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Abstract

The interactions of cilia with one another and their environment are central to many
important questions in biology. These hairlike organelles are found in motile and immotile
(or ‘primary’) variants, and have a variety of roles in sensing and fluid pumping. Primary
cilia have long been known to act as chemosensors, but recent research has found that
motile cilia also have this ability, and it is not known what benefit is conferred by combining
all the complicated required molecular machinery. These chemosensitive motile cilia are
often found in bundles, which is surprising, as one would expect each to deplete the local
chemical concentration field, leading to a lower sensitivity per cilium. Motile cilia have
long been known to synchronise with one another to produce metachronal waves, but the
precise mechanism behind this synchronisation is still not well understood, except that
hydrodynamics plays an important role.

In this thesis, we aim to make some headway in answering these open questions, by
developing models of the interactions of cilia and the surrounding fluid flow. First, using
both analytical and computational methods, we determine the mass transfer to individual
cilia (both primary and motile) as well as bundles of motile cilia. We show that the cilium
geometry alone is sufficient to dramatically increase chemosensitivity over chemosensors on
the cell surface, especially if the fluid near the cilium is in motion. We also find that motility
can increase chemosensitivity by a large factor at realistic cilium speeds, and that motile
bundles are more chemosensitive per cilium, provided they are beating sufficiently quickly.
We then use computational methods to focus on how cilia hydrodynamically interact
with one another, and show that certain cilium beats can result in strongly nonreciprocal
hydrodynamic interactions that can give rise to quickly emerging metachronal order with
a single dominant wavevector, even in finite systems. When the near-field hydrodynamic
interactions (and hence the nonreciprocity of interactions) is suppressed, synchronisation
is much slower and multiple wavevectors are seen.

We have therefore uncovered several reasons why chemosensors may be advantageously
located on both motile and primary cilia, and shown that a cilium beat fine-tuned to give
strong nonreciprocal interactions can be extremely effective in inducing metachronal order.
This amounts to a significant amount of evidence pointing to some potential answers to
some of the open questions surrounding cilia.
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Introduction 1

1.1 Motivation . . . . . . . 2

1.2 Thesis outline . . . . . 3

If one were to go through some of the anatomical sketches
made by Leonardo da Vinci, one might find something
unexpected: a drawing of someone with their heart on the
right side of their chest, as opposed to the more usual left
side. It’s not certain whether he simply reflected the sketch
as he famously reflected his handwriting, but this inversion
is a real condition, known as situs inversus1

1: If he really did observe si-
tus inversus, he didn’t leave
any record to indicate that
he found it interesting or
unusual. Partial inversions
(usually called situs ambigu-
ous) were later explicitly de-
scribed by Hieronymus Fabri-
cius [1] and Marco Aurelio
Severino [2], with the full in-
version probably being first
described later by Matthew
Baillie [2, 3].

.

[1]: Pennekamp et al. (2015), Situs inversus
and ciliary abnormalities
[2]: Ogunlade et al. (2015), The role of elec-
trocardiogram in the diagnosis of dextrocardia
with mirror image atrial arrangement and ven-
tricular position in a young adult Nigerian in
Ile-Ife: a case report
[3]: Baillie (1788), An account of a remarkable
transposition of the viscera.

Approximately
one in ten thousand people are born with this condition,
where some or all the organs in the body are reflected left to
right. Most patients have all their organs reflected and thus
experience no major health issues, as the relative position
of all organs is unchanged – they might never even know of
their unusual organ arrangement. However, an unlucky few
will experience only a partial reflection, leading to potentially
life-altering complications [4]

[4]: Eitler et al. (2022), Situs Inversus Totalis

. Even centuries on from the
first descriptions, we still don’t know exactly what causes
this to happen. We do, however, know that tiny hairlike
organelles named cilia play a central role [5, 6]

[5]: Essner et al. (2002), Conserved function
for embryonic nodal cilia
[6]: McGrath et al. (2003), Cilia are at the
heart of vertebrate left–right asymmetry

, just as they
will play a central role in the work described in this thesis.

One can hardly blame the physician Matthew Baillie for de-
scribing this inversion as ‘remarkable’ in a letter to a friend [3],
but situs inversus is far from the only fascinating or unex-
pected thing in biology. The billions of years that have been
spent by natural selection tweaking and optimising living
organisms have left us some incredibly complex and robust
active systems that we are only just beginning to understand.
Cilia and the associated disorders are just one very narrow
example – the wider field of active matter research concerns
itself with systems from scales much smaller than cells (such
as cilia or swimming microorganisms) to scales much greater
than the size of organisms (such as flocking behaviour in
sheep or crowd dynamics at sports venues). Nature has
something of a head start on us, as the field of active mat-
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ter research has existed for barely three decades – possibly
the best known model in active matter is the Vicsek model
of flocking, which was only defined in 1995 [7]) – whereas [7]: Vicsek et al. (1995), Novel Type of Phase

Transition in a System of Self-Driven Particles

life on this planet may have existed for close to 4.5 billion
years. However, there is a bright side to the rather daunting
problem we find ourselves with, as we are presented with a
unique opportunity to dig into these systems and begin to
unravel the mysteries that life has left for us.

1.1 Motivation

But despite (or because of) the plethora of systems that fall
under the purview of active matter, we have to focus our
efforts somewhere, and in this thesis that focus will fall
on cilia. These are tiny hairlike organelles2 which can be

2: An organelle is a spe-
cialised part of a cell, anal-
ogous to how an organ is a
specialised part of an organ-
ism. Examples include the nu-
cleus, the cell membrane, or
the ribosome.

found on the membranes of most eukaryotic cells [8], i.e. cells
[8]: Nachury et al. (2019), Establishing and
regulating the composition of cilia for signal
transduction

within the group of eukaryotes, organisms whose cells have
nuclei. This group includes all animals and many unicellular
organisms. Within those organisms, cilia have an astounding
array of tasks to perform; if they were to suddenly disappear,
the lungs would stop working [9], the brain would cease [9]: Yaghi et al. (2016), Airway Epithelial

Cell Cilia and Obstructive Lung Disease

to function [10], reproduction would grind to a halt [11, 12], [10]: Faubel et al. (2016), Cilia-based flow
network in the brain ventricles

[11]: Lyons et al. (2006), The reproductive
significance of human Fallopian tube cilia
[12]: Girardet et al. (2019), Primary cilia:
biosensors of the male reproductive tract

little microorganisms would stop moving and subsequently
starve to death [13], and much more besides.

[13]: Funfak et al. (2015), Paramecium swim-
ming and ciliary beating patterns: a study on
four RNA interference mutations

Given the ubiquity and importance of these little organelles,
one would hope that we understood them quite well, but
this isn’t really the case, despite having known about them
for centuries. The first of the two broad types of cilia, termed
‘motile cilia’ due to their ability to wave under their own
power, was probably first discovered in 1675 at the earliest.
We now know that they have roles pumping fluid, and under
certain circumstances can coordinate their beating with other
nearby cilia (since they are usually found in large patches
called ‘carpets’, there are other cilia nearby more often than
not) to improve their energetic pumping efficiency [14, 15]. [14]: Osterman et al. (2011), Finding the

ciliary beating pattern with optimal efficiency
[15]: Elgeti et al. (2013), Emergence of
metachronal waves in cilia arraysThe much-maligned second type, named ‘primary cilia’ and
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typically found with only one per cell, were discovered
a century later and immediately ignored by the scientific
community at large, as their lack of motion meant they were
assumed to be useless and vestigial. Only more recently,
some two centuries after the initial discovery of cilia, was
it realised that primary cilia have sensory roles in the body,
such as detection of forces and chemicals, leading to a surge
in interest. Later still, it was found that motile cilia also
have sensory roles, but the implications of this aren’t yet
clear [16].

[16]: Bloodgood (2010), Sensory reception is
an attribute of both primary cilia and motile
cilia

There are a number of open questions around these tiny
structures, concerning how they interact with each other and
the environment, despite numerous studies investigating
them. A few that are addressed in this thesis include:

▶ Why are chemical detectors (more commonly called
‘chemoreceptors’) on cilia at all? Building and main-
taining cilia to host chemoreceptors comes with an
energetic cost that could be spent elsewhere in the
organism.

▶ Is there a reason that motile cilia are sometimes chemosen-
sitive? This combination of motility and chemosensing
puts a lot of complexity in one small compartment. Is
motility somehow beneficial to the chemosensitivity of
the cilia?

▶ Could there be a benefit to having chemosensitive
motile cilia in bundles or carpets? It seems like each
cilium would deplete the local concentration field,
leading to a lower sensitivity per cilium.

▶ How do cilia coordinate their waving? They are typ-
ically submerged in fluid; are hydrodynamic interac-
tions between cilia sufficient to explain the relatively
fast synchronisation seen in biological systems?

1.2 Thesis outline

The outline of the remainder of this thesis is as follows:
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Chapter 2: Background

I discuss the background biology and physics required
to understand cilia and the later chapters of this thesis.
The structure of cilia is explained, and the peculiar
behaviour of fluids at the microscopic scales of cilia
is covered in detail. I also delve into some of the ap-
proaches that have been taken in modelling the inter-
action between cilia and fluid.

Chapter 3: Particle capture

By developing analytical and computational models,
we investigate the interactions of both primary and
motile cilia (in the latter case considering bundles of
motile cilia as well as isolated individual motile cilia)
with chemicals at a known concentration, with a view
to better understand how cilium geometry and motility
affects their ability to sense chemicals. We consider
how well the model reflects reality, and the biological
implications for chemoreception by cilia.

Chapter 4: Ciliary synchronisation

We develop a model of cilium synchronisation via
hydrodynamic interactions, and use it to carry out
an investigation of how hydrodynamic interactions
lead to synchronisation, and what factors of the cilia,
their arrangement, and their motion are essential for
synchronisation. Most importantly, we find that our
modelled intercilium hydrodynamic interactions are
nonreciprocal, and we discuss the importance of this
fact. We finally consider the extent to which these
results reflect real-world cilia, and what our model
leaves out.

Chapter 5: Conclusion

I summarise the work presented, and discuss some
related potential future research. The implications of
this work are considered.
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2.1 Hydrodynamics . . . 5

2.2 Cilia . . . . . . . . . . 13

2.3 Chapter summary . . 18

2.1 Hydrodynamics

At the length scales of cilia (generally between one and a few
tens of micrometres [17]) fluid flow looks very different to

[17]: Saggese et al. (2012), Development of a
method for the measurement of primary cilia
length in 3D

what is seen at a human scale. For a human in a swimming
pool, inertial forces are hugely important, allowing a compe-
tent swimmer to glide several metres on a single stroke. A
bacterium in a puddle of water sees a very different world,
where the environment is dominated by viscous forces; if a
swimming bacterium were to stop actively propelling itself, it
would only coast approximately 10 pm (slightly less than the
diameter of a hydrogen atom), and come to a halt in under a
microsecond [18], as the friction is so much more important [18]: Purcell (1977), Life at low Reynolds

number

than the bacterium’s minuscule momentum. Despite this,
the swiftest bacteria can swim at hundreds of body lengths
per second [19].

[19]: Zhang et al. (2014), Swimming be-
haviour and magnetotaxis function of the ma-
rine bacterium strain MO-1

This dominance of viscous forces over inertia is quantified
by the dimensionless Reynolds number, defined as

Re =
𝐿𝑢𝜌

�
, (2.1)

where 𝐿 is the length scale, 𝑢 is the speed of motion, 𝜌 is
the fluid density, and � is the dynamic viscosity of the fluid.
Plugging in reasonable numbers, we find that for a cilium
or bacterium, the Reynolds number is around ∼ 10−5 − 10−4,
which, being much less than one, tells us that inertial forces
are tiny enough to be entirely negligible compared to fluid
viscosity. For comparison, a human in a swimming pool
experiences a Reynolds number of ∼ 103 − 104, around a
hundred million times greater than the cilium. For a human
to experience this same viscous dominance that a cilium feels,
they would have to swim at their normal swimming speed,
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but in a fluid around 10 − 100 times more viscous than even
the thickest peanut butter [20]. [20]: Citerne et al. (2001), Rheological prop-

erties of peanut butter

2.1.1 Stokes flow

The Navier-Stokes equation for an incompressible fluid, de-
scribing the velocity u and pressure 𝑝 of a fluid experiencing
an external force per unit volume f, can be written as

𝜌

(
𝜕u

𝜕𝑡
+ (u · ∇)u

)
= −∇𝑝 + �∇2

u + f. (2.2)

This equation is nonlinear and famously hard to solve1.

1: The proof of the existence
of a smooth and globally de-
fined solution to the Navier-
Stokes equations is one of the
Millennium Prize Problems.
Anyone who is able to prove
such a solution exists in ev-
ery case will receive a prize
of $1,000,000.

However, as previously mentioned, inertia is negligible at
the scale of cilia. Many of the terms in this equation represent
inertial forces that are not relevant, so we can simplify this
equation heavily to obtain the Stokes equation:

�∇2
u − ∇𝑝 + f = 0, (2.3)

∇ · u = 0. (2.4)

This equation has no explicit time dependence, which means
that a change in the force f or boundary conditions propagates
instantly to the fluid, but if the force and boundary conditions
are unchanged, the flow field u is constant in time. The form
of the equations also ensures that if u is a solution for a
given f, then so is −u for −f; the equations are ‘reversible’.
This leads to an interesting consequence known as Purcell’s
scallop theorem: at low Reynolds number, any series of
actions followed by the reverse of those actions can’t generate
a net motion. The organism that gives the theorem its name,
the scallop, swims by opening and closing its shell, and is
therefore unable to swim in a Stokes fluid [18]. For motile [18]: Purcell (1977), Life at low Reynolds

number

cilia, this lesson is of the utmost importance: if fluid is
to be pumped, waving back and forth in a plane without
bending is insufficient. The motion needs to be cyclic, but
not reversible.
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2.1.2 Solving the Stokes equations

Computing the flow due to a moving cilium is complicated,
and in practice requires some simplifying assumptions that
change depending on the context and what kind of accu-
racy is needed. The simplest possible solution to the Stokes
equations is the Stokeslet, which represents the fluid flow a
displacement r from a point force F:

u(r) = S(r) · F (2.5)

≡ 1
8𝜋�

(
1
|r| +

rr

|r|3

)
· F,

under the assumption that the flow speed and pressure
decays to zero infinitely far away. However, this is a very
poor approximation of a cilium, and would almost never be
a sufficiently good simplification for practical purposes.

