ(s)
n

D(n)

)
r
r3 if n = m,

0 otherwise.

(S14)

We can then simulate the following equations of motion for N particles:

ṙi(t) =
N∑

j=1
(j 6=i)

vS(i),S(j)(ri − rj) + ξm (S15)

with i ∈ {1, 2, . . . , N}, S(i) giving the species index corresponding to the particle index i, the velocities calculated
using Eq. (S14), and ξ a random velocity corresponding to white noise with intensity 2Dp, resulting in diffusion
of the particles with diffusion coefficient Dp. Particles start out randomly distributed in space, corresponding to a
homogeneous state. The equations of motion are integrated using a forward Euler scheme. At every integration step,
an overlap correction is then performed to account for hard-core repulsion between the spheres, using the “elastic
collision method” [1] and a cell-list algorithm [2] with cubic cells of side length 2R to determine particles’ neighbours.
We simulate the system in a three-dimensional box of side length L with periodic boundary conditions, and interactions
are treated according to the minimum image convention. The particle diameter, σ = 2R, which is taken to be the
same for all species, sets the basic length scale of the simulation. We can redefine the mobility coefficients to include

the diffusion coefficient of the corresponding chemical, as µ̂
(s,p)
m = µ

(s,p)
m /D(m,m+1). We can define basic activity and

mobility scales, respectively α0 and µ̂0, from which we build a velocity scale V0 = α0µ̂0/(4πσ
2). From these scales, we

can define dimensionless time τ = tV0/σ, activities α̃ = α/α0, and mobilities µ̃ = µ̂/µ̂0. Finally, we define a reduced
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Species m Activity α̃m Substrate mobility µ̃
(s)
m Product mobility µ̃

(p)
m

1 0.125 -0.5 0.45
2 0.75 −2.166 + 0.316 · n2, n2 ∈ {1, 2, . . . , 20} 1
3 0.75 −4.066 + 0.316 · n3, n3 ∈ {1, 2, . . . , 20} -0.9

TABLE SI. Simulation parameters for main text Fig. 2.

particle diffusion coefficient D̃p = Dp/(V0σ), equivalent to a noise intensity or temperature.

We numerically verify the stability diagrams shown in Fig. 2 of the main text. To do so, we perform simulations on a

twenty by twenty grid in the
α2∆µ2ρ02

α1∆µ1ρ01
,
α3∆µ3ρ03

α1∆µ1ρ01
plane, which we generate with the parameters given in Table SI.

We then perform Brownian Dynamics simulations for all possible combinations of n2 and n3 ∈ {1, 2 . . . , 20}, making
for a total of 441 sets of parameters. 5000 particles of each species are simulated, in a box of size L/σ = 54,
corresponding to a total volume fraction φ = 0.05. The simulations are iterated with a time step dτ = 0.005, for a
total time of τtotal = 60. The effective diffusion coefficient is set at D̃p = 0.01. The simulations are run in the Julia
programming language. To determine whether the system is unstable, we perform a clustering analysis on the final
state of the system using a cell-lists based clustering algorithm [2], and considering that two particles are neighbours
if they are within a distance of 1.1σ. A simulation run is considered to be unstable if, at the end of the runtime, any
cluster includes more than 20% of the total particle population. We obtain the results shown in Fig. 2 of the main
text. Overall, the numerical results agree with the analytical prediction for the instability line.
The results shown in Fig. 3 of the main text correspond to the steady states of simulations ran with the parameters

compiled in Table SI with n2 = 6 and n3 = 9 (i.e. µ
(s)
2 = −0.27 and µ

(s)
3 = −1.22), with the same dτ , D̃p, and

volume fraction φ as the previous simulations (which leads to a reduced box size for the single species and species
pair simulations), 5000 particles per species, and a total time τtotal = 60.

We provide the following movies of the Brownian Dynamics simulations:

• Movie 1: Homogeneous mixture of species 1, which is linearly stable. See main text Figure 3(a1).

• Movie 2: Same as Movie 1, with species 2. See main text Figure 3(a2).

• Movie 3: Same as Movie 1, with species 3. See main text Figure 3(a3).

• Movie 4: Mixture of species 1 and 2, which is linearly stable. The particles form small, transient assemblies.
See main text Figure 3(b1)

• Movie 5: Mixture of species 2 and 3, which is unstable, leading to the formation of a cluster containing both
species which coexists with a dilute gas phase of species 2. See main text Figure 3(b2)

• Movie 6: Mixture of species 3 and 1, which is linearly stable. See main text Figure 3(b3)

• Movie 7: Mixture of all three active species, which undergoes self-organization, leading to the formation of a
cluster containing all three species which coexists with a gas of species 2. See main text Figure 3(c).

Note that, for movies 5 and 7, and the corresponding panels in main text Figure 3, all the particle coordinates are
shifted so that the centre of mass of the mixture is located at the center of the box in the final snapshot. This does
not modify the result of the simulations, as they involve periodic boundary conditions, and leads to clearer figures
and movies.

[1] P. Strating, Brownian dynamics simulation of a hard-sphere suspension, Phys. Rev. E 59, 2175 (1999).
[2] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 2017).
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Interaction-motif-based classification of self-organizing metabolic cycles
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Particles that are catalytically-active and chemotactic can interact through the concentration
fields upon which they act, which in turn may lead to wide-scale spatial self-organization. When
these active particles interact through several fields, these interactions gain an additional structure,
which can result in new forms of collective behaviour. Here, we study a mixture of active species
which catalyze the conversion of a substrate chemical into a product chemical, and chemotax in
concentration gradients of both substrate and product. Such species develop non-reciprocal, specific
interactions that we coarse-grain into attractive and repulsive, which can lead to a potentially
complex interaction network. We consider the particular case of a metabolic cycle of three species,
each of which interacts with itself and both other species in the cycle. We find that the stability of a
cycle of species that only chemotax in gradients of their substrate is piloted by a set of two parameter-
free conditions, which we use to classify the low number of corresponding interaction networks. In
the more general case of substrate- and product-chemotactic species, we can derive a set of two
high-dimensional stability conditions, which can be used to classify the stability of all the possible
interaction networks based on the self- and pair-interaction motifs they contain. The classification
scheme that we introduce can help guide future studies on the dynamics of complex interaction
networks and explorations of the corresponding large parameter spaces in such metabolically active
complex systems.

