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Abstract

In English

In this thesis, we investigate the influence of electron-phonon interactions (EPI) on the band

gap renormalization in crystalline solids at finite temperatures. The main goal is to identify

the impact of the nuclear motion and the lattice thermal expansion on the band structure in

a wide range of materials. For this purpose, the temperature influence on the EPI is calcu-

lated in the harmonic approximations by utilizing the stochastic sampling methodology and

fully anharmonically, by performing ab initio molecular dynamics simulations (aiMD). The

band gap at finite temperatures is extracted from the thermodynamically averaged spectral

function, which is calculated using band-unfolding technique. While utilization of aiMD was

already used for calculations of EPI the combination of aiMD and band-unfolding to treat the

band gap renormalization was used only recently. In this thesis, we employed an improved

band unfolding technique in order to effectively manage the calculations. This improved

method incorporates several methodological innovations that serve to mitigate computational

cost and minimize statistical noise in the final results. The updated method was thoroughly

benchmarked, documented, and designed with a user-friendly interface. We present a com-

prehensive examination of the numerical aspects of thermodynamic averaging, the estimation

of error bars, and the evaluation of convergence with respect to the size of the simulation

supercell. Our established protocol enables the calculation of band gap renormalization at fi-

nite temperatures, which is in good agreement with prior theoretical studies and experimental

data.

By utilizing aforementioned methodology, we evaluated the band gap renormalization in

a collection of materials with varying structural types and levels of anharmonicity. This

analysis contains an examination of the influence of quantum and classical treatments of the

nuclear motion on the band gap renormalization. Furthermore, it enables an assessment of the

impact of lattice dynamics anharmonicity on the band structure renormalization. The results

indicate that materials with greater anharmonicities typically experience larger band gap

renormalization at finite temperatures. These findings not only shed light on the underlying

microscopic mechanisms of the band gap renormalization, but also have the potential to

enable non-perturbative assessment of the charge transport coefficients. To illustrate this

point, the electronic lifetimes of silicon were calculated. However, the convergence of the

imaginary part of the electron-phonon self-energy with respect to the supercell size still

presents a challenge and requires further methodological advancements.
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Auf Deutsch

In dieser Doktorarbeit untersuchen wir den Einfluss von Elektron-Phonon-Wechselwirkungen

(EPW) auf die Bandlückenrenormierung in kristallinen Festkörpern bei endlichen Temper-

aturen. Das Hauptziel besteht darin, den Einfluss der Kernbewegung und der thermis-

chen Ausdehnung des Gitters auf die Bandstruktur in einer Vielzahl von Materialien zu

quantifizieren. Zu diesem Zweck wird der Temperatureinfluss auf das EPW in harmonis-

chen Näherungen unter Verwendung der stochastischen Abtastmethode und vollständig an-

harmonisch durch Durchführung von ab initio Molekulardynamiksimulationen (aiMD). Die

Bandlücke bei endlichen Temperaturen wird aus der thermodynamisch gemittelten Spek-

tralfunktion extrahiert, die unter Verwendung der Bandentfaltungstechnik berechnet wird.

Während die Verwendung von aiMD bereits für Berechnungen von EPW verwendet wurde,

wurde die Kombination von aiMD und Bandentfaltung zur Behandlung der Bandlücken renor-

malisierung erst kürzlich verwendet. In dieser Doktorarbeit haben wir eine verbesserte Ban-

dentfaltungstechnik verwendet, um die Berechnung effektiv zu verwalten. Diese verbesserte

Methode enthält mehrere methodische Neuerungen, die dazu dienen, den Rechenaufwand zu

verringern und das statistische Rauschen in den Endergebnissen zu minimieren. Die aktual-

isierte Methode wurde gründlich bewertet, dokumentiert und mit einer benutzerfreundlichen

Oberfläche gestaltet. Wir präsentieren eine umfassende Untersuchung der numerischen As-

pekte der thermodynamischen Mittelung, der Schätzung von Fehlerbalken und der Bewertung

der Konvergenz in Bezug auf die Größe der Simulationssuperzelle. Unser etabliertes Protokoll

ermöglicht die Berechnung der Bandlückenrenormierung bei endlichen Temperaturen, was in

guter Übereinstimmung mit früheren theoretischen Studien und experimentellen Daten steht.

Unter Verwendung der oben genannten Methodik haben wir die Bandlücken Renormal-

isierung in einer Sammlung von Materialien mit unterschiedlichen Strukturtypen und Anhar-

monizitätsgraden bewertet. Diese Analyse beinhaltet eine Untersuchung des Einflusses von

Quanten- und klassischen Behandlungen der Kernbewegung auf die Bandlückenrenormierung.

Darüber hinaus ermöglicht es eine Bewertung des Einflusses der Anharmonizität der Git-

terdynamik auf die Renormierung der Bandstruktur. Die Ergebnisse zeigen, dass Materi-

alien mit größeren Anharmonizitäten typischerweise eine größere Bandlückenrenormierung bei

endlichen Temperaturen erfahren. Diese Ergebnisse werfen nicht nur Licht auf die zugrunde

liegenden mikroskopischen Mechanismen der Bandlückenrenormierung, sondern haben auch

das Potenzial, eine störungsfreie Bewertung der Ladungstransportkoeffizienten zu ermöglichen.

Um diesen Punkt zu veranschaulichen, wurden die elektronischen Lebensdauern von Silizium

berechnet. Die Konvergenz des Imaginärteils der Elektron-Phonon-Selbstenergie in Bezug auf

die Größe der Superzelle stellt jedoch immer noch eine Herausforderung dar und erfordert

weitere methodische Fortschritte.
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viewing my thesis. I would like to express my gratitude to all members of the department,

particularly Eugen Moerman, Florian Knoop, Karen Fidanyan, Dima Maksimov, Tom Pur-

cell, and Sebastian Kokott. I thank Tanya Medvedeva for her support and understanding.

This thesis is dedicated to my mother and grandmother, who valued my education more than

anything else and provided tremendous support at every step of my life.

Nikita Rybin

Berlin, February 2023

3



4



Introduction

Advances in electronic-structure methods [1,2] and increasing functionality of computational

software packages [3–6] now allow for routine calculations of various fundamental physi-

cal phenomena in materials science. In recent years, the interactions between electrons

and lattice vibrations (phonons) have attracted considerable attention. These effects are

the root of multiple effects [7–11], such as the temperature dependence of electronic en-

ergy states [12–22], charge transport [23–32], hot electrons dynamics [33,34], optical proper-

ties [35–39], polarons [40–44], and phonon-mediated superconductivity [45, 46]. First princi-

ples calculations of the electron-phonon interactions (EPI) typically rely on density-functional

theory (DFT) [47–50] or its linear-response extension density-functional perturbation theory

(DFPT) [51,52].

Theoretical studies of the temperature influence on band structures have been started

many years ago [53–56]. Nowadays, such investigations are usually performed using the so-

called Allen-Heine-Cardona formalism [52, 57, 58]. This formalism originally relied on three

approximations: (i) adiabatic approximation, (ii) the dependence of electronic states on

nuclear motion is approximated in a Taylor series up to the second order and (iii) the potential

energy surface is approximated by a harmonic model. Although pioneering first-principles

calculations based on the AHC formalism appeared long time ago [59], the method has gained

momentum recently, due to the development of practical computational schemes [60–62],

which have been implemented in open-source programs [3, 16, 63–66], and because of the

substantial increase in the capabilities of modern high-performance computers [67]. The

limiting factor in the EPI evaluation is that the perturbative approach is not suited for

materials in which the harmonic ansatz for lattice dynamics is not applicable. These materials

are quite common [11, 68]. To account for anharmonicity, the harmonic approximation for

lattice dynamics is extended by higher order perturbative calculations [69–73]. This allows

to study the impact of anharmonic effects in highly-anharmonic superconductors [74,75] and

calculate the band gap renormalization and electronic transport properties of anharmonic

materials like SrTiO3 [76,77]. Notably, while the obtained trends of temperature-dependent

mobility agrees with experiments, the absolute values differ from experimental results by an

order of magnitude [77]. Whether polaronic effects, as later pointed out in another study [78],

are solely responsible for this discrepancy or if higher-order terms of anharmonicity should

be taken into account is an open question from our perspective.

In this thesis, we aim to quantitatively understand the EPI influence on the band gap

renormalization at finite temperatures. We are specifically interested in investigating the

impact of anharmonic effects, as this information is currently missing in the literature. To
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address this challenge, we use a combination of fully anharmonic ab initio molecular dynam-

ics simulations (aiMD) and band-unfolding technique [79–84] following the work [85]. To

evaluate the EPI, wave functions calculated during the aiMD simulation are expanded as a

linear combination of the static reference wave functions of the primitive cell. The obtained

linear expansion coefficients contain information about the EPI [85] and allow to obtain vi-

bronically averaged temperature-dependent spectral function [81, 82, 85] and evaluate band

gap renormalization at finite temperatures.

This thesis is arranged as follows. The first section comprises the theoretical founda-

tions of the concepts and tools employed in this work. In Chapter 1, we discuss the general

electrons-nuclei many-body problem and Kohn-Sham DFT, which is used to perform first-

principles calculation in this work. Chapter 2 introduces the methods utilized for lattice

dynamics calculations, both the harmonic approximation and aiMD simulations. Then, in

Chapter 3, the influence of temperature on the band structure is discussed. We will briefly

discuss the AHC formalism, along with its advantages and limitations. Then we will show

aforementioned approach based on the combination of the aiMD and band-unfolding tech-

nique, which overcomes limitations of the AHC formalism. In the same chapter, we will

discuss the influence of the lattice thermal expansion (LTE) and the long-range electrostatic

effects on the band gap value.

The second section of the thesis focuses on the benchmark and application of the methods

outlined in the first section. In Chapter 4, the numerical aspects of band gap renormalization

calculations and the influence of computational and physical parameters are discussed. This

for instance includes the numerical aspects such as thermodynamic averaging, estimation of

the error bars, and the influence of the supercell size used in simulations. For this benchmark

we used diamond and zinc blende gallium nitride (GaN), since there is a large amount of

reference data [16,17,52,86–94]. Although the workflow follows recently published work [85],

here we utilized an improved version of the band unfolding technique. An improvement is

manifested in the better control over the simulation artifacts, and in several methodological

advancements that alleviate the computational cost and reduce the statistical noise of cal-

culations. Apart from being accurately tested, the current workflow is well documented and

is managed using user-friendly interface, which can be coupled to any DFT code. Here, all

calculations are performed with the FHI-aims code [5].

In Chapter 5, we systematically explore the role of different contributions to the band gap

renormalization through calculations performed on a broad range of materials. These materi-

als have different structural types (rock salt, zinc blende, wurtzite, fluorite, and antifluorite),

exhibit a diversity of band gaps, bonding types (ionic and covalent), atomic masses, and

lattice anharmonicity. We will demonstrate the distinctions between classical and quantum,

as well as harmonic and anharmonic treatments of the nuclear motion. We will also explore

how the ZPR and band gap renormalization at finite temperatures correlates with simple

descriptors such as an amplitude of atomic vibrations and ionic mass. In addition, we disen-

tangled the contributions of nuclear motion and lattice thermal expansion (LTE), quantified

the role of different effects, and, in particular, showed the impact of anharmonicity. Finally,

the thesis concludes with a summary of the results and an outlook on future steps, including

considerations arising from our attempts to calculate electronic transport coefficients.
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Chapter 1

Electronic structure methods

In this chapter, we briefly review essential concepts of ab initio (first-principles) calcula-

tions [95–97]. We will start with the non-relativistic time-independent Schrödinger equation

and discuss the many-body problem. Then, we will present the Born-Oppenheimer ap-

proximation and show how to resolve the electronic structure problem by means of Density

Functional Theory (DFT). We will also discuss characteristics of the FHI-aims (Fritz Haber

Institute ab initio molecular simulations) package, which is used for all DFT calculations in

this thesis.

1.1 The many-body problem

The static properties of the quantum mechanical many-body system consisting of electrons

and nuclei can be obtained by solving the time-independent Schrödinger equation:

�̂�Ψ = 𝐸Ψ (1.1)

where 𝐸 is the total energy of the system and Ψ is a many-body wave function, which depends

on the coordinates of 𝑁 electrons and 𝑀 nuclei:

Ψ(𝑟,𝑅) = Ψ({𝑟1, 𝑟2, . . . , 𝑟𝑁}, {𝑅1, 𝑅2, . . . , 𝑅𝑀}) (1.2)

The Hamiltonian �̂� is given by1:

�̂� = 𝑇𝑒 + 𝑇𝑛 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛 + 𝑉𝑒𝑛 =

−
𝑁∑︁
𝑖=1

∇2
𝑖

2
−

𝑀∑︁
𝐼=1

∇2
𝐼

2𝑀𝐼⏟  ⏞  
kinetic energy

+
1

2

𝑁∑︁
𝑖 ̸=𝑗

1

|𝑟𝑖 − 𝑟𝑗 |⏟  ⏞  
e-e repulsion

+
1

2

𝑀∑︁
𝐼 ̸=𝐽

𝑍𝐼𝑍𝐽

|𝑅𝐼 −𝑅𝐽 |⏟  ⏞  
n-n repulsion

− 1

2

𝑁,𝑀∑︁
𝑖,𝐼

𝑍𝐼

|𝑟𝑖 −𝑅𝐼 |⏟  ⏞  
e-n attraction

(1.3)

where 𝑍𝐼 , 𝑍𝐽 are charges of nuclei 𝐼 and 𝐽 , 𝑀𝐼 is the mass of ion 𝐼, while 𝑁 and 𝑀

are the number of electrons and nuclei, respectively. We denote 𝑇𝑒 as the kinetic energy

operator for the electrons, 𝑇𝑛 as the kinetic energy operator for the nuclei, 𝑉𝑒𝑒 as the repulsive

1We will use atomic units, i.e 𝑚𝑒 = ~ = 1
4
𝜋𝜖0 = 𝑒 = 1, where 𝑚𝑒 is the mass of electron, ~ is Plank’s

constant, 𝜖0 is the vacuum permittivity, 𝑒 is the electron charge.
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interaction of electrons, 𝑉𝑛𝑛 as the repulsive interaction between nuclei, and 𝑉𝑒𝑛 as the

attractive interaction between nuclei and electrons.

In practice, the time-independent Schrödinger equation Eq. (1.1) can only be solved ana-

lytically for simple systems, such as the hydrogen atom or an ionized hydrogen molecule [98].

However, solutions for systems with many electrons are not feasible to obtain even numeri-

cally, due to the exponential increase in complexity with system size [49]. This complexity

arises from the many-body wave function and the presence of the electron-electron repul-

sion term in the Hamiltonian. We can naively estimate how hard it is to deal with the full

many-body wave function, by estimating the cost of a numerical solution of the Schrödinger

equation for silicon. The unit cell of silicon contains 2 atoms and the lattice constant of

this unit cell is 5.43 Å. We will consider only valence electrons. Thus, each silicon atom will

contribute 4 electrons, in couple with 2 nuclei it means that the silicon unit cell is described

by a wave function of 10 variables Ψ(𝑟1, 𝑟2, . . . , 𝑟8;𝑅1, 𝑅2). We can sample the unit cell using

a uniform grid with a step size of 0.1 Å in each direction. This means that approximately

40000 points are used. The wave function of Si contains ≈1046 complex numbers and ma-

nipulating objects of such size is outright impossible – there is simply not enough computer

memory on the whole planet to store such an object. Therefore, due to the practical com-

plexity of the Schrödinger equation many approximations were developed. We will discuss

the approximations needed to proceed to practical calculations in the following sections.

1.2 The Born-Oppenheimer approximation

The many-body problem can be simplified by separating the electrons and nuclei dynamics

through the Born-Oppenheimer approximation, which is valid since electrons have much

smaller mass than nuclei and can adjust their positions to remain in the lowest energy state

at each time step of the nuclear movement [99]. The Hamiltonian in Eq.(1.3) can be separated

into the part related to the electrons and the part related to the nuclei, which allows to work

with an electronic sub-Hilbert space 𝐻𝑒 of the total Hilbert space 𝐻 = 𝐻𝑒
⨂︀
𝐻𝑛 of electron-

nuclei states. The Schödinger equation for electrons reads:

�̂�𝑒 |𝜑𝜈(𝑟;𝑅)⟩ = 𝐸𝑒
𝜈 |𝜑𝜈(𝑟;𝑅)⟩ (1.4)

where the 𝐸𝑒
𝜈 are eigenvalues of the electronic Hamiltonian �̂�𝑒 for a given nuclear configura-

tion {𝑅} and 𝜑𝜈(𝑟;𝑅) are its eigenfunctions. �̂�𝑒 is the Hamiltonian for interacting electrons,

which move in an external field generated by the stationary nuclei:

�̂�𝑒 = −
𝑁∑︁
𝑖=1

∇2
𝑖

2⏟  ⏞  
e kinetic energy

+
1

2

𝑁∑︁
𝑖 ̸=𝑗

1

|𝑟𝑖 − 𝑟𝑗 |⏟  ⏞  
e-e repulsion

− 1

2

𝑁,𝑀∑︁
𝑖,𝐼

𝑍𝐼

|𝑟𝑖 −𝑅𝐼 |⏟  ⏞  
e-n attraction

(1.5)

Since the electronic Hamiltonian �̂�𝑒 is Hermitian, its eigenvectors 𝜑𝜈(𝑟;𝑅) define a com-

plete orthonormal basis for each set of nuclear coordinates. The many-body wave function

Ψ(𝑟,𝑅) introduced in Eq. (1.2) can be expanded in this basis:

|Ψ(𝑟,𝑅)⟩ =
∑︁
𝜈

𝐶𝜈(𝑅) |𝜑𝜈(𝑟;𝑅)⟩ (1.6)
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where the expansion coefficients 𝐶𝜈(𝑅) depend on the nuclear configuration.

Substituting Eq. (1.6) into Eq. (1.1), multiplying the resulting equation by 𝜑*𝜇 from the

left, and integrating it, we obtain:

⟨𝜑𝜇|�̂�|
∑︁
𝜈

𝐶𝜈𝜑𝜈⟩ = 𝐸 ⟨𝜑𝜇|
∑︁
𝜈

𝐶𝜈𝜑𝜈⟩ = 𝐸𝐶𝜇 (1.7)

where we have used the fact that electronic Hamiltonian eigenfunctions are orthonormal:

⟨𝜑𝑖|𝜑𝑗⟩ = 𝛿𝑖𝑗 and
∑︁
𝑖

𝐶𝑖 ⟨𝜑𝑖|𝜑𝑗⟩ = 𝐶𝑗 (1.8)

Then, we decompose the Hamiltonian in Eq. (1.3) into electronic and nuclear parts and

utilize the chain rule for derivatives, to obtain:

∑︁
𝜈

⟨𝜑𝜇|�̂�𝑒 + 𝑇𝑛 + 𝑉𝑛𝑛|𝐶𝜈𝜑𝜈⟩ =

[𝐸𝑒
𝜇 + 𝑉𝑛𝑛]𝐶𝜇 −

∑︁
𝜈,𝐼

~2

2𝑀𝐼
[⟨𝜑𝜇|∇2

𝐼 |𝜑𝜈⟩𝐶𝜈 + 2 ⟨𝜑𝜇|∇𝐼 |𝜑𝜈⟩∇𝐼𝐶𝜈 ] (1.9)

The second and the third terms on the right-hand side are called adiabatic and non-adiabatic

terms, respectively. To this point, no approximations have been introduced in our analysis.

However, for practical applications it is necessary to utilize two approximations:

1. The terms ⟨𝜑𝜇|𝑇𝑛|𝜑𝜈⟩ with 𝜇 ̸= 𝜈 are non-diagonal coupling terms. They represent the

transition of an electron from the state 𝜇 to the state 𝜈 caused by nuclear motion. We

will assume that atomic motion does not induce electronic excitations, consequently:

⟨𝜑𝜇|∇𝐼 |𝜑𝜈⟩ = 0, for 𝜇 ̸= 𝜈 (1.10)

The detailed discussion of the validity of this approximation is presented in [100]

2. Then we assume that the second term on the right-hand side of Eq. (1.9) is small. This

can be substantiated by comparing this term to its electronic counterpart:

| ⟨𝜑𝜇|∇2
𝐼 |𝜑𝜇⟩ | ≤ ⟨𝜑𝜇|∇2

𝑖 |𝜑𝜇⟩ | (1.11)

Then one can estimate an upper bound:

| ~2

2𝑀𝐼
⟨𝜑𝜇|∇2

𝐼 |𝜑𝜇⟩ | ≤ |𝑚𝑒

𝑀𝐼

~2

2𝑚𝑒
⟨𝜑𝜇|∇2

𝑖 |𝜑𝜇⟩ | (1.12)

Here, we multiplied Eq. (1.11) by ~2/2𝑀𝐼 from both sides and used the identity

𝑚𝑒/𝑚𝑒 = 1. Neglecting diagonal terms ⟨𝜑𝜇|∇𝐼 |𝜑𝜇⟩ is reasonable, because the electron-

to-proton mass ratio is ≈ 5 · 10−4.

In the remainder of this thesis, we will assume that nuclei move on the Born-Oppenheimer

Potential Energy Surface (BO-PES). This is described by the following equation:

𝑉BO(𝑅) = 𝐸𝑒
0(𝑅) + 𝑉𝑛𝑛(𝑅) (1.13)

where 𝑉BO(𝑅) is the BO-PES, 𝐸𝑒
0(𝑅) is the ground state energy of the electronic system, and

𝑉𝑛𝑛(𝑅) denotes the repulsion between nuclei.
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1.3 Density-functional theory

The electronic structure problem is defined as a problem in which one has to find a solution

for the electronic Schrödinger Eq. (1.4) assuming that the nuclear positions are fixed, as

introduced in the previous section. The Rayleigh-Ritz minimization principle can be used to

find the energy of the electronic ground-state:

𝐸0 = 𝐸[𝜓𝑜] ≤ 𝐸[𝜓] =
⟨𝜓|�̂�𝑒|𝜓⟩
⟨𝜓|𝜓⟩

(1.14)

where 𝐸0 and 𝜓0 denote the ground-state energy and wave function, respectively. �̂�𝑒 is the

electronic Hamiltonian introduced in Eq. (1.5), and 𝜓 is some normalized trial wave function.

Although the eigenvalue problem introduced in Eq. (1.4) is simplified to a minimization

problem written in Eq. (1.14), the solution is hard to obtain due to the huge Hilbert space

that is spanned by the many-body electronic problem. To circumvent this problem, a number

of so-called wave function based methods were developed [101–103]. For example, in the

Hartree-Fock (HF) approximation [104, 105] the electronic trial electronic wave function is

represented in the form of a Slater determinant. The HF method yields an approximate

solution of the electronic Schrödinger equation by treating electrons as free particles existing

in mean-field electrostatic and exchange potentials, which is also created by these particles.

The ground-state energy of a system in the HF method is computed in an iterative manner,

i.e., calculations are started from a set of initially guessed orbitals, which are then updated

using Hartree-Fock equations, and the new orbitals are then used to obtain the new total

energy. The calculation runs until the difference between input and output total energy does

not exceed some predetermined threshold.

The Hartree-Fock method is a mean-field method that was widely used in quantum chem-

istry to approximate the electronic structure of molecules and solids [102,103,106]. It is gener-

ally quite successful at predicting the ground state energy and geometry of a molecule, but it

can fail when the system has strong electron correlations or if the system has a multi-reference

character, meaning that it has multiple configurations that are nearly degenerate in energy.

Increasing the accuracy of wave function based methods comes with higher computational

cost [107], limiting the applicability of these methods [102].

An alternative approach was suggested by Thomas and Fermi who proposed a method for

calculating the energy of a system based on the assumption that the electron density is the

fundamental quantity that can describe many-body electron-nuclei systems [108, 109]. The

Thomas-Fermi theory served as a precursor to the groundbreaking density-functional theory

(DFT) [47–49] – a widely used framework in the computational materials science community.

In DFT, similarly to the Thomas-Fermi theory, the 𝑁 -electron wave function is replaced by

the electron density that depends only on three Cartesian coordinates. The electron density

of the ground-state can be obtained from the 𝑁 -electron wave function by integration:

𝑛0(𝑟) = 𝑁

∫︁
|Ψ0(𝑟, 𝑟2, . . . , 𝑟𝑁 )|2𝑑𝑟2 . . . 𝑑𝑟𝑁 (1.15)

where 𝑁 is the number of electrons, and Ψ0(𝑟) is the ground state wave function of the

electronic system.
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DFT relies on two theorems [47] and the practical applicability of the method is based

on the scheme proposed by Kohn and Sham [48]. Below we present a brief discussion of the

DFT formalism. More details can be found in literature [49,50,95–97,110,111].

The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem states that there is a one-to-one mapping between the

electronic ground-state density 𝑛0(𝑟) and the external potential 𝑉ext, where by the external

potential we mean the electron-nuclear attraction term of Eq. (1.3).

For the non-degenerate electronic ground state the proof can be done by considering

two different external potentials 𝑉ext and 𝑉 ′
ext that differ from each other by more than an

additive constant. To start, assume that they give rise to the exactly same ground-state

electron density 𝑛0(𝑟). The external potential 𝑉ext corresponds to the Hamiltonian �̂�, the

ground state wave function Ψ, and the energy 𝐸. Similarly, 𝑉 ′
ext corresponds to Ψ′ (it is

necessary that Ψ′ ̸= 𝑒𝑖𝜃Ψ), �̂� ′, and 𝐸′. Then, we can utilize the Rayleigh-Ritz minimal

principle:

𝐸 < ⟨Ψ′|�̂�|Ψ′⟩ = 𝐸′ − ⟨Ψ′|(𝑉 ′
ext − 𝑉ext)|Ψ′⟩ = 𝐸′ −

∫︁
𝑑𝑟𝑛0(𝑟)[𝑉

′
ext − 𝑉ext] (1.16)

Since Ψ is not the ground state of the system determined by 𝑉 ′
𝑛:

𝐸′ < ⟨Ψ|𝐻 ′|Ψ⟩ = 𝐸 −
∫︁
𝑑𝑟𝑛0(𝑟)[𝑉ext − 𝑉 ′

ext] (1.17)

Adding Eqs. (1.16) and (1.17) leads to the contradiction:

𝐸 + 𝐸′ < 𝐸 + 𝐸′ (1.18)

Thus, we conclude that the assumption of the existence of a second external potential 𝑉 ′
ext,

which is equal to the potential 𝑉ext up to an additive constant and gives the same 𝑛0(𝑟) must

be wrong. The theorem was also proved for the degenerate case, as discussed in [110].

The second Hohenberg-Kohn theorem states that for the static external potential 𝑉ext,

there exist a universal Hohenberg-Kohn functional 𝐹 [𝑛(𝑟)] of the electron density 𝑛(𝑟), which

is independent of 𝑉ext. Its energy can be written as:

𝐸[𝑛(𝑟)] =

∫︁
𝑑3𝑟𝑛(𝑟)𝑉ext + 𝐹 [𝑛(𝑟)] (1.19)

and for any external potential 𝑉ext the ground-state electron density 𝑛0(𝑟) minimizes the

energy functional 𝐸[𝑛(𝑟)] such that:

𝐸0 = 𝐸[𝑛0(𝑟)] ≤ 𝐸[𝑛(𝑟)] (1.20)

The introduction of the Hohenberg-Kohn theorems allows to resolve the many-body prob-

lem for the electronic ground-state, if the form of the universal functional 𝐹 ([𝑛(𝑟)]) is known.

In order to proceed to the discussion of this functional form, we again have to reintroduce

the electronic orbitals and make the problem again dependent on the number of electrons.

This is achieved by introducing the Kohn-Sham equations.
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The Kohn-Sham equations

To construct practical solution to the electronic structure problem, Kohn and Sham sug-

gested [48] to consider an auxiliary, fictitious system of 𝑁 non-interacting electrons with the

same density 𝑛(𝑟) as the real system with 𝑁 interacting electrons. Then the universal func-

tional 𝐹 [𝑛(𝑟)] of the system of interacting electrons introduced in Eq. (1.19) can be written

as:

𝐹 [𝑛(𝑟)] = 𝑇 𝑠
𝑒 [𝑛(𝑟)] + �̂�H[𝑛(𝑟)] + �̂�xc[𝑛(𝑟)] (1.21)

where 𝑇 𝑠
𝑒 [𝑛(𝑟)] is the kinetic energy operator of the non-interacting electrons:

𝑇 𝑠
𝑒 [𝑛(𝑟)] = −1

2

𝑁∑︁
𝑖=1

∫︁
𝜓*
𝑖 (𝑟)∇2𝜓𝑖(𝑟)𝑑𝑟 (1.22)

where 𝜑𝑖(𝑟) are auxiliary one-electron orbitals, orthonormal by construction. �̂�H[𝑛(𝑟)] is the

electrostatic energy (Hartree energy) of the electrons :

�̂�H[𝑛(𝑟)] =
1

2

∫︁ ∫︁
𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ (1.23)

Finally, �̂�xc[𝑛(𝑟)] is the so-called exchange-correlation (xc) functional, which contains the

entire difference between the true system and the auxiliary system:

�̂�xc[𝑛(𝑟)] = 𝑇𝑒 − 𝑇 𝑠
𝑒 + 𝑉𝑒𝑒[𝑛(𝑟)] − �̂�H[𝑛(𝑟)] (1.24)

where 𝑇𝑒 is the kinetic energy operator of interacting electrons.