For a start, the cilium is found on the surface of a cell, which
means that one has to account for the effect of the cell on
the fluid flow. Generally, the best boundary condition to
use in this case is the no-slip condition, wherein the fluid
flow relative to the cell’s surface is stationary. This has fairly
significant experimental backing for fluids where viscosity
dominates over inertia [21], so we will adopt it here as well. [21]: Day (1990), The no-slip condition of

fluid dynamics

To compute the flow due to a point force in the presence of
a no-slip boundary, we can use a solution sometimes called
the Blakelet [22]. In much the same way that it is possible [22]: Blake (1971), A note on the image system

for a stokeslet in a no-slip boundary

to find the electric field due to a charged particle in the
presence of a conducting boundary by introducing a second
imaginary ‘image’ particle with the opposite charge reflected
in the conducting boundary, Blake realised it was possible
to model the flow due to a Stokeslet in the presence of a
no-slip boundary by creating an ‘image system’, consisting of
multiple flow singularities (one of which is a Stokeslet with
equal magnitude and opposite direction), located where the
mirror image of the real particle would be: see Fig. 2.1 for a
diagram of the image system. The derivation is complicated,
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Figure 2.1: The image sys-
tem that underpins the
Blake tensor. The real
Stokeslet is a distance ℎ

above the no-slip bound-
ary at 𝑧 = 0, and the image
system is found a distance
ℎ below the boundary. 𝑃
is the observation point at
which we want to compute
the flow.

and the full treatment can be found in Blake [22], but the [22]: Blake (1971), A note on the image system
for a stokeslet in a no-slip boundary

result is incredibly useful for modelling the hydrodynamics
of cilia: if we have a point force in a fluid at a position
(𝑟1, 𝑟2, ℎ) above a no-slip boundary, we also introduce an
‘image particle’ which is reflected in the 𝑧 = 0 axis from
the real particle. In other words, the image will be located
at (𝑟1, 𝑟2,−ℎ). We denote the displacement from the image
particle to the position where we are interested in the fluid
flow as R, and thus the Blakelet can be written as:

𝑢𝑗(r, R) = B𝑗𝑘𝐹𝑘

=
1

8𝜋�

[(
1
𝑟
− 1

𝑅

)
𝛿 𝑗𝑘 +

𝑟 𝑗𝑟𝑘

𝑟3 −
𝑅 𝑗𝑅𝑘

𝑅3 (2.6)

+ 2ℎ
(
𝛿𝑘𝛼𝛿𝛼𝛽 − 𝛿𝑘3𝛿3𝛽

) 𝜕

𝜕𝑅𝛽

(
ℎ𝑅 𝑗

𝑅3 −
{
𝛿 𝑗3
𝑅

+
𝑅 𝑗𝑅3

𝑅3

})]
· 𝐹𝑘 .

Note the use of Einstein summation notation, meaning that
repeated indices are summed over2

2: In the same notation, the
Stokeslet would become:

𝑢𝑗(r) = S𝑗𝑘𝐹𝑘

=
1

8𝜋�

(
𝛿 𝑗𝑘
𝑟

+
𝑟 𝑗𝑟𝑘

𝑟3

)
𝐹𝑘 .

, i.e. 𝑟𝑖𝑟𝑖 = 𝑟2
1 + 𝑟2

2 + · · · =
𝑟2.

This can be rewritten as a Stokeslet plus an ‘image’ contribu-
tion:

𝑢𝑗(r, R) = (S𝑗𝑘 + Bim
𝑗𝑘
)𝐹𝑘 . (2.7)
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(a) Stokes flow due to
a moving Stokeslet

(b) Stokes flow due to
a finite-sized sphere

(c) Flow due to a moving
Blakelet near a boundary

(d) Flow due to a moving finite-
sized sphere near a boundary

Figure 2.2: Different solu-
tions to the Stokes equa-
tions corresponding to var-
ious Green’s functions. (a)
and (b) show the flows
far away from a boundary,
whereas (c) and (d) show
the flow field near a no-slip
boundary. One can see how
the fluid is much slower
near the boundary at the
bottom edge of the plots,
and how the fluid flow is
altered.

The image contribution decays to zero if the particle is far
enough from the boundary.

Far away from the cilium, the Blakelet is a very good approx-
imation for the fluid flow due to a moving sphere or even a
whole cilium, despite assuming a single point force – in fact,
in the far-field3

3: ‘Far-field’ refers to the
fluid behaviour far from the
cilium, where only the terms
in the force response that
decay very slowly with dis-
tance are important. ‘Near-
field’ refers to the fluid be-
haviour much closer to the
cilium, where the higher or-
der terms are also relevant.

limit, it is exactly the same as the flow due to
a sphere acted upon by a force [23]

[23]: Vilfan (2012), Generic flow profiles in-
duced by a beating cilium

. However, closer to the
cilium, something more accurate is required; to achieve this,
we can integrate the Blakelet over the surface of a sphere
of radius 𝑎 to obtain a version of the Rotne-Prager tensor,
modified to include a no-slip boundary. This new mobility
satisfies the no-slip boundary on the surface of the sphere.
The Rotne-Prager tensor can be written in terms of the Blake
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tensor as:

M𝑗𝑘 =

(
1 + 𝑎2

6
∇2

r𝑗

) (
1 + 𝑎2

6
∇2

r𝑘

)
B(r𝑗 , r𝑘) (2.8)

for the off-diagonal elements, and

M𝑗 𝑗 =
1

6𝜋�𝑎
1 +

(
1 + 𝑎2

6
∇2

r𝑗

) (
1 + 𝑎2

6
∇2

R𝑗

)
Bim(r𝑗 , R𝑗) (2.9)

for the diagonal elements [24]. The full form of the tensor
[24]: Gauger et al. (2009), Fluid transport
at low Reynolds number with magnetically
actuated artificial cilia

is much too long to write here, but see for example Vilfan
et al. [25]. Some of the fluid flow solutions discussed here [25]: Vilfan et al. (2010), Self-assembled arti-

ficial cilia

are shown in Fig. 2.2. Our work in later chapters will make
extensive use of this corrected Rotne-Prager tensor.

[24]: Gauger et al. (2009), Fluid transport
at low Reynolds number with magnetically
actuated artificial cilia
[26]: Guazzelli et al. (2011), A Physical In-
troduction to Suspension Dynamics

Rotne-Prager derivation

The Rotne-Prager tensor can be derived (following [24])
by integrating the Blakelet over the surface of a sphere of
radius 𝑎 and its centre at rs:

u(r) =
∫
𝑆

B(r, r
′)f(r′)d𝑆′. (2.10)

To first order, the force density f is just the total force F

divided by the surface area of the sphere, which means
that we can expand the force and the Blake tensor around
r
′ = r𝑠 to get

u(r) ≈
[(

1 + 𝑎2

6
∇2

r
′

)
B(r, r

′)
]

r
′=r𝑠

· F. (2.11)

Now, Faxén’s law tells us that the velocity of a sphere of
radius 𝑎 experiencing a hydrodynamic force F in a flow is
given by:

F = 6𝜋�𝑎
[(

1 + 𝑎2

6
∇2

)
u0 − us

]
(2.12)

where u0 is the fluid flow that would be at the centre of
the sphere if the sphere was not there [26], so we can
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combine this with Eq. (2.11), eliminating u(r) = u0 to find
the diagonal and off-diagonal terms of the Rotne-Prager
tensor.

2.1.3 Modelling the motile cilium

Slender bodies are of great interest in a lot of fields, especially
within biophysics: cilia and the superficially similar bacterial
flagella are used for swimming and pumping, and many
bacteria or other microorganisms have elongated shapes [27].

[27]: Borker et al. (2019), Slender body theory
for particles with non-circular cross-sections
with application to particle dynamics in shear
flowsOutside of biophysics, certain materials (both natural and

artificial) such as clays [28] or fibre-reinforced composites [27] [28]: Koens (2022), Tubular-body theory for
viscous flows

are composed of elongated components. However, there are
some problems when trying to numerically model elongated
bodies. For example, the boundary element model divides
the body’s surface into many small elements and then makes
assumptions about the hydrodynamic stress on each element
to determine the fluid flow around the cilium [26], but [26]: Guazzelli et al. (2011), A Physical In-

troduction to Suspension Dynamics

since the width of the elongated body is very small, a high
resolution (i.e. a lot of surface elements) is required to achieve
good accuracy. Then, because the other length scale is much
larger, this high-resolution has to be extended over a large
area, resulting in heavy performance penalties [28]. As such,
it comes as no surprise that there are a great many ways
to model the hydrodynamics of cilium-like structures that
attempt to sidestep these computational pitfalls.

One of the conceptually simplest of these approaches is slen-
der body theory, in which an elongated body is approximated
by a line of Stokeslets (and other related flow solutions, in
order to enforce a no-slip condition), and the fluid flow is
then found by summing over the length of the elongated
body [26]. This exploits the linearity of the Stokes flow, which
means that a superposition of solutions to the Stokes flow is
also a valid solution to the Stokes flow. In the case of a series
of Stokeslets with position r𝑗 , the total fluid flow at r would
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be
u

total(r) =
∑
𝑗

S(r, r𝑗) · F𝑗 . (2.13)

Summing up the velocity responses due to a line of point
forces is equivalent to considering the much less tractable
case where one must find the velocity response due to a line
of forces directly. This approach has seen use in modelling
bacterial swimming [29] and cilium beating [30]. However, [29]: Lauga (2016), Bacterial Hydrodynamics

[30]: Fulford et al. (1986), Muco-ciliary trans-
port in the lungthe presence of singularities in the flow can pose problems

for numerical integration, and it can be expensive to try
to determine the (potentially huge) set of forces required
to reproduce a given motion coupled with the boundary
condition, so other methods have been developed that try to
improve upon the numerical practicality.

Other approaches include the numerically much simpler
resistive force theory, in which the slender body is divided
into (usually infinitesimal) length elements. The force com-
ponents on each length element are computed using drag
coefficients which are known in advance, and the velocity of
the length element relative to the fluid at infinity. However,
this approximation does not account for self-interaction, so
tightly curved filaments can pose issues, and it begins to
break down if the slender body is anchored to a much larger
cell body (which is almost always the case with cilia) [31].

[31]: Johnson et al. (1979), Flagellar hydrody-
namics. A comparison between resistive-force
theory and slender-body theory.

Nonetheless, this method has seen success in modelling
of ciliary hydrodynamics [32]. The method of regularised [32]: Gueron et al. (1992), Ciliary motion

modeling, and dynamic multicilia interactions

Stokeslets seeks to fix the issues created by the singularities
in slender body theory, by replacing each Stokeslet point-
force with a ‘blurry’ force distribution called a regularised
Stokeslet; the Dirac delta function that characterises the point
force is instead replaced by a smooth approximation called
a ‘cut-off’ function, which solves the problems introduced
by flow singularities. However, there is an issue with ‘leak-
ing’ whereby the no-slip boundary condition is not very
well satisfied, which might prove fatal depending on the
requirements of the model [33]. Nonetheless, this method [33]: Cortez (2018), Regularized Stokeslet

segments

has also been applied to cilia [34, 35]. Various other methods [34]: Smith (2009), A boundary element reg-
ularized Stokeslet method applied to cilia- and
flagella-driven flow
[35]: Pedley et al. (1992), Hydrodynamic
Phenomena in Suspensions of Swimming Mi-
croorganisms
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have been developed, such as the recent tubular-body-theory
developed by Koens [28]. [28]: Koens (2022), Tubular-body theory for

viscous flows

However, there is a simpler way to solve the issues arising
from flow singularities, which is to avoid creating any in the
first place. The primary method we use in this work is to
replace the cilium with a sphere or chain of non-overlapping
spheres as appropriate, depending on the requirements of
the model.

In Ch. 3, where the near-field flow extremely close to the
cilium is of great relevance, we approximate the cilium as
a chain of beads. Exploiting the linearity of the Stokes flow,
we can superpose the flow solution given by the modified
Rotne-Prager mobility tensor for each individual sphere, and
hence compute the flow due to a chain of spheres in the
presence of a no-slip boundary. This is both numerically
efficient and a very good approximation to a cilium, even
in the near field, that does not suffer strongly from ‘leaking’
effects.

In the work we will present in Ch. 4, we are less concerned
with the fluid flow very close to the cilium. Even a single
sphere is a good approximation in the far field, and by putting
it on a titled circular trajectory, the asymmetry between the
power and recovery stroke is reproduced. This is an extremely
effective simplification that allows for a great improvement
in computational efficiency, which is necessary due to the
large numbers of interacting cilia we must simulate.

2.2 Cilia

Cilia are hairlike organelles found on the surface of most
eukaryotic cells [8]

[8]: Nachury et al. (2019), Establishing and
regulating the composition of cilia for signal
transduction

and certain microorganisms such as
Paramecium. They can be broadly divided into two types:
primary cilia, which do not move under their own power,
and motile cilia, which do.
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(a) Primary cilium in a de-
veloping chicken heart. Image
from Van der Heiden et al. [45].
Reproduced here with permis-
sion of the copyright holder via
Rightslink. © 2005 Wiley-Liss,
Inc.

(b) Motile cilia in the human tra-
chea. Image by Charles Dagh-
lian and released to the public
domain.

Figure 2.3: Scanning elec-
tron microscope images of
a single primary cilium
(a) and bundles of motile
cilia (b). The primary cil-
ium stands alone whereas
the motile cilia are found
in bundles, which is typi-
cal for the two types.

Primary cilia (imaged in Fig. 2.3a) usually have roles in
sensing, normally of mechanical forces or chemicals: primary
cilia on bone cells detect mechanical stresses [36]

[36]: McGlashan et al. (2006), Localization of
Extracellular Matrix Receptors on the Chon-
drocyte Primary Cilium

, primary
cilia in the kidneys and blood vessels detect fluid flow [37, 38]

[37]: Goetz et al. (2014), Endothelial Cilia
Mediate Low Flow Sensing during Zebrafish
Vascular Development
[38]: Nauli et al. (2008), Endothelial Cilia
Are Fluid Shear Sensors That Regulate Cal-
cium Signaling and Nitric Oxide Production
Through Polycystin-1

,
many chemical signals such as serotonin are mainly detected
by cilia [39]

[39]: Brailov et al. (2000), Localization of
5-HT6 receptors at the plasma membrane of
neuronal cilia in the rat brain

, and even the olfactory receptors in the human
nose are primary cilia [40]

[40]: Marshall et al. (2006), Cilia: Tuning in
to the Cell’s Antenna

. Modified primary cilia also sense
light [41]

[41]: Insinna et al. (2008), Intraflagellar trans-
port and the sensory outer segment of verte-
brate photoreceptors

and temperature [42]

[42]: Kuhara et al. (2008), Temperature Sens-
ing by an Olfactory Neuron in a Circuit Con-
trolling Behavior of C. elegans

. All of this sensing ability
gives them their nickname of the ‘cell’s antenna’ [43]. In fact, [43]: Malicki et al. (2017), The Cilium: Cel-

lular Antenna and Central Processing Unit

nearly every cell in the human body has exactly one primary
cilium. Since they are found on most cell types, it is no
surprise that they are found in many different tissues, or that
when defective, they can cause a large number of diseases
(including situs inversus) known as ciliopathies [44]. [44]: Waters et al. (2011), Ciliopathies: an

expanding disease spectrum

Motile cilia, on the other hand, mostly have roles in fluid
pumping, though recent research has also revealed that they
have sensory capacity as well [16]; this revelation is examined

[16]: Bloodgood (2010), Sensory reception is
an attribute of both primary cilia and motile
cilia

in much more detail in Ch. 3. They are usually found in ‘bun-
dles’ or ‘carpets’, where one cells hosts many cilia (imaged in
Fig 2.3b); for example, in the lungs, multiciliated cells have
around 200 cilia per cell [46]. They are also found in many [46]: Horani et al. (2018), Advances in the

Genetics of Primary Ciliary Dyskinesia

places in the body: as previously mentioned, they are found
in the lungs and trachea [9]

[9]: Yaghi et al. (2016), Airway Epithelial
Cell Cilia and Obstructive Lung Disease

, where their waving works to
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Figure 2.4: Motile cilium
beat. The cilium performs
a power stroke (solid dark
blue colour), then curls up
and pulls back along the
cell surface. The trajectory
breaks time reversal sym-
metry, so it can produce
a net flow without falling
afoul of scallop theorem.

move mucus out of the lungs to remove trapped pathogens
and particulates. They are also found pumping fluid in the
brain to move signalling molecules [47]

[47]: Olstad et al. (2019), Ciliary Beating
Compartmentalizes Cerebrospinal Fluid Flow
in the Brain and Regulates Ventricular Devel-
opment

, in the reproductive
system (both male [48]

[48]: Yuan et al. (2019), Motile cilia of the
male reproductive system require miR-34/miR-
449 for development and function to generate
luminal turbulence

and female [11] [11]: Lyons et al. (2006), The reproductive
significance of human Fallopian tube cilia

) and on the surface
of microscopic organisms where they help with feeding and
swimming [13, 49]. As with primary cilia, defective motile

[13]: Funfak et al. (2015), Paramecium swim-
ming and ciliary beating patterns: a study on
four RNA interference mutations
[49]: Mannan et al. (2020), Minimal model
of the hydrodynamical coupling of flagella on
a spherical body with application to Volvox

cilia lead to a large number of diseases [50].