I. INTRODUCTION

Chemotactic particles, which develop force-free motion
in response to gradients, have been shown to develop ef-
fective interactions through the fields upon which they
act, independently of the particular mechanism through
which they move [1]. Such interactions have for in-
stance been observed in diffusiophoretic [2–4] and ther-
mophoretic [5–7] colloids, as well as for chemotactic mi-
croorganisms [8, 9]. Field-mediated active interactions
have the particularity of being nonreciprocal, meaning
that the response of a particle A to the presence of an-
other particle B is different from the response of B to
A [10–13]. This feature can lead to new forms of col-
lective behaviour as compared to reciprocally-interacting
systems [14, 15]. For example, binary mixtures of cat-
alytically active particles may spontaneously form self-
propelled clusters [16]. The models describing active
phoretic particles can be extended to the case in which
particles act upon and interact through several chemi-
cal fields, which introduces a nontrivial topology to the
network of interactions among different particle species.
This interaction topology can allow the self-organization
of a mixture of self-repelling species [17], which is not
possible for simpler interaction schemes, and can lead
to super-exponential aggregation of complementary cat-
alysts, which could have been relevant in the emergence
of living matter [18].

Taking into account the presence of several chemical
fields leads to an explosion in the number of possible in-
teraction patterns that active phoretic species can de-
velop, which in turn makes the determination of the
conditions in which mixtures of such species can self-
organize rather challenging. To overcome this issue, in-
spiration can be found from the methods used for tack-

ling the protein folding problem, which consists in under-
standing and characterizing the process through which
an initially linear chain of amino acids folds into a dense
three-dimensional structure [19], and determining which
structure a given sequence folds into. One of the chal-
lenges that is encountered in this setting is that proteins
are composed of 20 possible amino acid species, lead-
ing to a number of possible sequences going as 20n for
a chain of n amino acids, thus making the enumeration
of biologically-relevant chains of hundreds of amino acids
combinatorially complex. In order to decrease this num-
ber, one approach is to coarse-grain the amino acids into
a smaller number of categories that have simple interac-
tion rules. This is the basis of the celebrated HP lat-
tice model [20, 21], which considers two categories of hy-
drophobic and polar amino acids, although it has also
been extended to larger alphabets [22–24]. While cur-
rent state of the art methods can leverage abundant com-
putational power and large data sets, which allows for
accurate predictions of the structure of biological pro-
teins [25], simple lattice models have impressive predic-
tive power [26, 27], with the hydrophobic or polar nature
of the residues having been shown to have a strong influ-
ence on protein structure independently of their partic-
ular nature [28]. Moreover, simple proteins having been
successfully designed based on the binary alphabet used
in the HP model [29].

In this work, we use a similar approach to determine
the ability of catalytic species involved in small metabolic
cycles to self-organize, coarse-graining their interactions
into attractive “A” or repulsive “R” but with the im-
portant new element of non-reciprocity. We are able
to systematically classify the (linear) stability of homo-
geneous mixtures of catalytic particles participating in
metabolic cycles, and thus their tendency to spatially
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FIG. 1. (a) Specific interaction between catalytically active
species. Particles of species m convert a substrate chemical
into a product chemical at a rate αm, and chemotax in con-
centration gradients of these two chemicals. These particles
develop interactions with other catalytic species which mod-
ify the concentrations of their substrate (e.g. species n) and
product (e.g. species o). (b) Metabolic cycle of three species,
which interact with themselves and their neighbour in the cy-
cle. Note the nonreciprocity of the 2-3 pair interaction. (c)
All possible interaction motifs between a given species and its
neighbors in the cycle, determined by its substrate mobility
µ(s) and its product mobility µ(p). “A” denotes self-attracting
species and “R” denotes self-repelling species. “X” can cor-
respond to any sense of interaction.

self-organize, based on which interaction motifs they con-
tain. The article is structured as follows. Section II de-
scribes the basic framework and summarizes the classi-
fication of the metabolic networks. Section III describes
the model in detail, and our method for analyzing the
stability of metabolic cycles. In Section IV, we classify
the stability of cycles composed of species with a single
chemotactic coefficient corresponding to the substrate of
the reaction they catalyze, which can be done using a
simple, parameter-free instability criterion. Finally, in
Section V we generalize this classification to species that
are chemotactic to both their substrate and their prod-
uct, by deriving two instability criteria and determining
which interaction motifs need to be present for these in-
stability conditions to be satisfied. Section VI contains
some discussions while some of the details of the calcula-
tions are relegated to the Appendices.

II. MODEL OVERVIEW AND SUMMARY OF
RESULTS

We study self-organization of catalytically active par-
ticles belonging to M distinct species, and K chemical
fields upon which these particles act. In particular, each
particle of species m converts a substrate chemical, with
index k = s(m), into a product chemical k′ = p(m) at a
rate αm (Fig. 1(a)). The functions s(m) and p(m) there-
fore map each catalytic species index to the index of the
substrate and product chemical, respectively, and define
the topology of the catalytic network. Assuming that cat-
alysts of species m have a concentration ρm, we can then
write the evolution equations for the concentrations of
the K chemical fields they produce and consume as:

∂tck(r, t) = D(k)∇2ck +
∑
m

(
δk,p(m) − δk,s(m)

)
αmρm,

(1)
where D(k) is the diffusion coefficient of chemical species
k, and δm,n is the Kronecker symbol, verifying δm,n = 1
if m = n and 0 else.

The active particles we consider are also taken to
be chemotactic for both their substrate and their prod-
uct. In a concentration gradient of its substrate ∇cs(m),
a particle of species m develops a velocity going as

−µ(s)
m ∇cs(m), which takes it towards the high (respec-

tively low) concentrations of its substrate if µ
(s)
m is neg-

ative (respectively positive). The same is true for gradi-
ents of the product of species m, to which a product mo-

bility µ
(p)
m , also of arbitrary sign, and independent from

µ
(s)
m , is associated. We can then write the following conti-

nuity equation for the concentrations of the active species
ρm:

∂tρm(r, t) = ∇·
[
Dp∇ρm +

(
µ(s)
m ∇cs(m) + µ(p)

m ∇cp(m)

)
ρm

]
,

(2)
where we take all catalysts to have the same diffusion
coefficient Dp.

From Eqs. (1) and (2), it can be deduced that the cat-
alytic species develop interactions mediated by the con-
centration fields of their respective substrates and prod-
ucts: through their chemotactic mobilities, the active
particles we consider are able to develop induced veloci-
ties in response to chemical gradients created by the cat-
alytic activity of other particles. Effective interactions
relying on this mechanism have been previously shown to
lead to self-organization of catalytic mixtures [16–18, 30].
Here, because we study species which act upon and react
to a restricted subset of concentration fields, the emer-
gent interactions are specific: a given species m only re-
sponds to concentration gradients of its substrates and
products, and thus only species which act on these par-
ticular concentration fields will elicit a induced response
in m (Fig. 1(a)). Moreover, these interactions are non-
reciprocal: in general, the velocity response of species
m to species n is different from the response of n to m



3

(Fig. 1(b)). Based on the choice of its mobilities, each
catalyst species then develops a specific pattern of in-
duced velocities to the other catalytic species, which de-
termines the interaction network among species.