The energy functional 𝐸[𝑛(𝑟)] can then be written as:

𝐸[𝑛(𝑟)] = 𝑇 𝑠
𝑒 [𝑛(𝑟)] + �̂�H[𝑛(𝑟)] + �̂�xc[𝑛(𝑟)] + 𝑉𝑒𝑛[𝑛(𝑟)] =∫︁
𝑑𝑟𝑛(𝑟)𝑉ext(𝑟)⏟  ⏞  

External potential

−
∑︁
𝑖

∫︁
𝑑𝑟𝜑*𝑖 (𝑟)

∇2

2
𝜑𝑖(𝑟)⏟  ⏞  

Kinetic energy

+
1

2

∫︁ ∫︁
𝑑𝑟𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|⏟  ⏞  
Hartree energy

+𝐸xc[𝑛] (1.25)

The Hohenberg-Kohn variational principle introduced in Eq. (1.20) in the combination

with the method of Lagrange multipliers allows us to write a problem for a given number of

electrons in the following form [47,48]:

𝜖 =
𝛿𝐸[𝑛(𝑟)]

𝛿𝑛(𝑟)
=
𝛿𝑇 𝑠

𝑒 [𝑛(𝑟)]

𝛿𝑛(𝑟)
+
𝛿�̂�xc[𝑛(𝑟)]

𝛿𝑛(𝑟)
+
𝛿𝑉𝑒𝑛[𝑛(𝑟)]

𝛿𝑛(𝑟)
+
𝛿�̂�H[𝑛(𝑟)]

𝛿𝑛(𝑟)
=

𝛿𝑇 𝑠
𝑒 [𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉H + 𝑉ext + 𝑉xc =

𝛿𝑇 𝑠
𝑒 [𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉eff (1.26)

where 𝜖 is a Lagrange multiplier chosen in such a way that the Kohn-Sham orbitals 𝜑(𝑟)

are orthonormal. We have also introduced an effective potential 𝑉eff, which contains the xc-

potential, Hartree potential and the external potential. The xc potential 𝑉xc and the Hartree

potential 𝑉H(𝑟) are defined as:

𝑉xc =
𝛿𝐸xc[𝑛(𝑟)]

𝛿𝑛(𝑟)
(1.27)
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𝑉H(𝑟) =
𝛿𝐸H[𝑛(𝑟)]

𝛿𝑛(𝑟)
=

∫︁
𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟′ (1.28)

The treatment of the electronic structure problem in the case of the independent electron

approximation, i.e., when neither exchange nor correlation terms are taken into account, leads

to the equation with a similar structure:

𝜖′ =
𝛿𝐸′[𝑛(𝑟)]

𝛿𝑛(𝑟)
=
𝛿𝑇 𝑠

𝑒 [𝑛(𝑟)]

𝛿𝑛(𝑟)
+
𝛿𝑉𝑒𝑛[𝑛(𝑟)]

𝛿𝑛(𝑟)
=
𝛿𝑇 𝑠

𝑒 [𝑛(𝑟)]

𝛿𝑛(𝑟)
+ 𝑉ext (1.29)

where 𝜖′ and 𝐸′[𝑛(𝑟)] are a Lagrange multiplier and an energy functional defined in the

independent electron approximation problem.

The similarity between Eqs. (1.26 and 1.29) allows to map the problem of 𝑁 interacting

electrons moving in an external field 𝑉ext to the problem of 𝑁 non-interacting electrons

moving in an effective potential 𝑉eff. Consequently, the solution for the electronic structure

problem is presented as a single Slater Determinant of Kohn-Sham orbitals 𝜑𝑖(𝑟), which are

obtained by solving single-particle Kohn-Sham equations [47,49]:

ℎKS𝜑𝑖(𝑟) = 𝜖𝑖𝜑𝑖(𝑟) (1.30)

⎡⎢⎣−1

2
∇2 + 𝑉ext(𝑟) + 𝑉H(𝑟) + 𝑉xc⏟  ⏞  

𝑉eff

⎤⎥⎦𝜑𝑖(𝑟) = 𝜖𝑖𝜑𝑖(𝑟) (1.31)

where ℎ𝐾𝑆 denotes Kohn-Sham Hamiltonian.

Since the effective potential is electronic density-dependent the DFT problem has to be

solved iteratively, similarly as in the HF approach [102]. If the electron density 𝑛0(𝑟) =∑︀𝑁
𝑖 |𝜓𝑖(𝑟)|2 is calculated, the total energy is determined as:

𝐸 =

𝑁∑︁
𝑖=1

𝜖𝑖 −
1

2

∫︁ ∫︁
𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐸xc[𝑛(𝑟)] −

∫︁
𝑛(𝑟)𝑉xc(𝑟)𝑑𝑟 (1.32)

DFT is, in principle, exact assuming that the exact xc-functional 𝐸xc[𝑛(𝑟)] is known. In

practice, the exact xc-functional is not known and is obtained using a variety of approxi-

mations [112, 113]. The accuracy of the ground-state DFT depends entirely on the choice

of the xc-functional [49] and increasing the accuracy comes with increasing computational

cost [112].

Exchange-correlation functionals

In this subsection, we review the functionals used in this thesis. We will briefly outline the

local density approximation (LDA), which was presented in the seminal paper of Kohn and

Hohenberg [48] and the generalized gradient approximation (GGA) [114]. In this thesis, we

used PBE [114] and PBEsol [115] GGA-type xc-functionals. In addition, we will discuss

the hybrid [116] xc-functional HSE06 [117]. Detailed discussions of the different aspects of

xc-functionals can be found in literature [111].
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Local density approximation

In the LDA it is assumed that the electronic density varies slowly in space and the system

can be approximated by a homogeneous electron gas (HEG), which is an idealized system

of electrons situated in an infinite background of positive charge, specified with the local

density at each point of space. LDA allows to describe the xc-functional as a function of the

electronic density with the analytical form [118]:

𝐸xc[𝑛] u 𝐸LDA
xc [𝑛(𝑟)] =∫︁

𝑛(𝑟)𝜖HEG
xc [𝑛(𝑟)]𝑑𝑟 =

∫︁
𝑛(𝑟)

[︀
𝜖HEG
x (𝑛(𝑟)) + 𝜖HEG

c (𝑛(𝑟))
]︀
𝑑𝑟 (1.33)

where the 𝜖xc term is decomposed into exchange 𝜖x and correlation 𝜖c terms. The exchange

term for the HEG can be derived analytically [118]:

𝜖HEG
x (𝑛) = −3

4

(︂
3𝑛

𝜋

)︂1/3

(1.34)

The correlation term can be calculated to a very good degree using many-body perturba-

tion theory [119] or nearly exactly by means of the Quantum Monte Carlo techniques [120].

The latter approach allows to obtain the fitted analytical form of the correlation term as was

done by Perdew and Wang [121]. In this thesis, we used the LDA xc-functional parameterized

using this Perdew-Wang approach [121].

Although, the validity of the LDA is limited to systems with a uniform or slightly-varying

density, it appears to produce qualitatively and partially even quantitatively accurate results

for systems with inhomogeneous density [50, 102, 103]. Well-known drawbacks of LDA xc-

functionals is the underestimation of lattice constants [122,123], related to the overestimation

of binding energies, and the systematic underestimation of band gaps [124–126].

Generalized gradient approximation

The Generalized Gradient Approximation (GGA) xc-functionals utilize not only the local

values of the electronic density, but also its gradient to account for the inhomogeneity of the

electron density:

𝐸xc[𝑛] u 𝐸GGA
xc [𝑛(𝑟),∇𝑛(𝑟)] =

∫︁
𝑛(𝑟)𝜖HEG

x [𝑛(𝑟)]𝐹xc[𝑛(𝑟),∇𝑛(𝑟)]𝑑𝑟 (1.35)

Since there is no one unique recipe for obtaining 𝐹xc [𝑛(𝑟),∇𝑛(𝑟)], a variety of func-

tionals have been introduced under the name GGA-type xc-functionals. Most widely used

are PBE [114], and its re-optimized version for solids PBEsol [115] (PBEsol improves the

prediction of lattice parameters). The derivation of 𝐸PBE
xc [𝑛(𝑟)] is discussed in [114].

The PBE xc-functional is generally more accurate than the LDA xc-functional and at the

same time does not increase the computational cost substantially. However, PBE is also not

able to precisely determine lattice constants, since its underestimation of binding energies

leads to an overestimation of structural parameters. This drawback is arguably alleviated

once PBEsol [115] is utilized.
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Hybrid functionals

One of the main drawbacks of the xc-functionals mentioned so far is the considerable un-

derestimation of electronic band gaps [124, 127]. This is often caused by the so-called over-

delocalization error widely described in literature [124,126,128–134]. Hybrid xc-functionals [135]

do not resolve over-delocalization error, but allow to compute band gaps with the higher ac-

curacy than LDA and GGA xc-functionals [136, 137]. Hybrid xc-functionals are constructed

by adding a portion of exact exchange from HF theory:

𝐸xc[𝑛(𝑟)] u 𝛼𝐸HF
x + (1 − 𝛼)𝐸GGA

x [𝑛(𝑟)] + 𝐸GGA
c [𝑛(𝑟)] (1.36)

where 𝐸HF
x is the exact exchange calculated using the HF approach, and 𝛼=0.25 is a pa-

rameter, which determines the portion of the exact exchange. The exact exchange explicitly

depends on the one-electron orbitals:

𝐸HF
x = −1

2

𝑁∑︁
𝑖𝑗

∫︁ ∫︁
𝜓*
𝑖 (𝑟)𝜓*

𝑗 (𝑟′)𝜓𝑗(𝑟)𝜓𝑖(𝑟
′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′ (1.37)

The one-electron orbitals then become solutions to the generalized Kohn-Sham equa-

tions [138,139]: [︂
−1

2
∇2 + 𝑉loc

]︂
𝜓𝑖(𝑟) +

∫︁
𝑉 HF
𝑥 (𝑟, 𝑟′)𝜓𝑖(𝑟

′)𝑑𝑟′ = 𝜖𝑖𝜓𝑖(𝑟) (1.38)

where 𝑉loc is a GGA potential and a fraction 𝛼 of the GGA exchange potential is replaced

with the HF exchange 𝑉 HF
𝑥 . The non-locality of the exact (HF) exchange makes a numerical

solution expensive. Somewhat of a simplification can be done by separating the Coulomb

operator into short-range and long-range terms:

1

𝑟
=

erfc(𝜔𝑟)

𝑟⏟  ⏞  
short-range

+
erf(𝜔𝑟)

𝑟⏟  ⏞  
long-range

(1.39)

where the complementary error function is defined as erfc(𝜔𝑟) = 1 − erf(𝜔𝑟), and 𝜔 is an

adjustable parameter [116,136,140].

The separation of the Coulomb operator and utilization of a screened short-range exchange

was suggested by Heyd, Scuseria and Ernzerhof, hence functionals constructed in such a way

are called HSE hybrid functionals [116] and have the following form:

𝐸HSE
xc [𝑛] = 𝛼 𝐸HF

x (𝜔)⏟  ⏞  
short-range

+(1 − 𝛼)𝐸PBE
x (𝜔)⏟  ⏞  

short-range

+𝐸PBE
x (𝜔)⏟  ⏞  

long-range

+𝐸PBE
c (1.40)

In this thesis we will use the HSE06 [117] (𝜔=0.11 bohr−1 and 𝛼=0.25) xc-functional to

inspect the reliability of the band gap renormalization calculated with LDA or PBEsol. The

implementation of this xc-functional in the FHI-aims code is described in detail in [141].

Electronic structure calculations with FHI-aims

A numerical solution of the Kohn-Sham equations is in practice pursued by expanding the

single-particle Kohn-Sham states 𝜓𝑖(𝑟) in some basis set:
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𝜓𝑖(𝑟) =

𝑁𝑏𝑎𝑠𝑖𝑠∑︁
𝑗=1

𝐶𝑖𝑗𝜑𝑗(𝑟) (1.41)

where 𝑁𝑏𝑎𝑠𝑖𝑠 is the number of basis functions used for the linear expansion, which has to be

reasonably larger than the number of Kohn-Sham eigenfunctions 𝜓𝑖.

Expansion of the Kohn-Sham eigenfunctions introduced in Eq. (1.41) reduces the Kohn-

Sham equations to a matrix equation for the coefficients 𝐶𝑖𝑗 , which can be solved using stan-

dard matrix diagonalization techniques. Different DFT codes feature different types of basis

sets, e.g., plane waves [6], projector-augmented waves [4, 142], Gaussian-type orbitals [143]

and many others. In this thesis, we used the FHI-aims package (Fritz Haber Institute ab

initio molecular simulation package) [5] for all DFT calculations. FHI-aims is an all-electron,

full-potential electronic structure code, which utilizes numeric atom-centered orbitals (NAOs)

as its basis set. The basis functions in FHI-aims are of the following form:

𝜑𝑖(𝑟) =
𝑢𝑖(𝑟)

𝑟
𝑌𝑙,𝑚(Ω) (1.42)

with the spherical harmonics 𝑌𝑙,𝑚(Ω) and the numerically tabulated radial functions 𝑢𝑖(r),

which are obtained by solving the radial Schrödinger-like equation on a logarithmic grid [144]:[︂
−1

2
∇2

𝑟 +
𝑙(𝑙 + 1)

𝑟2
+ 𝑣𝑖(𝑟) + 𝑣𝑐𝑢𝑡(𝑟)

]︂
𝑢𝑖(𝑟) = 𝜖𝑖𝑢𝑖(𝑟) (1.43)

where 𝑣𝑖(𝑟) is the potential that determines the shape of radial function and 𝑣𝑐𝑢𝑡(𝑟) is the

confining potential of the following form:

𝑣𝑐𝑢𝑡(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑟 ≤ 𝑟𝑜𝑛𝑠𝑒𝑡

𝑠 · exp
[︁
𝑟𝑐𝑢𝑡−𝑟𝑜𝑛𝑠𝑒𝑡
𝑟−𝑟𝑜𝑛𝑠𝑒𝑡

]︁
· 1
(𝑟−𝑟𝑐𝑢𝑡)2

, 𝑟𝑜𝑛𝑠𝑒𝑡 < 𝑟 < 𝑟𝑐𝑢𝑡

∞, 𝑟 ≥ 𝑟𝑐𝑢𝑡

(1.44)

where 𝑠 is a global scaling parameter. Usage of the confining potential allows to obtain

smooth basis functions without long tails once 𝑟 → ∞. Interested readers can read the

technical details of the methods used in FHI-aims in [5] and references therein (for example,

the optimized partitioning of the integration grids are presented in [144–146]).

The minimal basis contains core and valence basis functions, which were constructed

from the spherically symmetric free atoms. This rather crude choice gives a sufficiently good

description of the strongly oscillatory behavior of the wave function near the nucleus. Then

hydrogen-like and free-ion-like radial functions with different angular momenta are added to

the minimal basis. Basis functions in FHI-aims are constructed for each chemical element

and arranged hierarchically into 𝑡𝑖𝑒𝑟𝑠. Separation into different 𝑡𝑖𝑒𝑟𝑠 is done based on the

improvements of the LDA total energy of a dimer for each chemical element once particular

𝑡𝑖𝑒𝑟 settings are used. Inclusion of basis functions from higher 𝑡𝑖𝑒𝑟𝑠 increases the number

of basis function and consequently the accuracy of a calculation. The numerical accuracy

(and of course the cost of calculations) also depends on the density of the integration grid.

For production calculations all numerical settings have to be reasonably chosen and physical

conclusions have to be drawn based on converged numerical settings.
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Once Kohn-Sham eigenfunctions are expanded in a linear combination of basis functions

with the linear expansion coefficients 𝐶𝑖𝑗 , one can obtain a generalized eigenvalue problem:∑︁
𝑗

ℎ𝑖𝑗𝐶𝑗𝑙 = 𝜖𝑙
∑︁
𝑗

𝑠𝑖𝑗𝐶𝑗𝑙 (1.45)

where ℎ𝑖𝑗 and 𝑠𝑖𝑗 denote the matrix elements of the Kohn-Sham Hamiltonian introduced in

Eqs. (1.30 and 1.31) ℎ𝑖𝑗 = ⟨𝜑𝑖|ℎ𝐾𝑆 |𝜑𝑗⟩ and the overlap matrix 𝑠𝑖𝑗 = ⟨𝜑𝑖|𝜑𝑗⟩, respectively.

The generalized Kohn-Sham eigenvalue problem Eq. (1.45) is solved in an iterative, self-

consistent way [147] (denoted as self-consistent field (SCF) calculations from now on). The

SCF cycle begins with an initial guess for the electron density 𝑛0, which can be constructed

from the superposition of the constituent atomic densities. Then 𝑛0 is used to compute

the Hartree and exchange-correlation potentials. The matrix elements of the Kohn-Sham

Hamiltonian are then computed and used to solve Eq. (1.45). The overlap matrix is computed

only once, since it does not change during the SCF cycle. The algebraic procedures, which are

performed during the SCF cycle, are powered by the ELPA (eigenvalue solvers for petascale

applications) library [148]. The coefficients of the linear expansion 𝐶𝑖𝑗 from Eq. (1.45) are

used to obtain a new electronic density 𝑛𝑜𝑢𝑡0 , which is used to generate an input density 𝑛𝑖𝑛1 for

the next SCF step. This algorithm is then repeated until the difference between the electronic

densities of consecutive steps becomes smaller than some particular threshold. Generating a

new input density is a crucial part of the algorithm, which has a substantial influence on the

stability and speed of the SCF convergence. We performed all calculations with the Pulay

mixer scheme [149].

1.4 The periodic boundary conditions

In this thesis we will only consider ideal crystals and will not take into consideration structures

with defects, impurities, glasses, or amorphous solids. A crystal structure is denoted as a

periodic lattice with a basis, which contains a certain number of atoms or molecules. The

smallest cell from which the crystal can be constructed by translations is called the unit cell.

The unit cell choice has some arbitrariness, so the unit cell with the smallest volume and the

highest symmetry among all possible unit cells is called a primitive cell. Lattice parameters

and atomic coordinates constitute the main input for any computational simulation. For a

three-dimensional crystal the unit cell is described by three lattice vectors 𝑎1, 𝑎2, 𝑎3 (Bravais

lattice vectors), which can be used to build an infinitely big crystal by translating the unit

cell along them. Hence, the position of any lattice point 𝑅 can be described by using a linear

combination of lattice vectors:

𝑅(𝑛) = 𝑛1𝑎1 + 𝑛2𝑎2 + 𝑛3𝑎3, 𝑛𝑖 ∈ Z (1.46)

If the unit cell contains 𝑀 atoms, the position of any atom is determined with respect to

the origin by using a set of vectors 𝑅(𝑙). For example, the 𝑙-th atom in the 𝑛-th unit cell has

the position:

𝑅(𝑛, 𝑙) = 𝑅(𝑛) +𝑅(𝑙) (1.47)

The presence of translational symmetry in the crystal allows to use Bloch’s theorem [9]

for the Kohn-Sham orbitals and present them as plane waves modulated with a function that
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has the periodicity of the lattice 𝑢𝑛𝑘(𝑟) = 𝑢𝑛𝑘(𝑟 +𝑅(𝑛)):

𝜓𝑛𝑘(𝑟) = 𝑒𝑖𝑘𝑟𝑢𝑛𝑘(𝑟) (1.48)

Then, the eigenfunctions 𝜓𝑛𝑘 and also eigenvalues 𝜖𝑛𝑘 are labeled by two quantum num-

bers: band index 𝑛 and wave vector 𝑘. Eigenfunctions 𝜓𝑛𝑘 should satisfy the Born-von

Karman (BvK) boundary conditions. This implies that:

𝜓𝑛𝑘(𝑟 +𝑅(𝑛)) = 𝜓𝑛𝑘(𝑟) (1.49)

where 𝑅(𝑛) denotes the number of repetitions along lattice vectors 𝑎𝑖 introduced in Eq. (1.46)

and means that the BvK supercell contains 𝑛 unit cells. Consequently, the BvK conditions

and the periodicity of the modulation function 𝑢𝑛𝑘(𝑟) introduced in Eq. (1.48) determine the

allowed values of 𝑘:

𝑘 =
3∑︁

𝑖=1

𝑚𝑖

𝑛𝑖
𝑏𝑖, where 𝑚𝑖 = 0, 1, . . . , 𝑛𝑖− 1 (1.50)

Thus, in total there are as many allowed values of 𝑘 as there are unit cells in the crystal,

i.e., there are 𝑛 = 𝑛1 × 𝑛2 × 𝑛3 unique values of wave vector 𝑘 labeled by 𝑚𝑖 that are

expressed in terms of the reciprocal lattice vectors 𝑏𝑖. The reciprocal lattice is generated by

these translation vectors 𝑏𝑖 (analogously to the real space unit cell and translation vectors 𝑎𝑖),

such that 𝑎𝑖 · 𝑏𝑖 = 2𝜋𝛿𝑖𝑗 . The primitive cell in the reciprocal space defines the first Brillouin

zone (BZ). The relationship introduced in Eq. (1.50) shows that the BvK supercell, which

consists of 𝑛1 × 𝑛2 × 𝑛3 unit cells, corresponds to a regularly spaced grid of 𝑛1 × 𝑛2 × 𝑛3

points in the BZ and vice versa. The electron density in the case of the periodic boundary

conditions is then computed as:

𝑛(𝑟) =
∑︁
𝑘

𝑁∑︁
𝑛=1

|𝜓𝑛𝑘(𝑟)|2 (1.51)

where 𝑁 denotes the number of electrons in the primitive cell.

Consequently, Eq. (1.51) requires the calculation of a finite number of one-electron orbitals

at a finite number of k-points, taken into account that infinite number of k-points corresponds

to an infinitely large BvK supercell. In practice, the electron density is converged with respect

to the finite number of k-points [150], which are sampled using, for example, a Monkhorst-

Pack scheme [151] – a regularly spaced grid of k-points in the BZ primitive cell.

In FHI-aims [5], the periodic boundary conditions are taken into account by defining the

Block-like generalized basis functions 𝜒𝑖𝑘(𝑟) derived from the real-space atom-centered basis

functions 𝜑𝑖(𝑟) introduced in Eq. (1.42):

𝜒𝑖𝑘(𝑟) =
∑︁
𝑅(𝑛)

𝑒𝑖𝑘𝑅(𝑛)𝜑𝑖(𝑟 −𝑅(𝑙) +𝑅(𝑛)) (1.52)

where 𝜑𝑖(𝑟 −𝑅(𝑙) −𝑅(𝑛)) denotes the 𝑖-th basis function centered at the 𝑙-th atom situated

in the 𝑛-th unit cell within the BvK supercell. Block-like functions satisfy Bloch’s theorem,

i.e. 𝜒𝑖𝑘(𝑟 +𝑅(𝑛)) = 𝑒𝑖𝑘𝑅(𝑛)𝜒𝑖𝑘(𝑟).
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The Kohn-Sham eigenfunctions 𝜓𝑛𝑘(𝑟) are then expressed in terms of the linear combi-

nation of these Bloch-like generalized basis functions:

𝜓𝑛𝑘(𝑟) =
∑︁
𝑖

𝐶𝑖𝑛(𝑘)𝜒𝑖𝑘(𝑟) =
∑︁
𝑖

𝐶𝑖𝑛(𝑘)
∑︁
𝑅(𝑛)

𝑒𝑖𝑘𝑅(𝑛)𝜑𝑖(𝑟 −𝑅(𝑙) −𝑅(𝑛)) (1.53)

Consequently, the matrix elements ℎ𝑖𝑗 introduced in Eq. (1.45) become k-dependent:

ℎ𝑖𝑗(𝑘) = ⟨𝜒𝑖𝑘|ℎ𝐾𝑆 |𝜒𝑗𝑘⟩ (1.54)

Summary of the chapter

In this chapter, we formulated the essential concepts used in first-principles calculations based

on the DFT framework. We showed how the many-body electron-nuclei problem is decoupled

into two separate problems based on the Born-Oppenheimer approximation. Everything in

this thesis is done under the assumption that the Born-Oppenheimer approximation is valid.

Then we showed how DFT allows to utilize the electronic density for computations and resolve

the problems related to the complexity of the N-electron Schrödinger equation. Although

DFT is exact, xc-functionals are constructed using a variety of approximations. Some of

these xc-functionals (LDA, PBE, PBEsol, HSE06), which are used in this thesis, were briefly

discussed or references to detailed explanation of the theory were provided. Finally, we noted

that we will use the FHI-aims software package for performing DFT calculations.
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Chapter 2

Lattice dynamics

In the previous chapter we assumed that a crystal structure (lattice vectors and positions of

atoms forming the basis) is immobile. This allowed us to develop a formalism to calculate the

electronic ground state and the total energy of a crystalline system. However, atoms move

around their equilibrium positions both at finite temperatures and even at zero temperature

(due to the uncertainty principle). Consequently, in this chapter, we focus on the fundamental

aspects of lattice and nuclear dynamics modeling [7, 152–154]. In particular, we will discuss

the phonon formalism and demonstrate how atomic movement can be treated within the

harmonic approximation. Then, we will outline the essentials of ab initio molecular dynamics

simulations (aiMD) [155,156] and discuss how to calculate lattice thermal expansion.

2.1 The harmonic approximation

We assume that the Born-Oppenheimer approximation is valid and determines the potential-

energy surface 𝑉BO(𝑅) = 𝐸𝑒
𝑜(𝑅) + 𝑉𝑛𝑛(𝑅) on which the nuclei move (BO PES). The interac-

tion between electrons and nuclei is completely described by the BO PES. If the crystalline

structure is in equilibrium, which we denote as a set of nuclei coordinates {𝑅0}, the BO PES

approaches a minimum. We are going to consider atomic configurations {𝑅} that are very

close to the equilibrium configuration {𝑅0}. Thus, if atom 𝐼 is displaced by 𝑈𝐼𝛼 from the

equilibrium position 𝑅0 along the Cartesian direction 𝛼, we can write a Taylor expansion of

𝑉BO(𝑅) around the equilibrium configuration:

𝑉BO(𝑅) = 𝑉BO(𝑅0) +
∑︁
𝐼𝛼

𝜕𝑉BO(𝑅)

𝜕𝑅𝐼𝛼

⃒⃒⃒⃒
𝑅0

(𝑅𝐼𝛼 −𝑅0
𝐼𝛼)⏟  ⏞  

=0

+

1

2

∑︁
𝐼𝛼,𝐽𝛽

𝜕2𝑉BO(𝑅)

𝜕𝑅𝐼𝛼𝜕𝑅𝐽𝛽

⃒⃒⃒⃒
𝑅0⏟  ⏞  

Φ𝛼𝛽
𝐼𝐽

(𝑅𝐼𝛼 −𝑅0
𝐼𝛼)(𝑅𝐽𝛽 −𝑅0

𝐽𝛽) + 𝒪(||𝑅𝐼 −𝑅0
𝐼 ||32) + · · · (2.1)

where indices 𝐼 and 𝐽 run over the individual atoms, and indices 𝛼 and 𝛽 denotes the three

Cartesian coordinates. The Hessian Φ𝛼𝛽
𝐼𝐽 denotes the interatomic force constant matrix, which

represents the response of atom 𝐼 upon the displacement of atom 𝐽 . In static equilibrium,
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the forces acting on the atoms are zero. Thus, the second term on the right hand side of

Eq. (2.1) vanishes.

If the expansion given in Eq. (2.1) is truncated after the second-order term, we obtain

the harmonic approximation for the BO PES:

𝑉BO(𝑅) − 𝑉BO(𝑅0) ≈ 1

2

∑︁
𝐼𝛼,𝐽𝛽

𝜕2𝑉BO(𝑅)

𝜕𝑅𝐼𝛼𝜕𝑅𝐽𝛽

⃒⃒⃒⃒
𝑅0

𝑈𝐼𝛼𝑈𝐽𝛽 (2.2)

where 𝑈𝐼𝛼 = 𝑅𝐼 − 𝑅0
𝐼 is the displacement of atom 𝐼 from the equilibrium position. To

progress further, we need to find out how to calculate the Hessian matrix Φ𝛼𝛽
𝐼𝐽 , which requires

calculations of the forces acting on atoms. The force 𝐹𝐼 acting on atom 𝐼 is given as a

derivative of the Born-Oppenheimer potential energy:

𝐹𝐼 = −𝑑𝑉BO(𝑅)

𝑑𝑅𝐼
=

𝑑

𝑑𝑅𝐼
[𝐸[𝑛(𝑟)] + 𝑉𝑛𝑛] (2.3)

where we used the electronic contribution in terms of the energy functional defined in

Eq. (1.25). The derivative of the electronic part with respect to the atomic displacements is:

𝑑𝐸[𝑛(𝑟)]

𝑑𝑅𝐼
=
𝜕𝐸[𝑛(𝑟)]

𝜕𝑅𝐼
+

∫︁
𝑑𝑟
𝛿𝐸[𝑛(𝑟)]

𝛿𝑛(𝑟)

𝜕𝑛(𝑟)

𝜕𝑅𝐼
(2.4)

The first term on the right-hand side of Eq. (2.4) is further transformed taking into account

that only the nuclei-electrons interaction depends on 𝑅𝐼 :

𝜕𝐸[𝑛(𝑟)]

𝜕𝑅𝐼
=

∫︁
𝑑𝑟𝑛(𝑟)

𝑍𝐼(𝑅𝐼 − 𝑟)

|𝑅𝐼 − 𝑟|3
(2.5)

The second term on the right-hand side of Eq. (2.4) is evaluated using the results of Eq. (1.26):∫︁
𝑑𝑟
𝛿𝐸[𝑛(𝑟)]

𝛿𝑛(𝑟)

𝜕𝑛(𝑟)

𝜕𝑅𝐼
= −𝜖 𝑑

𝑑𝑅𝐼

∫︁
𝑑𝑟𝑛(𝑟) = 0 (2.6)

Then, the force 𝐹𝐼 is evaluated as:

𝐹𝐼 = −𝑑𝑉BO(𝑅)

𝑑𝑅𝐼
=

∫︁
𝑑𝑟𝑛(𝑟)

𝑍𝐼(𝑅𝐼 − 𝑟)

|𝑅𝐼 − 𝑟|3
−

∑︁
𝐼 ̸=𝐽

𝑍𝐼𝑍𝐽(𝑅𝐼 −𝑅𝐽)

|𝑅𝐼 −𝑅𝐽 |3
(2.7)

Therefore, calculations of forces acting on atoms only require knowledge about the electronic

density (wave functions) and structural parameters (nuclear charges and lattice parameters).