[50]: Afzelius (2004), Cilia-related diseases
The beat of a motile cilium is asymmetric and irreversible,
meaning that the problem posed by scallop theorem is
avoided. The beat begins with a straightened cilium per-
forming a power stroke, intended to move as much fluid as
possible as fast as possible. The cilium then curls up and
returns to its original position in a so-called recovery stroke,
staying as close to the cell surface as possible [51]. Due to

[51]: Gueron et al. (1999), Energetic consid-
erations of ciliary beating and the advantage
of metachronal coordination

the curled-up shape of the recovery stroke, and the no-slip
condition on the cell surface, the cilium doesn’t move much
fluid during the recovery stroke compared to the amount
moved during the power stroke, giving a net pumping effect.
This beating pattern is illustrated in Fig. 2.4. At sufficient
density, motile cilia can coordinate their beating to improve
their efficiency and minimise intercilium collisions [14, 52]; [14]: Osterman et al. (2011), Finding the

ciliary beating pattern with optimal efficiency
[52]: Ringers et al. (2023), Novel analytical
tools reveal that local synchronization of cilia
coincides with tissue-scale metachronal waves
in zebrafish multiciliated epithelia

the mechanisms underpinning this behaviour are examined
in Ch. 4.

Both primary and motile cilia consist of a basal body affixed
to the cell, and a protruding structure with a microtubule
skeleton, all covered in cell membrane. The basal body works
to organise and support the microtubules. The microtubule
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‘skeleton’ of the cilium is called the axoneme, and consists of
a series of nine microtubule doublets, shown in Fig. 2.5a-b
for the two cilium types. The primary cilium and the motile
cilium have slightly different axonemes: the motile cilium has
an additional pair of microtubules in the centre (hence the
name 9+2 axoneme, for the nine outer doublets and the two
inner microtubules), and some radial spokes that connect
it to the outer doublets, along with some dynein arms that
are responsible for sliding the microtubules relative to one
another to generate bending [53]. The primary cilium lacks [53]: Falk et al. (2015), Specialized Cilia in

Mammalian Sensory Systems

the central pair of microtubules, leading to it being named
a 9+0 axoneme, as well as lacking the dynein arms and
radial stokes. The structure of the motile cilium, including
the additional apparatus required for motility, is shown in
cross-section in Fig. 2.5c.

There are, however, exceptions to this seemingly neat classifi-
cation: in the structure responsible for the left-right differenti-
ation of mammalian embryos (creatively named the left-right
organiser), specialised motile cilia (called ‘nodal cilia’) lack
the central pair, and they have a very different (and simpler)
beating pattern compared to regular motile cilia. Kinocilia,
found in the inner ear, have a 9+2 axoneme, like motile cilia,
but they don’t have the dynein arms and they don’t move
under their own power; they simply bend under the influence
of external vibrations, and are usually considered to be a
variant of primary cilia. There can therefore be said to be
four types of cilia depending on the combination of axoneme
type and motility [53].
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(a) Render of the microtubule structure of a pri-
mary cilium. Because it has nine doublets and no
central pair, this arrangement is often referred to
as a 9+0 axoneme.

(b) Render of the microtubule structure of a motile
cilium; note the two central microtubules (which
are absent in the primary cilium case) which
along with the nine doublets give this axoneme
arrangement its designation as a 9+2 axoneme.

(c) Top-down view of motile cilium axoneme. The
outer tubule doublets and central microtubules
(yellow) are visible, along with the spokes con-
necting them. The dynein arms that give rise to
the motility of the cilium are shown in red; these
generate sliding motion between the doublets
and thus create the cilium’s bending motion. The
primary cilium lacks almost all of the structure
shown in this diagram, except for the outer dou-
blets.

(d) Photo showing the axoneme of some motile
cilia in the mammalian lung from above. The
doublets are clearly visible, as is the central mi-
crotubule pair. Taken by Louisa Howard and
released to the public domain.

Figure 2.5: Structure of the two types of cilia.



2 Background 18

2.3 Chapter summary

▶ At the length scale of cilia, fluid behaviour is dominated
by viscosity, which greatly simplifies the equations of
fluid motion.

▶ These simplified equations can be solved using various
mobility tensors, the most relevant of which is the
Rotne-Prager tensor. This approach results in high
computational efficiency, even when accounting for
no-slip boundaries on the surfaces of spherical bodies,
or including planar no-slip boundaries.

▶ The linearity of the Stokes flow permits a lot of ap-
proaches to modelling slender bodies, and we favour
an approach based on superposing Green’s function
solutions.

▶ Cilia come in two main types: primary and motile cilia.
Both can be chemosensitive but only the motile cilia
have roles in pumping.

▶ Motile cilia break time-reversal symmetry with an
asymmetric beat consisting of a power and recovery
stroke.
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The ability to sense chemicals was one the earliest kinds of
environment sensing to evolve, and chemosensing abilities
are known to be present in organisms spanning all biological
kingdoms [54]

[54]: Sokolinskaya et al. (2020), Molecular
principles of insect chemoreception

. Humans have chemosensory abilities, most
obviously in the forms of a sense of smell and taste, but in
myriad other ways such as detecting blood carbon dioxide
level [55]

[55]: Cummins et al. (2020), Mechanisms
and Consequences of Oxygen and Carbon
Dioxide Sensing in Mammals

. For certain microorganisms, chemosensing is inte-
gral to their ability to swim along chemical gradients to find
nutrients (in a process called ‘chemotaxis’) [56]

[56]: Sarvestani et al. (2016), Simulation of
Paramecium Chemotaxis Exposed to Calcium
Gradients

. Even plants
can sense chemicals in their environment, for example to
trigger a response to dangerous pathogens [57]

[57]: Zipfel (2014), Plant pattern-recognition
receptors

. Within organ-
isms, chemosensing is everywhere, for example in the form
of signalling chemicals that can convey messages between
cells. Chemosensing is therefore an incredibly important
facet of life as we know it, and in eukaryotes, many of these
chemosensors are found on cilia [40]. [40]: Marshall et al. (2006), Cilia: Tuning in

to the Cell’s Antenna

When the primary cilium was first discovered, it was widely
assumed to be useless and vestigial. A sensory role was
first proposed for it at the end of the 19th century [16, 58],

[16]: Bloodgood (2010), Sensory reception is
an attribute of both primary cilia and motile
cilia
[58]: Zimmermann (1898), Beiträge zur Ken-
ntniss einiger Drüsen und Epithelien

but it took many years for this idea to be taken seriously,
whereupon the primary cilium experienced a huge explosion
in popularity. More recently, it was realised that motile cilia
are also chemosensory, though the evidence has been piling
up for a long time [16].

Primary cilia have a high density of receptors, in particular
G-protein-coupled receptors (often shortened to GPCRs) [59]. [59]: Mykytyn et al. (2017), G-Protein-

Coupled receptor signaling in cilia

G-proteins are a family of proteins found inside cells, that act
as molecular switches. The G-protein-coupled receptors are
transmembrane structures that bind to a specific extracellular
signalling molecule. This binding causes the GPCR to change
its shape (i.e. undergo a conformational change) which affects
the shape of the intracellular part of the GPCR, which allows
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this intracellular part to alter the environment within the
cilium [59], which can in turn affect the cellular behaviour. [59]: Mykytyn et al. (2017), G-Protein-

Coupled receptor signaling in cilia

It is estimated that close to half of all drugs available target
these GPCRs [60], so understanding ciliary chemoreception

[60]: Cheng et al. (2010), Luciferase Reporter
Assay System for Deciphering GPCR Path-
ways

is extremely useful.

There are several reasons why primary cilia have a high
chemosensor density: the environment very close to the cell
is often not a good representation of the actual intercellular
medium, because cells have charged lipids on their surfaces
that can repel or attract various chemicals and ions [40]. Many [40]: Marshall et al. (2006), Cilia: Tuning in

to the Cell’s Antenna

cells are also surrounded by a so-called glycocalyx, a several
micrometre thick covering of sugars, lipids, proteins [61]

[61]: Ebong et al. (2011), Imaging the En-
dothelial Glycocalyx In Vitro by Rapid Freez-
ing/Freeze Substitution Transmission Elec-
tron Microscopythat acts as a physical barrier to protect and control entry to

the cell, as well as filling various other roles [62]; however, [62]: Reitsma et al. (2007), The endothelial
glycocalyx

this covering will also alter the chemical environment close
to the cell [40]. The no-slip condition on the cell’s surface
could also mean that the role of advection very close to the
cell’s surface is almost totally suppressed, thus limiting fluid
mixing and therefore chemosensitivity [40]. There is also
the fact that, because the cilium has a very high surface
area to volume ratio compared to the rest of the cell, only
a small number of chemosensors and signalling molecules
are required to create large changes in the concentration of
second messengers1 in the cilium’s cytoplasm; by comparison,

1: These are signalling
molecules that are released
inside cells in response to
some extracellular signalling
molecule that is detected by
a chemosensor on the cell (or
‘first messengers’).

an enormous number of chemosensors would be required to
achieve a similar increase [40]. Our work aims to see if there
are further geometric reasons for placing chemosensors on
cilia, as well as determining what advantages arise when
combing chemosensing with motility.

3.1 Physics of chemoreception

In 1827, the famous botanist Robert Brown was looking
through his microscope at some grains of pollen in water,
and noticed that they were jiggling, moving in seemingly
random directions with seemingly random speeds [63]. This [63]: Feynman et al. (2006), The Feynman

lectures on physics
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random motion, eponymously called Brownian motion, was
later used by Albert Einstein to prove the existence of atoms.
He (correctly) proposed that this random jiggling was caused
by the particles that make up the water, moving around
and colliding with the pollen grains. At some times the
pollen would be bombarded more on one side than another,
giving a net force. Since this bombardment is constantly
in flux, the direction of pollen motion changes constantly
and unpredictably [64]. This random motion will eventually

[64]: Einstein (1905), Über die von der
molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüs-
sigkeiten suspendierten Teilchencause chemicals to become spread out and mixed: a drop

of ink in a glass of water will eventually diffuse to tint the
entire glass equally.

At the scale of cells and cilia, this process of diffusion is
extremely fast, with a timescale given by

𝜏𝐷 =
𝐿2
𝑐

𝐷
, (3.1)

for some characteristic length 𝐿𝑐 . 𝐷 is the diffusion constant
of the molecule being transported. For something the size of
a small signalling molecule being absorbed by a cilium, this
timescale is of the order of ∼ 0.1 seconds2.

2: At the synapses between
nerve cells, diffusion carries
the signal across the gap junc-
tion, a distance of a few tens
of nanometres [65]. Since hu-
man reaction time is only
a few hundred milliseconds,
this gives an idea of how fast
diffusion can happen.

[65]: Widrow et al. (2019), Chapter 1 - Na-
ture’s Learning Rule

The dominance of advection over diffusion can be quantified
by the dimensionless Péclet number:

Pe =
𝐿𝑐𝑣𝑐

𝐷
, (3.2)

where a large Péclet number means advection is dominant,
and vice versa. Humans barely notice diffusion, so for a
human this number is incalculably large, but for something
like a signalling molecule close to the no-slip boundary of
a cell, this number is much smaller than one. The length
scale 𝐿𝑐 in the expression for the Péclet number, as well
as the fact that 𝐷 tends to be larger for smaller, lighter
particles, means that diffusion is an incredibly powerful force
at small scales, and is often the dominant factor in molecular
transport [66]. [66]: Berg et al. (1977), Physics of chemore-

ception

This leads neatly to the concept of diffusion-limited reactions.
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If we have some perfectly reactive body with a surface 𝑆, such
that any particle of interest that touches it is immediately
absorbed3 (or converted to other molecules, or adsorbed, or

3: As shown by Berg et
al. [66], even if chemosensors
only cover 1% of the area of
a body, one still has near-
perfect absorption, so this
is a surprisingly accurate as-
sumption for real systems.

[66]: Berg et al. (1977), Physics of chemore-
ception

otherwise removed from the population of particles) then
this can be represented as a boundary condition where the
concentration of those particles is zero (𝑐(|r| ∈ 𝑆, 𝑡) = 0). Far
away from this absorbing body, there is some representative
unperturbed concentration 𝑐(|r| → ∞, 𝑡) = 𝑐0. In the steady
state, the advection-diffusion equation, which describes the
concentration field, is very simply

𝐷∇2𝑐(r, 𝑡) − u(r, 𝑡) · ∇𝑐(r, 𝑡) = 𝜕𝑐(r, 𝑡)
𝜕𝑡

= 0, (3.3)

subject to the boundary conditions above, and where u is
the fluid velocity. Fick’s law, which relates the concentration
gradient to the average particle flux, means that the rate at
which this body absorbs particles can be written as

𝑅 =

∬
𝑆

dS · (𝐷∇𝑐). (3.4)

𝑅 is proportional to 𝑐0, but we can define a rate constant 𝑘 =

𝑅/𝑐0 which is independent of the far-field concentration.