In this work, we seek to understand how different
combinations of interaction patterns can lead to self-
organization of catalytic mixtures whose components in-
teract according to a network of specific, nonreciprocal
interactions. We focus our study on the particular case of
three species which are arranged into a model metabolic
cycle (Fig. 1(b)), in which the substrate of species 1
is the product of species 3 and its product is the sub-
strate of species 2, whose product is in turn the sub-
strate of species 3. Catalytic species involved in such a
cycle develop interactions with both other species and
themselves, according to a set of six patterns shown in
Fig. 1(c). In the later sections, we will systematically
study the stability of all interaction pattern combina-
tions, and find that any metabolic cycle of three species
can be mapped onto nine “elementary” sets of networks,
each of which belongs to one of five stability classes. The
stability of all elementary network sets is listed in Ta-
ble I, with the possible stability classes comprising the
following cases:

• Always unstable: cycles of three self-attracting
species which self-organize no matter the choice of
parameters.

• Type-I unstable: cycles which involve self-
attracting species, and which can self-organize if
self-attraction overcomes self-repulsion.

• Type-IIa (or strongly) unstable: cycles of self-
repelling species involving at least one instability-
favouring pair.

• Type-IIb (or weakly) unstable: cycles of self-
repelling species which include at least one pair
which can be instability-favouring if some con-
straint on the mobilities of the active species is sat-
isfied.

• Always stable: cycles of self-repelling species which
do not include instability-favoring pair motifs, and
cannot self-organize.

III. MODEL DESCRIPTION

We consider a set of M = 3 catalytic species involved
in a metabolic cycle as described in the previous section.
Due to this cycle structure, there are K = 3 chemical
fields through which the catalysts interact, and we choose
the convention that s(m) = p(m− 1) = m. Note that,
throughout this work, we will use periodic indices, so that
species 0 is species 3 and species 4 corresponds to species
1, and so on.

In this setting, we perform a linear stability analysis
on Eqs. (1) and (2) (see Appendix A) and find that the

stability of the cycle is set by the eigenvalue equation

λδρm = −
3∑

n=1

Λm,nδρn, (3)

with δρn being the perturbation of the concentration of
species n. The catalytic species involved in the metabolic
cycle then undergo spatial self-organization through a
system-wide instability if Re(λ) > 0, the conditions for
which we seek to uncover in the rest of this work. Eq. (3)
involves Λ, which is the matrix of effective interactions
between the active species, and has coefficients

Λm,n =


αm−1µ̃

(s)
m ρ0m if n = m− 1,

αm

(
µ̃

(p)
m − µ̃(s)

m

)
ρ0m if n = m,

−αm+1µ̃
(p)
m ρ0mm if n = m+ 1.

(4)

Here, we have set µ̃
(s)
m = µ

(s)
m /D(m) and µ̃

(p)
m =

µ
(p)
m /D(m+1), and ρ0m is the density of species m in the

homogeneous state. The response of species m to species
n is attractive if Λm,n < 0, and repulsive if Λm,n > 0.
We can then characterize the structure of the interac-
tions of a metabolic cycle via the signs of the self- and
pair-interactions of its constituent species, the encoding
of which is shown in Fig. 1(b): a repulsive interaction
is denoted by the letter “R”, and an attractive inter-
action by the letter “A”. In the example of Fig. 1(b),
the self-interaction pattern is written as R–R–A, mean-
ing that species 1 and 2 are self-attracting, and species 3
is self-repelling. The pair interactions, meanwhile, read
AA–AR–RR, which denotes the fact that species 1 and 2
attract each other, species 2 chases species 3, and species
1 and 3 both repel each other.

According to Eq. (4), the self-interaction of a given
species m can be expressed as a linear combination of its
cross-interactions with other species. This constrains the
signs of the triplet (Λm−1,m,Λm,m,Λm,m+1) to belong to
one of the six, rather than the theoretically possible 23 =
8, patterns shown in Fig. 1(c). Any possible interaction
network for a metabolic cycle of three species can then be
built by independently choosing one of these six patterns
for each species. In the rest of this work, we classify the
stability behaviour of all such possible 63 = 216 networks.

IV. PHASE DIAGRAM FOR
PRODUCT-INSENSITIVE SPECIES

The number of possible interaction combinations can
be reduced by setting the product mobilities of all species

to zero, i.e. µ
(p)
m = 0, which sets Λm,m+1 = 0 for all

species. In this case, catalysts of a given species m can
only interact with catalysts of the same species or the
previous species m− 1. Additionally, the self-interaction
now satisfies Λm,m = − αm

αm+1
Λm,m−1, meaning that the

self-interaction of a given species is of the opposite sign
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Stability Class Interaction Motifs Elementary Cycle
Self [11–22–33] Mutual [12–23–31]

Always UNSTABLE A – A – A XX – XX – XX

Type-I UNSTABLE R – A – X XX – XX – XX

R – R – R AR – AA – RR

Type-IIa (strongly) UNSTABLE R – R – R AR – AA – RA

R – R – R AA – AA – RR

R – R – R AA – RA – RA

Type-IIb (weakly) UNSTABLE

R – R – R RA – AA – AA

R – R – R AA – AA – AA

STABLE

R – R – R AR – AR – AR

TABLE I. classification of the different emergent possibilities for a size-3 metabolic cycle. Left column: Instability class; see
main text for the definitions. Middle-left column: single-species interaction motifs, with A denoting self-attracting species and
R denoting self-repelling species. X can correspond to any sense of interaction. Middle-right column: pair interaction motifs.
Right column: corresponding metabolic cycle.
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as its response to the previous species. Only two inter-
action motifs are then possible in this case, one being
self-attracting and repelled by the previous species, and
the other, self-repelling and attracted by the previous
species. This makes for a total number of possible inter-
action networks of 23 = 8, which are easily enumerated.