This result is known as the Hellman-Feynman theorem [157, 158]. In FHI-aims forces are

calculated analytically, but the utilization of NAOs introduces additional challenges. In

particular, so-called Pulay forces [159] appear due to the incompleteness of the basis set.

Detailed expressions for all force terms, which appear during calculations with a NAO basis,

can be found in [160].

Contrary to interatomic forces, the Hessian matrix Φ𝛼𝛽
𝐼𝐽 requires to know the total deriva-

tives of the wave function density, which can be formalized using the 2n+1 theorem [161],

which states that the evaluation of the (2n+1)-th derivative of the BO PES requires the

knowledge of n-th derivative of the density. This approach is widely used in lattice dy-

namics calculations performed in the framework of DFPT [51]. However, we use an alter-

native route, in which the force constants are evaluated numerically by a finite difference

approach [162,163]:
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Φ𝐼𝛼𝐽𝛽 =
𝜕2𝑉

𝜕𝑅𝐼𝛼𝜕𝑅𝐽𝛽
= −𝜕𝐹𝐼𝛼(𝑅)

𝜕𝑅𝐽𝛽
= −

𝜕𝐹𝐽𝛽(𝑅)

𝜕𝑅𝐼𝛼
≈
𝐹𝐽𝛽(𝑅0 + 𝑈𝐼𝛼) − 𝐹𝐽𝛽(𝑅0)

𝑈𝐼𝛼
(2.8)

This means that the second derivative is obtained by displacing atom 𝐼 along direction 𝛼 by

a small (≈ 0.01 Å) displacement and by calculating the change in forces from first principles.

The straightforward evaluation of Eq. (2.8) requires 3𝑀 displacements. However, the

problem can be simplified due to the symmetric equivalence of certain displacements. The

symmetry of a crystal structure is a crucial factor in practical calculations, because it allows

to reduce the amount of calculations. There are numerous programs developed for lattice

dynamics calculations, such as Phonopy [164], TDEP [69–71], hiPhive [165], Alamode [166],

ShengBTE [167], and many others, which all utilize crystallographic symmetry information

to decrease computational costs and potentially eliminate numerical noise. Most of these

programs use the spglib [168] package to determine symmetry of the crystal.

Since we have assumed that the nuclei move in the harmonic potential described by

Eq. (2.2) and showed how to calculate the forces acting on the atoms, we now can progress

with the description of the lattice dynamics. The equation of motion for the 𝐼-th atom is

given by:

𝑀𝐼 �̈�𝐼𝛼(𝑡) = 𝐹𝐼𝛼 = −
∑︁
𝐽𝛽

Φ𝛼𝛽
𝐼𝐽𝑈𝐽𝛽(𝑡) (2.9)

where 𝑀𝐼 is the mass of the 𝐼-th atoms. Note that the time dependence of the displacement

𝑈𝐼𝛼 is not explicitly included. To get rid of the time dependence we use the following ansatz:

𝑈𝐼𝛼(𝑡) = 𝑢𝐼𝛼𝑒
𝑖𝜔𝑡 (2.10)

then the ansatz above is inserted into Eq. (2.9) and we obtain:

𝑀𝐼𝜔
2𝑢𝐼𝛼 = −

∑︁
𝐽𝛽

Φ𝛼𝛽
𝐼𝐽 𝑢𝐽𝛽 (2.11)

which represents a system of coupled algebraic equations with 3𝑀 unknowns. The solution

can be found by exploiting the periodicity of the crystalline lattice. As was shown in the

previous chapter (see Eq. (1.47)), the position 𝑅𝑛,𝑙 of the 𝑙-th atoms in the 𝑛-th primitive cell

can be written in terms of the Bravais lattice vector 𝑅(𝑛), which points to this primitive cell

and the vector 𝑅𝑙, which points to the 𝑙-th atom in the primitive cell 𝑅𝑛,𝑙 = 𝑅𝑛 + 𝑅𝑙. This

allows to replace the atomic index 𝐼, which runs over all atoms in the solid, by the index pair

(𝑛, 𝑙) running over the unit cells and the basis atoms. Then, the Hessian reads:

Φ𝛼𝛽
𝐼𝐽 = Φ𝛼𝛽

𝑙𝑚(𝑛, 𝑝) (2.12)

From the translational invariance of the lattice it follows that:

Φ𝛼𝛽
𝑙𝑚(𝑛, 𝑝) = Φ𝛼𝛽

𝑙𝑚(𝑛− 𝑝) (2.13)

This motivates to search for a solution of 𝑢𝑙𝛼(𝑅(𝑛)) in terms of traveling harmonic waves

of different wave vector 𝑞 [152].

𝑢𝑙𝛼(𝑅(𝑛)) =
1√
𝑀𝑙

𝜖𝑙𝛼𝑒
𝑖𝑞𝑅(𝑛) (2.14)
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where 𝜖𝑙𝛼 is the amplitude of the vibration and 𝑞 denotes the reciprocal wave vector, respec-

tively. Using Eq. (2.11) and Eq. (2.14) we obtain:

𝜔2𝜖𝑙𝛼 =
∑︁
𝑚𝛽

∑︁
𝑝

1√
𝑀𝑙𝑀𝑚

Φ𝑙𝛼𝑚𝛽(𝑛− 𝑝)𝑒𝑖𝑞(𝑅(𝑛)−𝑅(𝑝))𝜖𝑚𝛽 (2.15)

We define the dynamical matrix, which is the mass weighted Fourier transform of the force

constant matrix, as:

𝐷𝛼𝛽
𝑙𝑚 (𝑞) =

1√
𝑀𝑙𝑀𝑚

∑︁
𝑝

Φ𝛼𝛽
𝑙𝑚(𝑛− 𝑝)𝑒𝑖𝑞(𝑅(𝑛)−𝑅(𝑝)) (2.16)

Note that the summation is done over 𝑝 only. Definition of the dynamical matrix allows to

write the homogeneous linear system of equations in a compact form:

𝜔2𝜖𝑙𝛼 =
∑︁
𝑚𝛽

𝐷𝛼𝛽
𝑙𝑚 (𝑞)𝜖𝑚𝛽 (2.17)

The eigenvalue problem established by Eq. (2.17) has 3𝑀 eigenvalues 𝜔𝑠(𝑞) and eigen-

vectors 𝜖𝑠(𝑞), with 𝑠 = 1, 2, . . . , 3𝑀 . The obtained eigenvalues are called phonon frequencies

and collectively constitute the phonon dispersion 𝜔(𝑞). The time-dependent displacement of

the atoms is then:

𝑈𝐼𝛼 =
1√
𝑀𝐼

∑︁
𝑞

3𝑀∑︁
𝑠=1

𝐴𝐼𝑠(𝑞)𝜖𝐼𝛼,𝑠(𝑞)𝑒
𝑖(𝑞𝑅(𝑛)−𝜔𝑖(𝑞)𝑡) (2.18)

where the amplitude 𝐴𝐼𝑠(𝑞) is determined from the initial conditions. Finally, the system

of 3𝑀 coupled equations is transformed to 3𝑀 decoupled equations. The solutions of these

equations correspond to waves, which propagate throughout the crystal and are called normal

modes [152]. Thus any arbitrary displacement of atoms from the equilibrium configuration

can now be written in the form of normal modes. Moreover, given that Eq. (2.17) describes

the nuclear dynamics analytically in the harmonic approximation, we can also calculate the

thermodynamic partition function 𝑍 as:

𝑍 =
∏︁
𝑞,𝑠

exp
[︁
−~𝜔𝑠(𝑞)

𝑘B𝑇

]︁
1 − exp

[︁
−~𝜔𝑠(𝑞)

𝑘B𝑇

]︁ (2.19)

which allows to calculate thermodynamic quantities such as vibrational free energies or the

specific heat [152,153].

As an example, the phonon dispersion calculated from first principles for MgO is presented

in Fig. 2.1(a). The calculations are done with at the DFT-LDA level of theory using FHI-aims

package. The dispersion is illustrated for the high-symmetry Γ-X BZ path of the rock salt

structure with the 𝐹𝑚3̄𝑚 space group. In practice, it is sufficient to present the dispersion for

the first BZ, because phonon frequencies have the same periodicity as the reciprocal lattice.

Non-analytical correction

Out of the 3M phonon branches 3 are called 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 and 3M-3 are called 𝑜𝑝𝑡𝑖𝑐𝑎𝑙, respec-

tively. In the simulations with supercells and using finite differences approach, optical modes
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(a) (b)

Figure 2.1: Phonon dispersion in MgO along high-symmetry Γ-X BZ path (a) without NAC

correction, (b) with NAC correction. Calculations were done with the LDA xc-functional

and 3×3×3 supercell containing 216 atoms. The experimental measurements of the phonon

spectrum are done using neutron scattering [169].

are predicted systematically incorrectly, because of the limited simulation cell size and the

consequently missing long-range electrostatic effects. The splitting of the longitudinal and

the transverse optical modes at the Γ point (LO-TO splitting [9, 170]) is not present (see

experimental data in Fig. 2.1(a)). This inconsistency can be resolved by inspecting how a

macroscopic electric field influences the lattice dynamics [99] of the crystal and correcting

the dynamical matrix with a special contribution, which captures the long-range electrostatic

interaction [171]. It can be shown (in the first order approximation) that then the dynamical

matrix introduced in the Eq. (2.16) will contain an extra contribution [170,172]:

𝐷𝛼𝛽
𝐼𝐽 (𝑞 → 0) = 𝐷𝛼𝛽

𝐼𝐽 (𝑞 = 0) +
4𝜋

Ω
√
𝑀𝐼𝑀𝐽

[𝑞𝑍*
𝐼 ]𝛼 [𝑞𝑍*

𝐽 ]𝛽
𝑞 · 𝜖∞𝑞

(2.20)

where 𝑀𝐼 and 𝑀𝐽 are the masses of atoms 𝐼 and 𝐽 , Ω is the unit cell volume, 𝜖∞ is the

high-frequency dielectric tensor, 𝑍* are the Born Effective Charges, and 𝑞 denotes the phonon

wave vector. Higher order multipolar contributions to NAC can be also calculated [173]. The

𝑍* formalizes the relationship between the change in polarization upon an atomic displace-

ment [154,170,174]:

𝑍*
𝐼𝛼𝛽 =

Ω

𝑒

𝜕𝑃𝛼

𝜕𝑅𝐼𝛽
=

Ω

𝑒
lim

Δ𝑅𝐼𝛽→0

∆𝑃𝛼

∆𝑅𝐼𝛽
(2.21)

where ∆𝑃𝛼 is the change in polarization, the index 𝐼 runs over atoms, the indices 𝛼 and 𝛽

denote Cartesian directions, Ω is the unit cell volume, and 𝑒 is the charge of an electron.

Once 𝑍* and 𝜖∞ are known, the NAC can be applied to obtain the LO-TO splitting [171]:

𝜔2
𝑠(𝑞) = 𝜔2

𝑠(𝑞 = 0) +
4𝜋

Ω
·
∑︁
𝐼

|𝑞𝑍*
𝐼𝑈𝐼(𝑞 = 0, 𝑠)|2

𝑞𝜖∞𝑞
(2.22)

The approach that leads to Eq. (2.22) is called non-analytical term correction (NAC) and
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requires the calculation of the 𝑍* of each atom in the primitive cell and the 𝜖∞. In FHI-

aims, the 𝜖∞ tensor can be computed using DFPT [51] following the formalism presented

in [175]. The 𝑍* tensor is computed using the formalism of the modern theory of polariza-

tion [176–178], which itself is based on the Berry-phase theory [179]. In practice, we calculate

Z* by using two-points symmetric finite differences as shown in Eq. (2.21), involving small

displacements from the equilibrium position of each symmetrically inequivalent atom in the

primitive unit cell. The search for equivalent atom is done using spglib [168] and do not

require any visual inspection of the crystal structure. As an example, for MgO we obtained

𝑍*
Mg = 1.97, 𝑍*

O = -1.97, and the high-frequency dielectric tensor is diagonal with all diagonal

elements equal to 3.25. The phonon dispersion calculated for MgO with inclusion of the NAC

is presented in Fig. 2.1(b). Notably, the NAC correction leads to a better agreement between

calculated and experimental data [169], since LO-TO splitting is presented.

Atomic motion in the harmonic approximation

The solution of the Eq. (2.17) yields phonon frequencies and normal modes that can be

used to calculate velocities and thermally induced displacements of atoms, consistent with

the canonical ensemble. This is done by performing a harmonic normal mode transforma-

tion [180]:

𝑈𝐼𝛼 =
3𝑀∑︁
𝑠=1

𝜖𝐼𝛼,𝑠⟨𝐴𝐼𝑠⟩
√︀

−2𝑙𝑛𝜁1 sin 2𝜋𝜁2 (2.23)

�̇�𝐼𝛼 =
3𝑀∑︁
𝑠=1

𝜖𝐼𝛼,𝑠𝜔𝑠⟨𝐴𝐼𝑠⟩
√︀

−2𝑙𝑛𝜁1 sin 2𝜋𝜁2 (2.24)

where 𝑈𝐼 is the displacement of atom 𝐼, �̇�𝐼𝛼 its instantaneous velocity, and 𝜁𝑛 are uniformly

distributed numbers between 0 and 1, which can be transformed to a normal distribution of

random numbers using the Box-Muller transform [69]. ⟨𝐴𝐼𝑠⟩ is the thermal amplitude of the

normal mode 𝑠 with eigenvector 𝜖𝐼𝑠 and phonon frequency 𝜔𝑠 [180,181]:

⟨𝐴𝐼𝑠⟩ =
1

𝜔𝑠

√︃
~𝜔𝑠(𝑛𝑠 + 1

2)

𝑀𝐼⏟  ⏞  
quantum limit

≈ 1

𝜔𝑠

√︂
𝑘𝐵𝑇

𝑀𝐼⏟  ⏞  
classical limit

(2.25)

where 𝑛𝑠 is a Bose-Einstein occupation factor of the mode 𝑠, and 𝑘𝐵 is a Boltzmann con-

stant. The amplitude of the atomic displacements is taken into account both in classical and

quantum limit (note that atomic mass is included into the amplitude definition).

The methodology sketched above allows to generate structures with atomic displacements

consistent with the canonical ensemble [70, 182]. Pre-thermalized in such a way, geometries

can be used to start aiMD simulations with negligible thermalization time [181] as discussed

in the next section. In addition, the temperature influence on a property of interest can be

evaluated by averaging the results over an ensemble of such distorted geometries [183,184].
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2.2 Ab initio molecular dynamics

Fully anharmonic calculations of the nuclear dynamics can be done by performing ab initio

molecular dynamics simulations (aiMD). In this method the motion of atoms is described

by Newton’s laws, while it is assumed that Born-Oppenheimer approximation is valid (BO

aiMD). Forces acting on the atoms are computed via electronic structure theory, for example,

DFT. The Hamiltonian and equations of motion for the nuclei reads as:

𝐻𝑛(𝑅, 𝑝) =
∑︁
𝐼

𝑝2𝐼
2𝑀𝐼

+ 𝑉BO(𝑅) (2.26)

𝜕𝑅𝐼𝛼

𝜕𝑡
=
𝜕𝐻𝑛

𝜕𝑝𝐼𝛼
(2.27)

𝜕𝑝𝐼𝛼
𝜕𝑡

= − 𝜕𝐻𝑛

𝜕𝑅𝐼𝛼
= −𝜕𝑉BO(𝑅)

𝜕𝑅𝐼𝛼
= 𝑀𝐼

𝜕2𝑅𝐼𝛼

𝜕𝑡2
(2.28)

where t denotes the time, 𝑝𝐼 and 𝑀𝐼 are the moment and mass of the atom 𝐼, respectively.

In order to describe the position 𝑅𝐼 of atom 𝐼 at time 𝑡 + ∆𝑡, we make use of a Taylor

series expansion of 𝑅𝐼(𝑡+ ∆𝑡):

𝑅𝐼(𝑡+ ∆𝑡) = 𝑅𝐼(𝑡) +
𝑑

𝑑𝑡
𝑅𝐼(𝑡)⏟  ⏞  
v𝐼(t)

∆𝑡+
1

2

𝑑2

𝑑𝑡2
𝑅𝐼(𝑡)⏟  ⏞  

F𝐼(t)/M𝐼

∆𝑡2 +
1

6

𝑑3

𝑑𝑡3
𝑅𝐼(𝑡)∆𝑡3 + 𝒪(𝑡4) + · · · (2.29)

where 𝑣𝐼(𝑡), 𝑀𝐼 , and 𝐹𝐼(𝑡) are the instant velocity of the atom, its mass, and force acting

on it, respectively. If the expansion in Eq. (2.29) is truncated after the second-order term

and the initial conditions are known (forces, positions, and velocities at 𝑡 = 0), the nuclear

dynamics can be calculated. This approach is known as the Euler algorithm [185], but it has

inaccuracies, since the error is of the order 𝒪(𝑡3). In order to increase the accuracy, we can

write the backward and forward Taylor expansion 𝑅𝐼(𝑡± ∆𝑡)

𝑅𝐼(𝑡± ∆𝑡) = 𝑅𝐼(𝑡) ± 𝑣𝐼(𝑡)∆𝑡+
1

2

𝐹𝐼(𝑡)

𝑀𝐼
∆𝑡2 ± 1

6

𝑑3

𝑑𝑡3
𝑟(𝑡)∆𝑡3 + 𝒪(𝑡4) + · · · (2.30)

Truncating the expansions in Eq. (2.30) after the second-order term and summing the results

leads to:

𝑅𝐼(𝑡+ ∆𝑡) = 2𝑅𝐼(𝑡) −𝑅𝐼(𝑡− ∆𝑡) +
𝐹𝐼(𝑡)

𝑀𝐼
∆𝑡2 + 𝒪(𝑡4)

≈ 2𝑅𝐼(𝑡) −𝑅𝐼(𝑡− ∆𝑡) +
𝐹𝐼(𝑡)

𝑀𝐼
∆𝑡2 (2.31)

The Verlet algorithm [186] is based on Eq. (2.31). Higher precision can be obtained by

truncating the Taylor expansion in Eq. (2.30) at high-orders. However, then a simulation

will become more expensive with just a modest gain in accuracy [187]. The problem of the

Verlet algorithm is that the positions of atoms at 𝑡 − ∆𝑡 are not known for the first time

step. This problem can be resolved by utilizing the Velocity-Verlet algorithm [186], in which

atomic positions are calculated as in the Euler algorithm and the velocities are obtained as:

𝑣𝐼(𝑡+ ∆(𝑡)) = 𝑣𝐼(𝑡) +
𝐹𝐼(𝑡+ ∆𝑡) + 𝐹𝐼(𝑡)

2𝑀𝐼
∆𝑡 (2.32)
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During a aiMD simulation, the nuclei are treated classically at each time step and char-

acterized by a particular nuclear configuration {𝑅1, 𝑅2, . . . 𝑅𝑀}. The electronic density is

computed self-consistently, then the forces, acting on the atoms, are evaluated as a negative

gradient of the BO PES. The time-evolution of the nuclear dynamics is simulated by propa-

gating the classical equations of motion (Eqs. 2.31, 2.32). aiMD is a real-space method, which

requires adopting supercells (periodic repetitions of the primitive cells), in the calculations.

This is required by the fact that vibrational wavelenghts of the collective motion of atoms

and distances, in which forces between atoms become insignificant (≈10 Å [152]), typically

exceed the unit cell size.

Several technical aspects should be carefully taken into account for reliable aiMD sim-

ulations. For example, if a too large time step ∆𝑡 is chosen, the crystalline or molecular

structure could just fall apart during the simulation [155]. As a rule of thumb, one tenth of

the smallest vibrational period should be chosen. Therefore, a system with heavier atoms

can tolerate bigger integration steps, while a system with light atoms requires smaller time

steps.

Furthermore, the parameters, used for the electronic structure calculation, determine how

accurate the forces estimation is. Thus, the accuracy of the electronic-structure method is

of particular importance. If the simulation is not accurate enough, the calculated BO PES

will be incorrect and this will lead to a drift of the total energy of the system during the

simulation [188]. However, a small drift of the total energy, within few meV, around the

average or even slightly away from it, is acceptable, due to the numerical nature of the

simulations [155].

The ergodic principle [155] states that if the system is allowed to evolve with time it will

explore all possible configurations and a simulation will cover the whole phase space. Then,

the ensemble average can be replaces by a time average:

⟨𝑂⟩ = lim
𝑁→∞

𝑁∑︁
𝑡=1

𝑂(𝑡) (2.33)

Then, methods of statistical mechanics allows to extract information about physical observ-

able from the aiMD simulation. Since classical aiMD utilize Newton’s laws, the energy and

momentum of a system are conserved, which defines the microcanonical ensemble simulation

(NVE – constant number of particles, volume of the system, and total energy). In order to

simulate ensembles other than the microcanonical, the system must be brought into contact

with a so-called reservoir (a thermostat or a barostat). If thermodynamical variables such as

temperature or pressure are fixed, aiMD samples represent the canonical ensemble (NVT) or

the isothermal-isobaric ensemble (NPT), respectively. At finite temperatures, the physical

observable can be calculated by averaging over an ensemble.

Modeling of the canonical ensemble

To perform a simulation of the canonical ensemble (simulation at temperature T, where the

number of particles and volume of the system are kept constant), one should have control

over the temperature. The equipartition theorem is valid for the canonical ensemble, which
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means that the kinetic energy is equally distributed over all degrees of freedom of the system.

Thus, velocities (or momenta) of atoms obey the Maxwell-Boltzmann distribution:

𝑓(𝑝𝐼) =

(︂
1

2𝜋𝑀𝐼𝑘𝐵𝑇

)︂ 3
2

exp

[︂
−

𝑝2𝐼
2𝑀𝐼𝑘𝐵𝑇

]︂
(2.34)

Since the temperature depends on the kinetic energy (𝐸𝑘𝑖𝑛 = 3
2𝑁𝑘𝐵𝑇 ) and the kinetic

energy depends on the velocities of each atom, the temperature is not constant, as that

would mean fixing the kinetic energy. However, the temperature of a system, averaged over

the time, has a fixed value. Consequently, simulations should run for a sufficient amount of

time to thermalize and equilibrate the system at a particular temperature.

(a) (b)

Figure 2.2: The canonical ensemble aiMD (NVT) simulation of diamond at T=500 K.

(a) Temperature at each time step of the simulations with its running average taken over

200 steps. (b) The temperature distribution among samples, with the Gaussian function

lineshape.

Computationally, the temperature is controlled by bringing the system into contact with

a heat bath – a thermostat. A variety of different thermostats exists [189]. In this thesis we

utilize the Langevin thermostat, in which the temperature influence is modeled by coupling

each atom to a heat bath through a fluctuating force and a friction term. The motivation

behind the Langevin thermostat is based on the hypothesis that once particles move in the

solvent represented by another particles, the later induce a damping force on the former,

which mimics a change in temperature. The force, acting on atom 𝐼, is then:

𝑑𝑝𝐼
𝑑𝑡

= 𝐹𝐼 − 𝛾𝑝𝐼 +
√︀

2𝑀𝐼𝑘𝐵𝛾𝑇𝜈(𝑇 ) (2.35)

where 𝑝𝐼 , 𝐹𝐼 , and 𝑀𝐼 are the momentum of atom 𝐼, the force acting on that atom, and its

mass, respectively. Two parameters – 𝛾 and 𝜈(𝑇 ) denote the friction and the white-noise

terms [190].

In summary, aiMD represents an accurate way to calculate fully anharmonically the nu-

clear dynamics. The ensemble average for the property of interest, must be converged with

respect to the trajectory length. The cost of simulations comes from (i) the simulations

with relatively large supercells (hundreds of atoms), (ii) a necessity to compute the electronic

ground state at every time step of simulation, and (iii) simulations should be performed for
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sufficiently long time so that the aiMD trajectory will cover the phase space of the system.

We should also note that in some systems, the quantum nature of the nuclei can play a

significant role in the description of materials properties [191–193]. For example, simulations

of ice and water require a quantum mechanical treatment of the nuclear dynamics [194,195].

Such simulations can be performed using path-integral molecular dynamics [192,196]. These

effects are particularly important for light atoms and especially at low temperatures. At high

temperature, the anharmonic nature of vibrations dominates over quantum effects. As will

be shown later, this thesis is focused on temperatures, where quantum nuclear effects lose

their impact. Thus, nuclear quantum effects will not be considered.

2.3 Anharmonicity quantification

Materials with substantially anharmonic lattice dynamics are not rare [11,68]. With growing

temperature, the anharmonicity of the PES becomes more and more noticeable. To inspect

anharmonic contributions to the lattice dynamics, we can split the full potential energy VBO

into the harmonic contribution V𝐻𝐴 and a term that captures the anharmonicity of the PES

V𝐴:

𝑉BO = 𝑉 𝐻𝐴 + 𝑉 𝐴 (2.36)

Consequently, we can also split the interatomic forces. For example the total force acting on

atom 𝐼 is:

𝐹𝐼 = −𝜕𝑉BO

𝜕𝑅𝐼
= 𝐹𝐻𝐴

𝐼 + 𝐹𝐴
𝐼 (2.37)

Therefore, information about anhamonicity is stored in the forces. To quantify the amount

of anharmonicity authors of [68] introduced a so-called anharmonicity measure, which can be

defined at finite temperatures as:

𝜎𝐴(𝑇 ) =

√︃∑︀
𝐼𝛼⟨(𝐹𝐴

𝐼𝛼)2⟩𝑇∑︀
𝐼𝛼⟨(𝐹𝐼𝛼)2⟩𝑇

(2.38)

Here, ⟨·⟩𝑇 denotes the thermodynamic ensemble average evaluated at temperature T. The

ability of Eq. (2.38) to distinguish harmonic and anharmonic materials is discussed in detail

in [68,197].

The evaluation of the total force 𝐹𝐼 in Eq. (2.38) can be done by performing aiMD

simulations. Alternatively, one can utilize high-order force constants obtained by truncating

the Taylor series introduced in Eq. (2.1) at the terms following the harmonic term. Commonly,

such an approach truncates the series at the third order term, since inclusion of higher-order

force constants becomes computationally prohibitively demanding [167, 198]. Higher-order

force constants can also be obtained by fitting to the anharmonic force constants obtained

by sampling the anharmonic PES at finite temperatures as it is done in the self-consistent

phonon theory SSCHA [166, 199–201] or temperature-dependent effective potential method

TDEP [69–71].
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2.4 Lattice thermal expansion

The nuclear motion also causes an increase of the dynamical pressure, which can results in

the expansion of the the lattice. This effect is not accounted in the harmonic approximation.