In the absence of advection, the diffusion equation reduces
to

𝐷∇2𝑐(r) = 0, (3.5)

which is exactly analogous to the source-free Laplace equa-
tion for the potential 𝜙 in electrostatics:

∇2𝜙(r) = 0. (3.6)

It is possible to find the concentration field by finding pre-
existing solutions for the electrostatic problem in the scientific
literature, as electrostatics is a much more widely-studied
field. Alternatively, and as shown in the appendix of the
article below, one can show that the self-capacitance 𝐶 of the



3 Particle capture 23

body can be straightforwardly converted to a rate constant:

𝑘 =
𝐷

�0
𝐶, (3.7)

where �0 is the dielectric permittivity of free space. It is
relatively straightforward to adapt this for the case of a
particle near a no-slip boundary, using the method of images.
One can introduce a second equally-charged ‘image’ particle,
reflected in the no-slip boundary, and then compute the
self-capacitance (and hence reaction rate constant) of the
particle in the presence of its image.

This rate of absorption due to pure diffusion is called the
diffusion limit, and puts an upper bound on how fast mi-
croorganisms and cilia can detect chemicals in the absence
of advection. However, microorganisms can swim and cilia
can pump fluid. The interesting question, which our work
presented in this chapter seeks to answer, is to what extent
that additional advection can increase sensitivity. The de-
gree to which a body is breaking the diffusion limit may be
quantified by the Sherwood number, defined as the ratio of
advective mass transfer to diffusive mass transfer. For the
advection-diffusion reaction described above, it could be
written in terms of the parameters as:

Sh =
𝐿𝑐𝑘

𝐷𝑐0𝐴
∼ 𝑘

𝐷𝑐0𝐿𝑐
, (3.8)

where 𝐴 is the surface area of the body in question. If
Sh ≪ 1, there is a strong dominance of diffusion-related
mass transfer over advective mass transfer, but once Sh ≳ 1,
advection begins to dominate. At this point, the advection is
sufficient to begin to break the diffusion limit. There is also the
analogous Nusselt number (often abbreviated to Nu), which
is the equivalent quantity for heat transfer. Since the diffusion
equation is identical to the heat equation, there are a lot of
helpful similarities between the two problems, and solutions
to heat transfer problems can often be straightforwardly
transformed to get the solution to the equivalent mass transfer
problem.
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Figure 3.1: An illustration
of the hydrodynamic simu-
lation. Tracer particles are
shown in yellow, and the
cilium, simplified to a chain
of spheres, is also shown.
The trajectory swept out by
the cilium is indicated.

3.2 Our work

In our work, we studied the interaction between a chemosen-
sitive cilium and an arbitrary chemical species of interest. We
initially assumed that the cilium was perfectly chemosensi-
tive over its entire surface, and would immediately adsorb
any signalling molecule that touched it, and that it was at-
tached to a cell that was not itself chemosensitive. Beginning
with some analytical calculations that take advantage of
the electrostatic analogy, we determined that the elongated
shape of the cilium, even in the absence of motility, means it
can have a much higher chemosensitivity compared to a flat
chemosensitive patch on the cell surface. In a quiescent fluid,
for typical cilium dimensions, a chemosensitive cilium is
equivalently sensitive to a chemosensitive surface patch with
4× the surface area of the cilium. A more complicated calcu-
lation (see the appendix of the article below) revealed that
this chemosensitivity advantage is even more pronounced
in a shear flow, with the equivalently chemosensitive patch
having an area of around 6× the surface area of the cilium. In
both cases, we also find that the longer the cilium, the more
chemosensitive it becomes, even if we keep its surface area
constant. This increase in sensitivity that we have seen purely
because of the elongated cilium geometry gives one reason
why primary cilia are so often host to chemoreceptors.

We then developed a numerical hydrodynamics simulation,
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wherein individual tracer particles move due to advection
and diffusion, and the cilium is approximated by a chain of
spheres. The fluid flow due to the motion of these spheres
can be computed using superpositions of the Rotne-Prager
tensor (Eqs. (2.9–2.8)), due to the linearity of the Stokes flow.
An illustration of the simulation setup is shown in Fig. 3.1.

We used this simulation to understand how much of a gain
in chemosensitivity can be achieved by a motile cilium, and
found that, provided the cilium beats nonreciprocally in a
way that generates a net flow across the cilium, motility can
produce a five-fold increase in chemosensitivity compared to
a stationary cilium (at realistic cilium Péclet numbers). The
increase in chemosensitivity due to cilium motility is even
more pronounced than the increase due to cilium geometry,
with the chemosensitivity of a motile cilium approaching a
factor of 5 over a stationary cilium at the highest reasonable
Péclet numbers a cilium could approach (and hence hugely
more sensitive than a chemosensory patch on the cell’s
surface). At very low Péclet, the cilium barely breaks the
diffusion limit, but as the cilium beats faster, the sensitivity
rapidly increases. In the high-Péclet regime, the reaction
rate scales with Pe1/3, which astoundingly is the same rate
that would be found for a sphere in a flow (see box below).
The fact that a motile cilium that must pump the fluid
itself can reach the same high-Péclet rate scaling as a sphere
suspended in a flow is a testament to the efficacy of combining
motility with chemosensitivity. This result could go some
way to explaining why motile cilia are now known to be
chemosensory. The asymmetric beating stroke of the cilium
is important, as the net flow it generates is crucial to this
increase in chemosensitivity; if a beat is chosen that produces
no net flow past the cilium, there is very little increase in
chemosensitivity.
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Reaction rate for a sphere

We can make a scaling argument to derive how
the reaction rate 𝑅 for a sphere in a moving fluid
scales with the Péclet number. To begin with, we
consider a sphere of radius 𝑎 in a moving fluid:

We assume that any chemical particles that enter some
thin boundary layer of thickness 𝑑 will make contact with
the sphere and be absorbed. Since we know how the
diffusion timescale relates to the diffusion length scale
(Eq. (3.1)), we know that if the particles take some time 𝜏

to pass the sphere, then

𝑑2 ∼ 𝐷𝜏.

We also know that due to the no-slip condition on the
surface of the sphere, the fluid flow very close to the
sphere will be well-approximated by a shear flow, and
therefore the characteristic flow speed in the boundary
layer is 𝑑 ¤𝛾 (where ¤𝛾 is the shear rate), which tells us that
𝜏 ∼ 2𝜋𝑎/(𝑑 ¤𝛾).
The reaction rate is then the product of the rate of particle
influx (∼ 𝑑 ¤𝛾) with the cross-sectional area of this boundary
layer, i.e.

𝑅 ∼ 2𝜋𝑎𝑑 · 𝑑 ¤𝛾 ∼
(
𝑎 ¤𝛾
𝐷

)1/3

= Pe1/3,

where we have dropped any purely numerical prefactors,
as this scaling argument is not nearly precise enough for
them to be relevant. Note that we have assumed that 𝑑 ≪ 𝑎,
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so that the cross-sectional area of the boundary area can
be written as 2𝜋𝑎𝑑; at very high Péclet, this condition
is satisfied by definition, so this argument only tells us
the scaling behaviour in the high-Péclet limit. Obviously
this is an incredibly simplified argument, but much more
complicated treatments of the problem give the same
result [67].
It is quite surprising that our results show that a cilium
that must pump the fluid itself can reach the same scaling
rate as this sphere in a flow, but it is illustrative of just how
far motility can increase chemosensitivity.
A similar (albeit more complicated) scaling argument can
be made for a cylinder, but due to the Stokes paradox (i.e.
there is no well-behaved flow field around a disc in two
dimensions at zero Reynolds number) a force density has
to be introduced. In this way, a scaling argument can be
derived up to a proportionality constant. An approximate
value for the proportionality constant had already been
found by others [68], but we derived an exact value of this
constant for the rate per unit length:

𝑑𝑘

𝑑𝑧
= 3

(
6
𝜋

)1/3
Γ(3/4)4/3

Γ(1/3) 𝐷 · Pe1/3.

The derivation can be found in the appendix of the article
below.

[67]: Bowman et al. (1961), Mass transfer
from fluid and solid spheres at low Reynolds
numbers
[68]: Friedlander (1957), Mass and heat
transfer to single spheres and cylinders at
low Reynolds numbers

Lastly, we used the same hydrodynamic simulation to inves-
tigate the behaviour when placing several chemosensitive
motile cilia close together, and found that a bundle motile
cilia can be more sensitive together than the same number
of individual motile cilia could be apart, i.e. the per-cilium
chemosensitivity is higher in a bundle. This result is ex-
tremely counter-intuitive, as one would naively expect that
many cilia together would all deplete the concentration of
signalling molecules and result in a lower per-cilium sen-
sitivity. Instead, every cilium benefits from the fluid flow
generated by every other cilium, resulting in the surprising
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result seen.

All this shows that by putting chemosensors on cilia, the cell
can increase the diffusion limit significantly, and by combin-
ing chemosensing with motility, it can break the diffusion
limit entirely. This goes some way towards closing some of
the open questions introduced in Ch. 1. There are, however,
some questions that remain unanswered, which open some
possibilities for future work. As previously established, bun-
dles of motile cilia often synchronise, and this work did not
examine the impact of metachronal waves on the per-cilium
chemosensitivity of a bundle.

There is also potential for a more efficient approach to nu-
merically solving this problem. One consequence of the
reciprocal theorem in hydrodynamics is that the particle flux
through a surface is invariant under flow reversal, as long
as the particle concentration at that surface is uniform [69].

[69]: Masoud et al. (2019), The reciprocal
theorem in fluid dynamics and transport phe-
nomena

If we apply this flow reversal symmetry to the absorption
problem, and then apply time-reversal symmetry as well, we
have essentially mapped from an absorption problem to an
emission problem, where the cilium is now emitting particles
but has not changed its trajectory. By inserting and remov-
ing particles near the cilium to maintain this concentration,
and measuring the flux of particles that escape to infinity, it
should be possible to infer the reaction rate. There remain
details to be worked out, but it is possible that this approach
would increase the efficiency over directly simulating the
absorption problem.
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Abstract Cilia are hairlike organelles involved in both sensory functions and motility. We discuss

the question of whether the location of chemical receptors on cilia provides an advantage in terms

of sensitivity and whether motile sensory cilia have a further advantage. Using a simple advection-

diffusion model, we compute the capture rates of diffusive molecules on a cilium. Because of its

geometry, a non-motile cilium in a quiescent fluid has a capture rate equivalent to a circular

absorbing region with ~4� its surface area. When the cilium is exposed to an external shear flow,

the equivalent surface area increases to ~6�. Alternatively, if the cilium beats in a non-reciprocal

way in an otherwise quiescent fluid, its capture rate increases with the beating frequency to the

power of 1/3. Altogether, our results show that the protruding geometry of a cilium could be one

of the reasons why so many receptors are located on cilia. They also point to the advantage of

combining motility with chemical reception.

Introduction
Cilia are small hairlike organelles with a microtubule-based core structure that protrude from the cell

surface. They are found on most eukaryotic cells (Nachury and Mick, 2019) and can be broadly clas-

sified into two categories: primary and motile. Primary cilia, of which there is only one on each cell,

have primarily sensory functions (as receptors for chemical, mechanical, or other signals) (Zimmer-

mann, 1898; Berbari et al., 2009; Hilgendorf et al., 2016; Spasic and Jacobs, 2017;

Ferreira et al., 2019). Due to their shape and their role in signalling, they are often referred to as

‘the cell’s antenna’ (Marshall and Nonaka, 2006; Malicki and Johnson, 2017). Motile cilia, typically

appearing in larger numbers (Brooks and Wallingford, 2014; Spassky and Meunier, 2017), move

the surrounding fluid by beating in an asymmetric fashion (Golestanian et al., 2011; Gilpin et al.,

2020), and often with some degree of coordination (Uchida and Golestanian, 2010; Elgeti and

Gompper, 2013). They play a key role in a number of processes, including the swimming and feed-

ing of microorganisms (Guasto et al., 2012; Lisicki et al., 2019), mucus clearance in airways (Busta-

mante-Marin and Ostrowski, 2017), fluid transport in brain ventricles (Faubel et al., 2016), and

egg transport in Fallopian tubes. However, there are exceptions to this classification. Primary cilia in

the vertebrate left-right organiser are motile and drive a lateral fluid flow that triggers, through a

mechanism that is not yet fully understood, a distinct signalling cascade determining the body later-

ality (Essner et al., 2002). There is also mounting evidence that motile cilia can have various sensory

roles (Bloodgood, 2010), including chemical reception (Shah et al., 2009). Adversely, receptors

localised on motile cilia, such as ACE2, can also act as entry points for viruses including SARS-CoV-2

(Lee et al., 2020). Some chemosensory systems, including vomeronasal (Leinders-Zufall et al.,

2000) and olfactory neurons (Bhandawat et al., 2010) and marine sperm cells (Kaupp et al., 2003),

are known to achieve a sensitivity high enough to detect a small number of molecules.

The sensitivity of a chemoreceptor is characterised by its binding affinity for the ligand, as well as

its association/dissociation kinetics. If the time-scale of ligand dissociation is longer than the time-
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scale of the changes in ligand concentration, or if the ligands bind irreversibly, the sensitivity is

determined by the binding rate alone. It has been shown that the theoretical limit of sensing accu-

racy is achieved when the receptors detect the frequency of binding events and when re-binding is

excluded (Bialek and Setayeshgar, 2005; Endres and Wingreen, 2009) Because diffusion is fast on

very short length scales, only 1% of the surface area of a cell or cilium needs to be covered in high-

affinity receptors to obtain near-perfect adsorption (Berg and Purcell, 1977). Even if this condition

is not satisfied, the membrane itself could non-specifically bind the ligands with near-perfect efficacy,

which then reach the receptors in a two-stage process. In either of these cases, as long as there is no

advection, the binding rates can be estimated using the theory of diffusion-limited reactions

(Adam and Delbruck, 1968). This binding rate is known as the diffusion limit, and it has already

been shown that flagella-driven swimming microorganisms can break the diffusion limit in order to

increase their access to nutrients (Short et al., 2006).

The increasingly overlapping functions of sensory and motile cilia lead to the natural question

about the advantage of placing receptors on a cilium, or in particular on a motile cilium. Because of

its small volume, a cilium forms a compartment that facilitates efficient accumulation of second mes-

sengers (Marshall and Nonaka, 2006; Hilgendorf et al., 2016). Placing receptors on a protrusion,

away from the flat surface, could have other advantages, like avoiding the effect of surface charges

or the glycocalycx. It has also been suggested that the location of chemoreceptors on cilia exposes

them to fluid that is better mixed (Marshall and Nonaka, 2006). A recent study suggests that the

hydrodynamic interaction between motile and sensory cilia can enhance the sensitivity of the latter

(Reiten et al., 2017). However, the question of how the geometry and motility of cilia affect their

ability to capture and detect ligands has still remained largely unexplored.

In this paper, we investigate the theoretical limits on association rates of ligands on passive and

motile cilia. In particular, we address the question of whether the elongated shape of a cilium and its

motility can improve its chemosensory effectiveness. By using analytical arguments and numerical

simulations, we show that the capture rate of a cilium is significantly higher than that of a receptor

located on a flat epithelial surface. Motile cilia can further improve their chemosensitivity. Finally, we

show that a cilium within an immotile bundle has a lower capture rate than an isolated cilium, but a

higher one when the cilia are sufficiently motile.