We can determine the stability of each network of

purely substrate-sensitive interactions by carrying out
the linear stability analysis, which in this particular case
yields parameter-independent instability conditions, and
determining how these conditions intersect with regions
of the parameter space corresponding to the different in-
teraction patterns. The eigenvalues for strictly substrate-
sensitive species are found as

λ± = |Λ1,1|

[
−1

2
(Λ̃1 + Λ̃2 + Λ̃3)± 1

2

√(
Λ̃1 + Λ̃2 + Λ̃3

)2

− 4
(

Λ̃1Λ̃2 + Λ̃2Λ̃3 + Λ̃1Λ̃3

)]
. (5)

Here, we have normalized the self-interactions with Λ1,1,

such that Λ̃m =
Λm,m

|Λ1,1| is the ratio of the self-interaction

of species m to the magnitude of the self-interaction of
species 1. From Eq. (5), two instability conditions can be
deduced, which we respectively name type-I and type-II:

type-I: Λ̃1 + Λ̃2 + Λ̃3 < 0, (6)

and

type-II:

{
Λ̃1 + Λ̃2 + Λ̃3 > 0,

Λ̃1Λ̃2 + Λ̃2Λ̃3 + Λ̃1Λ̃3 < 0.
(7)

The type-I condition Eq. (6) only contains self-
interaction terms, and corresponds to having a mixture
that is self-attracting on average, as found in Refs. [16]
and [30] for systems with a non-cyclic interaction topol-
ogy. In contrast, the type-II condition Eq. (7) includes
terms involving pairs of particle species. This condition
allows for the mixture to be self-repelling on average, and
instead requires pairs with opposite self-interaction signs
to have stronger self-interaction than pairs with equal
self-interaction signs.

We can then study separately the cases where species
1 is self-attracting (Λ̃1 = −1) and self-repelling (Λ̃1 =

1). In the case of a self-attracting species 1, Λ̃1 = −1,

we rewrite Eqs. (6) and (7) as inequalities of Λ̃3 as a

function of Λ̃2. It can be shown that, if Λ̃2 < 1, the
first and second order conditions are complementary, so
that at least one is always satisfied, and that the overall
instability condition then writes:

Λ̃2 ≥ 1,

Λ̃3 <
Λ̃2

Λ̃2 − 1
,

or Λ̃2 < 1. (8)

Furthermore, we can also write an oscillation condition
by determining which parameters make Eq. (5) complex
with a positive real part. Parameters which make the
term under the square root in Eq. (5) also satisfy the
type-I instability condition, leading to the oscillation con-
dition{

Λ̃2 < 0,

Λ̃3 ∈
[
−(1 +

√
−Λ̃2)2,−(1−

√
−Λ̃2)2

]
.

(9)

We plot the corresponding stability phase diagram in
(Λ̃2, Λ̃3) coordinates in the left panel of Fig. 2, and find
that cycles of purely substrate-sensitive species are al-
ways unstable if they contain two or three self-attracting
species, while they can be either stable or unstable if they
contain one self-attracting and one self-repelling species.
The oscillation condition Eq. (9), meanwhile, is only com-
patible with cycles of three self-attracting species (Fig. 2,
purple region). These predicted stability diagram was
confirmed by particle-based Brownian dynamics simula-
tions (see Appendix B). In Fig. 2, filled circles corre-
spond to simulations that remained homogeneous, while
empty circles correspond to simulations that displayed
clustering. Oscillations were never observed in simula-
tions, which we ascribe to the fact that the real part of
the complex eigenvalue is always larger than its imagi-
nary part, meaning that the system is out of the linear-
perturbation regime by the time a full oscillation period
is completed.

We now consider species 1 to be self-repelling, Λ̃1 = 1.
Using similar calculations as in the self-attracting case,
we find the instability condition


Λ̃2 ≥ −1,

Λ̃3 < −
Λ̃2

Λ̃2 + 1
,

or Λ̃2 < −1. (10)

Plotting the corresponding phase diagram in the right
panel of Fig. 2, we once again find that cycles of two
self-attracting, product-insensitive species are always un-
stable and that cycles including only one self-attracting
species can either be stable or unstable. Finally, we find
that a cycle composed of three self-repelling species veri-
fying µ(p) = 0 is always stable. The oscillation condition
obtained with Λ̃1 = 1 is incompatible with the set of in-
equalities Eq. (10), confirming that all three species need
to be self-attracting for the eigenvalue to be complex.
These predictions were again successfully verified by the
results of our Brownian dynamics simulations.
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FIG. 2. Stability diagram for a cycle of three species chemotactic only to their substrate. Species 1 is self-attracting (µ1 > 0)
in the left panel, and self-repelling (µ1 < 0) in the right panel. Complex eigenvalues occur in the purple region. Grey circles
correspond to the results of Brownian dynamics simulations, with empty and filled circles corresponding to stable and unstable
homogeneous states, respectively. For the simulation parameters and the expressions defining the stability lines, see Appendix
B.

V. CLASSIFICATION OF GENERIC CYCLES

A. Type-I instabilities in generic cycles

We now consider the general case with both nonzero
substrate and product mobilities. In this more general
case, networks can be built by choosing three of any of

the six interaction patterns from Fig. 1(c), and there are
then 63 = 216 possible interaction networks. We show
here that the presence or absence of certain motifs in the
interaction network can be used to infer the stability of
the full system by using a semi-diagrammatic approach.
Similarly to cycles of product-insensitive species, we first
calculate the non-null eigenvalues, which are found as

λ± = −1

2

3∑
m=1

Λm,m ±
1

2

√√√√( 3∑
m=1

Λm,m

)2

− 4
3∑

m=1

(Λm,mΛm+1,m+1 − Λm+1,mΛm,m+1.). (11)

The homogeneous state is linearly unstable when the real
part of the largest eigenvalue in Eq. (11) becomes posi-
tive, which leads to a type-I instability when

3∑
m=1

Λm,m < 0, (12)

effectively the same condition as Eq. (6), and corresponds
to an overall self-attracting metabolic cycle.