In the harmonic approximation, dynamics of a lattice is completely determined by the dy-

namical matrix 𝐷𝐼𝐽 (see Eq. 2.16) and the Hamiltonian of the system does not depend on the

lattice parameters. Consequently, the lattice expansion coefficient vanishes in the harmonic

approximation [9, 152]. However, it is possible to calculate the lattice thermal expansion in

the quasi-harmonic approximation (QHA) [152–154]. In the QHA, phonon frequencies are

volume-dependent and it is assumed that for each crystalline volume, the harmonic approx-

imation holds, i.e., the temperature dependence of the phonon frequencies is defined as the

temperature dependence of the volume 𝜔(𝑉, 𝑇 ) ≈ 𝜔(𝑉 (𝑇 )). At finite temperatures, the equi-

librium lattice parameters correspond to the minimum of the Gibbs free energy 𝐺, which

contains the Helmholtz free energy term and 𝑝𝑉 term. The Helmholtz free energy 𝐻 is

determined as:

𝐻(𝑇, 𝑉 ) = 𝐸lat(𝑉 ) + 𝐸vib(𝑇, 𝑉 ) − 𝑇𝑆(𝑇, 𝑉 ) (2.39)

where 𝐸lat(𝑉 ) is the total energy of the lattice, which can be computed using the DFT

framework, 𝐸vib(𝑇, 𝑉 ) is the vibrational energy of the lattice (phonons), and 𝑆(𝑇, 𝑉 ) is

the entropy associated with the vibrations. The vibrational energy is determined using the

partition function written in Eq. (2.19) as [152]:

𝐸vib(𝑇, 𝑉 ) = −𝑘B𝑇 ln𝑍 =
1

𝑁

∑︁
𝑙𝑞

[︂
1

2
+ 𝑛𝑙𝑞(𝑇, 𝑉 )

]︂
~𝜔𝑙𝑞(𝑉 ) (2.40)

where 𝑁 is the number of terms in the sum, 𝑛𝑙𝑞 is the Bose-Einstein factor, and 𝜔𝑙𝑞 is the

frequency of the phonon with wave vector 𝑞 in the 𝑙-th band. The entropy term can be

calculated by taking the partial derivative of the Helmholtz free energy with respect to the

temperature at fixed volume:

𝑆 =

(︂
𝜕𝐻

𝜕𝑇

)︂
𝑉

= − 1

𝑁

∑︁
𝑙𝑞

𝑘B ln

[︂
1 − exp

(︂
−
~𝜔𝑙𝑞(𝑉 )

𝑘B𝑇

)︂]︂
+

1

𝑁𝑇

∑︁
𝑙𝑞

~𝜔𝑙𝑞(𝑉 )

exp
(︁
−~𝜔𝑙𝑞(𝑉 )

𝑘B𝑇

)︁
− 1

(2.41)

The temperature dependence of the volume is then computed by minimizing the Gibbs

free energy for a particular finite temperature T and pressure 𝑝:

𝐺(𝑇, 𝑝) = min
V

[𝐸lat(𝑉 ) + 𝐸vib(𝑇, 𝑉 ) − 𝑇𝑆(𝑇, 𝑉 ) + 𝑝𝑉 ] (2.42)

Fitting of 𝐺(𝑉 ) (or equivalently 𝐻(𝑉 ) at zero pressure) with the Birch-Murnaghan equation

of state [202, 203] allows to obtain the temperature-dependent equilibrium lattice parame-

ters [204]. As an example, Fig. 2.3(a) shows the Helmholtz free energy for different volumes

and different temperatures in GaAs. Fig. 2.3(b) shows the temperature dependence of the

volume in GaAs.

In the case of aiMD simulations of the canonical ensemble (NVT) the LTE can be taken

into account by computing the thermodynamic average of the stress tensor observed along
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(a) (b)

Figure 2.3: (a) Helmholtz free energy 𝐻 for GaAs as a function of volume at different

temperatures (from 0 K to 1000 K). (b) Temperature dependence of the unit cell volume of

GaAs.

the aiMD trajectory [68, 85]. This stress tensor allows to estimate the internal pressure and

then re-optimize the structure under this internal pressure to obtain thermally expanded

geometries.

The thermodynamic pressure at a given crystal volume 𝑉 and temperature 𝑇 is:

𝑝(𝑉, 𝑇 ) =
𝑁𝑘B𝑇

𝑉
+ 𝑝pot(𝑉0, 𝑇 ) + 𝑝int(𝑉 ) (2.43)

Here 𝑉0 denotes the volume at static equilibrium. The first term in Eq. (2.43) represents

a kinetic pressure, the second one is a potential pressure, and the last term is the internal

pressure, which is induced by the lattice renormalization at finite temperatures in the NVT

simulations. Thus, aiMD simulations at the equilibrium volume and the temperature of

interest should be performed for sufficiently long time, so that the potential pressure is

converged. The internal pressure is then calculated based on the assumption that it is not

dependent on the temperature and can be obtained from the mechanical characteristics of

the lattice at zero temperature. This is achieved by calculating the 𝑝(𝑉 ) dependence, which

is then parameterized by the Vinet equation of state [205]:

𝑝𝑖𝑛𝑡 =
3𝐵0

𝑋2
(1 −𝑋)𝑒𝜈(1−𝑋) with 𝑋 =

[︂
𝑉

𝑉0

]︂1/3
and 𝜈 =

3

2

(︀
𝐵′

0 − 1
)︀

(2.44)

where 𝐵0 is the bulk modulus, and 𝐵′
0 = 𝜕𝐵0/𝜕𝑝 is the isothermal pressure derivative of the

bulk modulus. As it was mentioned above, we assume that these parameters are obtained

for the static lattice in equilibrium and any temperature dependence in neglected.

Once we obtained the parameterization (𝑉0, 𝐵0, 𝐵
′
0) by fitting the Vinet equation of state,

the temperature-dependent volume 𝑉min(𝑇 ) is found by asserting zero pressure at equilibrium.

The resulting internal pressure 𝑝int can be used to find the static reference lattice at finite
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temperature 𝐿(𝑇 ) by optimizing the geometry with applied external pressure during relax-

ation 𝑝relaxation = −𝑝int(𝑉min). The static lattice obtained in this way will then generate

a static pressure contribution, which will compensate the pressure appearing in the aiMD

NVT simulation. Once the new lattice is obtained, it should be verified that it indeed leads

to a negligible pressure during NVT simulations. If a significant deviation still exists, the

procedure should be repeated until self-consistency is achieved.

Summary of the chapter

In this chapter, we introduced essentials of the lattice dynamics theory. We discussed the

harmonic approximation, the phonons formalism, and showed how to account for polar effects

using NAC. We also introduced the stochastic sampling approach, which can be used to

describe the atomic movement in the harmonic approximation. We established the essentials

of the aiMD, which allows to perform fully anharmonic calculations of the nuclear motion.

Finally, we showed how to calculate LTE in the QHA and in aiMD simulations.
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Chapter 3

The temperature dependence of

electronic states

In this chapter, we will discuss how electron-phonon interactions (EPI) influence the band gap

of semiconductors and insulators at finite temperatures [7–9,56]. We will evaluate two distinct

contributions: the role of the nuclear motion and the role of the lattice thermal expansion

(LTE) [12, 206, 207]. The nuclear motions influence on the band structure renormalization

can be observed already at zero temperature. The zero-point motion of atoms, governed by

the uncertainty principle, leads to a zero-point shift of the band structure. The zero-point

renormalization (ZPR) of the band gap can be substantial, for example, in diamond it is

≈370 meV [12,207], while the total band gap of diamond is 5.47 [208] eV.

Nowadays, the Allen-Heine-Cardona (AHC) formalism [57, 58] is the most widely used

method to investigate the band gap renormalization [17, 18, 22, 41, 52]. In this chapter, we

will review the main aspects of the AHC formalism with its benefits and limitations. Then,

we will discuss how to overcome some of these limitations by means of aiMD simulations

and the band structure unfolding technique [85]. We will also discuss how to calculate the

influence of LTE on band structure changes and how to account for the influence of long-range

electrostatic effects [40,42,43,93,209].

3.1 Influence of the nuclear motion

The influence of atomic motion on electronic eigenstates can be demonstrated using diatomic

molecules such as H2 or CO.1 These diatomic molecules have six vibrational modes, which can

be divided into three translational, two rotational, and one stretch mode. Only the stretch

mode affects the renormalization of electronic eigenstates. For demonstration purposes, we

calculated the highest occupied molecular orbital (HOMO) of both molecules as a function

of the interatomic distance. The dependence of HOMO on bond length is shown in Fig. 3.1.

A theoretical formulation of the band gap renormalization under finite temperatures can

be started assuming that the Born-Oppenheimer approximation is valid. Then, for a given set

of atomic coordinates 𝑅 = {𝑅1, 𝑅2, · · · , 𝑅M}, the electronic Scrödinger equation �̂�𝑅
𝑒 |Ψ𝑅

𝑛 ⟩ =

1This demonstration is inspired by a study on the effect of zero-point motion on the valence band bandwidth

in 3He [210] and the lecture of X. Gonze, given in the EPW school in 2018.
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Figure 3.1: Variation of the highest occupied molecular orbital (HOMO) with the distance

between atoms in the hydrogen molecule H2 (red disks) and the carbon monoxide CO (blue

squares).

𝜖𝑅𝑛 |Ψ𝑅
𝑛 ⟩ is solved to obtain the energies 𝜖𝑅𝑛 of the electronic states |Ψ𝑅

𝑛 ⟩. Subscript 𝑛 denotes

simultaneously the band index and the crystal-momentum. The temperature dependence of

𝜖𝑅𝑛 is evaluated using the canonical ensemble average at temperature T:

⟨𝜖𝑅𝑛 ⟩𝑇 =
1

𝑍

∫︁
𝑑𝑅𝑑p exp

(︂
−𝐸(𝑅,p)

𝑘B𝑇

)︂
𝜖𝑅𝑛 (3.1)

where 𝑅 and p are positions and momenta of the nuclei, 𝑘B is the Boltzmann constant,

𝑍 =
∫︀
𝑑𝑅𝑑p exp [−𝐸(𝑅,p)/𝑘B𝑇 ] is the canonical partition function, and 𝐸(𝑅,p) is the

total energy. Vibrations in crystals consist of a combination of different normal modes,

leading to fluctuations in electronic eigenstates around their equilibrium positions. At finite

temperatures, electronic states shift and spread due to the scattering, which determines finite

lifetime of the electrons and holes at finite temperatures [8].

Allen-Heine-Cardona formalism

In practice, the most widely adopted approach to evaluate Eq. (3.1), in the scope of first

principles calculations, is the AHC formalism [57, 58]. This formalism allows to find an ap-

proximate solution to Eq. (3.1) by utilizing two approximations based on the perturbation

theory, namely: (i) the dependence of the electronic eigenstates on the nuclear motion is

truncated up to the second order in the atomic displacements and (ii) the harmonic approx-

imation is used for the lattice dynamics description. The latter approximation allows to

simplify the problem introduced in Eq. (3.1) as ⟨𝜖𝑅𝑛𝑘⟩𝑇 ≈ ⟨𝜖𝑅𝑛𝑘⟩ha𝑇 :

⟨𝜖𝑅𝑛 ⟩ha𝑇 =
1

𝑍ha

∫︁
𝑑𝑅ha𝑑pha exp

(︂
−𝐸ha(𝑅ha,pha)

𝑘B𝑇

)︂
𝜖𝑅𝑛 (3.2)
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Once the dependence of the electronic states on the nuclear motion is truncated up to

the second order in nuclear displacements U = 𝑅 − 𝑅0 from the equilibrium positions 𝑅0,

one obtains further simplification ⟨𝜖𝑅𝑛𝑘⟩ha𝑇 ≈ ⟨𝜖pt,𝑅𝑛𝑘 ⟩ha𝑇 . Consequently, the T-dependence of the

electronic states in the AHC formalism reads as:

⟨𝜖pt,𝑅𝑛 ⟩ha𝑇 =
1

𝑍ha

∫︁
𝑑𝑅ha𝑑pha exp

(︂
−𝐸ha(𝑅ha,pha)

𝑘B𝑇

)︂
𝜖pt,𝑅𝑛 (3.3)

The combination of the two approximations mentioned above leads to the evaluation of

Eq. (3.3) in the AHC formalism [57,58] as:

⟨𝜖pt,𝑅𝑛 ⟩𝑇 = 𝜖eq𝑛𝑘+

+
1

2

∑︁
𝐼𝐽

⟨Ψeq
𝑛 |𝜕2𝐼𝐽�̂�eq

𝑒 |Ψeq
𝑛 ⟩𝑈𝐼𝑈𝐽⏟  ⏞  

Debye-Waller term

+
∑︁
𝐼𝐽

∑︁′

𝑛′

⟨Ψeq
𝑛 |𝜕𝐼�̂�eq

𝑒 |Ψeq
𝑛′ ⟩ ⟨Ψeq

𝑛′ |𝜕𝐽�̂�eq
𝑒 |Ψeq

𝑛 ⟩
𝜖𝑛 − 𝜖𝑛′

𝑈𝐼𝑈𝐽⏟  ⏞  
Fan-Migdal term

(3.4)

where the prime on the summation indicates that the index (𝑛′) = (𝑛) is omitted, and

superscript ”eq” indicates that the electronic states |Ψeq
𝑛 ⟩ and |Ψeq

𝑛′ ⟩ are evaluated for the

structure in equilibrium geometry. The second and third terms in the Eq. 3.4 are called the

Debye-Waller term and Fan-Migdal term, respectively [53–55,57]. The AHC formalism allows

to perform evaluation of the phase-space integrals in Eq. (3.1) as shown in [15,39,52,211,212].

It should be also noted that derivations above are done in the adiabatic approximation, while

the non-adiabatic derivation was presented and benchmarked only recently [213].

Methodology and technical details of the calculations based on the AHC formalism are

widely described in literature [10, 60, 61] and the method is widely and successfully ap-

plied [12–19,21,22,52,94,182,207,213–216]. We also note that for strongly correlated materials

calculations of EPI can be done using DFT+U formalism [217–219] (and its linear-response

extension DFPT+U [220]). Furthermore, the inclusion of the many-body effects can be done

using post-DFT methods such as GW [221,222] as was shown, for example, in [223–225].

Despite the success of the AHC formalism, the methodology is not suited to straightfor-

wardly treat highly anharmonic materials, because in such systems nuclear movement cannot

be accurately approximated by a harmonic potential. Typically, soft modes presented in

highly-anharmonic materials are either removed from the calculations or anharmonicity can

be treated using approaches such as SSCHA [72] or TDEP [69, 70]. Usage of the anhar-

monic phonon modes were shown to be vital to describe the temperature-dependent band

gap renormalization in SrTiO3 [76].

Fully anharmonic non-perturbative approach to the band gap renormaliza-

tion evaluation due to the nuclear motion

An alternative approach, which allows to treat both harmonic and anharmonic materials

on equal footing, was recently introduced in [85]. In principle, Eq. (3.1) can be evaluated

based on aiMD simulations [79, 85, 91, 226–229], which allows to completely account for the

anharmonicity of the BO PES. In this approach, aiMD trajectories with length 𝜏 are used to

evaluate the canonical ensemble average in Eq. (3.1) as a time 𝑡 average:
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⟨𝜖𝑅𝑛𝑘⟩𝑇 = ⟨𝜖𝑅𝑛𝑘⟩aiMD
𝑇 = lim

𝜏→∞

1

𝜏

∫︁ 𝜏

0
𝜖
R(t)
𝑛𝑘 𝑑𝑡 (3.5)

The evaluation of Eq. (3.5) is assumed to be accurate above the Debye temperature. For

the materials in which the nuclear quantum effects are important [191–193, 230], one can

utilize ab initio path-integral MD [196]. Though aiMD can be used to evaluate the canonical

ensemble average in Eq. (3.1), it also limits the straightforward analysis of the state and

momentum resolved properties. This problem is related to the usage of the supercells during

aiMD calculations, which cause mixing of electronic states, since the supercell BZ (SCBZ) is

smaller than the primitive cell BZ (PCBZ) and folding of states occurs [80, 81, 83]. Because

of the band-folding the evaluation of the band gap renormalization was usually done by

calculating the electronic density of states, with subsequent estimation of the edge gap [182,

228]. Recently, it was demonstrated [85] that the combination of aiMD simulations can

be used with band-unfolding technique [80, 81, 83, 231] to obtain the temperature-dependent

momentum-resolved spectral functions. Thus, band-unfolding allows to identify state- and

momentum-resolved band structures quantities such as band gaps and lifetimes of electrons

and holes.

In practice, the workflow starts with the calculation of the electronic energies 𝜖
𝑅(t)
𝑛 and the

electronic states Ψ
𝑅(t)
𝑛 at each aiMD step characterized by particular nuclear configuration

{𝑅(t)}. Then the electronic states Ψ
𝑅(t)
𝑛 are expanded in terms of the equilibrium states

|Ψeq
𝑙 ⟩ obtained for the equilibrium nuclear configuration (𝑅0):

|Ψ𝑅(t)
𝑛 ⟩ =

∑︁
𝑚

𝑝R(t)
𝑚𝑛 |Ψeq

𝑙 ⟩ , 𝑝R(t)
𝑚𝑛 = ⟨Ψeq

𝑙 |Ψ𝑅(t)
𝑛 ⟩ (3.6)

Disentangling of the eigenenergies calculated during the aiMD simulation with the super-

cell requires unfolding the states from the SZBZ to the PCBZ. This is done based on the

unfolding technique [80, 83, 231–236]. As was shown in [81, 85], the expansion coefficients

introduced in Eq. (3.6) can be used to recover the band structure in the PCBZ. This is done

by calculating the spectral function expressed in the Lehman representation [81]:

𝐴
𝑅(t)
𝑛𝑘 (𝜖) =

∑︁
𝑁𝐾

|𝑝𝑅(t)
𝑛𝑘,𝑁𝐾 |2𝛿(𝜖− 𝜖

𝑅(t)
𝑁𝐾 ) (3.7)

If Eq. (3.7) is evaluated for each nuclear configuration {𝑅(t)} of the aiMD simulation,

one can obtain the momentum-resolved spectral function by summing over band indices 𝑛:

𝐴
𝑅(t)
𝑘 (𝜖) =

∑︁
𝑁𝐾

∑︁
𝑛

|𝑝𝑅(t)
𝑛𝑘,𝑁𝐾 |2𝛿(𝜖− 𝜖

𝑅(t)
𝑁𝐾 ) (3.8)

Then the momentum-resolved spectral function at finite temperature ⟨𝐴𝑅(t)
𝑘 (𝜖)⟩T is ob-

tained by performing thermodynamic averaging of 𝐴
𝑅(t)
𝑘 (𝜖) along the aiMD trajectory. There-

fore, combination of the canonical ensemble sampling technique,(it can be either aiMD or

stochastic sampling [180]) allows to compare calculated ⟨𝐴𝑅(t)
𝑘 (𝜖)⟩T with angle-resolved pho-

toemission spectroscopy experiments [237]. A
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Brillouin Zone folding and unfolding

In order to account for all vibrational modes which contribute to the specific quantity of

interest aiMD simulations require utilization of a supercell (SC). A SC represents a simulation

cell which is constructed from multiple numbers of primitive cells (PC). The lattice vectors

𝐴 of the SC are related to the PC lattice vectors 𝑎 through the transformation matrix:⎛⎜⎝𝐴𝑥

𝐴𝑦

𝐴𝑧

⎞⎟⎠ =

⎛⎜⎝𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

⎞⎟⎠
⎛⎜⎝𝑎𝑥𝑎𝑦
𝑎𝑧

⎞⎟⎠ (3.9)

or in shorter form:

𝐴𝑖 =
∑︁
𝑗

𝑀𝑖𝑗𝑎𝑗 (3.10)

where 𝑀𝑖𝑗 are the integer elements of the transformation matrix 𝑀 . Since the SC is an exact

repetition of the reference PC and taken into account that no defects were introduced in the

SC, the positions of atoms in the SC and PC are mapped to each other unambiguously by

the transformation matrix 𝑀 .

The reciprocal lattice is generated by the reciprocal lattice vectors 𝑏, in a way that 𝑎𝑖 ·𝑏𝑖 =

2𝜋𝛿𝑖𝑗 : ⎛⎜⎝𝑏𝑥𝑏𝑦
𝑏𝑧

⎞⎟⎠ = 2𝜋

⎛⎜⎝𝑎𝑥𝑎𝑦
𝑎𝑧

⎞⎟⎠
−𝑇

(3.11)

and the reciprocal lattice of the SC is simulated similarly by utilizing reciprocal lattice vectors

of the SC 𝐵. Taken into account the connection between SC and PC Eq. (3.10), the reciprocal

lattice vectors of the SC are related to the reciprocal lattice vectors of the PC via:⎛⎜⎝𝐵𝑥

𝐵𝑦

𝐵𝑧

⎞⎟⎠ =

⎛⎜⎝�̄�11 �̄�12 �̄�13

�̄�21 �̄�22 �̄�23

�̄�31 �̄�32 �̄�33

⎞⎟⎠
⎛⎜⎝𝑏𝑥𝑏𝑦
𝑏𝑧

⎞⎟⎠ (3.12)

or in a shorter form:

𝐵𝑖 =
∑︁
𝑗

(𝑀𝑇 )−1
𝑖𝑗 𝑏𝑗 (3.13)

where 𝑀𝑇 is the transposed matrix 𝑀 and (𝑀𝑇 )−1 its inverse.

Consequently, an arbitrary 𝐾 point of the SC reciprocal lattice is related to the PC 𝑘

point through the transformation matrix 𝑀 :⎛⎜⎝𝐾𝑥

𝐾𝑦

𝐾𝑧

⎞⎟⎠ =

⎛⎜⎝𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

⎞⎟⎠
⎛⎜⎝𝑘𝑥𝑘𝑦
𝑘𝑧

⎞⎟⎠ (3.14)

The reciprocal lattice vectors have the form 𝐺 =
∑︀

𝑖𝑚𝑖𝐵𝑖 for the SC and 𝑔 =
∑︀

𝑖 𝑛𝑖𝑏𝑖

for the PC. There are exactly 𝑁 = det(𝑀) = 𝑉𝑆𝐶/𝑉𝑃𝐶 (𝑉𝑆𝐶 and 𝑉𝑃𝐶 are volumes of the

SC and PC) distinct PC translations that generate the SC from the PC. If SC is constructed
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Figure 3.2: Schematic presentation of the BZ folding, which demonstrates the relations

between 𝑘 vectors of the PC, 𝐾 vector of the SC and reciprocal lattice vectors of the SC 𝐺

for a two-dimensional (a) 3 × 3 and (b) 2
√

2 × 2
√

2 SC. PCBZ is drawn in green, SCBZ is

drawn in red. Arrows represent the folding of different 𝑘𝑖 of the PCBZ into one 𝐾 of the

SCBZ. The reciprocal lattice vector 𝐺𝑖 shows the unfolding of 𝐾 into 𝑘𝑖.

from the 𝑁 PCs there are exactly 𝑁 reciprocal lattice vectors 𝐺𝑖. For a given vector 𝑘 in the

PCBZ there is only one 𝐾 in the SCBZ to which it folds and two vectors are connected by a

reciprocal lattice vector 𝐺𝑖 of the SCBZ, such as 𝑘𝑖 = 𝐾 + 𝐺𝑖. For each 𝐾 from the SCBZ

there are exactly 𝑁 PCBZ vectors 𝑘 as demonstrated in Fig. 3.2(a, b).

Let 𝑂𝑃𝐶(𝑘) and 𝑂𝑆𝐶(𝐾) denote expectation values of some 𝑘-sensitive observable �̂� in

the PC and SC, respectively. Then for the PC and SC we can write:

𝑂𝑃𝐶(𝑘 + 𝑔) = ⟨Ψ𝑃𝐶
𝑘+𝑔|𝑂|Ψ𝑃𝐶

𝑘+𝑔⟩ = ⟨Ψ𝑃𝐶
𝑘 |𝑂|Ψ𝑃𝐶

𝑘 ⟩ = 𝑂𝑃𝐶(𝑘) (3.15)

𝑂𝑆𝐶(𝐾 +𝐺) = ⟨Ψ𝑆𝐶
𝐾+𝐺|𝑂|Ψ𝑆𝐶

𝐾+𝐺⟩ = ⟨Ψ𝑆𝐶
𝐾 |𝑂|Ψ𝑃𝐶

𝐾 ⟩ = 𝑂𝑆𝐶(𝐾) (3.16)

where 𝑔 and 𝐺 are PC and SC reciprocal lattice vectors and we have used the periodicity

of the wave functions Ψ𝑃𝐶 and Ψ𝑆𝐶 defined for the PC and SC. The connection between

SC and BC established in Eq. (3.10) states that any translation of the PCBZ is also a valid

translation of the SCBZ. Which leads to:

𝑂𝑆𝐶(𝐾 + 𝑔) = 𝑂𝑆𝐶(𝐾) (3.17)

Consequently, expectation values 𝑂𝑃𝐶(𝑘) and 𝑂𝑆𝐶(𝐾) are periodic in the PC reciprocal

lattice and in addition, the usage of the SC introduces an additional periodicity [238]. If �̂�

is a Kohn-Sham Hamiltonian, one can illustrate the folding of the electronic eigenstates (see

Fig. 3.3). Obviously, the folding of the electronic eigenstates limits the analysis of the band

structure-related properties.

Another important observation we have to discuss before we progress to the actual un-

folding procedure is related to the connection between the supercell wave functions and the
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Figure 3.3: Folded (grey) and unfolded (blue) band structures of silicon calculated using

conventional cubic cell with 8 atoms. The unfolded bands reproduce the band structure of

the primitive unit cell of silicon. High-symmetry BZ path is used for demonstration.

unit cell wave functions. Suppose we have a wave function of the supercell Ψ𝐾 with Block

symmetry of the supercell: Ψ𝐾(𝑥+𝑅) = 𝑒𝑖𝐾𝑅Ψ𝐾(𝑥). Then we define a projection operator

𝑃 (𝐾) as [83,239]:

𝑃 (𝐾 → +𝐺) =
1

𝑁

𝑁∑︁
𝑖=1

𝑇 (𝑟𝑖)𝑒
−𝑖(𝐾+𝐺)𝑟𝑖 (3.18)

where 𝑇 (𝑟𝑖) is the translation operator 𝑇 (𝑟𝑖)𝑓(𝑥) = 𝑓(𝑥 + 𝑟𝑖). The projection operator is

periodic and idempotent.

Once 𝑇 (𝑅𝑖) acts on the SC wave function Ψ𝐾𝐽 it determines its Bloch property, 𝑇 (𝑅𝑖)Ψ𝐾𝐽 =

𝑒𝑖𝐾𝑅Ψ𝐾𝐽 . The similar expression is obtained when 𝑇 (𝑟𝑖) acts on the PC wave function. In

the unfolding procedure the projection operator 𝑃 (𝐾 → 𝐾 + 𝐺) operates on the SC Bloch

function Ψ𝐾 and ”projects out” the component that has the Bloch symmetry of the PC. The

ability of the projection operator to extract PC Bloch character from the SC wave function

can be demonstrated by first applying the projection operator on the test supercell wave-

function Ψ𝐾 and by then using the translation operator 𝑇 (𝑟𝑖) to examine the PC Bloch

character:

𝑇 (𝑟𝑖)𝑃 (𝐾 → 𝐾 +𝐺)Φ𝐾 =

𝑒𝑖(𝐾+𝐺)𝑟𝑗

𝑁

𝑁∑︁
𝑗=1

𝑇 (𝑟𝑖 + 𝑟𝑗)𝑒
−𝑖(𝐾+𝐺)(𝑟𝑖+𝑟𝑗)Φ𝐾 = 𝑒𝑖(𝐾+𝐺)𝑟𝑗𝑃 (𝐾 → 𝐾 +𝐺)Φ𝐾 (3.19)
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Thus, the projected function has an appropriate PC Bloch symmetry. This projection

shows the amount of the PC states Bloch character in the SC states [83, 231, 239]. The

unfolding technique is a method that allows to recover the PC Bloch character hidden in

the eigenfunctions and eigenvalues of the observable calculated using SC. Unfolding of the

electronic band structure is a well defined approach [80,83,231–236,240,241], which is widely

used [81, 239, 242–250]. As summarized in [83], unfolding of the SC states from the SCBZ

into the PCBZ can be done by projecting SC eigestates on the PC eigenstates:

𝑃𝐾𝐽(𝑘𝑖) = ⟨Ψ𝑚𝐾 |𝑃 (𝐾 → 𝐾 +𝐺)|Ψ𝑚𝐾⟩ =
∑︁
𝑗

| ⟨Ψ𝐾𝐽 |𝜓𝑘𝑖𝑗⟩ |
2 (3.20)

where 𝐽 and 𝑗 denote energy band indices of the SC and PC at wave vectors 𝐾 and 𝑘𝑖. Note

the similarity between Eq. (3.20) and Eq. (3.6). In fact, the linear expansion coefficients

defined in Eq. (3.6) are exactly the spectral weights defined in Eq. (3.20). Therefore, spectral

weights contain information about the EPI at finite temperatures.

In the case of equilibrium structures, unfolding spectral weights defined in Eq. (3.20) can

be used to recover primitive unit cell band structure exactly, as shown in Fig. 3.3. Moreover,

these unfolding weights can be used to calculate the spectral function [82]. However, the

usage of the different basis sets lead to different formulations of the unfolding method [251].

Unfolding spinor wave function requires additional formulation. However, here we perform

only spin-unpolarized calculations and thus, do not discuss how to treat spinor wave functions

in the unfolding procedure. The details of such calculations are discussed in [84].