Results
In this study, we calculate the second-order rate constant for diffusive particle capture on a cilium.

We discuss scenarios where the fluid and the cilium are at rest, where the fluid exhibits a shear flow,

where the cilium is actively beating, and where a bundle of hydrodynamically interacting cilia

absorbs particles.

We consider a perfectly absorbing cilium protruding from a non-absorbing surface, in a fluid con-

taining some chemical species with a concentration field c. Far from the cilium, the unperturbed con-

centration has a constant value c0. The rate constant k is defined such that

I ¼ c0k; (1)

where I is the capture rate, defined as the number of captured particles per unit time.

Since the aforementioned cilium is perfectly absorbing, we define an absorbing boundary condi-

tion such that the concentration of the chemical species is zero at every point on the cilium’s surface.

We assume that the flat membrane surrounding the cilium does not absorb particles and it is there-

fore described with a reflecting boundary condition at z ¼ 0. The geometry and boundary conditions

are illustrated in Figure 1.

Cilium in quiescent fluid
We consider a cilium (modelled as a cylinder next to a boundary at z ¼ 0) in a quiescent fluid, with

the goal of determining its capture rate constant in the absence of advection. In the case where

there is a steady state with no advection, the advection-diffusion equation reduces to

Dr2c¼ 0; (2)
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where D is the diffusion constant. The rate constant is determined by the integral of the current den-

sity J over the surface, which follows from Fick’s law:

k¼� 1

c0

Z

dS � J¼ 1

c0

Z

dS � ðDrcÞ: (3)

As we show in Appendix 1, the rate constant can be evaluated using an analogy between particle

diffusion and electrostatics (Berg and Purcell, 1977). Up to a prefactor, the capture rate is deter-

mined by the self-capacitance C of a conducting body of the same shape as k¼DC="0.

To determine the capture rate of a cilium embedded in a non-absorbing surface, we first elimi-

nate the reflective boundary condition at the surface by symmetrically extending the problem to a

cylinder of length 2L in open space and considering 1=2 of its capacitance. There is no closed-form

expression for the capacitance of a cylinder, so we loosely approximate this cylinder as a prolate

spheroid with semi-major axis L and semi-minor axis a. Using its self-capacitance in the limit L � a

(Snow, 1954), we find the rate constant:

kcilium ¼ 2pD
L

ln 2L=að Þ : (4)

This value agrees well with simulations: the ratio of the simulated to this analytical rate constant is

1.02.

The finding that the capture rate scales almost linearly with the length of the cilium can be com-

pared to experimental data obtained on olfactory cilia from the nasal cavity of mouse, whose lengths

in different regions vary from a few micrometers to tens of micrometers. Challis et al., 2015 have

used patch-clamp recordings on olfactory sensory neurons and measured the response to pulses of

an odorant (eugenol or a mixture of 10 odorants), lasting 5� 400ms. Regions with different lengths

show very different sensitivity thresholds, differing by an order of magnitude. The results are qualita-

tively consistent with the predicted length dependence of the capture rate.

To quantify the advantage of localising the receptors on a cilium, we compare it with a case

where the receptors form a circular patch on a flat surface (Figure 2a). Again, we assume that the

receptor patch has a perfectly absorbing surface, while the surface surrounding it is reflective. We

determine the size of the patch needed to attain the same rate constant as the cilium. The rate con-

stant for a circular patch on the reflective boundary can be found by applying the electrostatic anal-

ogy to the well-known result for the self-capacitance of a thin conducting disc of radius R (Berg and

Purcell, 1977):

Figure 1. The concentration boundary conditions and general setup of the problem to be solved. The cilium

satisfies an absorbing boundary condition, and there is a constant concentration an infinite distance from the

cilium. The coloured overlay shows the concentration field in the absence of any fluid flow.
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kpatch »4DR: (5)

We find that the patch has a much larger surface area than the cilium with the same rate constant.

We can calculate this area ratio:

Apatch

Acilium

»
p2

8
�L
a

1

ln2ð2L=aÞ
: (6)

The area ratio as a function of the aspect ratio L=a is shown in Figure 2b. For a typical cilium

aspect ratio of L=a¼ 80 (with L¼ 10�m, and a¼ 125nm), this area ratio is 3.8, implying that the cilium

is much more effective per unit area than a receptor on the surface of the cell. Olfactory cilia have a

great variation of lengths, ranging from 2:5�m to 100�m (Challis et al., 2015; Williams et al., 2014).

If we neglect the fact that long cilia are not straight, the calculated area ratio ranges from 2.7 to 18.

Using an exact numerical result for the capacitance of a cylinder (Paffuti, 2018), the ratio becomes

4.5 for L=a¼ 80. With the dimensions given above, the radius of the circular patch with the same

capture rate is R¼ 3:4�m.

Figure 2. Comparison between capture rates of a non-motile cilium and a circular patch on the surface. All diagrams use L=a ¼ 80, indicated on the

graphs by a red dot. (a) In a quiescent fluid, the cilium has the same capture rate as a surface patch with 3.8 times the surface area. (b) The area ratio

Apatch=Acilium as a function of the cilium aspect ratio L=a in a quiescent fluid, given by Equation (6). (c) In a shear flow at a high Péclet number, the

capture rate of the cilium reaches that of a surface patch with 6.0 times the surface area. (d) The area ratio as a function of the aspect ratio in the high

Péclet number limit (Equation 14).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Capture rate as a function of the Péclet number for passive cilia in a shear flow, obtained from numerical simulations.

Figure supplement 1—source data 1. Event counts and calculated rates as shown in Figure 2—figure supplement 1.
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Cilium in shear flow
At the scale of cilia, the flow is characterised by a low Reynolds number, meaning that viscous forces

dominate over inertia. The fluid motion is well-described by the Stokes equation, together with the

incompressibility condition:

hr2
u�rp¼ 0 (7)

r�u¼ 0 (8)

in which u is the fluid velocity, h is the dynamic viscosity, and p is the pressure. The concentration

field of some chemical species suspended within this fluid is governed by the advection-diffusion

equation:

qc

qt
þu �rc¼Dr2c (9)

where c is a function of both position and time.

The ratio of advection to diffusion is described by the dimensionless Péclet number. This is usually

written as some characteristic flow speed multiplied by some characteristic length scale, all divided

by the diffusion constant.

Because the cilium grows from a flat surface with a no-slip boundary condition, the flow can be

described as a uniform shear flow with the shear rate _g. To estimate the capture rate constant of a

cilium in a shear flow, we make use of the fact that the radius of the cylinder is much smaller than

the length scale over which the shear flow varies. We therefore approximate the local rate density at

any point on the cilium with that of an infinitely long cylinder in a uniform flow with velocity

vðzÞ ¼ _gz. The capture rate per unit length is

dkcilium

dz
¼ bD � A

av

D

� �1=3
; (10)

where b¼ 2:50 is a numerical constant (see Appendix 2 for derivation).

Now the total rate constant is obtained by integration over the cilium length

kcilium ¼
Z L

0

dzbD � a _gz

D

� �1=3

¼ 3

4
bDL � L

a

� ��1=3

Pe
1=3
cilium: (11)

We take the characteristic velocity to be the speed of the cilium’s tip relative to the surrounding

fluid, and hence the Péclet number for the extended cilium is

Pecilium ¼ _gL2

D
: (12)

This expression for the rate once again shows a strong positive relationship between cilium length

and sensitivity, as is known to be the case in real biological systems (Challis et al., 2015). The char-

acteristic Péclet number for the cross-over between the diffusive and the convective capture is of

the order ~L=a»80.

Once again we determine the size of a circular surface patch offering an equivalent effectiveness

to the cilium in a flow with the same shear rate (Figure 2c). The high-Pe rate constant for a patch in

a shear flow is (Stone, 1989):

kpatch »DR z �Pe1=3patchþO Pe
�1=6
patch

� �h i

; (13)

where Pepatch � _gR2=D and z¼ 2:157 is a purely numerical constant. We can calculate the ratio of the

area of the equivalent patch to the area of the cilium for these high-Pe asymptotic results:

Apatch

Acilium

»
1

2

3b

4z

� �6=5

� L

a

� �3=5

»0:42
L

a

� �3=5

: (14)

The area ratio is shown in Figure 2d and compared with the results in a quiescent fluid. For a
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typical cilium aspect ratio L=a¼ 80 (with L¼ 10�m, and a¼ 125nm), this area ratio is 6.0 – much

larger than the area ratio in a quiescent fluid, which was 3.8. This means that a cilium is better per

area than a patch at both low and high Péclet numbers, but the cilium excels when the Péclet num-

ber is large.

We additionally investigated the question how robust the results are if the receptors are localised

to only one segment of the cilium. In a model, we assumed that of the total length L, the distal part

nL is absorbing, while the proximal ð1� nÞL is reflective. At high Péclet numbers, we can modify the

integration limits in Equation (11) and obtain a theoretical capture rate

kciliumðnÞ ¼ kcilium � ð1� ð1� nÞ4=3Þ. The result is compared to simulations in Figure 2—figure supple-

ment 1. A cilium with receptors over the distal 50% of its length therefore achieves 60% of the maxi-

mal capture rate.

Active pumping
A mounting collection of evidence suggests that both primary and motile cilia have sensory roles

(Bloodgood, 2010). We are interested in the extent to which cilium motility can increase their ability

to detect particles. To this end, we numerically simulate various different possible types of ciliary

motion in otherwise quiescent fluids.

Because of the complex flow patterns and time-dependent boundary conditions, the absorption

by a beating cilium is not analytically tractable. Instead, we use numerical simulations to determine

the rate constants. We consider four different active pumping scenarios: a purely reciprocally moving

cilium, a cilium tracing out a cone around an axis perpendicular to the surface, a cilium tracing out a

tilted cone, and a cilium with a trajectory that includes bending, to raise the pumping efficiency (all

shown in their respective order in Figure 3a–d).

Figure 3. The capture rate of an active cilium for four types of motion. (a) The cilium is undergoing reciprocal motion, which is not generating any net

flow. (b) The cilium moves along a cone with its axis perpendicular to the surface, such that it produces a rotational flow, but no long-range fluid

transport. (c) The cilium moves along a tilted cone, which generates a long-range volume flow. (d) The cilium follows a realistic trajectory, beginning

with a recovery stroke along the no-slip surface in 1, then performing an overhead power-stroke from 2 to 3 before returning to one in another recovery

stroke. (e) The capture rate constants k of a beating cilium as a function of the Péclet number. The rates are determined using stochastic simulations.

The error bars denote 95% confidence intervals and the dashed line shows a fit function that interpolates between the high and low-Péclet limits. All

rates are normalised to the rate constant for a diffusion-limited capture with a cylindrical cilium with the same length and width.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Event counts and calculated rates as shown in Figure 3e.

Figure supplement 1. Capture rate of an actively beating cilium tracing out a tilted cone, plotted as a function of the Péclet number.

Figure supplement 1—source data 1. Event counts and calculated rates as shown in Figure 3—figure supplement 1.
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The rate constants in these scenarios, relative to that of a non-moving cilium, are plotted in

Figure 3e. Analogously to the cilium in a shear flow, we define the Péclet number using the maxi-

mum tip velocity during the cycle:

Pe¼
vmax
tip L

D
: (15)

The reciprocally moving cilium (Figure 3a) displays almost no improvement over several orders of

magnitude of the Péclet number. This is expected, because Purcell’s scallop theorem

(Purcell, 1977) states that purely reciprocal motion does not create any net flow, so the particle

intake is largely diffusive in nature. A minor increase of the rate constant with the Péclet number is

caused by the local shear flow that facilitates absorption on the surface.

The cilium moving around a vertical cone (Figure 3b) induces a net rotational flow, but no inflow

or outflow (by symmetry, the time-averaged flow can only have a rotational component [Vil-

fan, 2012]). Nevertheless, the constant motion of the cilium through the fluid leads to a higher local

capture efficiency. The rate constant therefore shows more improvement; over a few orders of mag-

nitude of the Péclet number, the rate constant increases by a factor of two.

The tilted cone (Figure 3c) shows a much higher capture rate, which is unsurprising. When the cil-

ium is near to the plane, the no-slip boundary screens the flow, whereas when it is far from the

plane, its pumping is unimpeded. This results in the cilium inducing a long range flow in one direc-

tion, characterised by a finite volume flow rate (Smith et al., 2008). The long range flow causes a

constant intake that replenishes the depleted particles. At high Péclet numbers, the capture rate

scales k ~Pe1=3, which is the same dependence as in an external shear-flow, although with a prefactor

that is lower by a factor of ~2. Locally, the relative flow around the cilium is the same whether a cil-

ium is pivoting or resting in a shear flow. The pumping effect of the tilted cilium, on the other hand,

provides sufficient inflow that the concentration around a cilium sees only a small depletion effect.

We finally simulated the capture process on a cilium exerting a realistic beating pattern, consist-

ing of a stretched working stroke and a bent, sweeping recovery stroke (Figure 3d). The capture

rate is close to that of the tilted cone, but surpasses it at very high Péclet numbers.

Collective active pumping
We consider seven cilia on a hexagonal centred lattice with lattice constant 0:95L, with a view to

understand how the presence of multiple cilia affects performance. We quantify the performance

gain using a quantity Q, which we define as

Q¼ kmultiple

kciliumðPeÞ �Ncilia

; (16)

which represents the fractional per-cilium improvement in rate constant compared to a single iso-

lated cilium at the same Péclet number.

Using numerical simulations, we find that at zero Péclet number (Figure 4a–b), Q » 0:5, which

means that the cilia locally deplete the concentration field, harming the per-cilium effectiveness; in a

quiescent fluid, it is most efficient for cilia to stand far away from their neighbours.

However, when the cilia actively move (with each tracing out a tilted cone with a different ran-

domly-chosen phase lag compared to its neighbours, as in Figure 4e) the trend is reversed: we find

that at Pe » 10000, Q » 1:53, meaning that per cilium, the capture rate is around 50% higher in the col-

lective when compared to an isolated cilium with the same Péclet number. We find that over the

range of Péclet numbers simulated, the Q increases monotonically with the Péclet number

(Figure 4h).

When comparing these randomly chosen phases to a patch of cilia which beat in uniform, we find

that cilia which beat in phase (Figure 4d) see an improvement over the stationary case with Q » 1:16,

but are much less effective than the cilia patch that beats with random phases. The random phases

give a higher volume flow, and complex hydrodynamic interactions between the randomly-phased

cilia result in a slightly higher capture chance for any given particle. Similar levels of improvement

are also seen for other arrangements of cilia forming a bundle, that is, Ncilia ¼ 19 on a hexagon

(Figure 4f) or Ncilia ¼ 4 on a square (Figure 4g). Furthermore, an improvement of randomly beating

over uniformly-beating cilia has been observed in previous work with finite-sized particles (Ding and
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Kanso, 2015; Nawroth et al., 2017). The results suggest that mutual enhancement of capture rates

is a robust phenomenon and does not depend on a specific geometry.