Similarly to the case with substrate sensing only, any
cycle of three self-attracting species is necessarily unsta-
ble according to Eq. (12). Cycles including at least one

self-attracting and one self-repelling species can be ei-
ther stable or unstable according to the type-I condition
(Table I, first two lines). The presence of at least one
self-attracting species is then sufficient to conclude on
the possible stability behavior of a given cycle, indepen-
dent of the rest of the interactions, which allows us to
classify the 189 networks with at least one self-attracting
species.
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Motif Instability condition Stability contribution

µ
(s)
m+1

µ
(p)
m+1

+
µ
(p)
m

µ
(s)
m

< 1 Stabilizing

µ
(s)
m+1

µ
(p)
m+1

+
µ
(p)
m

µ
(s)
m

< 1 Stabilizing

Trivially stable Stabilizing

µ
(s)
m+1

µ
(p)
m+1

+
µ
(p)
m

µ
(s)
m

> 1 Conditionally destabilizing

µ
(s)
m+1

µ
(p)
m+1

+
µ
(p)
m

µ
(s)
m

> 1 Destabilizing

µ
(p)
m+1

µ
(s)
m+1

(
1 − µ

(p)
m

µ
(s)
m

)
< 1 Stabilizing

µ
(p)
m+1

µ
(s)
m+1

(
1 − µ

(p)
m

µ
(s)
m

)
> 1 Conditionally destabilizing

µ
(s)
m

µ
(p)
m

(
1 −

µ
(s)
m+1

µ
(p)
m+1

)
> 1 Conditionally destabilizing

µ
(s)
m

µ
(p)
m

(
1 −

µ
(s)
m+1

µ
(p)
m+1

)
< 1 Stabilizing

TABLE II. Stability of all self-repelling pair motifs. Left column: exhaustive enumeration of pair interaction motifs composed
of self-repelling species (labelled as “Self R” in Fig. 1(c)). “A” designates an attractive interaction, “R” corresponds to a
repulsive interaction, and “X” can be any unspecified interaction. Middle column: condition on species mobilities for the
corresponding term in Eq. (14) to be negative, i.e. instability-favouring. Right: contribution of the pair motif to the cycle
stability, deduced from the corresponding middle-column condition (see Appendix C for details). A species pair is written as
stabilizing if the associated condition cannot be satisfied, destabilizing if it is always satisfied, and conditionally destabilizing
if it the outcome depends on the mobility values.

B. Stability of self-repelling species pairs

The 27 cycles that do not contain any self-attracting
species can only exhibit a type-II instability, which cor-
responds to the following condition:

3∑
m=1

(Λm,mΛm+1,m+1 − Λm,m+1Λm+1,m) < 0. (13)

This inequality involves the sum of three contributions,
each of which corresponds to one of the three species
pairs. We first determine which of the 32 = 9 possible
pairs of self-repelling species provide negative contribu-
tions to the sum written in Eq. (13) (see Appendix C).
To do so, we expand the terms of the sum as

3∑
m=1

αmαm+1∆m,m+1ρ0mρ0m+1 < 0, (14)

using the following definition

∆m,m+1 = µ̃(s)
m µ̃

(s)
m+1 + µ̃(p)

m µ̃
(p)
m+1 − µ̃(s)

m µ̃
(p)
m+1, (15)

and find the conditions on the mobilities of each of the
self-repelling species which leads to ∆m,m+1 < 0 (see
Appendix C for the details of the derivation).

We compile the results in Table II. Out of the nine
pairs of self-repelling species, five are always stabilizing,
one is always destabilizing, and three are conditionally
destabilizing, meaning that they favour instabilities if a
certain inequality on the chemotactic mobilities of their
constituent species is satisfied. Pairs that develop chas-
ing interactions are all stability-favouring, which can be
predicted from Eq. (13) with all self-interactions Λm,m
positive. On the other hand, species pairs which favor
instability all interact reciprocally and involve some de-
gree of repulsion, which tends to make the pair more
destabilizing when its magnitude is increased. This is ex-
emplified by the fact that the only pair which is always
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instability-favouring, whose interactions can be described
as XR–AA–RX, involves two species which reciprocally
attract and are repelled by their other neighbour.

C. Stability of cycles of self-repelling species

Using the information gathered on the pairs of self-
repelling species, we systematically classify the remain-
ing 27 networks of only self-repelling species. We further
reduce that number to seven “elementary” networks onto
which any cycle of self-repelling species can be mapped
through symmetry operations, using the invariance of the
eigenvalue Eq. (11) under cyclic swap of the catalytic
species, and the invariance of Eq. (13) under mirror sym-
metry around one pair (see Appendix D). We then clas-
sify the stability of each elementary network based on
which species pair they contain.

We find that two networks contain the always desta-
bilizing pair XR – AA – RX Table II, and are thus un-
stable if the magnitude of the activities, mobilities, or
homogeneous concentrations associated to it are tuned
so that the associated term in Eq. (13) overcomes the
stabilizing term from the other pairs. As these cycles
can be made unstable simply by adjusting the parame-
ters in order to give enough weight to one-pair terms, we
call them type-IIa, or strongly, unstable. Another cycle,
whose pair interactions go as AA–AA–RR, contains three
conditionally destabilizing pairs. However, the inequal-
ities to be satisfied for all three pairs to be stable are
incompatible, and at least one of the three is necessarily
instability-favouring. This cycle can then also be clas-
sified as type-IIa-unstable, with the only difference with
the two previous one being that the instability-favoring
pair can be different based on the choice of mobilities.

Two more elementary cycles can be made unstable,
but with stricter criteria than those of type-IIa. These
cycles only contain species pairs which are either stabi-
lizing, or conditionally destabilizing. In order for these
to be unstable, two criteria then need to be fulfilled: the
species mobilities must be chosen so that at least one
conditionally destabilizing pair is unstable, and enough
weight must be given in Eq. (13) to this pair, so that
the whole cycle is unstable, a condition which we name
type-IIb (or weakly) unstable networks. Finally, two el-
ementary cycles are only composed of stabilizing pairs,
and thus cannot be made unstable.

VI. DISCUSSION

In this work, we have studied the behavior of a
metabolic cycle of three catalytic species which chemotax
in response to gradients of their substrates and products,
and interact nonreciprocally owing to these two proper-
ties. We have demonstrated that the interaction net-
work between the species can be built by independently
choosing one interaction pattern per species, and that

the stability of the resulting network can be determined
by independently considering single-species and species-
pair motifs. For the particular case of cycles composed of
species with no chemotaxis in response to product gra-
dients (only in response to substrate gradients), we have
calculated a parameter-free stability line and used it to
classify all the possible interaction networks in such cy-
cles. We found that, for this reduced model, at least
one self-attracting interaction motif must be present in
order to observe self-organization. For cycles of species
chemotactic in response to both substrate and product
gradients, we derived two instability criteria from which
the stability behavior of any choice of interaction motifs
can be determined. The first condition (type-I) concerns
the single-species interaction motifs, and translates the
fact that the presence of a self-attracting species is suffi-
cient for a cycle to potentially be unstable. In the case in
which a cycle is composed strictly of self-repelling species,
a second condition (type-II) becomes relevant, which in-
volves interaction motifs between pairs of species. The
contribution to all possible pair interaction motifs to this
condition can be classified as either stabilizing, destabi-
lizing, or conditionally destabilizing. In turn, this clas-
sification of pairs can be used to classify the stability
of self-repelling cycles according to the pair motifs that
they contain, and distinguish type-II unstable cycles as
type-IIa, or strongly, unstable if they contain at least a
destabilizing species pair, and type-IIb, or weakly, unsta-
ble if they only contain conditionally destabilizing (and
stabilizing) pairs.