3.2 Spectral weights formalism in NAO basis

The band-unfolding formalism is well described for DFT codes, utilizing plane waves as

basis [81, 84, 239, 248, 249] and codes, which use localized basis functions [85, 232]. We use

FHI-aims package, which requires an adaptation of the equations, since the electronic states

of the SC Ψ𝑁𝐾 and PC 𝜓𝑛𝑘 are expanded as a linear combination of Block-like functions [5]

with expansion coefficients 𝑐𝑗,𝑛𝑘 and 𝐶𝐽,𝑁𝐾 :

𝜓𝑛𝑘 =
∑︁
𝑗

𝑐𝑗,𝑛𝑘𝜒𝑗(𝑘) (3.21)

Ψ𝑁𝐾 =
∑︁
𝐽

𝐶𝐽,𝑁𝐾𝜒𝐽(𝐾) (3.22)

Here, the Bloch-type functions were introduced to enforce periodic boundary conditions in

FHI-aims [5]. These functions were introduced in Eqs. (1.52, 1.53), but for convenience we

will write them again here:

𝜒𝑗(𝑘) =
∑︁
𝑙

𝑒−𝑖𝑘𝑙𝜑𝑗 (3.23)

𝜒𝐽(𝐾) =
∑︁
𝐿

𝑒−𝑖𝐾𝐿Φ𝐽 (3.24)

Here, 𝜑𝑗(𝑟) and Φ𝐽(𝑅) denote atomic orbitals defined in Eq. (1.42) and the sums are taken

over all lattice vectors 𝑙 and 𝐿.
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The overlap matrix elements 𝑝𝑛𝑘,𝑁𝐾 are then:

𝑝𝑛𝑘,𝑁𝐾 = ⟨𝜓𝑛𝑘|Ψ𝑁𝐾⟩ =

√︂
𝐿

𝑙

∑︁
𝑗𝐽

𝑐*𝑗,𝑛𝑘𝐶𝐽,𝑁𝐾

∑︁
𝑙

𝑒−𝑖𝑘𝑙 ⟨𝜑𝑗,𝑙|Φ𝐽,0⟩ 𝛿𝑘−𝐺,𝐾 (3.25)

where the first summation runs over all real basis functions 𝜑𝑖,𝑙 and Φ𝐽,0 of the reference

primitive cell and perturbed supercell, respectively. The corresponding Born-von Karman

supercells contain 𝑙 and 𝐿 periodic replicas of the original cell, set at 0, along each Cartesian

direction. The presence of the Kronecker delta 𝛿𝑘−𝐺,𝐾 ensures that K is mapped onto k via

a reciprocal lattice vector G.

Taking the summation over all 𝑛 bands in Eq. (3.25) yields the spectral weights defined

in Eq. (3.8):

𝑃𝑘,𝑁𝐾 =
𝐿

𝑙

∑︁
𝑗𝐽𝑙

𝐶*
𝐽,𝑁𝐾𝐶𝑗,𝑁𝐾𝑒

−𝑖𝑘𝑙 ⟨Φ𝑗,𝑙|Φ𝐽,0⟩ 𝛿𝑘−𝐺,𝐾 (3.26)

where the quantity in the brakets is the overlap matrix, which is present due to the non-

orthogonality of NAOs. In the case of calculations with orthogonal basis functions, e.g.,

plane waves, this quantity vanishes [239, 248]. Eq. (3.26) shows that in order to obtain the

spectral weights we only need to calculate band structures for the SC and have a mapping

between SC and PC atoms. The methodology to perform band structure unfolding using

Eq. (3.26) was described in [85].

In this thesis, we used a slightly different approach to calculate Eq. (3.25). In partic-

ular, translation operator 𝑇 commutes with the Hamiltonian and thus, eigenstates of the

translation operator can be chosen as eigenstates of the Hamiltonian. Consequently, spectral

weights can be calculated by projecting supercell electronic eigenstates on the eigenstates

of the projection operator. However, the basis set utilized in FHI-aims is non-orthogonal,

which leads to the generalized eigenvalue problem written in Eq. (1.45). In principle, we

can perform Löwedin orthogonalization [101] in order to transfer Eq. (1.45) to eigenvalue

problem. This is done by defining new basis set |Ψ′
𝑁 ⟩ = 𝑆1/2 |Ψ𝑁 ⟩, where 𝑆 is the overlap

matrix and Ψ𝑁 is the wave functions obtained in the calculation with supercell. Transformed

eigenvalue problem then will have the form �̂� ′ |Ψ′
𝑁 ⟩ = 𝐸𝑁 |Ψ′

𝑁 ⟩, where �̂� ′ = 𝑆−1/2𝐻𝑆−1/2.

Similarly, to the generalized eigenvalue problem for electronic states, the translation matrix

in non-orthogonal basis satisfies a generalized eigenvalue problem:

𝑇 |𝑢𝛼⟩ = 𝜆𝛼𝑆 |𝑢𝛼⟩ (3.27)

where 𝜆𝛼 and 𝑢𝛼 are translation operator eigenvalues and eigenvectors. We note that 𝑇 =

𝑇 ′𝑆, where 𝑇 ′ is a permutation matrix, which corresponds to the same orbital translation as

𝑇 in orthogonal basis. Note that in the orthogonal basis, i.e. when 𝑆 is an identity matrix,

𝑇 ′ = 𝑇 . When Eq. (3.27) is multiplied by ⟨𝑢𝛼|, we obtain:

⟨𝑢𝛼|𝑇 |𝑢𝛼⟩ = 𝜆𝛼 ⟨𝑢𝛼|𝑆|𝑢𝛼⟩ (3.28)

Next we perform Löwedin transformation for the basis |𝑢𝛼⟩, by defining |𝑢′𝛼⟩ = 𝑆1/2𝑢𝛼:

⟨𝑢′𝛼|𝑆−1/2𝑇 ′𝑆1/2|𝑢′𝛼⟩ = 𝜆𝛼 ⟨𝑢′𝛼|𝑆−1/2𝑆𝑆1/2|𝑢′𝛼⟩ (3.29)
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Then, we note that due to the symmetry [𝑇 ′, 𝑆] = 0, which leads to:

⟨𝑢′𝛼|𝑇 ′|𝑢′𝛼⟩ = 𝜆𝛼 ⟨𝑢′𝛼|𝑢′𝛼⟩ (3.30)

Eq. (3.30) is a standard eigenvalue problem for translation operator in orthogonal basis.

Therefore, spectral weights defined in Eq. (3.20) can be calculated as the projection of eigen-

vectors of the translation operator 𝑢′𝛼 in the orthogonal basis on the symmetrically orthogo-

nalized basis functions of the supercell 𝑆1/2Ψ𝑁 . As an example, Fig. 3.4(a) shows the spectral

function of Si calculated using Eq. (3.8) at T=500 K in the harmonic approximation [180].

The temperature-dependence of the band gap of Si is shown in Fig. 3.4(b). The results are

in agreement with previous calculations [16,17,211] and experimental data [207,252].

(a)
(b)

Figure 3.4: (a) Thermodynamically averaged spectral function of silicon at 500 K, com-

puted along the X-G BZ path. Band structure at zero temperature is shown as black

lines. (b) Temperature-dependent band gap renormalization in Silicon. Calculations were

performed with LDA xc-functional and the cubic supercell with 216 atoms, using a non-

perturbative (NP) treatment of the electron-phonon interaction. Nuclear motion is consid-

ered in the classical (CN) and the quantum (QN) limits. The experimental data is taken

from [252].

3.3 Influence of lattice thermal expansion and polar correc-

tions on the band gap renormalization

Anharmonic effects can significantly alter the phonon spectrum of materials with weak bond-

ing and large amplitude of the nuclear oscillations [68,181,214]. For such systems usually the

harmonic approximation is not valid. Inclusion of anharmonicity leads to renormalization of

the normal modes that affects phonon-phonon scattering and electron-phonon interaction in

these materials [68].
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The lattice thermal expansion – purely anharmonic effect, can be accounted by using

the quasi-harmonic approximation (QHA), which predicts equilibrium volumes of crystals

at finite temperatures [198, 253, 254]. For demonstration purposes, we computed the band

gap renormalization caused by the LTE for silicon and GaAs using the QHA as shown in

Fig. 3.5(a). In silicon, the LTE causes a small band gap opening (around 10 meV at T=700 K),

while in GaAs the band gap at T=700 K is decreased by approximately 50 meV because of

the LTE. Considering that at T=700 K, the total band gap renormalization in silicon is

around -240 meV and in GaAs it is around -300 meV, the contribution from the LTE cannot

be neglected. We should also note that phonon zero-point energy changes the equilibrium

lattice parameters at T=0 K. For Si the zero-point lattice expansion is around 9 meV, whereas

for GaAs it is -31 meV [255].

The QHA can provide qualitatively reasonable and sometimes even quantitatively accu-

rate results [152,154]. For example, aforementioned Si has negative LTE at low temperatures

and this effect is can be described using the QHA [256]. However, one should always remem-

ber that the QHA accounts for LTE in the leading order and does not capture anharmonicity

completely [254]. Recently, it was shown that only fully anharmonic calculations of the lattice

dynamics of silicon allow to obtain quantitatively accurate agreement with the experimental

measurements of the lattice expansion in Si [257].

Figure 3.5: Band gap renormalization caused by the LTE in silicon and GaAs. The LTE is

calculated using the QHA and by aiMD.

As was shown in the previous chapter, the LTE can be evaluated in aiMD simulations of

the canonical ensemble by computing the average stress tensor along the aiMD trajectory. In

this approach one computes the internal pressure at finite temperatures, which is them used

to reoptimize the structure until the stress tensor becomes negligible (see Sec. 2.4). Results

of the LTE influence on the band gap renormalization calculated from the aiMD for GaAs

are presented in Fig. 3.5. At T=700 K, the LTE calculated fully anharmonically leads to a

larger renormalization of the gap than in the calculations done with the QHA.
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Before we move to the next chapter we would like to highlight that consideration of long-

range electrostatic effects is also important for computations of the band gap renormalization.

In ionic solids such as GaAs or NaCl, the displacement of atoms along the longitudinal optical

(LO) modes induce macroscopic electric fields, which have long-range nature and are created

by the opposite movement of the atoms with different charges. These fields induce additional

scattering of electrons and thus, additional renormalization of electronic states. In literature,

this phenomenon is called Fröhlich electron-phonon coupling or polar coupling [16, 40, 42,

53, 54, 93]. The inclusion of polar coupling effects was shown to be crucial to accurately

determine band gap renormalization, for example, for polar materials as GaAs [209], GaN [93],

and SrTiO3 [85]. Rigorous determination of the correction caused by polar coupling and

methodology to compute it from the first principles was recently introduced [43]. Such

calculations are quite complex and since polar effects are not the main topic of this thesis we

utilize a simplified methodology presented in [93]. In this method an analytical expression

for the Fröhlich correction in the adiabatic case is derived:

⟨∆𝐸Fr
𝑛 ⟩HA

T =
−𝛼~𝜔LO

𝜋
· [2 tan−1 (𝑞F𝑎LO) [𝑛𝑇 + 1] + ln

⃒⃒⃒⃒
⃒𝑞F − 𝑎−1

LO

𝑞F + 𝑎−1
LO

⃒⃒⃒⃒
⃒𝑛𝑇 ] (3.31)

where ~ is Plank’s constant, 𝜔LO is a frequency of the LO phonon, 𝑛𝑇 is a Bose-Einstein

occupation factor [exp (~𝜔LO/𝑘𝐵𝑇 ) − 1]−1, 𝑞F is a truncation parameter, which could be

chosen to be equal to the radius of the Debye sphere – the sphere with the volume equal

to the volume of the BZ of the supercell used for simulations and 𝑞LO is
√︀
~2/2𝑚*~𝜔LO,

where 𝑚* is an effective mass of electrons or holes. 𝛼 in Eq. (3.31) is a dimensionless polaron

constant, which determines the strength of the polar coupling:

𝛼 =
𝑒2

4𝜋𝜖0~

(︂
1

𝜖∞
− 1

𝜖0

)︂(︂
𝑚*

2~𝜔LO

)︂1/2

(3.32)

where 𝑒 is a charge of electron, 𝜖 is vacuum permittivity, 𝜖∞ and 𝜖0 are high-frequency

dielectric constant and static permittivity, respectively. In the limit qF → ∞ and at T=0 K,

Eq. (3.31) reduces to ∆𝐸Fr
𝑛 = −𝛼~𝜔LO [258].

Practically, relatively small differences in parameters can cause substantial differences

in the polar correction estimation, for example, the difference between the high-frequency

dielectric constant and static permittivity has a substantial effect on the polaron constant

𝛼. Sensitivity can be demonstrated, for example, using GaAs, which has a small difference

between the static permittivity (12.5) and the high-frequency dielectric constants (10.9).

Consequently, the Fröhlich correction calculated for GaAs is relatively small. At zero tem-

perature, the polar coupling cause a shift of the valence band maximum of GaAs by 2 meV,

while the conduction band maximum shifts by -4.5 meV. Thus, the band gap renormaliza-

tion caused by Fröhlich polar coupling in GaAs is rather negligible (-6.5 meV at T=0 K and

-7.5 meV at T=300 K). However, as was recently demonstrated in [259] the case of GaAs

is rather an exception and for some materials inclusion of polar correction can cause sub-

stantial (of the order of 100 meV) gap renormalization. We will demonstrate the substantial

importance of the polar correction for GaN in the next chapter.
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Summary of the chapter

In this chapter, we demonstrated how the nuclear motion and the LTE cause the renormal-

ization of electronic eigenstates at finite temperatures. We reviewed the AHC formalism and

showed how to overcome its limitations. The methodology used in this thesis was established

in the study [85] and allows to calculate materials with any degree of anharmonicity on equal

footing. We also discussed improvements made to the initial implementation [85], such as the

analytical treatment of the eigenvectors of the translation operator and the incorporation of

diagonal and non-diagonal transformation matrices. The benchmark of the novel implemen-

tation is presented in the next chapter. Evaluation of the total band gap renormalization at

finite temperature also requires calculation of the contribution from the LTE and evaluation

of the polar correction. We discussed how the LTE can be taken into account in the QHA

and aiMD simulations. The polar correction in this thesis is estimated using the formulation

presented in [93].
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Chapter 4

Temperature-dependent band gap

renormalization in diamond and

zinc blende GaN

In this chapter, we systematically discuss the benchmark of the fully anharmonic non-

perturbative methodology for temperature-dependent band gap renormalization calculations.

We will discuss numerical aspects such as thermodynamic averaging, estimation of the error

bars, and the influence of the supercell size used in simulations. Diamond and zinc blende

gallium nitride (GaN) are employed as test systems due to the large amount of reference

literature data [16, 17, 52, 86–94]. All calculations are performed at the DFT-LDA level of

theory with the FHI-aims code [5]. Computational details are shown in Appendix B.

4.1 Temperature-dependent spectral functions

Prior to presenting the benchmark, it is necessary to establish a protocol for calculating

the temperature-dependent spectral function and band gap renormalization. The distorted

structural configurations, which give access to the influence of temperature on the nuclear

movement, can be generated either in the harmonic approximation [180] or by conducting

aiMD simulations. For each of the atomic configurations (in the following referred to as a

sample) considered, a band structure calculation is performed, followed by the computation of

spectral weights utilizing Eq. (3.26). These weights are then used to calculate the momentum-

resolved spectral function A(k,E) for each sample within the set, as outlined in Eq. (3.8). The

thermodynamically averaged spectral function ⟨A(k,E)⟩T is obtained by averaging the results

over the entirety of the set. The delta function 𝛿(𝑥) in Eq. (3.8) in practical calculations is

replaced by a Gaussian function 𝐺(𝑥)1:

𝐺(𝑥;𝐴,𝜇, 𝜎) =
𝐴

𝜎
√

2𝜋
exp

(︂
−(𝑥− 𝜇)2

2𝜎2

)︂
(4.1)

where the parameters denote the amplitude 𝐴 and the center 𝜇 of the Gaussian, and the

characteristic width of the Gaussian 𝜎. The full width at half maximum of the Gaussian
1It can be shown by considering Poisson’s integral that the delta function 𝛿(𝑥) can be represented as the

Gaussian function with very tiny width, i.e., 𝛿(𝑥) = lim𝜎→0 𝐺(𝑥)
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peak is 2𝜎
√

2 ln 2.

Fig. 4.1(a) shows the thermodynamically averaged momentum-resolved spectral function

of GaN at T=700 K. The electronic states experience a shift and obtain a finite width

under the influence of temperature. The renormalization of electronic states, at some finite

temperature T, is defined as the difference between the electronic state energy at temperature

T and its energy calculated at zero temperature. The energetic spreading of the electronic

states is related to the scattering at finite temperatures and manifests the finite lifetime of

the quasiparticles [8].

(a) (b)

Figure 4.1: (a) Thermodynamically averaged spectral function ⟨A(k,E)⟩T of GaN at

T=700 K, calculated along X-G BZ path. The band structure in static equilibrium is shown

using black lines. Averaging is done over 50 samples. The supercell contains 216 atoms.

(b) Spectral function at the G-point at different temperatures. Note that DFT-LDA cal-

culations underestimate [124–126] the experimental band gap value of GaN, which equals

3.28 eV [90]. The spectral function scale on both plots has arbitrary units, but we normal-

ized it in plot (a).

To determine the gap between valence and conduction bands at a specific crystal momen-

tum, a cut of the spectral function at this momentum is done. For example, the spectral

function of GaN resolved at the G-point and calculated at different temperatures, is shown in

Fig. 4.1(b). The temperature-dependent band structure can be obtained by connecting the

locations of the peaks of the spectral function. The connection of the peaks between neigh-

boring k-points of the BZ should be done accurately, considering (anti)crossing effects [260].

The band gap is measured as the distance between the positions of the Lorentzian functions

fitted to spectral function peaks, which represent valence band maximum and conduction
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band minimum.2 The Lorentzian function is the singly peaked function defined as:

𝐿(𝑥;𝐴,𝜇, 𝜎) =
𝐴

𝜋

[︂
𝜎

(𝑥− 𝜇)2 + 𝜎2

]︂
(4.2)

where the parameters denote the amplitude 𝐴 and the center 𝜇 of the Lorentzian, and the

characteristic width of the Lorentzian 𝜎. The full width at half maximum of the Lorentzian

peak is 2𝜎. In practice, we chose a certain energy window, which covers a region near the band

gap, and fit as many Lorentzian functions, as there are electronic energy states inside this

energy window. The adjustment of the numerical parameters of Lorentzians to the spectral

function peaks is done based on the least-squares minimization. Band structure, calculated

for the primitive cell in the equilibrium, is used to initialize positions of the Lorentzians. The

parameters of those Lorentzians, which are fitted to the degenerate states, are enforced to be

equal to each other.

4.2 Numerical aspects of calculations

Thermodynamic averages

The number of samples, used for thermodynamic averaging during the calculations of the

spectral function at finite temperatures should be carefully converged. In this section, we

will discuss the numerical aspects of this convergence process. The utilization of the harmonic

sampling methodology [180] was employed in order to generate uncorrelated geometries and

to investigate the impact of the ensemble size on the band gap’s renormalization convergence.

The convergence of the band gap renormalization with respect to the number of samples

used for averaging for GaN at T=300 K is presented in Fig. 4.2(a). The calculations were

performed utilizing both diagonal and non-diagonal transformation matrices, as defined by

Eq. (3.9), to generate supercells from a primitive cell. It was found that calculations with

larger supercells exhibit smaller variations of the band gap renormalization value with re-

spect to the number of samples in a set. The standard error of the mean3 of the band gap

renormalization for the simulation cells of any shape and size did not exceed 1 meV, as shown

in Fig. 4.2(b). Similar trends were observed for diamond as demonstrated in Fig. 4.3(a, b),

where the calculations were conducted at T=250 K. It is noteworthy that these results are

similar across a range of temperatures as shown in Fig. 4.4(a, b).

Temporal averages

Starting aiMD simulations with different initial conditions (atomic positions and velocities)

may result in diverse outcomes due to the inherent limitations of simulation time and con-

sequent potential undersampling of phase space. In order to determine the dependence of

the results on a particular aiMD trajectory, we employed forces obtained in the harmonic

2We assume that the spectral function peaks have Lorentzian lineshape, as discussed in [8]. Fitting can be

also performed with Gaussian or Voigt functions.
3The standard error of the mean 𝜎�̄� is calculated for 𝑛 statistically independent samples {𝑥1, 𝑥2, . . . , 𝑥𝑛}

taken from a statistical population with a standard deviation of 𝜎 as 𝜎�̄� = 𝜎/
√
𝑛. The discussion of difference

between the standard error and the standard deviation is presented in [261].
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(a)
(b)

Figure 4.2: (a) Convergence of the band gap renormalization for GaN at T=300 K with

respect to the number of samples used for averaging. (b) Standard error of the mean of band

gap renormalization with respect to the number of samples used for averaging. The shadowed

region on plot (a) also represents standard error of the mean. Diagonal and non-diagonal

transformation matrices (tm) are used to generate supercells.
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(a)
(b)

Figure 4.3: (a) Convergence of the band gap renormalization for diamond at T=250 K

with respect to the number of samples used for averaging. (b) Standard error of the mean

of band gap renormalization with respect to the number of samples used for averaging. The

shadowed region on plot (a) also represents the standard error of the mean. Diagonal and

non-diagonal transformation matrices (tm) are used to generate supercells.
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(a) (b)

Figure 4.4: Convergence of the band gap renormalization with respect to the number of

samples for (a) GaN and (b) diamond at different T. The shadowed region represents the

standard error of the mean. In both cases the supercells are cubic (generated using non-

diagonal transformation matrix) and contain 216 atoms.

approximation and generated a series of aiMD trajectories for GaN at T=300 K. Each har-

monic aiMD trajectory has 10 ps length, calculated with a timestep of 1 fs. For band gap

renormalization calculations, we randomly extracted 100 samples from each trajectory. The

temporal average for the renormalization of the band gap in GaN at T=300 K is illustrated

in Fig. 4.5. The value of the band gap renormalization has a negligible change once more

than a single aiMD trajectory is used.

Supercell size and shape

The band gap renormalization decays inversely proportional to the supercell size, as shown in

Fig. 4.6(a) and Fig. 4.6(b) for diamond and GaN, respectively. Usage of supercells with 216

atoms, generated through the application of a non-diagonal transformation matrix, is deemed

sufficient for evaluation of temperature-dependent renormalization of the band gaps in both

materials. The utilization of a non-diagonal transformation matrix may be beneficial, as it

allows for the attainment of converged results with smaller supercells, as has been discussed

in detail for phonon spectrum calculations [262].

It is important to note how the band gap estimation is done in the case of diamond.

At zero temperature, the VBM of diamond is degenerate. However, recent computational

studies have reported that at finite temperatures, this degeneracy is lifted [182, 212, 228].

This phenomenon has also been observed in silicon [85, 212]. Several authors have proposed

explanations for the lifting of this degeneracy. Some suggest that it is a finite size effect caused

by zone-center phonons, which should disappear in the limit of large supercells [212]. Others

argue that it can be attributed to quantum nuclear effects [228]. Our calculations shows that
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Figure 4.5: Temporal average of the band gap renomalization in GaN at T=300 K. A non-

diagonal transformation matrix is used to create supercells with 64 atoms. 100 samples were

chosen randomly from each trajectory for averaging.

(a) (b)

Figure 4.6: Band gap renomalization in (a) diamond at T=250 K and (b) GaN at T=300 K

with respect to the supercell size. Diagonal and non-diagonal transformation matrices (tm)

are used to generate supercells.

if diagonal transformation matrices are used to create supercells, the degeneracy splitting is

indeed observed, as depicted in Fig. 4.7 (a). In these cases, the band gap renormalization is

calculated as the difference between the average positions of all bands that form the VBM and

all bands that form the CBM [85, 182, 212]. However, when a non-diagonal transformation

matrix is used to create a supercell, the degeneracy splitting does not occur, as shown in

Fig. 4.7(b).
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(a) (b)

Figure 4.7: The valence band maximum and conduction band minimum of diamond at dif-

ferent temperatures. Calculations were performed utilizing a supercell (a) generated through

the application of a diagonal transformation matrix, resulting in a supercell containing 250

atoms and (b) utilizing a supercell with 216 atoms generated employing the non-diagonal

transformation matrix.

4.3 Influence of the nuclear motion and polar corrections

We start the discussion of the temperature-dependent band gap renormalization in diamond

and GaN within the harmonic approximation. Fig. 4.8(a, b) shows that the classical treatment

of the nuclear dynamics results in a linear dependence between the band gap renormaliza-

tion and temperature, whereas a quantum treatment of the nuclear dynamics results in a

non-linear temperature dependence for both materials. In the case of GaN, calculations in

the classical limit yield -135 meV gap renormalization at T=700 K, which is lower than in

the case of calculations with a quantum treatment of the nuclear motion. This highlights the

magnitude of the correction associated with the zero-point motion. Zero-point renormaliza-

tion of the band gap (ZPR) is evaluated as a difference between the classical zero-temperature

gap and the gap calculated using quantum limit for the nuclear motion. The ZPR calculated

for GaN is -89 meV, which is in agreement with the -94 meV previously reported in [182].

For the indirect band gap of diamond we obtain the ZPR=-348 meV (-345 meV with tight

settings), which is also in good agreement with previous theoretical works [16,211] and exper-

iments [89,207]. We also calculated the ZPR of the direct band gap of diamond and obtained

results are in agreement with previous publications as shown in Tab. 4.2.

GaN is a polar material. Thus, it is necessary to consider the impact of the Fröhlich

polar correction to the band gap renormalization. To accomplish this and quantify the role

of the polar correction in GaN, we utilized Eq. (3.31), which necessitates information about

the static permittivity 𝜖0, high-frequency dielectric tensor 𝜖∞, effective mass of electrons 𝑚*
𝑒

and holes 𝑚*
ℎ, and the energy of LO-phonon ~𝜔LO. In order to accurately determine ~𝜔LO, it

is essential to take into account LO-TO splitting through the utilization of NAC [171]. The
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(a) (b)

Figure 4.8: Temperature dependence of the band gap renormalization in (a) GaN and (b)

diamond due to the nuclear motion. Calculations are done with LDA functional and cubic

supercell containing 216 atoms. Thermodynamic averaging is done using 50 samples for GaN

and 100 samples for diamond. Non-perturbative (NP) harmonic treatment is applied taken

into account classical (CN) and quantum (QN) statistics for the nuclear motion.

NAC requires to know the Born effective charges 𝑍* and the high-frequency dielectic constant

𝜖∞, as discussed in Sec. (2.1). We carried out the calculation of 𝜖∞ in accordance with the

formalism presented in [175], yielding a value of 𝜖∞=5.56. The Z* tensor was computed

based on the method outlined in Sec. (2.1) and found to be isotropic (𝑍*
Ga=2.66 and 𝑍*

N=-

2.66). After the application of NAC we obtained the energy of LO phonon ~𝜔LO = 91 meV.

The conduction band of GaN is isotropic, as evidenced by the nearly equal effective mass of

electrons in all directions, which has been calculated to be 𝑚*
𝑒=0.17 m𝑒, where m𝑒 is the free

electron mass.

The VBM of GaN is triply degenerate. 4 The effective masses of heavy and light holes

display anisotropy. To estimate the polar correction for the valence band, we averaged effec-

tive masses of heavy and light holes calculated along the G-X BZ path. This was shown to

be legitimate for the estimation of the conduction band renormalization due to the polar cor-

rection [93]. The obtained effective mass for heavy holes is m*
ℎℎ=-0.84 m𝑒, and for light holes

m*
𝑙ℎ=-0.18 m𝑒. We utilized the experimental value of the static permittivity, 𝜖0=9.7 taken

from [90]. It should be noted that the values of both 𝜖∞ and 𝜖0 in the work [93] were taken

from literature data [90].5 The parameters employed in calculation of Eq. (3.31) and the

values used in other studies are summarized in Tab. 4.1. A consistency check with literature

data can be performed by comparing the polaron constant 𝛼𝑐, calculated for the conduction

band and polar correction to the conduction band in terms of the relation ∆𝐸Fr
𝑐 = −𝛼~𝜔LO

(see Sec. (3.3)). It can be then concluded that the results obtained in this study are consistent

4We performed calculations without spin-orbit coupling, thus the spin-off band is degenerate as well. The

influence of SOC on the band structure is discussed in detail in [263].
5As was told to the author of the thesis by the first author of the paper [93] in the private correspondence.
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with published data as shown in Tab. 4.1. The slight discrepancy can be attributed to vari-

ations in the longitudinal optical phonon energy, effective masses, high-frequency dielectric

constant, and static permittivity utilized in the respective studies.

Table 4.1: Parameters of GaN used to compute the polar correction to the CBM in our

work and in the literature. (a) is this work, (b) is [93], (c) is [213], (d) is the experimental

data measured at T=300 K [90].

Approach a, (Å) 𝜖∞ 𝜖0 m*
𝑒 ~𝜔LO (meV) 𝛼𝑐 ∆𝐸Fr

𝑐 (meV)

LDAa 4.475 5.56 9.7 0.17 91.3 0.39 -35

LDAb 4.499 5.3 9.7 0.16 89.0 0.42 -37

GGAc 4.545 6.13 11.0 0.144 86.0 0.34 -29

Expd (300 K) 4.52 5.3 9.7 0.13 87.3 0.38 -33

(a) (b)

Figure 4.9: (a) Temperature dependence of the Fröhlich polar correction to the band gap

renormalization in GaN, calculated using Eq. (3.31). In the case of classical nuclei, the

Bose-Einstein factor is replaced by its classical limit 𝑘B𝑇/~𝜔LO and zero point vibrations are

excluded. (b) Nuclear motion influence on the band gap renormalization at finite tempera-

tures, with and without the inclusion of the polar correction (PC).