Discussion
Our results address a simple question: does the location of so many chemical receptors on cilia bring

them an advantage in sensitivity? Besides the well-known advantages of compartmentalisation,

which facilitates the downstream signal processing, we show that the elongated shape of a cilium

provides an advantage for the capture rate of molecules in the surrounding fluid. The advantages

can be summarised as follows:

Figure 4. Comparison between the capture rate constant of a single cilium (a, c) and a bundle of Ncilia 2 f4; 7; 19g cilia (b, d–g). In the insets, the height

of each red cylinder indicates the rate constant per cilium at Pe» 10000, and the number of cylinders represents the number of cilia. For immotile cilia

(a, b), a bundle has a lower per-cilium capture rate than an isolated cilium, although the the total rate constant of the bundle is higher. The reduced

capture rate per cilium is caused by the depletion of ligands close to the bundle. For motile cilia (d–g), the situation is reversed and the capture rate

per cilium in a bundle (d–g) can be significantly higher than for an isolated cilium (c). The increase can be explained by the collective flow generation,

which helps the capture on all cilia. In (d) the cilia all beat with the same frequency corresponding to Pe » 10000 but with identical phases. In (e–g) all

cilia beat with the same frequency corresponding to Pe » 10000, but their phases are chosen randomly. It can be seen that the random phases give a

higher rate constant than the uniform phases. (h) shows how the performance gain Q varies with the Péclet number for different configurations. The

rates shown at each point are the average of 30 random phase configurations like the one shown in (e). The dashed line is the Q-value for Pe ¼ 0 for

each configuration.

The online version of this article includes the following source data for figure 4:

Source data 1. Event counts and calculated rates as shown in Figure 4h.
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1. If neither the fluid nor the cilium move and the process of particle capture is purely diffusive,
the elongated shape improves the capture rate of the cilium by giving it better access to the
diffusing ligands. The length dependence of the capture rate has the sub-linear form
k ~ L= log L. With typical parameters, the cilium achieves a capture rate equivalent to that of a
circular patch of receptors on a flat surface with 4� the surface area of the cilium.

2. When a non-moving cilium is exposed to a shear flow, the advantage increases, mainly
because the tip of the cilium is exposed to higher flow velocities. The capture rate scales with

k ~ L4=3 and becomes equivalent to that of a surface patch with approximately 6� the surface
area at high flow rates.

3. An actively beating cilium can achieve capture rates comparable to those by a passive cilium in
a shear flow with the same relative tip velocity, but only if the beating is non-reciprocal, that is,
if the cilium generates a long range directed flow. The capture rate can scale with the beating
frequency to the power of 1/3 or higher.

4. Without motility, a bundle of sensory cilia achieves a capture rate per cilium that is lower than
that of a single cilium, because of the locally depleted ligand concentration. However, the situ-
ation can become reversed if the cilia are beating: then each cilium benefits from the flow pro-
duced by the bundle as a whole, and the per-cilium capture rate can be significantly higher
than in an isolated beating cilium. Cilia beating with random phases achieve significantly
higher capture rates than when beating in synchrony.

Our results are based on a few assumptions. We assumed that the particles get absorbed and

detected upon their first encounter of the cilia surface – an assumption that is justified if the recep-

tors are covering the surface at a sufficient density (Berg and Purcell, 1977), or if the particles bind

non-specifically to the membrane of the cilium first. We also treat the particles as point-like (their

size only has an influence on their diffusivity), which is accurate for molecules up to the sizes of a pro-

tein and we do not expect a significant error even for small vesicles. The Rotne-Prager tensor

approximation used to determine the flow fields does not exactly satisfy the no-slip boundary condi-

tion on the surface of the cilium, especially at high Péclet numbers.

With the typical dimensions of a cilium (L ¼ 10�m, a ¼ 0:125�m) and a diffusion constant of a

small molecule D ¼ 10
�9 m2s�1, we obtain kcilium ¼ 7 pM�1s�1. A chemosensory cilium working at the

physical limit is therefore capable of detecting picomolar ligand concentrations on a timescale of

seconds. Sensitivity thresholds in the sub-picomolar range have been measured in some olfactory

neurons (Frings and Lindemann, 1990; Zhang et al., 2013), indicating that some olfactory cilia

work close to the theoretical sensitivity limit. If the cilia are embedded in mucus with a viscosity at

least 3 orders of magnitude higher than water (Lai et al., 2009) (we disregard its viscoelastic nature

here) and the molecule has a Stokes radius of a few nanometres, the diffusion-limited capture rate

reduces to around kcilium ¼ 1nM�1s�1.

In a shear flow with a typical shear rate of _g ¼ 10 s�1, the Péclet number of a small molecule in

water is of the order of Pe» 1, where the capture rate still corresponds to the stationary case. How-

ever, with larger molecules and higher viscosities, the Péclet numbers can exceed 104, leading to a

significant enhancement of the capture rate.

When the same cilium is beating with a frequency of 25Hz, the Péclet number is of the order ~10,

which is too small to have an effect on the capture rate. With larger molecules and higher viscosities,

the Péclet numbers can be significantly higher. With a medium viscosity of 0:2Pa � s (200 times the

water viscosity) and a Stokes radius of 10nm, it reaches 105, meaning that the motility accelerates

the capture rate by one order of magnitude. For example, according to one hypothesis, motile cilia

in the zebrafish left-right organizer (Kupffer’s vesicle) both generate flow and detect signalling par-

ticles, possibly extracellular vesicles (Ferreira et al., 2017; Ferreira et al., 2019) similar to the pro-

posed ‘nodal vesicular parcels’ (Tanaka et al., 2005). With a cilium length of L ¼ 6�m and a particle

radius of a ¼ 100 nm, we obtain Pe ¼ 1300, showing that the capture rates can be several times

higher than in a passive cilium. Figure 5 shows how the molecular Stokes radius affects the fluid vis-

cosity required to break the diffusion limit for a few different scenarios. However, when the particle

size becomes comparable to the cilium diameter, the approximation that treats them as point par-

ticles loses validity. Indeed, it has been shown that particle size can have a direct steric effect on the

capture rate (Ding and Kanso, 2015). Furthermore, the capture process of large particles can

depend on a competition between hydrodynamic and adhesive forces (Tripathi et al., 2013). Steric

effects can even lead to particle enrichment in flow compartments (Nawroth et al., 2017).
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We have thus proven that for individual isolated cilia the geometry of a cilium always means an

advantage in chemical sensitivity over receptors covering the same area on a flat surface (assuming

they act as perfect absorbers), whether in a quiescent or moving fluid. At high Péclet numbers, which

are achieved in viscous fluids, with very large particles or in very strong flows, the advantage of a cil-

ium increases further and even confers an advantage in chemosensitivity to cilium bundles over indi-

vidual cilia. These advantages can work in concert with others, such as avoiding charged surfaces

and glycocalix and the provision of a closed compartment on the inside. Further work might examine

the extent to which motility benefits cilia in a fluid with bulk flow, or investigate the effect of meta-

chronal waves on ciliary chemosensitivity. Finally, our results shed light on possible engineering

applications for microfluidic sensing devices based on these ideas, for example using magnetic actu-

ation (Vilfan et al., 2010; Meng et al., 2019; Matsunaga et al., 2019).

Materials and methods
Numerically simulated point particles are injected into a finite system containing a motile cilium, and

move around due to advection (resulting from the motion of the cilium) and diffusion, until they

either escape from the system or are absorbed by the cilium. The proportion of particles which are

captured is used to compute a rate constant.

Flow calculation
The hydrodynamics are computed using a modified Rotne-Prager mobility tensor M that accounts

for the no-slip boundary. If there are N spheres of equal radius R in the simulation, each having a

Figure 5. The demarcation between the regime where the rate constant is determined mostly by the diffusion

limit and the regime in which it is enhanced by advection as a function of the fluid viscosity h and the particle

Stokes radius. The blue, orange, and green lines show the results for a passive cilium in a shear flow (Figure 2c),

the red line for an actively beatig cilium (Figure 3c) and the magenta line for a bundle of 7 cilia (Figure 4e). For all

lines, the cilium dimensions are L ¼ 10�m and a ¼ 250nm.
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prescribed trajectory riðtÞ and each acted upon by a force FiðtÞ, then these forces must satisfy

(Vilfan et al., 2010)

_riðtÞ ¼
X

N

j¼1

M riðtÞ;rjðtÞ;R;R
� �

�FjðtÞ (17)

for every i 2 ½1;N�. Since every term except the forces is known, the forces can be determined numer-

ically at a given t by solving this set of simultaneous equations. Then the fluid velocity at any point x

can be determined by

uðx; tÞ ¼
X

N

i¼1

M x;riðtÞ;0;R½ � �FiðtÞ: (18)

In the simulations we used N ¼ 20 spheres, corresponding to an aspect ratio L=a¼ 40. A some-

what lower value than in the analytical calculations was chosen to save computational time and also

to compensate for the fact that a cylinder is replaced with a chain of spheres.

Injection
We require a particle injection procedure that satisfies the concentration boundary condition c ! c0

far from the absorbing cilium. We achieve this by introducing two bounding boxes in the simulation:

an inner and an outer box, separated by a thin distance d (Figure 6). The particles are injected at

the boundary of the inner box and absorbed at the outer box. The injection rate is calculated such

that it corresponds to the advective-diffusive flux through the layer between the boxes if the concen-

tration at the inner box is c0. Because the flux through the boundary layer is much larger than the

flux of particles absorbed inside the inner box, the method is suited to ensure a constant concentra-

tion boundary condition. The method is similar to a recent algorithm using a single boundary (Ram-

ı́rez-Piscina, 2018), but uses a simpler injection function.

To calculate the injection current density, we solve the one-dimensional steady-state advection-

diffusion equation

0¼D
d2c

dx2
� v

dc

dx
; (19)

with the boundary conditions cð0Þ ¼ 0 and cðdÞ ¼ c0. The solution is

cðxÞ ¼ c0
evxD � 1

evdD� 1
: (20)

By the application of Fick’s law, this leads to an expression for the current density through the

inner box:

jðxÞ ¼ vc0
1

1� e�vdD
: (21)

We assume that a test particle will take take much longer to reach the cilium than the characteris-

tic time required for the flow to change, and hence we take v¼ huðx; tÞ � n̂it, where n̂ is the inward

pointing surface normal of the inner box. This function can then be used to probabilistically weight

where particles are injected on the inner box.

Numerical integration
The test particle position is updated using an Adams-Bashforth-Milstein multistep numerical integra-

tion method in the presence of noise (Tocino and Senosiain, 2015):

xiþ1 ¼ xi þDt
3

2
u xi; tð Þ� 1

2
u xi�1; t�Dtð Þ

� �

þ �i: (22)

Because the computation of the flow field u (see Equation 18) is the most demanding step, it is

advantageous over methods that require additional function evaluations per step. �i is a vector
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where each element is pseudorandomly generated Gaussian noise with standard deviation
ffiffiffiffiffiffiffiffiffiffiffi

2DDt
p

and mean of zero.

Rate evaluation
We finish each simulation run when the particle position reaches the cilium (capture), or the outer

box (escape). At the end, the rate constant is determined as

k¼ I

c0

ncapture

ncaptureþ nescape
; (23)

where I is the calculated total particle flux, obtained by integrating the flux density over the inner

box, I ¼
R

jdS.

Numerical parameters
For all numerical simulations, we use a cilium consisting of 20 beads (thus giving a length to radius

ratio L=a ¼ 40). For the conical and reciprocal motion (Figure 3a–c), we use an opening angle

(between the cone axis and surface) of 30˚, and for the titled conical motion (Figure 3c) the axis of

the cone is tilted relative to the vertical by an angle of 55˚.

In the collective regime, the parameters are the same, with the addition of a hexagon lattice con-

stant of 0:95L. The cones are tilted such that their axes are perpendicular to one chosen side of the

hexagon (left to right in Figure 4d-f).
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Anatomie 52:552–706. DOI: https://doi.org/10.1007/BF02975837

Hickey et al. eLife 2021;10:e66322. DOI: https://doi.org/10.7554/eLife.66322 15 of 18

Research article Physics of Living Systems



Appendix 1

Electrostatic analogy for the capture rate
In the following we explain the analogy between the capture rate of a diffusive particles and the

self-capacitance in electrostatics (Berg and Purcell, 1977). The diffusion equation reads

Dr2c¼ 0; (24)

where D is the diffusion constant and c the particle concentration. The boundary conditions are c¼
c0 at infinity and c¼ 0 at the particle surface. The diffusion equation is equivalent to the Laplace

equation for source-free electrostatics, in which the electrostatic potential f obeys

r2f¼ 0: (25)

If the surface of the body in the electrostatic case has a potential of �V0, the boundary conditions

are equivalent as well. The rate constant is determined by the integral of the current density J over

the surface, which follows from Fick’s law:

k¼� 1

c0

Z

dS � J¼ 1

c0

Z

dS � ðDrcÞ: (26)

In the electrostatic version of the problem, the equivalent expression for self-capacitance is

C¼ q

V0

¼ 1

V0

Z

dS � ð"0rfÞ; (27)

where �q is the charge on the body. By analogy, the rate constant can be expressed as:

k¼ D

"0
C: (28)

The electrostatic equivalence allows us to translate the calculation of the capture rates to a capac-

itance problem with a greater number of available solutions in the literature.
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Appendix 2

Capture rate of a cylinder in flow
In the following, we calculate the capture rate of a cylinder, moving transversely through the flow at

a high Péclet number. While defining the problem, one encounters the Stokes paradox, namely that

the lateral mobility of an infinite cylinder at zero Reynolds number diverges. We avoid the problem

by calculating the capture rate for a prescribed force density on the cylinder, which gives a well-

defined near-field flow. Later, we can use the well established resistive force theory to estimate the

force density at a given local velocity. A further simplification we make is to swap the boundary con-

ditions (Masoud and Stone, 2019), such that the cylinder emits particles, leading to a concentration

c0 at its surface and 0 in the incoming fluid. We describe the flow around the cylinder with radius a

with the following stream function in cylindrical coordinates

 ¼� af

8ph

r

a
� a

r
� 2r

a
ln

r

a

h i

� �

sinð�Þ; (29)

where f is the force per unit length. The unperturbed fluid is coming from the �¼ 0 direction

(Appendix 2—figure 1). The fluid velocity is determined as the curl of the stream function, e.g.:

v� ¼
q 

qr
: (30)

Appendix 2—figure 1. Streamlines (lines with a constant value of the stream function y) of the flow

around a cylinder (black) and the concentration c of emitted particles (red).