We have restricted our investigation here to size-
three metabolic cycles, which are structures of small size
and complexity compared to many biologically-relevant
metabolic pathways. An immediate extension would then
be to use the methods we developed for small cycles and
to apply them to larger chemical reaction networks, or
to non-cycle geometries. The most straightforward gen-
eralization is the study of metabolic cycles of more than
three species, which have already been shown to exhibit
complex and cycle-size-dependent behaviour [18]. In-
triguingly, our motif-based classification has shown that,
in a size-three cycle, pair interactions can lead to self-
organization with more relaxed conditions than non-
cyclic topologies. In particular, self-organization may oc-
cur even for systems in which all species are self-repelling,
as studied in more detail in [17]. Larger cycle sizes likely
result in the emergence of higher-order terms in the lin-
ear stability analysis (for instance, triplets of species in
a size-four cycle), which could further relax the insta-
bility condition and lead to new types of instability. In
the context of larger, more complex biochemical reaction
networks, one possible approach could be to identify and
analyze small key motifs in the reaction pathway, akin to
the network motifs which are studied in systems biology
[31, 32] and other disciplines [33]. Finally, recent works
have demonstrated that the spatial self-organization of
enzymes can optimize the overall reaction rate of a path-
way [34] or be used as a method for regulating the output
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of a branch in a reaction network [35]. Such effects could
be investigated in the context of our model metabolic
cycle, for instance by particularizing one of the reaction
products and studying the effect of self-organization on
its production rate. Conversely, the spatial arrangement
of catalysts can be designed to increase reaction yield
[36], implying that reaction networks could be also be
designed with a similar goal in mind by choosing cata-
lysts which self-organize into a reaction-flux-optimizing
structure.
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APPENDICES

Appendix A: Linear stability analysis

The stability of a size-three metabolic cycle can be
determined by performing a linear stability analysis of
Eqs. (1) and (2) as follows. We consider a homogeneous
steady state of Eqs. (1) and (2), with time- and space-
independent concentrations c0k for chemical species k
and ρ0m for catalytic species m. We then perturb this
steady state with perturbations δρn (r, t) and δck (r, t),
and develop Eqs. (1) and (2) to the first order in per-
turbation. With the quasi-steady-state assumption that
∂tδck = 0, corresponding to the limit of fast-diffusing
chemicals species, and using the Fourier mode decompo-
sition δρn = δρn(k)eλteikr and δck = δck(k)eλteikr, we
obtain the following equation:

(λ+Dpk
2)δρm(k) = −

3∑
n=1

Λm,nδρn(k). (A1)

It is easily seen that, if Re(λ) > 0, then the k = 0 mode,
which corresponds to a system-wide perturbation, is the
most unstable one. We then focus our analysis on that
mode, and to simplify notation use δρm ≡ δρm(k = 0),
which leads to Eq. (3).

Appendix B: Brownian dynamics simulation

In order to test the stability criteria for strictly
substrate-chemotactic species given in Eqs. (8) and (10),
we perform Brownian dynamics simulations of our sys-
tem. We consider spherical catalysts of diameter σ, which
we also take as the size scale for our simulations, and as-
sume that they isotropically convert their substrate into
their product on their surface at a rate α.

We first derive the expression for the velocity which a
catalytically-active particle develops as a response to the
presence of another particle. Using the same quasi-steady
state approximation used in the linear stability analysis,
we can write that the concentration field associated with
species k follows at any time the Laplace equation

D(k)∇2ck = 0, (B1)

with boundary conditions obtained by balancing the re-
active and diffusive fluxes at the surface of the catalysts.
A particle with index i induces a velocity response for an-
other particle j by creating perturbations of the latter’s
substrate and product concentrations, which we write as
δcs(j) and δcp(j) respectively. The corresponding veloc-
ity of j in the presence of i is then vji = vs

ji + vp
ji with

vs
ji = −µ(s)

j ∇δc
s(j)
i and vp

ji = −µ(s)
j ∇δc

p(j)
i , which finally

results in:

vji =
Λj,i
4π

rji
r3
ji

(B2)

where rji = rj − ri, and Λ is defined as in (4) except
without the density ρ0m.

The location ri of catalyst i then evolves according to
the Langevin equation

d

dt
ri(t) =

∑
j 6=i

vij +
√

2Dpηi (B3)

where ηi is a centred Gaussian white noise with inten-
sity one. We simulate a mixture of three species, each of
which has a population Nm, yielding a set of N1+N2+N3

Langevin equations which we integrate using the forward
Euler method with time step dt for a duration ttot. The
three chemical species are assumed to have the same dif-
fusion coefficient, D(1) = D(2) = D(3) = D. The quanti-
ties α0 and µ0 are arbitrary activity and mobility scales,
from which a time scale τ = α0µ0/(4πDσ

3) and a diffu-
sion coefficient scale D0 = (4πσ)/α0µ0 can be built. The
particles are simulated in a cubic box of size chosen so
that the particles occupy a volume fraction Φ = 0.005,
with the interactions implemented according to the mini-
mum image convention. Finally, we simulate short-range
repulsion between the catalytic particles by performing
an overlap correction after each time step using the elas-
tic collision method described in [37].

To generate the phase diagram shown in Fig. 2, we
simulate a set of N1 = N2 = N3 = 500 particles with
the following parameters: activity α/α0 = 1, time step
dt/τ = 0.001, simulation duration ttot/τ = 600, noise
intensityDp/D0 = 0.01. The mobility of species 1 is fixed

at µ
(s)
1 /µ0 = ±0.33, and the mobilities of species 2 and 3

are taken on a 20 by 20 grid with range µ
(s)
2,3/µ0 ∈ [−3, 3].
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Appendix C: Determination of pair instability
conditions

We use the fact that the three possible interaction mo-
tifs for self-repelling species are each associated to certain
constraints on the species mobilities (see Fig. 1(c) for the
mobility signs corresponding to the interactions):

• XA–RX: As µ
(s)
m < 0, µ

(p)
m < 0, µ

(p)
m > µ

(s)
m , we can

write:

0 <
µ

(p)
m

µ
(s)
m

< 1 (C1)

• XR–AX: As µ
(s)
m > 0, µ

(p)
m > 0, µ

(p)
m > µ

(s)
m , we can

write:

0 <
µ

(s)
m

µ
(p)
m

< 1 (C2)

• XA–AX: As µ
(s)
m < 0, µ

(p)
m > 0, we can write:

µ
(p)
m

µ
(s)
m

< 0 (C3)

We then study the stability of all possible pairs of these
motifs. To do so, we first write the pair stability factor as
given by Eq. (13). We write the condition ∆m,m+1 < 0,
subtract the negative terms so that the inequality only
involves positive quantities, and rewrite the resulting in-

equality into a condition involving the ratios
µ
(s)
m or m+1

µ
(p)
m or m+1

and
µ
(p)
m or m+1

µ
(s)
m or m+1

. From the conditions in Eqs. (C1) to (C3),

it can then be determined whether the motif is unsta-
ble. For instance, for the interaction motif XA–RA–RX,
the condition can be rearranged to have positive left-

and right-hand-side terms as µ
(p)
m µ

(p)
m+1 + µ

(s)
m µ

(s)
m+1 <

µ
(s)
m µ

(p)
m+1. This inequality can be further rearranged in

terms of mobility ratios under the previously enumerated

constraints as
µ
(s)
m+1

µ
(p)
m+1

+
µ(p)
m

µ
(s)
m

< 1. Because
µ
(s)
m+1

µ
(p)
m+1

> 1 and

µ(p)
m

µ
(s)
m

> 0, this condition is impossible to realize: the motif

is always stable. By systematically applying this recipe,
we analyze the stability of all motifs, which is given in
Table II.

Appendix D: Mirror symmetry operation

One key aspect making the classification of cyclic net-
works easier is that the stability conditions are invariant
under reflection symmetry around a pair of species. The
corresponding symmetry operation is to swap the inter-
action network around a reflection line. For instance, ap-
plying a reflection symmetry around pair (2,3) involves:

• Turning µ
(s)
1 into −µ(p)

1 and vice versa

• Turning µ
(p)
2 into −µ(s)

3 and vice versa

• Turning µ
(s)
2 into −µ(p)

3 and vice versa

with the sign change of the mobilities coming from the
fact that substrate and product interactions of the same
signs have opposite associated mobility signs. See Fig. 3
for a graphical example. Additionally, the activities and
homogeneous densities of the species whose mobilities are
swapped also need to be exchanged.

The stability of all possible networks of self-repelling
species can then be determined by enumerating them
and, for a given network, applying the cyclic swap and re-
flection symmetry to determine all equivalent networks.
We can group the interaction networks of self-repelling
species into three classes, based on whether they contain
one, two, or three unique motifs. We determine the sta-
bility of each of the retained elementary networks using
the method described in Section V B, and compile the
results in Table I.

FIG. 3. Example of a reflection symmetry around pair (2, 3)
applied to the network with pair interaction motifs AR–AA–
RR, yielding the network RR–AA–RA, which is equivalent
with respect to the second order instability condition.
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6
Conclusion and discussion

An exciting trend in current research is the increasing coupling between biology and physics,

which can for instance be illustratedwith the link between biomolecular condensates and the

physics of liquid-liquid phase separation. The field of active matter is an integral part of this

trend, encountering some success in the description of groups of organisms 185 and at the same

time inspiring new physical theories 102. A similar approach motivates the work undertaken

in this thesis, in which we attempted to bridge observations made on catalytic enzymes and

biomolecular condensates with the physics of non-reciprocally interacting active particles.

Here, we have contributed to this dynamic field of research by extending existing mod-

els to capture additional effects which are relevant to biological systems and introduce new

78



collective behaviors. Two main lines of investigation were followed: a more detailed descrip-

tion of the catalytic species, and the introduction of several chemical fields which the catalysts

specifically interact with, with a focus on cyclic reaction networks.

In Chapter 2, we analytically studied the consequences at the collective level of a detailed

description of self-organizing enzymes. We found that adding a linear concentration depen-

dence of catalytic activity on substrate concentration couples the active species’ activity and

mobility terms in a manner which inhibits self-organization. This is manifested by an ef-

fective screening term, which leads to a stricter criterion for self-organization and a switch

from system-wide to finite-size clustering. We then analyzed the effect of size differences be-

tween different enzymes, which limited our study to binary mixtures. We discovered that

considering two catalytic species with different diffusion coefficients leads to the emergence

of two new behaviors: local self-organization with a loosened instability criterion, and oscil-

latory global self-organization. Taking both effects into account was shown to result in a rich

stability phase diagram, which can undergo local self-organization with different oscillatory

behaviors based on the species’ parameters.

In Chapter 3, motivated by the study of an origin-of-life scenario, we analytically and nu-

merically characterized the behavior of an arbitrary number of catalytic species participating

in a metabolic cycle. As a part of this structure, each species provides its product as the sub-

strate of the next; this introduces a topology to the inter-species interactions, which qual-

itatively changes the self-organization process. Particle-based simulations showed that the

metabolic cycles can aggregate with a faster-than-exponential time dependence, which con-

stitutes a candidate mechanism through which early components of protocells could quickly

come together. Strikingly, we demonstrated, both analytically and numerically, that the phe-
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nomenology of the system is totally different based on whether the cycle contains an even

or an odd number of species. A cycle composed of an even number of species can aggregate

into two balanced clusters, which is not possible if the number of species is odd. The result-

ing frustration can lead to oscillatory steady states involving periodic cluster formation and

dissolution.

The study of metabolic cycles was continued in Chapter 4 with a different approach. In-

stead of a cycle of arbitrary size where all species have the same parameters, we considered an-

other limiting case for which analytical calculations are readily carried out: a metabolic cycle

of three species with distinct parameters. This allowed for more general interaction patterns

between the catalysts, leading to an unique feature which was the focus of this chapter: the

ability of an overall self-repelling cycle to self-organize. The condition for this mode of self-

organizationwas analytically calculated in the simplified case involving catalytic specieswhich

only chemotax in concentrationgradients of their substrate. The resulting expression forbade

the self-organization of cycles composed only of self-repelling species, a process which we in-

stead found to be possible if the catalytic species chemotax in gradients of both their substrate

and product. We derived a set of sufficient conditions for this all-repelling-self-organization

to be possible, and drew a phase diagram for a specific choice of parameters which we vali-

dated and illustrated using particle-based numerical simulations.

Chapter 5 is also related to the three-species metabolic cycles described in Chapter 4. We

performed a comprehensive survey of the possible self-organization behaviors such cycles can

exhibit, based on the interaction patterns between their constitutive species. We once again

started with the study of cycles of non-product-chemotactic catalysts, for which we derived a

parameter-free stability phase diagram that we validated with numerical simulations. In the
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case of species both substrate- and product-chemotactic species, we found two instability con-

ditions, which allowed for the classification of all possible three-species interaction networks

based on the single- and pair-interaction motifs they contain.