Fig. 4.9(a) demonstrates the temperature dependence of the Fröhlich polar correction to

the band gap in GaN. We found that the polar correction to the ZPR equals -93 meV, which

reflects a considerable role of the Fröhlich interaction in GaN. Polar correction calculated

in the quantum limit does not grow that much with temperature and equals -105 meV at

T=700 K. Calculations in the classical limit lead to the polar correction of -28 meV at

T=700 K. Inclusion of the polar correction to the temperature dependence of the band gap

renormalization caused by the nuclear motion is shown in Fig. 4.9(b). Consequently, the

ZPR for GaN is obtained by summing contributions from the zero-point motion (-89 meV)

and the polar correction (-93 meV), which results in the band gap ZPR of -182 meV. These
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Table 4.2: The ZPR of the band gap of diamond and GaN. Values in curvy brakets represent

calculations in which tight numerical settings and basis set of FHI-aims was used for calcu-

lations. Experimental value of the ZPR for GaN is reported for the wurtzite polymorh [264].

References are given in square brakets. All values are reported in meV units.

This Work Previous Experiment

C-indirect -348 (-345) -330 [16], -344 [211], 370 [207], -410 [89]

-334 [17], -345 [212]

C-direct -429 (-433) -409 [265], -410 [17], -450 [212] -180±150 [89]

-416 [16], -430 [211] -450±370 [89]

GaN -182 (-180) -175 [94], -150 [93], -176 [213] -180 [264]

-127 [92], -94 [182]

results are in agreement with previous works, as summarized in Tab. (4.2). Some discrepancy

between our results and literature data could come from the different lattice parameters used

in the calculations, basis sets, and the used frameworks. Experimental value for the ZPR

of zinc blende GaN is not known to the best of our knowledge. However, we assume that

wurtzite GaN has at least comparable ZPR as zinc blende GaN. Thus, for comparison, we

added experimentally measured value for the wurtzite polymorph of GaN [264] to Tab. 4.2.

4.4 Anharmonicity and lattice thermal expansion

A fully-anharmonic, non-perturbative treatment of the band gap renormalization in GaN and

diamond was performed by sampling the phase space of these materials via aiMD simula-

tions. The results indicate that the anharmonic treatment of the nuclear movement do cause

detectable, but not massive changes in band gap renormalization for both materials as shown

in Fig. 4.10(a, b). Specifically, for GaN at T=700 K, the anharmonicity contribution to the

nuclear movement results in an extra -34 meV renormalization of the band gap. Similarly,

at T=1000 K in diamond, the anharmonic treatment of nuclear movement causes an extra

-18 meV renormalization of the band gap, in agreement with the results reported in [228].

The LTE result in additional change of the band gap with temperature. We have calcu-

lated the band gap renormalization caused by the LTE for both materials in the QHA and

fully anharmonically using aiMD simulations as discussed in Sec. 2.4. The results of these

calculations are presented in Fig. 4.11(a, b). In the case of diamond, the band gap renormal-

ization caused by the LTE, as calculated using the QHA, was determined to be -34 meV at

a temperature of T=1000 K. The band gap renormalization caused by LTE, which is calcu-

lated via aiMD, was found to be -37 meV at T=1000 K. These values are consistent with the

previously estimated value of -30 meV reported in [228]. The small influence of the LTE in

diamond can be attributed to the relatively low LTE of this material [266], e.g., the volume

of the crystal expands by just 1.5% at T=1000 K. In contrast to diamond, the LTE has been

found to have a tangible impact on the band gap renormalization in GaN, as demonstrated in

Fig. 4.13(a). Furthermore, the LTE calculated via aiMD is found to be larger than calculated

using the QHA, which cause a larger band gap closing in the former case. Specifically, at
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(a) (b)

Figure 4.10: Temperature dependence of the band gap renormalization in (a) GaN and (b)

diamond due to the nuclear motion calculated in the harmonic approximation and fully an-

harmonically using aiMD. Calculations are done with LDA xc-functional and cubic supercell

containing 216 atoms.

T=700 K, the renormalization calculated using aiMD (approximately -120 meV) is twice as

large as the one calculated in the QHA. The volume of GaN crystal expands by 1.5% once

LTE is calculated using aiMD and only by 0.7% in the case of calculations in the QHA.

(a) (b)

Figure 4.11: Lattice thermal expansion influence on band gap renormalization in (a) GaN

and (b) indirect band gap of diamond. LTE is calculated in the QHA and via aiMD simula-

tions, by estimating internal pressure appeared in the NVT simulations.

The quantitative estimation of the anharmonicity can be done by computing the anhar-

monicity measure 𝜎𝐴(𝑇 ) defined in Eq. (2.38). As shown in Fig. 4.12, both compounds
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Figure 4.12: Temperature dependence of the anharmonicity measure 𝜎𝐴(𝑇 ) of diamond

and GaN. The comparison is done to the 𝜎𝐴𝑇=300𝐾 values for SnSe, MgTe, and LiI reported

in [68].

exhibit nearly linear growth of 𝜎𝐴(𝑇 ) within the temperature range of the study. Utilizing

values of 𝜎𝐴𝑇=300𝐾 for SnSe, MgTe, and LiI calculated in [68], allows for the conclusion that

both materials under our examination exhibit a quite harmonic lattice dynamics. Specifically,

diamond is found to be the most harmonic crystal yet investigated, with 𝜎𝐴𝑇=100𝐾(C)=0.05

and 𝜎𝐴𝑇=1000𝐾(C)=0.15. GaN is characterized by low anharmonicity up to approximately

T=400 K, where 𝜎𝐴𝑇 (GaN) approaches 0.2 value. However, at high temperatures, GaN be-

comes slightly anharmonic, as evidenced by 𝜎𝐴𝑇=700𝐾(GaN)=0.27. In light of these findings,

it can be inferred that diamond experiences harmonic lattice dynamics in the whole temper-

ature range of our study, while treatment of anharmonicity in GaN is only necessary at high

temperatures. It remains an open question as to whether or not the anharmonicity measure

can be utilized as a fingerprint to infer the magnitude of the band gap renormalization – a

conclusion that cannot be drawn based solely on the data related to just two materials.

4.5 Comparison with the experimental data

In this section, we compare our results with experimental data. For this comparison, we also

collected results for the direct band gap renormalization in diamond. All conclusion related

to the indirect band gap renormalization in diamond are also applicable to the direct band

gap. Temperature dependencies of the band gap renormalization for GaN and diamond are

presented in Fig. 4.13(a) and Fig. 4.13(b, c), respectively. Experimental results are usually

fitted using the semi-empirical Varshni formula [267]:

𝐸𝑔(𝑇 ) = 𝐸𝑔(0) − 𝛼𝑇 2

𝑇 + 𝛽
. (4.3)
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where 𝐸𝑔(0) is the energy gap at zero temperature, which can be either direct or indirect, and

𝛼 and 𝛽 are constants that are fitted to experimental data. Sometimes other semi-empirical

formulas are used [268–271]. We took experimental data for zinc blende GaN from [90].

Experimental data for the direct band gap of diamond is taken from [89]. The data for

indirect gap is taken from [271,272]. Two samples were used for measurements of the direct

band gap renormalization in the work [90], thus two dependencies were reported. We note

that our results are in agreement with previous theoretical calculations for diamond [52,182]

and GaN [89,90,272].

We expect that the inclusion of many-body effects can lead to even better agreement

with experimental results. In the case of diamond it was recently demonstrated that the

temperature dependence of the band gap renormalization obtained with G0W0 is substantially

(by 50%) different than the one calculated at the DFT-PBE level of theory [273]. It was also

shown for GaAs [223] that inclusion of many-body effects through GW [221, 222] causes an

additional 40% increase in the electron-phonon interaction and a subsequent increase in the

high-temperature slope of the band gap renormalization. Thus, we assume that the inclusion

of many-body correlation effects could lead to slightly steeper temperature dependence of the

band gap renormalization in GaN at high temperatures.

Summary of the chapter

In this chapter, we benchmarked the harmonic and fully anharmonic non-perturbative treat-

ment of the band gap renormalization using diamond and zinc blende GaN as test systems.

We discussed the computational workflow of the temperature-dependent band gap renor-

malization calculations. By utilizing the harmonic approximation we inspected numerical

aspects of the convergence with respect to the thermodynamic averaging and supercell size.

Harmonic forces were used to perform harmonic aiMD in order to test temporal averages.

We disentangled nuclear motion and LTE contributions to the band gap renormalization, and

discussed both effects separately. The former effect was considered here both in the classical

and the quantum limit in the harmonic approximation. The latter effect was shown to have

negligible influence in diamond, but tangible contribution to the band gap renormalization

in GaN. Eventually, we demonstrated the influence of the anharmonic nuclear dynamics at

different temperatures and connected observed trends to the anharmonicity measure. This

lead to the formulation of the hypothesis that materials characterized by low anharmonicity

measure, i.e., those in which potential energy surface can be described well in the harmonic

approximation, feature smaller renormalization caused by the anharmonic contribution. This

hypothesis will be tested in the next chapter. Eventually, we noted that obtained results are

in agreement with previously published theoretical and experimental data.
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(a) (b)

(c)

Figure 4.13: Temperature dependence of the band gap renormalization in (a) GaN and (b, c)

diamond. Calculations are done with LDA xc-functional and cubic supercell containing 216

atoms. Thermodynamic averaging is done using 50 samples for GaN and 100 samples for

diamond. Non-perturbative (NP) harmonic treatment is applied taken into account classical

(CN) and quantum (QN) statistics for the nuclear motion. NP anharmonic treatment is done

via aiMD simulations. Polar correction is included in both classical and quantum limits.

Experimental data for GaN and diamond is taken from [86–88, 90]. Experimental data for

the indirect band gap renormalization of diamond is taken from [271,272], and for the direct

band gap renormalization from [89].
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Chapter 5

Quantifying the role of different

contributions to the band gap

renormalization at finite

temperatures

The strength of electron-phonon interactions (EPI) in solids is frequently quantified based

on the zero-point renormalization of the band gap (ZPR), which these interactions cause [12,

15–17, 21, 94, 182, 207, 213–216]. Although pioneering first principles calculations of the

temperature-dependent band gap renormalization, caused by the EPI, appeared long time

ago [59], the wider exploration of the temperature’s influence on the band gap renormalization

is a relatively recent trend [16, 39, 52, 85, 228, 246, 273]. Usually, published works rely on the

Allen-Heine-Cardona formalism, which can be applied to harmonic materials like silicon or di-

amond straightforwardly, but can not be applied without extra caution for materials in which

the harmonic ansatz for phonons is not applicable, for example, some perovskites [18,85]. It

was recently shown that a sufficient portion of materials is quite anharmonic already at room

temperature, and the number of anharmonic materials increases with temperature [68]. How-

ever, the influence of the lattice dynamics anharmonicity on the band gap renormalization

at finite temperatures has not been studied in detail, yet.

The band gap value is also affected by the thermal lattice expansion (or contraction). In

certain cases, the band gap change due to the LTE is negligible. For example, in diamond

the gap decreases by only 30 meV, when the temperature increases from 0 K to 1000 K (see

discussion in Chapter 4). For the same temperature range the renormalization of the band

gap due to the EPI is larger by one order of magnitude. On the other hand, in some materials

LTE can cause tangible changes of the band gap value, for example, in the case of SrTiO3 the

gap opens by ≈200 meV at 1000 K [85]. Despite the widespread interest in evaluating the

renormalization of the electronic band structure, a comprehensive study of the LTE influence

at different temperatures is still missing (the influence of the zero-point lattice expansion was

recently evaluated in [255]).

The methodology discussed and benchmarked in the previous chapters enables us to

explore the microscopic origin of the band gap renormalization for both harmonic and an-
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harmonic materials on equal footing. Thus, in this chapter, we investigate the impact of the

EPI and the LTE on the band gap renormalization in 52 binary compounds. These materials

have different structural types, including rock salt, zinc blende, wurtzite, fluorite, and anti-

fluorite, exhibit a diversity of band gaps, bonding types (ionic and covalent), atomic masses,

and lattice anharmonicity. We disentangled the contributions of the EPI and the LTE, quan-

tified the role of different effects, and, in particular, showed the impact of the anharmonic

effects. For the major portion of materials, we calculated the band gap renormalization at

room temperature. For selected materials, an in-depth analysis is performed to clarify the

general mechanisms governing band gap renormalization across a broad temperature range.

We utilized aiMD trajectories available in the NOMAD repository [274]. 1 The computational

details for the DFT calculations and the structural parameters of the materials under study

are presented in Appendix C.

5.1 Zero-point renormalization of the band gap

Prior to carrying out an evaluation of the band gap renormalization at finite temperatures,

it is imperative to determine the ZPR of the materials, used in our work. Benchmark calcu-

lations for diamond and zinc blende GaN was already conducted in Chapter 4 to validate the

method. In the current section, a comprehensive examination of a wider range of materials

is done. The calculations of the ZPR are done in the harmonic approximation, by generating

uncorrelated samples in the classical and quantum limit (see details of such calculations in

Chapter 4). First of all, this allows to further test the descriptors mentioned above on a larger

set of materials. Secondly, these calculations allow us to check that a satisfactory descrip-

tion of the ZPR can be obtained before progressing to calculations at finite temperature. To

maintain consistency with previously published data [94,182,213], 23 materials with rock salt

structures and 9 compounds with zinc blende structures have been selected for calculations.

The comparison between our results and literature data is shown in Fig. 5.2(a).

The ZPR values for the compounds with rock salt structure range from -5 meV for CaTe

to -558 meV for LiF. This significant ZPR in LiF has been previously reported in prior

computational studies [94, 273]. A comparison between the ZPR values obtained in the

present study and those reported in [94], reveals a mean absolute error (MAE) of 8 meV

and maximal difference is 22 meV as observed for CsF. It is worth noting that both studies

employed the FHI-aims package, however, the calculations performed in [94] utilized the

Perdew-Burke-Ernzerhof (PBE) xc-functional within the frozen phonon framework. The

small discrepancy between the results may be attributed to differences in the methodologies

employed, including the level of theory and the structural parameters of the materials used

in the analysis.

The ZPR values of compounds with zinc blende structure range from -12 meV for CdTe

to -92 meV for GaN. Tab. 5.1 presents a comparison of our results with the literature data for

several compounds with zinc blende structure. We compared our results with those reported

in [94, 182] and obtained a MAE of 7 meV and 6 meV, respectively. The largest deviation

was observed in the case of GaAs, when compared to the data presented in [182]. The ZPR

1NOMAD dataset DOI:dx.doi.org/10.17172/NOMAD/2020.06.25-1.
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Figure 5.1: Comparison between ZPR in this work and references [94,182]. The inset shows

the ZPR in LiF. Data for rock salt structures is shown as red disks. The comparison of our

results for zinc blende structures is shown using olive squares once the comparsion is done

with [182], and using green triangles for the comparison with [94].

of GaAs is -22 meV in our calculations, which is in agreement with the results reported

in [94, 223], but differs from the ZPR value of -53 meV reported in [182, 213]. Given that

the ZPR of GaAs was calculated to be -32 meV in another study [212], and that the HSE06

xc-functional was used for GaAs in [182], we consider our results for GaAs to be acceptable.

We also note that the polar correction has negligible influence on the gap renormalization in

GaAs [212].

Table 5.1: ZPR of the band gaps for materials with zinc blende structure. Reference data

is taken from previous computational works [182] (first number), [213] (second number),

and [94] (third number). The references for experimental values are explicitly noted. All

values are in meV.

Material This Work Previous Works Experiment

ZnS -45 -44, -88, -34 -105 [275], -78 [264]

ZnSe -25 -28, -44, -18 -55 [264], -64 [12]

ZnTe -27 -24, -22, -14 -40 [264]

CdS -25 -29, -70, -18 -62, -34 [264]

CdTe -12 -15, -20, -8 -16 [264]

AlAs -66 -63, -74, -72 -50 [264]

GaAs -22 -53, -53, -22 -57±29 [276], -90 [12]

-32 [212], -23 [223]

GaN -89 -94 [182], -82 [94]

Experimentally, the ZPR is usually determined by fitting the measured band gap renor-
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Table 5.2: Coefficient of determination R2, obtained by a linear least-square regression

between ZPR and different descriptors mentioned in the main text.

Materials Set ~𝜔max ∆𝑎/𝑎 𝑀−1
AB (𝑀A ×𝑀B)−1/4

Rock Salt 0.55 0.68 0.84 0.79

Zinc Blende 0.86 0.18 0.82 0.86

Wurtzite 0.65 0.07 0.54 0.8

Whole set 0.38 0.70 0.83 0.81

malization at finite temperatures or by performing experiments with the isotopic mass deriva-

tives of the gap [12]. These procedures are subject to various sources of uncertainty, as dis-

cussed in detail in [12]. Therefore, caution should be exercised when comparing experimental

values between each other and with calculated values. Actually, in the case of first principles

calculations an additional correction to the calculated values of the ZPR should be applied in

polar materials [93, 213]. Moreover, it was recently shown that zero-point lattice expansion

can cause additional renormalization reaching from 20% to more than 80% of the band gap

ZPR [255].2 In this chapter, we neither included polar correction, nor considered zero-point

lattice expansion. However, we note that the results of our study are in agreement with

previous computational works [94, 182, 213], which suggest that the obtained values of the

ZPR are reliable.

The evaluation of the band gap ZPR is a complex subject, as demonstrated by the nu-

merous debates surrounding its experimental and calculated values [12, 13, 17, 207, 213, 277].

Understanding and explaining trends for the observed ZPR values in different materials has

been an active area of research [12, 17, 21, 94, 182, 207, 213]. The difference in ZPR among

various materials was described based on the difference in the electronic structure [207] and

on vibrational arguments [17,21]. In the former case, it was argued that the difference among

ZPR in various materials can be attributed to the differences in the electronic structure of

these compounds. In particular, this hypothesis was used to explain the substantial difference

between the ZPR in diamond (-336 meV [207]) and silicon (-53 meV [207]). It is assumed

that 𝑝-core states in Si screen the atomic potential more effectively than it is screened in

diamond and thus, the ZPR in diamond is larger [207]. The DFT calculations performed

in [17] for diamond, silicon, and silicon carbide showed that the microscopic origin of the

different ZPR in these materials is related not only to the electronic structure of elements

forming the crystal, but to the different bonding and the distortion of the bonds in these

compounds.

Vibrational approach for the ZPR description is based on the assumption that the mag-

nitude of the ZPR is related to the magnitude of the atomic vibrations. This assumption is

reinforced by experimental works devoted to assessing the impact of the isotopic mass on the

ZPR values [13, 207, 270, 278]. It was shown that the amplitude of atomic vibrations scales

inversely with the square root of the isotopic mass, indicating that heavier isotopes have

weaker EPI [207]. Consequently, it was assumed that there should be a correlation between

the vibrational frequencies and the magnitude of the ZPR [12,13,207]. Fig. 5.2(a) shows the

2In the study [255], in total, 22 materials with cubic and wurtzite structural types were used.
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correlation between the highest phonon frequency and the calculated values of the ZPR for

the subset of materials, which we are going to study. As was previously observed in [182]

for zinc blende compounds the dependence is almost linear. The coefficient of determination

R2 equals 0.86 for zinc blende compounds. However, some materials with rock salt structure

follow this trend only qualitatively (R2=0.55). For example, KF and LiF, do not obey the

linear scaling. In general, the linear least-square regression shows a rather non-linear depen-

dence (R2=0.38) between the ZPR and the highest phonon frequency, as demonstrated in

Tab. 5.2.

An intuitive argument that the value of the ZPR should be related to the amplitude of

the nuclear motion lead to the ansatz that the correction of the gap should be proportional

to the ratio ∆𝑎/𝑎, where 𝑎 is the bond length of the material3 and ∆𝑎 denotes the zero-point

atomic displacement [21], which can be derived using a quantum harmonic oscillator model:

∆𝑎 =

√︂
~

𝑀𝜔LO
(5.1)

Here, 𝑀 denotes the average mass of ions in the unit cell and 𝜔LO denotes the longitudinal

optical phonon frequency. This assumption implies that the ZPR magnitude is large when

the magnitude of the atomic displacement is significant compared to the bond length. The

original work demonstrated a non-linear proportionality between the suggested descriptor

and the ZPR of the band gap [21].4

We expanded the number of tested materials and modified the descriptor defined in

Eq. (5.1) slightly. Specifically, the accurate determination of 𝜔LO requires to treat LO-

TO splitting, which can be done by applying a non-analytical correction as discussed in

Sec. (2.1). However, this would require the calculation of the Born effective charges and the

high-frequency dielectric constant for all materials in the set. We evaluated the amplitude of

atomic displacement using the maximal phonon’s frequency 𝜔max instead of the frequency of

the LO phonon 𝜔LO. This modification is valid, based on our inspection of the phonon disper-

sion of the materials from our set using the database of phonon calculations [279]. As shown

in Fig. 5.2(b), the descriptor introduced in Eq. (5.1) indeed has some qualitative predictive

power – materials, with larger atomic vibrations tend to have larger ZPR. The dependence is,

however, non-linear. Calculations of a linear least-squares regression for the set of materials

including diamond, zinc blende, rock salt, and wurtzite compounds yield R2=0.7. Tab. 5.2

contains results of the linear fitting for each set of materials.

According to the lattice dynamics equations introduced in Sec. (2.1) the eigenfrequencies

of phonons are inversely proportional to the masses of the atoms in the unit cell. Following

this observation, the utilization of the inverse average mass of the atoms in the unit cell was

used as a descriptor to describe ZPR trends [182] for 18 semiconductors with zinc blende

structure. It was argued that the band gap renormalization is inversely proportional to the

mass of the constituting ions. That conclusion was later challenged in the work [94], where

the inverse fourth root of the masses of constituting elements was used as a descriptor. We

3The bond length was defined as a distance between non-equivalent atoms in the unit cell. In the case of

wurtzite structures, we used the bond length value averaged over distances between non-equivalent atoms of

different elements.
4Work [21] used a set of 9 semiconductors: Ge, Si, C, InSb, CdTe, ZnTe, ZnSe, ZnS.
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illustrated the dependence of the ZPR on the inverse average mass of the constituting ions

as proposed in [182] in Fig. 5.2(c), and the inverse fourth root of the masses as suggested

in [94] in Fig. 5.2(d). The values of ZPR are indeed found to correlate with these mass-based

descriptors. In the case of the linear least-squares regression fit between the ZPR and inverse

average atomic mass the R2=0.83, while once the inverse fourth root of the masses is used

R2=0.81.

(a) (b)

(c) (d)

Figure 5.2: The dependencies between ZPR of the band gap and (a) largest phonon fre-

quency, (b) largest atomic displacement normalized by interatomic bond length, (c) inverse

average mass of atoms in the unit cell, (d) inverse forth root of the multiplication of the

atomic masses.

The breakdown of the mass rule reported in [94], highly likely can be attributed to the

inclusion of the Fröhlich polar correction. This correction can indeed constitute a significant

contribution to the ZPR, but we note that in the work [94] an approximation introduced in [93]
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and described by Eq. (3.31) was used for the polar correction evaluation. This approach is

highly sensitive to the calculated polaron constant value (see the discussion in Chapter 4), and

it is also challenging to apply it for the correct treatment of the anisotropic bands [93]. The

reliable evaluation of the polar correction can only be based on more involved calculations [43,

213], which go beyond the scope of this thesis.

In summary, the evaluation of the ZPR serves as a starting point. Since our results agree

well with the previously published data, we can proceed to the evaluation of the band gap

renormalization at finite temperatures.

5.2 Electron-phonon interactions: quantum and classical treat-

ment of the nuclear motion

In this section, we examine the impact of the nuclear motion on the band gap renormal-

ization in the classical and quantum limits by performing calculations within the harmonic

approximation. To this end, we generate configurations with nuclear displacements consis-

tent with the canonical ensemble at a temperature of 300 K, as outlined in Sec. 2.1 and

works [69,180]. In addition to the materials included in the ZPR benchmark (rock salt, zinc

blende, wurtzite-type structures), we also consider compounds with a fluorite and antifluorite

structures. 5

To start with, we calculate the band gap renormalization at 300 K by taking into account

the quantum statistics of the nuclei. It has been previously proposed [12, 93] that the band

gap renormalization should be in the range of 2-4 kBT, which is indeed the case for some

materials, such as GaAs, ZnO, and CdTe. However, Fig. 5.3 reveals that, in addition to the

well-known case of diamond [207], which exhibits a relatively large renormalization of the

band gap (-350 meV) at room temperature, there are compounds that feature even larger

changes of the gap. For instance, the band gap renormalization in LiF at room temperature

is around -600 meV, primarily due to the ZPR. Notably, the atomic mass-based descriptor

previously utilized to describe ZPR has only limited validity at room temperature. As shown

in Fig. 5.4, the inverse averaged atomic mass can reasonably describe the trends in the band

gap renormalization for materials with the zinc blende structure, but not for the rest. A

linear least-squares regression fitting yields R2=0.93 for zinc blende materials and R2=0.44

once the whole set is fitted. 6

The comparison between band gap renormalization due to the nuclear motion calculated

using quantum and classical limits is shown in Fig. 5.5(a). The vibronic renormalization in

all materials is larger once nuclear motion is treated quantum-mechanically instead of classi-

cally, which can be attributed to the major contribution coming from the ZPR. The wurtzite

and zinc blende structures feature rather small absolute values of the renormalization as was

observed also in the quantum limit. However, some compounds such as diamond and Li2O

have much smaller values of the renormalization in the classical limit rather than in the quan-

tum limit. Our calculations have revealed that the relationship between gap renormalization

in the classical and quantum limits can be explained through the utilization of the highest

5We will call all these structures fluorite-type in the rest of the text for convenience.
6For wurtzite compounds R2=0.036, for rock salt compounds R2=0.45, for fluorite compounds R2=0.06.
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Figure 5.3: Band gap renormalization at room temperature due to the nuclear motion. The

calculations are done in the harmonic approximation using quantum statistics for the nuclear

motion.

phonon frequency. The studies related to the quantum nuclear effect [192, 193], commonly

assert that materials comprised of lighter atomic masses exhibit a substantial quantum effect.

As lighter atomic masses correspond to phonons of higher frequency, the highest frequency in

the phonon spectrum can potentially serve as a simple descriptor. Fig. 5.5(b) illustrates the

correlation between the highest phonon energy ~𝜔max and the ratio of band gap renormaliza-

tion caused by nuclear motion in the classical and the quantum limits. A linear least-squares

regression fitting yields R2=0.8. Our sample materials encompass a diverse range of atomic

masses, thus frequencies range from a few to tens of THz. In those materials where a maxi-

mum phonon energy ~𝜔max ≈ exceeds 50 meV a contribution from the inclusion of quantum

effects cause substantial renormalization of the gap. Materials in which 20 meV < ~𝜔max <

50 meV display moderate to low difference between quantum and classical treatment. In

materials with ~𝜔max < 20 meV the treatment of the nuclear vibrations in the classical and

in the quantum limits is approximately equivalent.
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5.3 Electron-phonon interactions: harmonic and fully anhar-

monic treatment of the nuclear motion

In this section, we present an evaluation of the impact of a fully anharmonic treatment of the

potential energy surface (PES) on band gap renormalization. We compare between the calcu-

Figure 5.4: The dependence between band gap renormalization at room temperature and

the inverse average mass of atoms in the unit cell.

(a)
(b)

Figure 5.5: (a) Relation between the band gap renormalization due to the nuclear motion

calculated in the harmonic approximation using quantum and classical limits. (b) The de-

pendence between the largest phonon energy and the ration shown in plot (a).
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lations performed using the harmonic approximation and the fully anharmonic calculations

performed using aiMD (see details for the aiMD trajectories calculations in Appendix C).

As depicted in Fig. 5.6, the inclusion of the PES anharmonicity results in a larger band gap

renormalization in all materials studied. In most cases the difference between the band gap

renormalization calculated in the harmonic approximation and fully anharmonically does not

exceed 20%. This additional renormalization ranges from a few meV to -62 meV in the case

of LiI. The case of diamond is particularly noteworthy, since diamond is considered to be very

harmonic (see Chapter 4 and [68]) and the inclusion of anharmonicity leads to just an extra -

20 meV renormalization. However, this is larger than the additional renormalization observed

in most wurtzite structures and zinc blende structures, except GaN, which experiences a sim-

ilar additional renormalization. It is also worth mentioning that most of the compounds

that exhibit a significant renormalization due to the inclusion of anharmonicity have rock

salt structures. Compounds with fluorite structures, on the other hand, exhibit intermediate

behavior between rock salts and compounds with wurtzite and zinc blende structures.

Our hypothesis is that the difference between fully anharmonic calculations and calcula-

tions in the harmonic approximation correlates with the average nuclear displacement in the

material. The logic behind this hypothesis is that materials with larger atomic displacements

should exhibit greater anharmonicity as the atoms would move outside of the region of validity

for the harmonic potential. To test this, we calculated the root-mean-squared atomic dis-

placements along aiMD trajectories, normalized by the bond distance, as described in Sec. 5.1.

Fig. 5.7(a) shows the dependence between the band gap renormalization caused exclusive by

PES anharmonicity (⟨∆𝐸⟩NM
anh,cl - ⟨∆𝐸⟩NM

ha,cl) and the atomic-displacement descriptor.

Figure 5.6: Relation between the band gap renormalization due to the nuclear motion

calculated in the harmonic approximation in the classical limit and fully anharmonically

using aiMD.

Our investigation of the impact of anharmonicity on the band gap renormalization in

diamond and GaN, presented in Chapter 4, has revealed that the influence of anharmonicity
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is negligible in those materials. The description of the observed trends was done by utilizing

the anharmonicity measure 𝜎𝐴, introduced in Sec. 2.3 following work [68]. In this respect, we

sought to examine the correlation between the 𝜎𝐴 and the anharmonic contribution to the

band gap renormalization across the whole set. The results of this examination are depicted

in Fig. 5.7(b). Notably, the gap renormalization caused exclusively by anharmonicity in KF

and GaN are nearly identical, despite the fact that the anharmonicity measure in KF is twice

larger that in GaN.