In the limit of a high Péclet number, the emitted particles stay in a thin boundary layer around the

cylinder before escaping at � ¼ p. We can therefore use the following approximation that only takes

into account the leading order contribution to the stream function

 ¼ 2af

8ph

r� a

a

� �2

sinð�Þ: (31)
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In the following, we derive a partial differential equation for the particle flux Fð�Þ across a radial

half-plane starting with radius r at the angle �, defined as

Fðr; �Þ ¼
Z

¥

r

dr0 v�ðr0Þcðr0Þ ¼
Z

¥

 ðrÞ
d cð Þ: (32)

At a high Péclet number, advection dominates over diffusion, which only needs to be considered

in the direction perpendicular to the stream lines, but not along. Due to flux conservation, the varia-

tion of F with the angle q is caused by the diffusive transverse flux, driven by the concentration

gradient

qF

q�

�

�

�

�

 

¼�rD
qc

qr
: (33)

We finally arrive at the PDE for the particle flux

qF

q�
¼�rD

q 

qr

q
2F

q 2
¼ A

ffiffiffiffi

 
p ffiffiffiffiffiffiffiffiffi

sin�
p

� q
2F

q 2
(34)

with the constant A¼ 8D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ph=af
p

. The boundary conditions are F¼ 0 for �¼ 0, reflecting zero flux at

the inflow, while the fixed concentration at the surface, c0 ¼ 1, implies qF=q j ¼0
¼�1. A transforma-

tion of variables t¼
R

d�A
ffiffiffiffiffiffiffiffiffi

sin�
p

with tð0Þ ¼ 0 and tðpÞ ¼
ffiffiffiffiffiffiffiffiffi

8=p
p

G½3=4�2 leads to

qF

qt
¼

ffiffiffiffi

 
p q

2F

q 2
; (35)

which has the solution

Fðt; Þ ¼ t2=3 �F
 

t2=3

� �

(36)

with

�FðxÞ ¼�xG � 2

3
; 4
9
x3=2

� �

G � 2

3

� � and �Fð0Þ ¼ 3

2

� �4=3

G
1

3

� �� ��1

: (37)

An example of a particle concentration c resulting from this solution is shown in Appendix 2—fig-

ure 1. The emission rate (equivalent to capture rate) per unit length is given by twice the particle

flux (for two sides of the cylinder):

dk

dz
¼ 2FðtðpÞ;0Þ ¼ 3

6

p

� �1=3
Gð3=4Þ4=3
Gð1=3Þ DPe

1=3
f ¼ 1:822DPe

1=3
f with Pef ¼

2af

phD

� �1=3

(38)

A previous calculation that used a similar approach, but solved the PDE with an approximate

function, rather than the exact solution derived here, gave the prefactor 1.63 when converted to our

units (Friedlander, 1957).

Finally, we can use the resistive force theory to estimate the force density per unit length as f ¼
CNv» 1:3phv and arrive at Equation (10) in the main text. The prefactor depends on the width-to-

length ratio of the object and we used a value that gives a good result for typical ciliary dimensions

(Vilfan, 2012).
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,

3.4 Chapter summary

▶ Chemoreception is an integral part of life, found in all
kinds of organisms in all kind of roles, both internal to
organisms and externally.

▶ In eukaryotes, a lot of these chemoreceptors are found
on cilia. Our work sought to understand some of the
reasons why this might be the case.

▶ Our analysis found that all chemoreceptors found on
cilia benefit from the geometry of a cilium, which acts
to increase their diffusion limit. When a bulk flow is
introduced, this geometry-related improvement is even
more pronounced.

▶ Motility further increases the chemosensitivity of cilium-
bound chemoreceptors. Motile cilia in cilium carpets
experience a further increase in per-cilium chemosen-
sitivity over isolated motile cilia, as long as the Péclet
number of the beating cilia is high enough.
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Emergent properties, where local rules give rise to widespread
global order, are everywhere in biology. The flocking be-
haviour of birds or sheep can be explained by rules so
simple that they can be expressed in a single sentence [7, 110]

[7]: Vicsek et al. (1995), Novel Type of Phase
Transition in a System of Self-Driven Particles
[110]: King et al. (2012), Selfish-herd be-
haviour of sheep under threat

but the resulting motion can look almost impossibly well-
coordinated; anyone who has ever seen a thousand-strong
flock of starlings knows how complex flocking behaviour can
look. But emergent properties are not limited to the scales of
entire herds: one very relevant example that can happen even
within individual organisms is when motile cilia synchronise
with their neighbours to produce globally ordered beating
patterns.

At sufficient density, motile cilia can coordinate their beating
with one another, giving rise to collective motion. Some-
times this just means all cilia beating in unison, as in the
fallopian tube, where motile cilia beat to move embryos and
gametes [11]. However, one especially interesting coordinated [11]: Lyons et al. (2006), The reproductive

significance of human Fallopian tube cilia

beating mode arises when each cilium beats slightly ahead
of its neighbours on one side, but slightly behind its neigh-
bours on the other side. This slight phase difference gives
the illusion of a travelling wave, known as a metachronal
wave (see Fig. 4.1 for an illustration). Metachronal waves are
not purely a cilium-related phenomenon: the motion of a
millipede’s legs [111]

[111]: Garcia et al. (2020), Fundamental un-
derstanding of millipede morphology and lo-
comotion dynamics

, collective behaviour of worms [112]

[112]: Peshkov et al. (2022), Synchronized
oscillations in swarms of nematode Turbatrix
aceti,

or the “Mexican waves” seen in the stands at sports events
are all examples of metachronal waves, though they are
less relevant to the work described in this chapter. Ciliary
metachronal waves are found in the human trachea, where
the waves beat metachronally in order to pump mucus [9,
113]

[9]: Yaghi et al. (2016), Airway Epithelial
Cell Cilia and Obstructive Lung Disease
[113]: Chateau et al. (2019), Why antiplectic
metachronal cilia waves are optimal to trans-
port bronchial mucus

. Paramecium [13]

[13]: Funfak et al. (2015), Paramecium swim-
ming and ciliary beating patterns: a study on
four RNA interference mutationsand Volvox [114]
[114]: Brumley et al. (2012), Hydrodynamic
Synchronization and Metachronal Waves on
the Surface of the Colonial Alga Volvox carteri

use metachronally syn-
chronised cilium beating to move fluid around for swimming
and feeding. Even shrimp and worms, as well as artificial
swimmers like the fantastically named “krillbot”, have used
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metachronally synchronised appendages to swim [115, 116]. [115]: Ford et al. (2021), On the role of phase
lag in multi-appendage metachronal swim-
ming of euphausiids
[116]: Byron et al. (2021), Metachronal Mo-
tion across Scales: Current Challenges and
Future Directions

The list of locations where metachronal waves can be found
is long, but also surprisingly varied: Paramecium is a single
multiciliated cell, but Volvox is a multicellular colony, and the
human trachea is a multicellular part of a larger organism.

Figure 4.1: A metachronal
wave in one dimension.
Each cilium has a slight
phase difference from both
of its neighbours. The
phase of each cilium is in-
dicated by its colour.

These waves can be categorised into symplectic (meaning that
the apparent motion of the wave is in the same direction as the
fluid pumping), antiplectic (meaning that the wave direction
is opposite the direction of pumping), or if the pumping
direction is orthogonal to the wave direction, diaplectic and
laeoplectic [117].

[117]: Zhang et al. (2022), Metachronal pat-
terns by magnetically-programmable artificial
cilia surfaces for low Reynolds number fluid
transport and mixing

In cilia, this metachronal coordination is adaptationally ad-
vantageous because it increases pumping and swimming
speed and energy efficiency [14, 15]. One can intuitively [14]: Osterman et al. (2011), Finding the

ciliary beating pattern with optimal efficiency
[15]: Elgeti et al. (2013), Emergence of
metachronal waves in cilia arrayssee why a metachronal wave might move more fluid than

synchronous beating: if a cilium beats in phase with its neigh-
bour, it will experience much lower hydrodynamic drag, and
therefore exert lower force on the fluid, hence moving less
fluid overall; metachronal waves ensure that no cilium is ever
beating exactly in-phase with its neighbour. Under certain
circumstances, this gain in efficiency may be much higher for
certain types of metachronal waves than others: in the case
of pumping of mucus in the human airway, antiplectic waves
are more efficient than their symplectic equivalents [113].

[113]: Chateau et al. (2019), Why antiplectic
metachronal cilia waves are optimal to trans-
port bronchial mucus

Metachronal waves also reduce energy-wasting collisions
between cilia [52], meaning more fluid can be moved with

[52]: Ringers et al. (2023), Novel analytical
tools reveal that local synchronization of cilia
coincides with tissue-scale metachronal waves
in zebrafish multiciliated epithelialess energy.

The mechanisms underpinning the emergence of metachronal
waves are varied and not completely understood. Cilia on
the same cell are connected through coupling between their
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basal bodies, and it has been shown that in certain cases,
basal coupling between cilia on the same cell plays an impor-
tant role in synchronisation, as hydrodynamically isolated
cilia are still capable of synchronising [118–120]. However, [118]: Wan et al. (2016), Coordinated beating

of algal flagella is mediated by basal coupling
[119]: Quaranta et al. (2015), Hydrodynamics
Versus Intracellular Coupling in the Synchro-
nization of Eukaryotic Flagella
[120]: Liu et al. (2018), Transitions in synchro-
nization states of model cilia through basal-
connection coupling

in Volvox, the cilia are spread across multiple cells in dif-
ferent organisms (which means that basal coupling can be
ruled out as a relevant mechanism), and they are still able to
synchronise, which suggests that hydrodynamics plays the
dominant role under certain circumstances [121]. Steric ef-

[121]: Goldstein et al. (2009), Noise and Syn-
chronization in Pairs of Beating Eukaryotic
Flagella

fects, i.e. direct collisions between cilia, have also been found
to play a role [122]. Although small numbers of bacterial

[122]: Chelakkot et al. (2021), Synchronized
oscillations, traveling waves, and jammed clus-
ters induced by steric interactions in active
filament arraysflagella can synchronise due to the rocking of the bacterium

they are all attached to [123], this probably doesn’t bear much [123]: Geyer et al. (2013), Cell-body rocking
is a dominant mechanism for flagellar syn-
chronization in a swimming algarelevance to metachronal waves in cilia, where there are often

hundreds or thousands of cilia beating together.

4.1 Models of synchronisation

The literature contains many models that seek to explain
ciliary synchronisation. Though some models account for
things like body-rocking [123] or basal coupling [120, 124,
125], in this section we will focus on models of hydrodynamic

[120]: Liu et al. (2018), Transitions in synchro-
nization states of model cilia through basal-
connection coupling
[124]: Guo et al. (2021), Intracellular cou-
pling modulates biflagellar synchrony
[125]: Klindt et al. (2017), In-phase and anti-
phase flagellar synchronization by waveform
compliance and basal coupling

coupling, as they are more relevant to our work.

One of the simplest models of synchronising oscillators is
the Kuramoto model, wherein the oscillators have some (not
necessarily identical) intrinsic frequencies 𝜔𝑖 and are globally
coupled to one another by a function that depends upon
their phase difference [126]: [126]: Pikovskĳ et al. (2007), Synchroniza-

tion: a universal concept in nonlinear sciences

¤𝜙𝑖 = 𝜔𝑖 +
𝜖
𝑁

𝑁∑
𝑗=1

𝐻(𝜙𝑖 − 𝜙 𝑗). (4.1)

This model is very simple, and in the large-𝑁 limit, the
dynamics can be solved exactly. However, most models of
hydrodynamic synchronisation are slightly more compli-
cated than this globally-coupled Kuramoto model, because
hydrodynamic interactions are dependent on distance, and
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the coupling strength is not always purely a function of the
phase difference.

Some approaches model the cilia as long filaments with active
driving forces [51, 127–130]. Others consider a very detailed

[51]: Gueron et al. (1999), Energetic consid-
erations of ciliary beating and the advantage
of metachronal coordination
[127]: Man et al. (2020), Multisynchrony in
Active Microfilaments
[128]: Goldstein et al. (2016), Elastohydro-
dynamic synchronization of adjacent beating
flagella
[129]: Guirao et al. (2007), Spontaneous Cre-
ation of Macroscopic Flow and Metachronal
Waves in an Array of Cilia
[130]: Kim et al. (2006), Pumping Fluids with
Periodically Beating Grafted Elastic Filaments

treatment of the cilium: Solovev et al. [131], for example, have

[131]: Solovev et al. (2021), Lagrangian me-
chanics of active systems

developed an approach to simulation of cilia that works
for arbitrary cilium shapes and trajectories, though this
results in sufficient complexity that a lot of variables must
be precomputed in order to be able to solve the equations of
cilium motion in reasonable time.

The approach favoured by many, including us, is to model
the cilium as a sphere on a fixed trajectory but with a variable
speed [78, 132–139]. There are a number of advantages to [78]: Uchida et al. (2011), Generic Conditions

for Hydrodynamic Synchronization
[132]: Vilfan et al. (2006), Hydrodynamic
flow patterns and synchronization of beating
cilia
[133]: Meng et al. (2021), Conditions for
metachronal coordination in arrays of model
cilia
[134]: Niedermayer et al. (2008), Synchro-
nization, phase locking, and metachronal wave
formation in ciliary chains
[135]: Uchida et al. (2012), Hydrodynamic
synchronization between objects with cyclic
rigid trajectories
[136]: Nasouri et al. (2016), Hydrodynamic
interactions of cilia on a spherical body
[137]: Kanale et al. (2022), Spontaneous
phase coordination and fluid pumping in
model ciliary carpets
[138]: Wollin et al. (2011), Metachronal waves
in a chain of rowers with hydrodynamic inter-
actions
[139]: Uchida et al. (2010), Synchronization
and collective dynamics in a carpet of microflu-
idic rotors

this: the hydrodynamic force on a sphere in the presence of a
boundary can be computed using the Rotne-Prager mobility
tensor (Eqs. (2.9–2.8)) in an efficient manner, and by making
simple adjustments to the trajectory, it is possible to recreate
the power/recovery stroke behaviour seen in most biological
motile cilia.

No matter the approach taken, it must be remembered that
the Stokes flow is time-reversible, but synchronisation is by
definition an irreversible process. The model must therefore
find some way to break this symmetry. Possibilities that have
seen success in the literature include additional degrees of
freedom per cilium (which can automatically be achieved
by modelling the cilia as flexible filaments that can bend
in various directions), asymmetric spatial arrangements of
cilia [132], driving forces or trajectories that break the right
symmetries [137, 140], or (for example) nonlinear driving [140]: Fruchart et al. (2021), Non-reciprocal

phase transitions

mechanisms that change the driving direction once a certain
position is reached [15]. [15]: Elgeti et al. (2013), Emergence of

metachronal waves in cilia arrays

Most models of synchronisation make two additional simpli-
fications: firstly, it is common for near-field hydrodynamic
interactions to be neglected [133, 134]. This is an attractive
simulation in many cases because it massively simplifies
the computational effort required, as the far-field terms that
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remain in the limit of large intercilium separation are much
simpler to compute than the near-field terms, and can even
be treated analytically [134]. Secondly, many modelling ap-
proaches have required the system to have periodic boundary
conditions [133, 134, 138, 139], as without these, the cilia near
the edges have a lower number of neighbours, which can
affect their beating frequency and lead to the breaking up of
order [134, 141, 142].