Following this overview of the results presented in this thesis, we would like to present

some ideas for future research.

A natural extension of our existingworkwould be to continue the path initially laid out in

Chapter 2, and to further refine our description of catalytically active particles. One possible

addition would be a dependence of the chemotactic mobility µ of the active species on their

substrate’s concentration, for instance by multiplying it with a normalized sensing function

with values between 0 and 1. Such a term would be relevant to the study of chemotactic

bacteria, which can be described with similar equations as the ones involved in Chapter 2 116,

in which case a natural choice would be logarithmic sensing 36. A consequence of this would

be an added dependence of the chemotactic flux on themagnitude of the concentration field,

as opposed to only its gradient, adding further coupling between activity andmobility, which

is already known to have an influence in a Keller-Segel description of bacterial chemotaxis 117.

A limitation of our approach which would be very informative to overcome is that the

analytical and numerical methods we use are technically valid only at low densities. Linear

stability analysis indeed only describes a system at the onset of instability, and the particle-

based Brownian dynamics simulations we performed use a far-field approximation. Taking

into account near-field effects can qualitatively change the behaviors of active particles at a

small separation98, which could influence the phase-separated state observed in simulations.

To incorporate these effects in our work, we could attempt generalizing the exact solution for

the phoretic velocity of a pair of catalytic particles to an arbitrary number of them. Another
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option would be to perform hybrid particle-field simulations, such as the ones described in

Ref. 186, which would also allow us to go beyond the quasi-static assumption made for the

field dynamics.

Such simulations can also include the activity dependence on concentration which was

studied at the linear level inChapter 2,with the addedbenefit of considering the fullMichaelis-

Menten kinetics. This would allow us to test the analytical phase diagram derived in Chap-

ter 2, and to observe the predictedmodes of self-organization. Another questionwhich could

be tackled through the study of the phase-separated regime accessible in simulations is the ef-

fect of enzyme clustering on their reaction flux. Previous work (Ref. 187) has studied the

effect of enzyme spatial structuring on the catalytic flux for several spatial patterns, but has

done so by considering initially phase-separated enzymes. Meanwhile, Ref. 178 describes the

phase separation of an enzyme-substrate-product mixture with a Flory-Huggins-based de-

scription, and predicts a reduction of the catalytic flux in the phase-separated state. Simula-

tions would give us access to similar information for our model chemotactic catalysts, and

allow us to determine the modification of catalytic reaction flux induced by chemotactic self-

organization and its dependence upon the choice of parameters. The work undertaken in

Chapters 3 to 5 also opens the door to the study of the effect of self-organization on the effi-

ciency of actual metabolic pathways. This would necessitate the study of non-cyclic topolo-

gies, and the “opening” of the metabolic cycles to capture the input and output of reaction

material.

The results obtained in Chapters 3 to 5 can be viewed as a first exploration of the behavior

of the chemotactic interaction networks which can emerge from the combination of field-

mediated interactions and metabolic reaction networks. Even in very simple metabolic cycle
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geometries, the combinatorial number of possible interaction network leads to a wide vari-

ety of possible behaviors, in particular the overcoming of the overall-self-attracting instability

condition previously derived for catalytically active systems (Refs. 139, Chapters 2 and 3). A

natural extension of that work would be to consider metabolic cycles of arbitrary size with

species-dependent parameters, in which higher orders of combinations of interspecies cou-

plings would become relevant, which we predict could lead tomore relaxed self-organization

conditions as the cycle size grows. Such generalized results could be relevant to the study of

chemically active biomolecular condensates: for instance the purinosome 171 concentrates at

least ten enzymes, implying high-order coupling between the enzyme species involved in the

relevant pathway. These results could then shine light on the relevance of enzyme chemotaxis

to the formation of active condensates.

One limit of theworkundertaken in this thesis is its purely theoretical nature,whichwould

be well complemented by experimental studies. Our work relies on the assumption that cat-

alytically active particles, and in particular enzymes, develop effective interactions through

the chemical fields upon which they act. While such interactions have been experimentally

observed in active colloids 118 and active droplets 106, we have found no direct evidence of inter-

actions between active enzymes in the literature. Existing experimental results mostly cover

the colocation of active enzymes involved in a reaction cascade92,180, and so it would be an

interesting undertaking to perform single-molecule experiments such as the ones used to ob-

serve enhanceddiffusion in order tomeasure the effect the presence a single enzymehas on the

motionof another. We think an idealmodel systemfor testingourpredictions are catalytically

active colloids, for instance in order to test our results on the self-organization of metabolic

cycles. This could in principle be achieved by using colloids coated with successive enzymes
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involved in a relatively simplemetabolic cycle, for instance theCalvin cycle 188. Enzyme-coated

colloids 189 and liposomes 190 have indeed been shown to chemotax, and their microscopic size

makes the observation of their behavior much easier than individual enzymes’. Additionally,

as the stability phase diagrams we established involve the homogeneous concentration of the

active species, simply varying the amount of colloids may suffice to explore all the possible

phase behaviors.

A common thread of our work has been to consider non-reciprocal interactions only for

isotropic (i.e. non-polar) particles. As has been shown80,82,140, generalizing field-mediated

interactions to Janus colloids, which have some anisotropy, leads to a rich phenomenology

compared to isotropic particles. We would like to adapt our models to such situations, for

instance by generalizing the model of Ref. 99 to a multi-species mixture of active colloids.

Wemotivate a large portion of ourworkwith the observed ability of enzymes to chemotax.

However, due to their nanometric size, enzymes are very sensitive to thermal fluctuations, as

has been previously explored in theoretical work modeling them as two hydrodynamically

coupled subunits which experience fluctuations 191,192. This stochasticity is not captured by

the mean-field, Keller-Segel-like formalism which we used throughout our work. A comple-

mentary approach would then be to write a bottom-up model, starting from a Langevin de-

scription of catalytic enzymes, and to build a many-body theory for an enzyme mixture 122,125.

Finally, on amuchmore long-term note, the spatial self-organization of catalysts may even

have some industrial applications. Enzymes are known to be staggeringly better at speeding

up reactions than artificial catalysts 141, and an increasing body of research is dedicated to har-

nessing them for industrial processes, in particular biofuel cells 193,194. As it now established

that concentrating enzymes into droplet-like structures increases their catalytic activity 175, re-
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search has now started on the possibility of spatially organizing enzymes in order tomaximize

their yield 195. A better theoretical understanding of the processes of enzyme self-organization

could ultimately lead to the development of more efficient catalysts for industrial processes.
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