5.4 Exploring the role of thermal expansion

In this section, we aim to quantify the magnitude of the LTE influence on the band gap

changes. The unit cell volumes as a function of temperature can be calculated either ap-

proximately using the QHA method or by renormalizing the internal pressure extracted from

the aiMD simulations, as described in Sec. 2.4, which is more accurate. Therefore, we will

proceed with our calculations based on the renormalized volumes obtained from aiMD sim-

ulations, i.e., we calculate band gap for the equilibrium zero temperature volume and then

recompute the band gap for the expanded unit cell – the difference between obtained values

corresponds to the impact of the LTE on the band gap change. Fig. 5.8 shows the magnitude

of the LTE influence on the band gaps changes at T=300 K. The absolute change of the band

gap in the case of wurtzite and zinc blende compounds presented in our set does not exceed

50 meV. In the case of GaAs and GaN, the LTE causes an additional change in the gap of

approximately 50 meV, in agreement with literature data [212, 280]. In some materials with

rock salt structure, for example SrO and CaO, the band gap hardly changes, while in other

(a) (b)

Figure 5.7: Relation between the band gap renormalization, caused exclusively by the an-

harmonic part of the nuclear motion and (a) the root-mean-squared atomic displacements at

room temperature normalized by the bond length between atoms in the unit cell; (b) anhar-

monicity measure extracted from the aiMD trajectories.
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rock salt compounds the change constitutes hundreds of meV. For example, in the case of

LiF the band gap changes by -318 meV only because of the LTE. In the case of materials

with fluorite structure, the band gaps change in the range from 25 meV in the case of Li2X

(X=S, Se, Te) to around -150 meV in the case of K2O and Rb2O, which also constitutes 8 %

and 10 % of the zero temperature band gaps in these materials, respectively.

Figure 5.8: Band gap renormalization caused by the lattice thermal expansion at T=300 K.

The relationship between changes in the gap and relative changes in volume with temper-

ature is shown in Fig. 5.9(a). Compounds with zinc blende and wurtzite structures exhibit

minimal changes in both volume and band gap, with changes in volume being within 1 %.

In contrast, rock salt and fluorite-type compounds display larger variations in volume, up

to 5 %, and significant renormalization of the band gap. A comparison of the band gap

renormalization caused exclusively by the nuclear motion calculated fully anharmonically

and exclusively by the LTE is illustrated in Fig. 5.9(b). This comparison reveals that for

some materials, for example LiF and LiBr, the band gap change caused by LTE constitutes

almost a half of the gap renormalization caused exclusively by the nuclear motion. Although,

for most of the materials, main contribution to the band gap renormalization at finite tem-

peratures is regulated by the electron-phonon interactions, accurate calculations of the band

gap renormalization require to take the LTE influence into account.
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(a) (b)

Figure 5.9: (a) Band gap renormalization caused by the LTE with respect to the changes

in volume once the material is heated to T=300 K. (b) The comparison between the band

gap renormalization caused by LTE and nuclear motion calculated via aiMD.

5.5 The role of anharmonicity in the band gap renormaliza-

tion

Earlier, it was emphasized that the impact of anharmonic effects on the band gap renormaliza-

tion can be potentially evaluated by utilizing the anharmonicity measure, which is employed

(a) (b)

Figure 5.10: (a) Relations between anharmonicity measure and changes in volume once

materials are heated to T=300 K. (b) Relations between band gap renormalization caused

by LTE at T=300 K and the anharmonicity measures 𝜎𝐴(𝑇 ).
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to categorize materials into harmonic and anharmonic in terms of their lattice dynamics [68].

Thermal expansion is considered to be an anharmonic effect, since under the harmonic ap-

proximation, the thermal expansion coefficient is zero. Fig. 5.10(a) illustrates the correlation

between the anharmonicity measure 𝜎𝐴 at T=300 K and the volume changes experienced by

materials when subjected to heating. We observe that anharmonic materials tend to have

larger volume expansion. This comparison reveals that materials tend to clusterize based on

their crystalline structure, with wurtzite and zinc blende structures being less anharmonic

than rock salts, and fluorite-type structures falling in between.

Fig.5.10(b) depicts the correlation between the band gap renormalization caused exclu-

sively by the LTE and the anharmonicity measure 𝜎𝐴 at T=300 K. We found that LiF has a

band gap renormalization that is twice as large as LiI, even though LiI is more anharmonic.

In a similar way, MgO, which is considered a rather harmonic material, experiences a band

gap renormalization that is of the same magnitude as RbBr, which is twice as anharmonic

according to its 𝜎𝐴. While some correlation between an increase in anharmonic measure and

band gap renormalization is apparent, this relation appears to be non-linear.

Figure 5.11: Relations between the band gap renormalization caused exclusively by lattice

and nuclear dynamics anharmonic effects and anharmonicity measures at T=300 K.

In order to assess the overall impact of anharmonic effects on the band gap, we must

consider the sum of the band gap renormalization contributions resulting from the fully an-

harmonic nuclear motion ⟨∆𝐸⟩NM
anh, cl and lattice thermal expansion ⟨∆𝐸⟩LTE

anh, cl, while exclud-

ing the contribution from the harmonic nuclear motion ⟨∆𝐸⟩NM
ha, cl. The comparison between

⟨∆𝐸⟩NM+LTE
anh, cl − ⟨∆𝐸⟩NM

ha, cl and the anharmonicity measure is presented in Fig. 5.11. It is

apparent that the inclusion of anharmonic effects results in a substantial renormalization

of the band gap in some materials, with LiF being a prime example, where almost half of

the gap renormalization is attributed to anharmonic effects. The contribution coming from

anharmonicity is anticipated to grow with temperature, as anharmonicity has been observed

to increase with temperature [68]. It is worth noting that MgO and LiF have previously

78



Table 5.3: ZPR of the band gaps in MgO, LiF, and LiI. All values are reported in meV.

Material This Work Previous Works

MgO -205 -196 [281], -210 [273]

-281 [283], -192 [94]

LiF -559 -523 [281], -559 [94]

-460 [273]

LiI -110 -92 [94]

been identified as materials where a proper treatment of anharmonic effects on the band gap

renormalization is crucial [213,281,282].

We conclude by noting that there is a correlation, albeit non-linear, between lattice an-

harmonicity and the band gap renormalization at room temperature. Solids that exhibit

higher levels of anharmonicity also demonstrate higher renormalization due to anharmonic

effects and vice versa. In order to gain a deeper understanding of the physical processes

that govern this relationship, further investigation is necessary. For this purpose, the lattice

dynamics and electronic structure properties of MgO, LiF, and LiI will be examined over a

wider temperature range.

5.6 Band gap renormalization in MgO, LiF, and LiI

In this section, we examine the temperature-dependence of the band gap in MgO, LiF and

LiI. We start with an elementary comparison of the ZPR values obtained in our work and

literature references. Our results are presented in Tab. (5.3) and are found to be in agreement

with previously published data [94, 273, 281, 283]. The deviations from ZPR values reported

in various studies can be attributed to various factors, including anharmonic corrections to

the LO phonon frequency, approximations used for the Fröhlich polar correction, and the

reliability of the DFT xc-functionals, as discussed in [213]. It is also important to note that

these ZPR values do not take into account the Fröhlich polar correction. This correction is

significant for MgO with a value of -137 meV [213]. However, as was already pointed out

above, an accurate treatment [43,213] of the Fröhlich polar correction is beyond the scope of

this thesis.

As the ZPR results of our work appear to be in reasonable agreement with the relevant

literature, we can proceed with the exploration of the temperature-dependence of the band

gap renormalization. The thermodynamically averaged spectral function of MgO calculated

in the harmonic approximation along the high-symmetry X-G BZ path at T=300 K is pre-

sented in Fig. 5.12(a). The temperature-dependent band gap renormalization for MgO is

presented in Fig. 5.12(b). Treatment of the EPI in the harmonic approximation and fully

anharmonically leads to almost identical band gap renormalizations at finite temperatures.

This suggests that even at high temperatures, MgO is a rather harmonic material. Approx-

imately at T=500 K the difference between quantum and classical nuclear dynamics also

becomes negligible. Although, the inclusion of anharmonicity to the description of PES has

negligible effect, the lattice thermal expansion in MgO has a prominent influence on the band
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gap renormalization. This observation was also highlighted in [283], where the LTE was eval-

uated using the QHA. We have calculated the LTE in the QHA to have a comparison with the

fully anharmonic treatment of the LTE, and found that at high temperatures, the difference

becomes non-negligible as demonstrated in Fig. 5.12(b). At T=1200 K the LTE constitutes

a bit less than a half of the total band gap renormalization in MgO.

(a) (b)

Figure 5.12: (a) Thermodynamically averaged spectral function ⟨A(k,E)⟩T of MgO along X-

G Brillouin zone path at T=300 K. Calculations are done at the DFT-PBEsol level of theory,

with the cubic supercell containing 216 atoms. The band structure in static equilibrium is

shown in black. (b) Temperature-dependent band gap renormalization in MgO. Both classical

and quantum nuclei dynamics are taken into account.

The thermodynamically averaged spectral function of LiF calculated along the high-

symmetry X-G BZ path at T=300K, calculated using stochastic sampling in quantum limit

is presented in Fig. 5.13(a). The temperature-dependence of the band gap renormalization

for LiF is shown in Fig. 5.13(b). Contrary to MgO, in LiF the quantum nature of the nuclei

is important even at high temperatures. Moreover, a fully anharmonic treatment of the po-

tential energy surface also leads to observable differences in the band gap renormalization.

The LTE is influence on the band gap renormalization is comparable with the effects caused

by the nuclear movement.

The temperature-dependence of the band gap renormalization for LiI is shown in Fig. 5.14.

First of all, it is evident that the fully anharmonic treatment of the nuclear motion leads to

substantially different results of the band gap renormalization. Specifically, at room tem-

perature the anharmonic treatment leads to a 60 meV larger gap renormalization compared

to the harmonic case. The difference grows with temperature and equals to 100 meV at

T=600 K. The difference between the quantum and classical treatment of the nuclear motion

is not that substantial and equals 22 meV at room temperature. The LTE influence on the

gap renormalization is tangible already at room temperature and corresponds to almost half

of the gap renormalization at high temperature.
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(a) (b)

Figure 5.13: (a) Thermodynamically averaged spectral function ⟨A(k,E)⟩T of LiF along X-

G Brillouin zone path at T=300 K. Calculations are done at the DFT-PBEsol level of theory,

with the cubic supercell containing 216 atoms. The band structure in static equilibrium is

shown in black. (b) Temperature-dependent band gap renormalization in LiI. Both classical

and quantum nuclei dynamics are taken into account.

Figure 5.14: Temperature-dependent band gap renormalization in LiI. Both classical and

quantum nuclei dynamics are taken into account.

The amplitude of nuclear vibrations grows with temperature as shown in Fig. 5.15(a). We

evaluated the root-mean-squared atomic displacements along aiMD trajectories and evaluated

bond length between atoms in the unit cell at different temperatures. This allowed us to

evaluate the dependence between the band gap renormalization relative to the equilibrium

gap and the amplitude of the atomic motion normalized to the bond length as shown in
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Fig. 5.15(b). MgO and GaN have very similar amplitudes of atomic vibrations and also

similar band gap renormalization values relative to the equilibrium gap.7 The same trend is

observed for LiI and LiF. However, the trends between compounds lead to the conclusion that

the microscopic mechanism, which can describe band gap changes is more complicated and

can not be directly explained solely based on the arguments related to the atomic vibrations.

This suggests that, the bonding should be considered as in [17] for a more in-depth analysis.

(a) (b)

Figure 5.15: (a) Temperature dependence of the root-mean-squared atomic displacements

normalized by the bond distance between unit cell atoms. (b) Band gap renormalization

caused by the nuclear motion normalized to the equilibrium band gap and root-mean-squared

atomic displacements normalized by the bond distance between unit cell atoms. Same tem-

peratures are used in plot (b) as in plot (a).

In order to gain a deeper understanding of the anharmonicity influence in LiF, LiI, and

Mgo at different temperatures, we have computed the temperature dependence of the anhar-

monicity measure 𝜎𝐴(T). Our results are shown in Fig. 5.16(a), which also includes the results

for diamond and GaN obtained in Chapter 4. Our findings indicate that at room temper-

ature, the anharmonicity metric of MgO (represented by 𝜎𝐴300(MgO) = 0.17) is comparable

to that of GaN (𝜎𝐴300(GaN) = 0.175). On the other hand, LiF and LiI exhibit anharmonic

behavior already at room temperature, with 𝜎𝐴300(LiF)=0.3 and 𝜎𝐴300(LiI)=0.47, respectively.

We note that LiI is the most anharmonic material in the chosen set. At T=1200 K, the

anharmonicity measure of MgO is approximately 0.32, similar to 𝜎𝐴300(LiF) = 0.3. The an-

harmonicity measures of LiF and LiI grow linearly from room temperature to temperatures

close to the melting points of these compounds. The slope of 𝜎𝐴(LiF) and 𝜎𝐴(LiI) below

room temperature and T=100K is observed to be much steeper compared to temperatures

above the room temperature. This behavior is likely associated with the quantum nuclear

effect, which causes an underestimation of the anharmonicity metrics at low temperatures.

This hypothesis is based on the data reported on anharmonicity measure in LiH, where it

7Equilibrium gaps are calculated at the DFT-PBEsol level of theory and thus, are underestimated compa-

rably to the experimental values.
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is shown that the inclusion of the QNE, by means of the path-integral aiMD, doubles the

anharmonicity measure from ≈0.15 to ≈0.30 at T=100 [284].

(a)
(b)

Figure 5.16: (a) Temperature dependence of the anharmonicity measure 𝜎𝐴(T) for dia-

mond, zinc blende GaN, MgO, LiF, and LiI. (b) Total band gap renormalization caused by

the nuclear motion and LTE normalized on the equilibrium band gaps with respect to the

anharmonicity measure 𝜎𝐴(𝑇 ) at different temperatures.

After analyzing these trends, we can assume that if there is a connection between an-

harmonicity metrics and band gap renormalization, the latter should be more pronounced

in LiF than in MgO, once a wider temperature range is investigated. Fig. 5.16(b) shows

the temperature-dependence of the band gap renormalization relative to the equilibrium

band gap. As expected, compounds with higher anharmonicity metrics experience stronger

renormalization. Consequently, we conclude that anharmonicity measure cannot only be an

indicator of lattice anarmonicity [68], but also an indicator of non-negligible influence of

lattice anharmonicity on the band gap.

5.7 Note on the accuracy of the DFT-PBEsol

We performed our calculations exclusively with the PBEsol xc-functional. Thus, equilibrium

band gaps are noticeably underestimated. Nevertheless, it was frequently stated that for the

calculations of the electron-phonon induced band gap corrections the LDA and GGA-type

xc-functionals are appropriate, albeit the absolute value of the band gap is wrong [17]. The

reason for that is that usual band gap underestimation of standard DFT approximations

affects all frozen-phonon configurations in a very similar manner, and thus, it is expected to

cancel in the calculation of the band gap correction, as it is a difference between the static

equilibrium gap and the renormalized gap. These results are also supported by numerical

calculations with methods of higher accuracy. For example, the pioneering work [52], re-

lated to the evaluation of the temperature-dependent band gap renormalization in diamond,
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reported negligible difference between results obtained using GW [221, 222] and DFT-LDA

calculations. Similar results for diamond were reported in [182], where it was shown that the

utilization of G0W0 leads to an extra -10 meV renormalization of the indirect band gap of

diamond at T=700 K. In addition, it was reported in the same work [182] that for a set of zinc

blende compounds G0W0 corrections to the ZPR renormalization are very small comparably

to the calculations done at the DFT-LDA level of theory. Calculations of the temperature

dependence of the band gaps of diamond, Si, LiF, MgO, and TiO2 have been performed in

work [273] using both semi-local DFT (DFT-PBE) and the many-body G0W0 approxima-

tion. It was demonstrated that only in the case of TiO2 the temperature-dependence of the

band gap was sensitive to the level of the theory employed, while in the case of diamond,

Si, LiF, and MgO inclusion of the correlation effects at the GW level of theory did not sub-

stantially affect the estimation of the band gap renormalization. Consequently, we assume

that our findings, at least for MgO and LiF, will not change if many-body correlation will be

considered.

On the other hand, the reliability of DFT for electron-phonon couplings has been ques-

tioned in recent years. Since the scattering of an electron by a phonon probes the excited

states of a system, a theory describing this process should rely on an accurate unrenormal-

ized band structures, unlike the ones of DFT. For example, the utilization of non-local DFT

xc-functionals showed that in some cases (C60, graphene, graphite, high-temperature super-

conductors) hybrid xc-functionals not only correct the band gap, but also more accurately

describe the electron-phonon coupling [285–288]. In addition, it was demonstrated that the

inclusion of many-body correlation effects by means of the GW calculations increases the

strength of the EPI by 40% in GaAs [223]. However, the observed difference in the tempera-

ture dependence of the band gap only appears at high temperatures. As was shown in [182],

the ZPR difference in GaAs between calculations with DFT-LDA and G0W0 is just 1 meV.

Since calculations of the band gap renormalization caused by LTE are done with unit

cells, it is possible to check to which degree usage of different xc-functional affects the LTE

contribution. We performed additional calculations of the band gap change, caused by the

LTE with HSE06 xc-functional. For this test, equilibrium and expanded unit cell geometries,

obtained with DFT-PBEsol, were used. Fig. 5.17(a) shows the difference between equilib-

rium gaps calculated with HSE06 and PBEsol. The MAE between the band gaps obtained

with PBEsol and HSE06 is 1.57 eV. Tab. 5.4 contains information about MAE resolved for

materials with different structural types. In most cases, equilibrium band gap, evaluated at

the DFT-HSE06 level of theory is by 30% larger than in the case of DFT-PBEsol. Note that

structural optimization with HSE06 will bring some additional change.

The influence of the LTE on the band gap renormalization calculated with PBEsol and

HSE06 is shown in Fig. 5.17(b). For almost all compounds the difference between results

obtained with HSE06 and PBEsol is within 25%, and the MAE is 9 meV among the whole

set. Thus, we conclude that the differences in the band gaps change due to the LTE, between

calculations done with HSE06 and PBEsol are not substantial for the compounds in our set,

but note that this finding should be taken into account carefully, since we did not perform

relaxation and the LTE evaluation using HSE06. Furthermore, these findings cannot be

expanded to make conclusions about the difference between nuclear motion evaluation with
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HSE06.

(a) (b)

Figure 5.17: (a) Comparison of the band gaps evaluated using HSE06 and PBEsol. (b) Com-

parison of the renormalization of the band gaps caused by the LTE and evaluated using HSE06

and PBEsol.

Table 5.4: MAE between the band gaps 𝐸eq calculated using HSE06 and PBEsol and MAE

between the band gaps renormalization caused by the LTE ∆𝐸LTE calculated using HSE06

and PBEsol.

Set MAE(𝐸eq), eV MAE(⟨∆𝐸⟩LTE), eV

Rock Salt 1.57 0.011

Wurtzite 1.19 0.004

Fluoride 1.36 0.012

Zinc Blende 1.03 0.004

Full Set 1.38 0.009

In summary, albeit for some materials many-body correlation effects can potentially alter

the results obtained by the DFT calculations, we assume that our data is reliable, since the

main points are made about the comparison of different effects, rather than the absolute

values of renormalizations. Furthermore, calculations at a more accurate level are unfeasible

with the current approach, since the utilized supercells contain hundreds of atoms.

Summary of the chapter

In this chapter, the band gap zero-point renormalization (ZPR) was thoroughly evaluated for

a selected set of materials. The ionic mass and atomic motion amplitudes were applied as

descriptors to observe and explain trends in the ZPR values. Subsequently, the quantifiable
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contribution of the nuclear motion and lattice thermal expansion to the band gap renormal-

ization at room temperature was assessed. The systematic investigation of the anharmonic

lattice dynamics effects on the band gap renormalization was also conducted, using binary

materials with rock salt, zinc blende, wurtzite, and fluorite-type structures. It is impera-

tive to emphasize that the findings presented in this chapter should not be generalized to

other types of semiconducting materials without proper consideration, as differing behaviors

can potentially emerge in compounds with alternative structural types and chemical environ-

ments. An in-depth analysis of the band gap renormalization was performed for LiF, LiI, and

MgO in a broad temperature range, resulting in the conclusion that the relative change of

the band gap is correlated with the anharmonicity measure, with materials that have higher

anharmonicities exhibiting a larger band gap renormalization. Similar studies of other ma-

terial classes may deepen our comprehension of the relative significance of the various effects

on the strength of electron-phonon interactions.
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Summary and outlook

We have conducted a comprehensive analysis of the temperature-dependent band gap renor-

malization using a computationally guided approach. The methodology employed in this

study is applicable to both harmonic and anharmonic materials and is based on a combina-

tion of ab initio molecular dynamics (aiMD) simulations and the band-unfolding technique.

This approach allows for a fully anharmonic treatment of the nuclear motion. If needed the

calculations can be also done in the harmonic approximation for the potential energy surface.

To validate the methodology, we performed benchmark simulations on diamond and zinc

blende GaN, and compared the results to previously published theoretical and experimental

data.

As an application, we analyzed 52 binary materials to examine the temperature influence

on the band gap renormalization. The trends of the ZPR were explained using descriptors

based on the amplitude of the nuclear motion and the atomic masses of the materials. We

also contrasted the treatment of the nuclear motion in the classical and quantum limits and

showed that the highest phonon frequency can be used as a descriptor to classify materials

in which quantum statistics for nuclear motion has particular importance. Then we evalu-

ated the impact of the LTE and the anharmonicity of PES on the band gap renormalization.

Our findings indicate that the highest phonon energy can be a useful indicator of the quan-

tum nature of the nuclear motion. Moreover, the separation of LTE and nuclear motion

contributions to the band gap renormalization allowed us to quantify the importance of the

anharmonic treatment of atomic vibrations. Our results suggest that LTE can contribute up

to half of the total band gap renormalization.

In order to assess the impact of the anharmonicity of the PES on the band gap renor-

malization, we utilized a recently introduced anharmonicity measure [68]. Consequently, it

was demonstrated that, to a certain extent, the anharmonicity measure can be utilized to

identify materials in which the fully anharmonic treatment of the nuclear motion has to be

taken into account to obtain accurate estimates of the band gap renormalization. Our study

entailed the calculation of the temperature-dependent band gap renormalization for MgO,

LiF, and LiI across a broad temperature range, with the goal of gaining a deeper understand-

ing of the influence of anharmonicity. Our results showed that the temperature-dependent

anharmonicity measure indicates that materials with higher anharmonicity measure exhibit

a greater degree of band gap renormalization. Specifically, it was established that the band

gap of materials with highly harmonic potential energy surfaces, such as diamond, undergo

much lower changes compared to highly anharmonic materials like LiI. On the other hand,

materials with moderate anharmonicity, such as GaN or MgO, undergo moderate changes
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in the band gap renormalization with temperature. It is important to note that this com-

putational study was only conducted with diamond, zinc blende GaN, MgO, LiF, and LiI,

and thus the results obtained can be extended to other materials with a certain portion of

consideration, because different behavior may emerge in compounds with different structural

types and chemical environments.

In this study, we concentrated on binary materials with a set of different structural types

and physical properties. However, to extend our understanding of the method applicability

and nature of the EPI, the method should be further applied to other classes of materi-

als. It is potentially interesting, from our perspective, to study materials with the inverse

Varshni effect [273, 277, 289–294]. Some of these materials, specifically copper halides, are

also extremely anharmonic and display ionic diffusion under heating [68]. Treatment of ionic

diffusion in the supercell during simulations requires further development of band unfolding

methodology though. The same is relevant for materials with pronounced spin-orbit cou-

pling [18, 295], which would be interesting to investigate at finite temperatures, but also

requires to implement further functionality. Additionally, it is important to investigate the

nuclear quantum effect, which has been noted to produce substantial alterations in the EPI

strength in diamond [228, 296], anharmonicity in LiH [284], and electron-phonon interaction

strength in molecular crystals [30, 216]. It is noteworthy that the established methodology

can, in principle, accommodate materials with defects, though further testing is required to

perfect the procedure. Furthermore, the established approach can be applied to analyze the

physical properties governed by the EPI, such as electronic transport [28], optical proper-

ties [39], and temperature impact on topological insulators [19,297].

A substantial portion of aiMD trajectories, stored in the NOMAD repository [274] 8, were

reused in the present study. The computational demands associated with the aiMD simula-

tions constitute one of the key challenges in the workflow, thus reuse of the dataset stored

in the NOMAD repository appeared to be extremely useful. In principle, to minimize the

computational cost, modern machine learning techniques for molecular dynamics simulations

can be employed, as outlined in [298–300]. The aiMD trajectory, calculated at the DFT level

of theory with smaller supercells, can serve as a basis for fitting, while simulations with the

production-size supercells, can be performed with machine learned potentials. The electronic

structure calculations required for systems with thousands of atoms can also be accelerated

through the fitting of the Kohn-Sham DFT results for smaller supercells using either the

atomic cluster expansion method [301, 302] or message-passing neural networks [303, 304] as

demonstrated in [305].

Our methodology can be integrated into various electronic structure packages during the

post-processing stage. aiMD simulations are commonly available in a multitude of pack-

ages [3–6]. The stochastic sampling process can be performed using either the TDEP ap-

proach [69, 70] or the SSCHA method [72], which are interfaced to different DFT codes. In

addition, the band structure unfolding formalism has been developed for codes that use plane

wave basis sets [81, 84, 239]. While it is reasonable to assume that results obtained from dif-

ferent codes will be of comparable accuracy [306], further tests similar to those performed

in [265] are required. We note that initial tests conducted with Si using the Quantum Espresso

8NOMAD dataset DOI:dx.doi.org/10.17172/NOMAD/2020.06.25-1 associated with the work [68]
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package yielded results in perfect agreement with those from FHI-aims. Our user-friendly

interface is written in Python and makes use of the ASE [307] library. The scheduling of cal-

culations is managed using Fireworks [308]. The interface can be expanded to accommodate

simulations with other DFT codes.

The electronic transport properties of materials can be analyzed through the evaluation

of the EPI [27, 28, 60, 309–313]. In theory, the electrical conductivity tensor can be obtained

from first principles using the Kubo-Greenwood formalism [314,315], as demonstrated in the

recent work [316]. However, such computations necessitate the utilization of an extremely

dense sampling of the Brillouin zone to obtain converged values of the electrical transport

coefficients [317]. A more pragmatic approach, is based on the perturbative treatment of

the EPI, as demonstrated in [25]. In the case of highly-anharmonic materials, the lattice

dynamics must be handled with caution, as illustrated in the examination of SrTiO3 [77]

through the treatment of the anharmonicity of the potential energy surface to the third order

in Taylor expansion. Although the temperature-dependence of the mobility obtained in [77]

is consistent with experimental results, the absolute values differ from the experimental ones

by a factor of ten [77]. It remains an open question whether this discrepancy is a result

of polaronic effects, as suggested in a accompanying study [78], or if higher-order terms of

anharmonicity need to be taken into account.

(a)

(b)

Figure 5.18: (a) The band structure of Si, together with a color map of the quasiparticles

relaxation time. (b) Convergence of the ImΣe-ph of the lowest lying energy level from plot(a)

with respect to the 1×1×N supercell.

Besides elucidating the underlying microscopic mechanisms of the band gap renormal-

ization at finite temperatures, developments presented here, can potentially enable a fully

non-perturbative assessment of the charge transport coefficients. According to the refer-

ence [8], the spread of the spectral function corresponds to the imaginary part of the electron-
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phonon self-energy ImΣe-ph, which is inversely proportional to the quasiparticle lifetimes

𝜏e-ph = [ImΣe-ph]−1 ~/2. Consequently, ImΣe-ph can be extracted by fitting the thermody-

namically averaged spectral function with the assumption of a Lorentzian lineshape for the

spectral function peaks. Quasiparticle lifetimes calculated in this manner can then be in-

corporated into the Boltzmann transport equation to determine transport coefficients such

as the mobility and Seebeck coefficient at finite temperatures [7, 28, 309]. To validate this

workflow, we tried to obtain lifetimes in Si. We have chosen Si, because the literature data for

ImΣe-ph of Si at room temperature is published in [38]. The band structure of Si, along with

the color-coded imaginary part of the electron-phonon self energy, is shown in Fig. 5.18(a).

For these calculations, a 4× 4× 4 supercell of Si was used, while the electron-phonon matrix

elements in [38] were calculated on interpolated 40×40×40 q and k-point grids. However,

while the lifetimes in [38] exhibit a smooth variation along the band, this is not the case in our

calculations. The main challenge faced by the study is therefore to reach the thermodynamic

limit, i.e., to converge e-ph self energy with respect to the supercell size.

We evaluated the convergence of ImΣe-ph by incrementally increasing the length of the

Si conventional cell in one direction. For this test we used supercells with size ranging from

1×1×2 to 1×1×32 of the primitive cell size. The results of this investigation are displayed in

Fig. 5.18(b). One can observe that the magnitude of ImΣe-ph decreases in the mid of the path

between X and G points, as the size of the supercell approaches 1×1×16, but at 1×1×32 it

experiences an rapid increase. Furthermore, no convergence is observed at the G-point.

A deeper understanding of the physics behind the observed trends in ImΣe-ph behavior,

can be attained by disentangling the influence of different phonon modes. To perform such

operation one has to decompose phonon dispersion into properly connected phonon branches.

This can be achieved by assigning an index to each phonon band at each phonon wave vector.

A somehow naive labeling can be done by comparing the scalar product of each phonon

eigenvector at one q-point with the phonon eigenvectors at neighboring q-points in the BZ.

However, this approach necessitates a dense sampling of the BZ and may fail in the case of

phonon branch crossings [318]. An unambiguous labeling can be accomplished by calculating

the Berry connection for phonons, as demonstrated in previous studies [225,319]. At present,

there is no readily available solution for this task to the best of our knowledge and thus, it is

likely the subject of the future work.
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Appendix A: Polarization and Born

effective charges benchmark

We validate the accuracy of our calculations by firstly comparing our results to literature val-

ues of the spontaneous polarization (P𝑠) of BaTiO3 and PbTiO3 [320, 321]. Fig. 5.19 shows

the polarization of BaTiO3 with respect to the linear displacements from the centrosymmetric

𝑃4/𝑚𝑚𝑚 phase to the non-centrosymmetric 𝑃4𝑚𝑚 phase. The distance between polariza-

tion branches corresponds to the polarization quanta [322] (P𝑞 = 𝑒𝑅/Ω), with P𝑐 and being

the polarization of the centrosymmetric and non-centrosymmetric structures, respectively.

The spontaneous polarization is calculated as P𝑠 = P𝑛𝑐 - P𝑐. The results of this validation

test are presented in Tab. 5.5.

In the second step of our benchmark, we calculated the P𝑠 value using various xc-

functionals (LDA, PBE, PBEsol, HSE06, PBE0). We optimized the structures such that

the force on the atoms was below 0.1 meV/atom. For the numerical settings, we used the

tight default for LDA, PBE, and PBEsol, and the intermediate default for the HSE06 and

PBE0 xc-functionals. 9 The spin-unpolarized calculations for BaTiO3 and PbTiO3 were per-

formed using a Gamma-centered 8×8×8 k-points grid. For the evaluation of P𝑠, we used 20

grid points in the direction parallel to the polarization vector (�⃗�‖) and 20×20 grid points for

the perpendicular directions (�⃗�⊥) in all calculations. The results of the structural parameters

and P𝑠 values are shown in Table 5.6. P𝑠 was calculated both with (numbers in brackets)

and without spin-orbit coupling (SOC), which was taken into account in a perturbative man-

ner [263]. Our results for both 𝑃4𝑚𝑚-Ba/PbTiO3 compounds show good agreement with

previous calculations [320,321,324–326]. The effect of SOC was found to be minimal.

We also conducted cross-check calculations by optimizing the structure with one xc-

functional and then computing P𝑠 of the optimized structure using all xc-functionals in a

set. The results of this test are shown in Fig.5.20. Hybrid functionals tend to display slightly

lower values of P𝑠, within a couple percent, compared to LDA or GGA-type functionals. For

instance, P𝑠 calculated with HSE06, using the geometry optimized with LDA, is 25.5 𝜇𝐶/𝑐𝑚2,

whereas calculations of P𝑠 with LDA give 26.4 𝜇𝐶/𝑐𝑚2. Therefore, the dependency of the

spontaneous polarization on the xc-functional is not primarily rooted in the calculation of

the polarization itself, but rather in the dependence of the equilibrium geometry on the

xc-functional, which is also in agreement with previous studies [321,326].

The comparison with experimentally reported values of the P𝑠 is complicated, since exper-

9The xc-functional discussion is presented in Sec. 1.3. We note that for the PBE0 xc-functional exchange

energy and Hartree-Fock energy are mixed in a set 3:1, along with the full PBE correlation energy [323].
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Figure 5.19: P𝑠=P𝑛𝑐-P𝑐 calculated as a function of distortion from the centrosymmet-

ric 𝑃4/𝑚𝑚𝑚-BaTiO3 to non-centrosymmetric structure 𝑃4𝑚𝑚-BaTiO3. We used relaxed

structure and LDA xc-functional, 20×20×20 for P𝑠 and 8×8×8 kpoints grid for sampling the

BZ. Green spheres correspond to Ba, blue to Ti, and red to O.

iments devoted to the polarization measurements [328–332] do not mention information about

the structural parameters, while the works, which reported structural information [333–335]

are not devoted to the polarization measurements. Consequently, we performed the calcu-

lations at experimentally reported parameters, but make comparison with works, which re-

ported polarization measurements. The results of this test are presented in Tab. 5.7. Both ex-

perimental works [328,329] found that the value of P𝑠 for 𝑃4𝑚𝑚-BaTiO3 is 26 𝜇𝐶/𝑐𝑚2, which

was determined using the Sawyer-Tower arrangement in the former work and optical mode-

strength analysis in the latter. Our calculated values are in good agreement with these results.

For 𝑃4𝑚𝑚-PbTiO3, experimental measurements at room temperature have been scattered,

with estimates ranging from 57 𝜇𝐶/𝑐𝑚2 [331] (below 300∘𝐶) to 75𝜇𝐶/𝑐𝑚2 [330, 332]. Our

computations have resulted in higher values of P𝑠 – around a hundred 𝜇𝐶/𝑐𝑚2. This signifi-

cant difference between experimental and calculated values for 𝑃4𝑚𝑚-PbTiO3 has also been

observed in other computational works [320,321,324–326].

There are several potential explanations for this discrepancy. Firstly, it should be noted

that the experimental works were often conducted using modified PbTiO3 ceramics [331,332].

Secondly, the work by [332] highlighted the formation of microcracks and potential charge

leakage during measurements at high-frequency fields (above 10 Hz), which could impact the
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Table 5.5: Difference between the P𝑠 values calculated in this work and previously reported

computational studies.

P𝑠 (𝜇C/cm2)

Code xc 𝑎 (Å) c/a Reference This work

BaTiO3

VASP LDA 3.943 1.013 22.9 [320] 22.91

Abinit LDA 3.954 1.006 20 [321] 19.9

Abinit PBE 4.013 1.035 39 [321] 39.8

PbTiO3

VASP LDA 3.858 1.071 94.3 [320] 95.1

Abinit LDA 3.872 1.041 78 [321] 79.7

Abinit PBE 3.834 1.221 129 [321] 128.8

Figure 5.20: The correlation of P𝑠 values calculated with different DFT xc-functionals

and different geometries for BaTiO3. The shape of the point on the graph represents the

DFT functional used for structure optimization. Abscissa shows the functional used for P𝑠

evaluation.

measurements of natural ferroelectric properties. Thirdly, such uncertainty may be related

to the different thermodynamic conditions during measurements, as PbTiO3 is sensitive to

temperature conditions [336]. It is worth noting that in the work by [327], P𝑠 of PbTiO3 was

computed to be 104 𝜇𝐶/𝑐𝑚2 at 295∘𝐶 and 74 𝜇𝐶/𝑐𝑚2 at 700∘𝐶.

Finally, we verified the values of the 𝑍* tensor for the cubic phases of Ba/PbTiO3, which

have the space group 𝑃𝑚3̄𝑚. The crystalline symmetry resulted in the 𝑍* tensor for both

compounds being isotropic. We used the finite-difference method with atom displacements

of 0.5-2% of the lattice vector length and obtained identical values. The 𝑍* values are in

agreement with previous literature reports [327,329,337] (see Tab. 5.8).
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Table 5.6: Results for the P𝑠 of 𝑃4𝑚𝑚-Ba/PbTiO3. First two columns are lattice vector

length 𝑎 and tetragonality 𝑐/𝑎. Next three columns contain Ti and O positions and the

last one is the P𝑠 value, without and with spin-orbit coupling, respectively. Ba/Pb atom

is situated at the origin. Reference computational results are taken from: 𝑎 [326], 𝑏 [320],
𝑐 [327], 𝑑 [324].

Approach 𝑎 (Å) 𝑐/𝑎 Ti O1 O2 P𝑠 (𝜇C/cm2)

BaTiO3

LDA 3.926 1.01 0.487 0.514 0.021 26.4 (26.5)

PBE 3.984 1.05 0.481 0.529 0.049 47.2 (47.3)

PBEsol 3.953 1.02 0.483 0.518 0.029 34.51 (34.56)

PBE0 3.953 1.04 0.479 0.523 0.043 43.33 (43.37)

HSE06 3.958 1.04 0.480 0.523 0.042 42.65 (42.69)

LDA 𝑎 3.946 1.011 0.488 24.3

HSE06 𝑎 3.959 1.039 0.481 40.7

LDA 𝑏 3.943 1.013 0.492 0.513 0.021 22.9

LDA 𝑐 30

PbTiO3

LDA 3.857 1.04 0.533 0.604 0.092 81.7 (80.6)

PBE 3.839 1.23 0.556 0.667 0.190 126.3 (125.1)

PBEsol 3.867 1.08 0.538 0.622 0.118 96.1 (94.9)

PBE0 3.824 1.19 0.549 0.656 0.161 114.24 (104.09)

HSE06 3.825 1.19 0.578 0.655 0.170 120.3 (119.2)

LDA 𝑎 3.865 1.045 0.566 79.8

HSE06 𝑎 3.832 1.158 0.547 114.4

GGA 𝑑 88

LDA 𝑏 3.858 1.071 0.542 0.622 0.115 94.3

LDA 𝑐 104 (T=295 K)

LDA 𝑐 74 (T=700 K)

Table 5.7: P𝑠 value of 𝑃4𝑚𝑚-Ba/PbTiO3 calculated using different DFT functionals at

experimental structural parameters. PBE and PBEsol lead to nearly the same value as LDA.

P𝑠, 𝜇𝐶/𝑐𝑚
2

Material Structure LDA HSE06 Experiment𝑐

BaTiO3 [334] 22.5 21.6 26𝑑

PbTiO3 [335] 99.8 98.4 57𝑒, 75𝑓
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Table 5.8: Born Effective Charges tensor in units of the electron charge for 𝑃𝑚3̄𝑚-BaTiO3

and 𝑃𝑚3̄𝑚-PbTiO3.

Approach a, (Å) 𝑍*
𝑧𝑧 (Ba/Pb) 𝑍*

𝑧𝑧 (Ti) 𝑍*
𝑧𝑧 (O1) 𝑍*

𝑧𝑧 (O2)

𝑃𝑚3̄𝑚-BaTiO3

LDA 3.934 +2.79 +7.35 -5.80 -2.17

LDA 3.94 +2.78 +7.36 -5.80 -2.17

LDA 4.0 +2.75 +7.40 -5.85 -2.15

PBE 4.017 +2.76 +7.41 -5.89 -2.14

PBEsol 3.967 +2.78 +7.36 -5.83 -2.16

HSE06 3.981 +2.69 +7.02 -5.54 -2.09

PBE0 3.976 +2.70 +7.03 -5.56 -2.09

Exp [329] 4.008 +2.9 +6.7 -4.8 -2.4

LDA [327] 3.945 +2.75 +7.16 -5.69 -2.11

LDA [337] 3.94 +2.77 +7.25 -5.71 -2.15

𝑃𝑚3̄𝑚-PbTiO3

LDA 3.884 +3.91 +7.22 -5.93 -2.60

PBE 3.964 +3.85 +7.28 -6.01 -2.56

PBEsol 3.917 +3.90 +7.22 -5.95 -2.58

HSE06 3.927 +3.77 +6.93 -5.62 -2.54

PBE0 3.921 +3.77 +6.93 -5.62 -2.54

LDA [327] 3.89 +3.90 +7.06 -5.83 -2.56
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Appendix B: computational details

for chapter 4

All calculations were performed using the full-potential all-electron numeric atomic orbital

code FHI-aims [5]. The LDA xc-functional was used exclusively. FHI-aims light defaults

were used for the numerical settings and for the basis set for both materials. Tight defaults

were only used to check the value of zero point renormalization. The 12 × 12 × 12 kpoints

BZ integration grid was used for the calculations with the primitive cell. K-points sampling

was adapted for the calculations with the supercells.

The LDA optimized lattice constant of diamond is 3.537 Å, which is slightly smaller than

the experimental value of 3.567 Å [338] and comparable to the lattice constant 3.529 Å, used

in the previous computational work [17]. GaN exhibits two polymorphs: zinc blende and

wurtzite. We used the zinc blende structure to allow for a comparison with the literature [90,

93, 94]. The LDA optimized lattice constant of GaN is 4.475 Å, while the experimental

values range from 4.507 Å [339] to 4.52 Å [90]. The LDA band gaps of GaN and diamond

are, as expected [90, 339], substantially lower than their experimental values. The LDA

band gaps of GaN and diamond are 2.00 eV and 4.23 eV, while the experimental values are

3.28 eV [90, 339] and 5.47 eV [208], respectively. The parameters of materials used in our

calculations are summarized in Tab. 5.9. We also note that we can perform calculations

of the band gap renormalization up to the high temperatures, because GaN is stable up to

approximately T=1700 K [340], while melting point of diamond is pressure-dependent and

reaches approximately T=4000 K at 11 GPa [341].

Lattice dynamics calculations were managed using the FHI-vibes [342] interface. Phonons

were calculated using the finite differences approach [162] as implemented in the Phonopy

package [164]. Born-Oppenheimer Ab Initio Molecular Dynamics (aiMD) simulations were

performed for diamond and GaN to take into account all orders of the anharmonicity of the

Table 5.9: Lattice parameters and band gap of diamond and GaN used in this work and

comparison to literature data. Note that works [17] and [93] only mentioned the lattice

parameters of diamond and GaN without the values of the band gap.

Material This Work Reference Theory Experiment

a (�̊�) E (eV) a (�̊�) a (�̊�) E (eV)

diamond 3.537 4.23 3.529 [17] 3.567 [338] 5.47 [208]

GaN 4.475 2.04 4.499 [93] 4.507 [339] , 4.52 [90] 3.28 [90,339]
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nuclear movement. aiMD simulations were carried out in the canonical ensemble (NVT) with

the Langevin thermostat [187, 343, 344] using a time step of 1 fs. We generated trajectories

with a time length of 5 ps, of which the first picosecond were used to thermally equilibrate

the system and the last 4 ps were used for the band gap renormalization calculations. Initial

atomic positions and velocities were pre-thermalized using stochastic sampling of the canon-

ical ensemble approach [180,181]. This allows to start ensemble run of aiMD with negligible

equilibration time [69].

Evaluation of the LTE in the QHA is done by performing calculations of the optimal

lattice constant at different temperatures, by minimizing the free energy based on the Birch-

Murnaghan equation of state [202, 203]. Slightly increased and slightly decreased volumes

(±2.5% from the equilibrium volume) of the supercell with 216 atoms were used in this

case. Once LTE is known, we performed band structure calculations for the structures with

varying lattice constant according to the measured thermal lattice expansion coefficient and

obtained the band gap renormalization. The LTE in the case of NVT-aiMD simulations is

taken into account by computing thermodynamic average of the stress tensor observed along

aiMD trajectory [68, 85]. Once the internal pressure is estimated from the stress tensor, the

structure is reoptimized under this internal pressure to obtain thermally expanded geometry.

See Sec. (2.4) for details of the LTE evaluation.
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Appendix C: computational details

for chapter 5

We performed all calculations with the all-electron, full-potential, numeric-atomic orbital

code FHI-aims [5] with PBEsol xc-functional in the DFT framework. Lattice dynamics

calculations were managed by using FHI-vibes [342]. Phonons were calculated using finite

differences approach [162] as implemented in the Phonopy package [164]. For all compounds

FHI-aims light defaults were used for the numerical settings and for the basis set, if it is

not stated otherwise. We used 12 × 12 × 12 Brillouin zone (BZ) integration k-points grid

for the self-consistency calculations of the primitive cells (k-points grid was adjusted for the

calculations with supercell). The band gaps computed at the DFT-PBEsol level of theory

are lower that the experimental values, due to the well known inability of PBEsol exchange-

correlation functional to accurately describe the band gap [124,125].

A substantial portion of aiMD trajectories, stored in the NOMAD repository [274] 10,

were reused in the present study. In the work [68], Born-Oppenheimer aiMD simulations were

carried out in the canonical ensemble (NVT) with the Langevin thermostat. These aiMD

trajectories have lengths 5 fs each. For some compounds of the particular interest (MgO,

LiF, LiI), we performed additional aiMD simulations. We utilize the FHI-vibes interface

between ASE and FHI-aims to manage aiMD calculations. We pretermalize samples (generate

displacements and assign velocities to each atom) using harmonic sampling of the canonical

ensemble methodology [180]. This allows to start ensemble run of aiMD with negligible

equilibration time [181, 184]. We generated trajectories with a time length of 5 ps, with a

time step of 1 fs. Thermal lattice expansion was calculated by computing the thermodynamic

average of the stress tensor observed during an aiMD trajectory. The structure was then

reoptimized under external pressure to obtain temperature-dependent geometries for which

the stress tensor becomes negligible in the thermodynamic average.

Fig. 5.21 shows the value of the band gap change caused by the LTE relatively to the

equilibrium gap. Fig. 5.22 shows the results of the band gap renormalization calculations

treating nuclear motion in the classical limit. Tab. 5.10, Tab. 5.11, Tab. 5.12, and Tab. 5.13

contain information about the lattice parameters of materials in the study at zero tempera-

ture and once they are heated to 300 K. Band gaps calculated for initial structures and for

expanded structures are reported as well.

10NOMAD dataset DOI:dx.doi.org/10.17172/NOMAD/2020.06.25-1 associated with the work [68].
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Figure 5.21: Band gap renormalization caused by the lattice thermal expansion at T=300 K

for compounds with wurtzite, zinc blende, and fluoride structure. The calculations are done

fully anharmonically.

100



Figure 5.22: Band gap renormalization at room temperature due to the nuclear motion.

The calculations are done in the harmonic approximation using classical statistics for the

nuclear motion.
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Table 5.10: Rock Salt Structures

System 𝜎𝐴300 𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔,0 𝐸𝑃𝐵𝐸𝑠𝑜𝑙

𝑔,300 𝑎0 𝑎300 𝐸𝐻𝑆𝐸06
𝑔,0 𝐸𝐻𝑆𝐸06

𝑔,300 ∆𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔 ∆𝐸𝐻𝑆𝐸06

𝑔

KCl 0.419 5.036 4.906 6.254 6.337 6.489 6.345 -0.13 -0.144

LiI 0.488 4.311 4.175 5.898 5.987 5.266 5.254 -0.136 -0.012

SrO 0.223 3.203 3.211 5.139 5.161 4.762 4.765 0.008 0.002

NaCl 0.37 4.971 4.87 5.613 5.664 6.446 6.334 -0.101 -0.113

KF 0.374 6.032 5.868 5.313 5.371 8.194 8.015 -0.164 -0.179

KI 0.448 3.84 3.757 6.995 7.087 4.904 4.809 -0.083 -0.095

AgCl 1.058 0.734 0.733 5.47 5.512 2.311 2.308 -0.001 -0.003

SrS 0.209 2.346 2.377 5.983 6.01 3.443 3.473 0.031 0.03

NaI 0.429 3.584 3.526 6.404 6.461 4.641 4.572 -0.058 -0.069

CsF 0.48 5.285 5.165 5.986 6.058 7.231 7.104 -0.12 -0.127

RbCl 0.434 4.795 4.699 6.566 6.636 6.231 6.124 -0.095 -0.107

MgO 0.172 4.488 4.402 4.226 4.239 6.313 6.218 -0.085 -0.095

SrTe 0.24 1.692 1.735 6.623 6.656 2.502 2.547 0.043 0.045

KBr 0.426 4.282 4.199 6.559 6.631 5.543 5.449 -0.083 -0.094

RbBr 0.44 4.152 4.058 6.859 6.955 5.404 5.297 -0.094 -0.107

NaF 0.318 6.121 5.989 4.634 4.674 8.402 8.255 -0.132 -0.147

RbF 0.407 5.501 5.377 5.632 5.699 7.565 7.429 -0.124 -0.136

CaO 0.196 3.424 3.429 4.774 4.79 5.135 5.137 0.005 0.002

LiBr 0.468 4.982 4.746 5.411 5.5 6.286 6.021 -0.236 -0.265

LiCl 0.4 6.279 6.067 5.079 5.144 7.791 7.558 -0.212 -0.234

CaTe 0.238 1.362 1.399 6.317 6.344 2.186 2.225 0.037 0.039

NaBr 0.4 4.065 3.988 5.932 5.99 5.326 5.237 -0.077 -0.089

RbI 0.471 3.76 3.695 7.303 7.392 4.823 4.748 -0.065 -0.075

LiF 0.327 8.965 8.646 4.013 4.062 11.346 11.003 -0.318 -0.342

Table 5.11: Zinc Blende Structures

System 𝜎𝐴300 𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔,0 𝐸𝑃𝐵𝐸𝑠𝑜𝑙

𝑔,300 𝑎0 𝑎300 𝐸𝐻𝑆𝐸06
𝑔,0 𝐸𝐻𝑆𝐸06

𝑔,300 ∆𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔 ∆𝐸𝐻𝑆𝐸06

𝑔

AlAs 0.181 1.377 1.379 5.698 5.7 2.135 2.136 0.002 0.002

CuI 0.479 1.111 1.08 5.991 6.014 2.632 2.606 -0.031 -0.026

CdTe 0.319 0.614 0.599 6.524 6.534 1.454 1.436 -0.015 -0.018

ZnTe 0.264 1.203 1.156 6.091 6.111 2.184 2.129 -0.047 -0.055

ZnS 0.243 2.107 2.07 5.365 5.38 3.373 3.33 -0.037 -0.043

ZnSe 0.256 1.222 1.203 5.653 5.662 2.325 2.302 -0.019 -0.023

GaAs 0.185 0.369 0.335 5.681 5.689 1.2 1.16 -0.034 -0.04

CdS 0.288 1.008 1.0 5.846 5.853 2.053 2.044 -0.007 -0.009
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Table 5.12: Wurtzite Structures

System 𝜎𝐴300 𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔,0 𝐸𝑃𝐵𝐸𝑠𝑜𝑙

𝑔,300 𝐸𝐻𝑆𝐸06
𝑔,0 𝐸𝐻𝑆𝐸06

𝑔,300 ∆𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔 ∆𝐸𝐻𝑆𝐸06

𝑔

ZnO 0.26126 0.70893 0.7003 2.4406 2.42584 -8.62 -14.76

ZnSe 0.2623 1.27261 1.24344 2.38015 2.34529 -29.17 -34.86

CdSe 0.31413 0.5277 0.52021 1.45646 1.44693 -7.48 -9.54

CdS 0.28724 1.09018 1.08022 2.14711 2.13495 -9.96 -12.16

MgTe 0.27212 2.33304 2.31154 3.24429 3.21994 -21.5 -24.35

ZnS 0.24267 2.15619 2.12423 3.42154 3.38463 -31.96 -36.91

Table 5.13: Fluorite and antifluorite Structures

System 𝜎𝐴300 𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔,0 𝐸𝑃𝐵𝐸𝑠𝑜𝑙

𝑔,300 𝑎0 𝑎300 𝐸𝐻𝑆𝐸06
𝑔,0 𝐸𝐻𝑆𝐸06

𝑔,300 ∆𝐸𝑃𝐵𝐸𝑠𝑜𝑙
𝑔 ∆𝐸𝐻𝑆𝐸06

𝑔

K2S 0.35866 2.3437 2.28214 7.34288 7.40489 3.3486 3.27553 -61.56 -73.08

Rb2Se 0.3681 1.77041 1.73793 7.97062 8.0395 2.66965 2.62571 -32.47 -43.94

K2O 0.38829 1.85088 1.71812 6.36583 6.44976 3.14198 2.98583 -132.76 -156.15

Rb2O 0.47681 1.37798 1.23625 6.73157 6.83339 2.63385 2.46467 -141.73 -169.18

Li2O 0.28575 4.85498 4.80244 4.59246 4.63723 6.58904 6.51987 -52.53 -69.16

Na2Te 0.37855 1.99884 1.9366 7.25975 7.31646 2.83188 2.75838 -62.24 -73.5

CdF2 0.41829 2.97451 2.90729 5.39362 5.42784 5.15672 5.07902 -67.23 -77.7

SrF2 0.30611 6.73702 6.63776 5.78194 5.8181 8.94265 8.83525 -99.26 -107.34

K2Te 0.38024 2.14434 2.08335 8.11736 8.18479 2.94068 2.86988 -60.99 -70.79

Li2S 0.30653 3.20744 3.22508 5.67797 5.72496 4.30221 4.31356 17.65 11.35

Li2Te 0.35856 2.38102 2.40772 6.46147 6.50685 3.15665 3.18127 26.71 24.62

Na2S 0.33714 2.41257 2.34893 6.51605 6.56054 3.46594 3.39113 -63.64 -74.8

Na2Se 0.35612 2.0024 1.9148 6.76791 6.83738 2.94458 2.84052 -87.6 -104.06

CaF2 0.3168 7.07279 6.95861 5.43612 5.47241 9.29982 9.1772 -114.18 -122.62

Li2Se 0.3292 2.8157 2.83898 5.95429 6.00513 3.76357 3.78181 23.29 18.24
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Review B, vol. 97, p. 115145, 2018.

[283] Y. Zhang, Z. Wang, J. Xi, and J. Yang, “Temperature-dependent band gaps in several

semiconductors: from the role of electron–phonon renormalization,” Journal of Physics:

Condensed Matter, vol. 32, no. 47, p. 475503, 2020.

[284] H.-H. Kowalski, Theory of thermal conductivity. PhD thesis, Techniche Universität

Berlin, 2023.
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F. Hörich, J. Bläsing, A. Krost, and R. Goldhahn, “Optical properties of cubic GaN

from 1 to 20 eV,” Physical Review B, vol. 85, p. 155207, 2012.

[340] S. Porowski, “Growth and properties of single crystalline GaN substrates and homoepi-

taxial layers,” Materials Science and Engineering: B, vol. 44, no. 1, pp. 407–413, 1997.

3rd International Workshop on Expert Evaluation and Control of Compound Semicon-

ductor Materials and Technologies.

[341] J. H. Eggert, D. G. Hicks, P. M. Celliers, D. K. Bradley, R. S. McWilliams, R. Jeanloz,

J. E. Miller, T. R. Boehly, and G. W. Collins, “Melting temperature of diamond at

ultrahigh pressure,” Nature Physics, vol. 6, no. 1, pp. 40–43, 2010.

[342] F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno, “FHI-vibes: ab initio

vibrational simulations,” Journal of Open Source Software, vol. 5, no. 56, p. 2671,

2020.

[343] W. G. Hoover, A. J. C. Ladd, and B. Moran, “High-strain-rate plastic flow studied via

nonequilibrium molecular dynamics,” Physical Review Letters, vol. 48, pp. 1818–1820,

1982.

[344] D. J. Evans, “Computer experiment for nonlinear thermodynamics of Couette flow,”

The Journal of Chemical Physics, vol. 78, no. 6, pp. 3297–3302, 1983.

129





Declaration

I declare that I have completed the thesis independently using only the aids and tools speci-

fied. I have not applied for a doctor’s degree in the doctoral subject elsewhere and do not hold

a corresponding doctor’s degree. I have taken due note of the Faculty of Mathematics and

Natural Sciences PhD Regulations, published in the Official Gazette of Humboldt-Universität

zu Berlin no. 42/2018 on 11/07/2018.

Nikita Rybin

Berlin, February, 2023

131


	Abstract
	Acknowledgements
	Introduction
	1 Electronic structure methods
	1.1 The many-body problem
	1.2 The Born-Oppenheimer approximation
	1.3 Density-functional theory
	1.4 The periodic boundary conditions

	2 Lattice dynamics
	2.1 The harmonic approximation
	2.2 Ab initio molecular dynamics
	2.3 Anharmonicity quantification
	2.4 Lattice thermal expansion

	3 The temperature dependence of electronic states
	3.1 Influence of the nuclear motion
	3.2 Spectral weights formalism in NAO basis
	3.3 Influence of lattice thermal expansion and polar corrections on the band gap renormalization

	4 Temperature-dependent band gap renormalization in diamond and zinc blende GaN
	4.1 Temperature-dependent spectral functions
	4.2 Numerical aspects of calculations
	4.3 Influence of the nuclear motion and polar corrections
	4.4 Anharmonicity and lattice thermal expansion
	Comparison with the experimental data

	5 Quantifying the role of different contributions to the band gap renormalization at finite temperatures
	5.1 Zero-point renormalization of the band gap
	5.2 Electron-phonon interactions: quantum and classical treatment of the nuclear motion
	5.3 Electron-phonon interactions: harmonic and fully anharmonic treatment of the nuclear motion
	5.4 Exploring the role of thermal expansion
	5.5 The role of anharmonicity in the band gap renormalization
	5.6 Band gap renormalization in MgO, LiF, and LiI
	5.7 Note on the accuracy of the DFT-PBEsol

	Summary and outlook
	Appendix A: Polarization and Born Effective Charges
	Appendix B: computational details for chapter 4
	Appendix C: computational details for chapter 5
	References
	Declaration