[141]: Kavre et al. (2015), Hydrodynamic
synchronization of autonomously oscillating
optically trapped particles
[142]: Hamilton et al. (2017), The chimera
state in colloidal phase oscillators with hydro-
dynamic interaction

However, these simplifications are often biologically implau-
sible. For example, intercilium spacing in many biological
systems is much less than the cilium length [143, 144], which

[143]: Bouhouche et al. (2022), Paramecium,
a Model to Study Ciliary Beating and Ciliogen-
esis: Insights From Cutting-Edge Approaches
[144]: Sleigh et al. (1988), The Propulsion of
Mucus by Cilia

is at odds with assumption of a far-field limit. While there
do exist periodic one-dimensional arrays of cilia, such as in
starfish larvae [145] or the oral cilia of Stentor [146], they are

[145]: Strathmann (1971), The feeding behav-
ior of planktotrophic echinoderm larvae: Mech-
anisms, regulation, and rates of suspension-
feeding

[146]: Wan et al. (2020), Reorganization of
complex ciliary flows around regenerating
Stentor coeruleus

far from the norm. We will later show that both of these sim-
plifications are inadequate when considering nonreciprocal
hydrodynamic coupling of cilia.

4.2 Nonreciprocity in active systems

In active systems, the influence exerted by one body on an-
other need not be reciprocal [140]. For example, under certain [140]: Fruchart et al. (2021), Non-reciprocal

phase transitions

circumstances, the motion of an enzyme can be affected by a
chemical gradient, which is itself affected by another enzyme.
In this way, one enzyme exerts an influence on another, but
the reverse is not true [147]. Similar effects can be observed in

[147]: Agudo-Canalejo et al. (2019), Active
Phase Separation in Mixtures of Chemically
Interacting Particles

flocking behaviour [148], systems of neurons [149], artificial [148]: Nagy et al. (2010), Hierarchical group
dynamics in pigeon flocks

[149]: Montbrió et al. (2018), Kuramoto
Model for Excitation-Inhibition-Based Oscil-
lations

active particles [150], and countless others.

[150]: Lavergne et al. (2019), Group forma-
tion and cohesion of active particles with visual
perception–dependent motility

This nonreciprocal coupling can also happen in systems of
hydrodynamic interactions. The Lorentz reciprocal theorem
can be expressed in its integral form as∬

𝑆

u · (𝜎′ · n̂)d𝑆 =

∬
𝑆

u
′ · (𝜎 · n̂)d𝑆, (4.2)

where 𝑆 is the surface of a body, 𝜎 is the hydrodynamic
stress on the body’s surface, and n̂ is the normal to the
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body’s surface [69]. This is an incredibly important result in [69]: Masoud et al. (2019), The reciprocal
theorem in fluid dynamics and transport phe-
nomena

hydrodynamics, as it means that, depending on the velocities
of the two bodies, the force on each body can have the
same or different signs. This differs from Newton’s third law,
under which the forces would always have the opposite sign,
and is a consequence of hydrodynamic interactions being
dissipative rather than conservative. This opens up a lot of
possibilities for nonreciprocal coupling in hydrodynamics,
where if two identical hydrodynamically coupled particles
have very different velocities, they can experience differing
forces (and vice versa: two bodies with very different active
driving forces can induce differing velocities), which can
be an extremely potent effect in inducing synchronisation.
Some models of hydrodynamic rotor synchronisation have
already included nonreciprocal hydrodynamic coupling [139]

[139]: Uchida et al. (2010), Synchronization
and collective dynamics in a carpet of microflu-
idic rotors

(though it should be stressed that these rotors are quite unlike
cilia).

In the context of cilia, this means that one cilium can influ-
ence its neighbour more than vice versa. Factors such as the
driving force that the cilium exerts and the nonuniformity
of internal and external drag coefficients over the cilium
trajectory can all make the cilium more susceptible to being
perturbed by a neighbour in certain parts of its trajectory
than in others. This combined with the varying velocity of
the cilium relative to its neighbours can give rise to a very
asymmetric interaction strength. Indeed, other work has
found that asymmetric coupling can be relevant for ciliary
synchronisation, such as Niedermayer et al. [134]. However,

[134]: Niedermayer et al. (2008), Synchro-
nization, phase locking, and metachronal wave
formation in ciliary chains

the model used by Niedermayer et al. [134] did not consider
near-field hydrodynamics, rather solving in the far-field limit,
and found that cilia with the same intrinsic beating frequency
could only synchronise to a state with identical phases, i.e.
they did not find the phase lag characteristic of metachronal
waves. Our model of ciliary synchronisation, explained in
the following section, relies heavily on nonreciprocal hydro-
dynamic coupling to synchronise.
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(a) Unsynchronised state (b) Metachronally synchronised state

Figure 4.2: Potential states of the simulation, showing the phase and position of each cilium.
Each cilium has an identical intrinsic frequency. Each cilium is confined to a tilted circular
trajectory, where the tilt ensures that the cilia have a power and recovery stroke despite the
model’s simplicity. Each cilium has a driving force and friction coefficient that is a function
of its phase. Hydrodynamic interactions between cilia cause some cilia to move around
their trajectory slightly faster than others, eventually leading from an unsynchronised initial
state (as in (a)) to a stable synchronised state (as in (b)).

4.3 Our work

In this work, we developed a simple model of ciliary synchro-
nisation. The cilium is represented as a spherical bead on
a titled circular trajectory, which despite its simplicity, still
has separate power and recovery strokes. The tilting of the
trajectory breaks time-reversal symmetry, meaning that the
beat avoids the problem posed by scallop theorem, and is
therefore able to generate a net fluid flow.

The cilium has a phase-dependent driving force F
dr(𝜙) and

internal friction coefficient Γ(𝜙), which were tuned to give
sensible cilium motion. We considered a system of many
such model cilia on various lattices, where the cilia could
interact with one another hydrodynamically. The governing
equation for each cilium may be written as

0 = F
dr(𝜙𝑖) + F

c(𝜙𝑖) − Γ(𝜙𝑖)v𝑖 −
∑
𝑗

Γ𝑖 𝑗v𝑗 , (4.3)

where F
c are the forces that constrain the cilium to its circular
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trajectory, and are by definition always perpendicular to
the trajectory, so that they don’t change its speed along the
trajectory. Γ𝑖 𝑗 is the friction tensor, which gives the force
response at cilium 𝑖 due to a velocity at 𝑗 – essentially, the
opposite of the mobility tensor. Each cilium moves around
its trajectory with some intrinsic frequency, but the motion
of other cilia perturbs the fluid which in turn perturbs the
cilia, causing cilia to move along their trajectory with varying
speeds.

The entire system was solved numerically to find the time-
evolution of the system, starting from a random initial state.
We found that under normal circumstances with an open
boundary, the system of cilia can quickly synchronise to a
deterministic metachronal state, with a relaxation time that
scales linearly with the system time – a good improvement
over many other models of this same phenomenon. How-
ever, when near-field hydrodynamic effects are suppressed,
the synchronisation time increases dramatically, and this
linear dependence is lost; this is because of the nonrecipro-
cal coupling that is now suppressed. Additionally, the final
synchronised state can now consist of multiple wavevectors,
which depends entirely on the random initial configura-
tion. When introducing periodic boundary conditions, we
found that the nonreciprocity was now counterproductive,
as patches of disorder could now spread in the same way as
patches of order, without being extinguished.

These results have huge implications for the importance of
nonreciprocal coupling in ciliary synchronisation. Near-field
effects, whereby a combination of cilium position, driving
force, and hydrodynamic and internal condition make the
coupling nonreciprocal, mean that a cilium can entrain its
neighbour but not vice versa. This allows the order to spread
extremely quickly through the system, starting from one edge
and spreading linearly, and means that order is robust even
at open boundaries. Without these nonreciprocal near-field
effects, ciliary synchronisation takes an order of magnitude
longer. The final state would no longer be deterministic, and
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since antiplectic and symplectic waves pump with different
speeds and efficiencies, this could have an impact on the
pumping or swimming efficiency.

Secondly, these results show that hydrodynamics is sufficient
for swift synchronisation in at least some circumstances, so
basal coupling is not an absolute requirement for synchro-
nisation. In real cilia, the intercilium distances can be much
lower than what we have simulated, so it is possible that the
hydrodynamic interactions, especially the near-field interac-
tions, are even more relevant and can explain the extremely
rapid synchronisation seen in ciliates.

This work shows that hydrodynamic interactions, in partic-
ular nonreciprocal near-field interactions, are sufficient to
induce and maintain stable order in finite systems. This repre-
sents a step forward in our understanding of the emergence
of metachronal waves, as most models have hitherto been
unable to support stable order in finite systems, and have
been forced to rely on periodic boundary conditions in order
to prevent boundary effects from disrupting the order of the
system. The ability to produce stable metachronal waves in
finite systems is highly desirable, as open boundaries are
common in experimental systems, whereas there are only
a few cases where one can find unbroken lines of cilia that
approximate periodic boundaries.
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Motile cilia beat in an asymmetric fashion in order to propel the sur-
rounding fluid. When many cilia are located on a surface, their beat-
ing can synchronise such that their phases form metachronal waves.
Here, we computationally study a model where each cilium is repre-
sented as a spherical particle, moving along a tilted trajectory with
a position-dependent active driving force and a position-dependent
internal drag coefficient. The model thus takes into account all the
essential broken symmetries of the ciliary beat. We show that taking
into account the near-field hydrodynamic interactions, the effective
coupling between cilia can become nonreciprocal: the phase of a
cilium is more strongly affected by an adjacent cilium on one side
than by a cilium at the same distance in the opposite direction. As
a result, synchronisation starts from a seed at the edge of a group
of cilia and propagates rapidly across the system, leading to a syn-
chronisation time that scales proportionally to the linear dimension
of the system. We show that a ciliary carpet is characterised by three
different velocities: the velocity of fluid transport, the phase velocity
of metachronal waves and the group velocity of order propagation.
Unlike in systems with reciprocal coupling, boundary effects are not
detrimental for synchronisation, but rather enable the formation of
the initial seed.
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Motile cilia are hairlike organelles which can move under1

their own power in order to fulfil roles such as fluid2

pumping or mixing (1). They are nigh-ubiquitous in biological3

systems, being found on most eukaryotic cells (2) including in4

the nervous system (3), the respiratory system (4), and the5

olfactory system (5). This makes them central to many open6

questions in biology, such as the precise mechanism behind7

the emergence of left-right differentiation during embryonic8

development (6). While the fascinating fluid dynamical ques-9

tions involved in the dynamics of cilia and their biological10

function have been already highlighted by the pioneers of11

twentieth century fluid dynamics, such as Ludwig Prandtl (7)12

and G. I. Taylor (8), the subject of the collective properties of13

hydrodynamically active organelles at low Reynolds number14

continues to be an active field of research, particularly as a15

key component of the field of active matter (9).16

When many motile cilia are located on a surface at suffi-17

cient density, their beating can synchronise with a phase lag18

between neighbouring cilia. The resulting phase waves are19

called metachronal waves. It has been shown that metachronal20

coordination can lead to a high energetic efficiency of swim-21

ming or fluid transport (10, 11), and that metachronal waves22

may reduce collisions between cilia, further raising pumping23

speed (12). Moreover, the coordination has been shown to24

be beneficial for the efficiency of the chemosensory function25

of motile cilia (13). Metachronal waves are found in many26

different organisms and systems. For example, Paramecium 27

uses metachronally coordinated cilia to swim (14), as well as 28

to feed (14). Indeed, Paramecium’s swimming efficiency is 29

close to the maximum possible efficiency for an organism with 30

cilia of that length (10). Metachronal waves are found in other 31

systems, such as the multicellular colony Volvox (15) or cilia 32

in the respiratory tract (4) where their pumping efficiency is 33

important for moving mucus (16). Metachronal coordination 34

also appears in animals (e.g., krill) at larger length scales with 35

very different coordination mechanisms (17). 36

Metachronal waves can be classified according to the direc- 37

tion of the wave propagation, depending on how the phase 38

velocity of the wave compares to the direction of fluid trans- 39

port. When these two directions are parallel, the metachronal 40

wave is said to be symplectic. If they are antiparallel, the wave 41

is called antiplectic (18). Other wave directions are classified 42

as dexioplectic or leoplectic. 43

The fact that a pair of hydrodynamically interacting cilia 44

or flagella can synchronise their cycles, even when belonging 45

to two separate organisms (19), suggests that hydrodynamic 46

coupling alone can be sufficient to explain the emergence of 47

metachronal waves. Nevertheless, some studies also point 48

to the additional role of intracellular linkages (20–22). In 49

fact, the metachronal waves in Paramecium can preserve syn- 50

chrony across the wall of a micropipette that isolates them 51

hydrodynamically (23). 52

A fundamental problem in understanding synchronisation 53

via hydrodynamic interactions is the reversible nature of the 54
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Fig. 1. Illustration of the model, showing the parameters used. (A) A realistic cilium
motion with the trajectory shown in red. The power stroke (solid blue colour) gives
way to a slower recovery stroke along the no-slip surface of the substrate, resulting
in net fluid flow in the direction of the power stroke over a cycle. Also shown is one
of our model cilia that approximates the realistic motion, with the trajectory shown
in red, and relevant quantities indicated. The circular trajectory retains the essential
features of a power stroke far from the substrate and a recovery stroke much closer.
(B) Definition of β and the intercilium distance r . The arrows represent the direction
of the power stroke of the cilium, occurring at the highest point above the surface.
Feathering on lines indicates that they are parallel, so that β is the angle between the
power stroke and the displacement vector connecting the lattice points of two cilia.

Stokesian hydrodynamics, i.e. the fact that the fluid flow55

exactly reverses its direction upon the reversal of actuating56

forces, whereas the tendency of a system to reach an ordered57

state is by definition irreversible (9). Theoretical models58

therefore have to take into account higher order effects that59

break the respective symmetries. These can include a second60

degree of freedom per cilium (24–29), the asymmetric spatial61

arrangement of cilia (30), a trajectory or driving force with62

sufficiently broken symmetries (28, 31–37), or a non-linear63

driving mechanism that, for instance, switches the direction64

of force when a switch point is reached (11, 38–41).65

When discussing the role of symmetries for ciliary synchro-66

nisation, one has to keep in mind that reciprocity manifests67

itself differently for conservative or dissipative interactions.68

For conservative forces, Newton’s third law states that op-69

posite forces are exerted on both interacting bodies. For70

hydrodynamic interactions, which are dissipative in their na-71

ture, the Lorentz reciprocal theorem (42) implies that the72

force on one body, caused by the motion of a second one with73

a given velocity, is identical to the force on the second body74

when the first body moves with the same velocity. Hydrody-75

namic interactions therefore act on both bodies with the same76

sign. The interplay of both interaction types is one possibility77

to facilitate ciliary synchronisation (26). In active systems,78

nonreciprocal interactions can arise where the effect of the79

interaction on body A differs from that on body B, both in80

magnitude and direction (33, 43–49). For example, in the81

Vicsek model, particles or animals can be affected by other82

particles in front of them in a different way from those behind83

them. The orientation of hydrodynamically coupled rotors84

is a prime example of nonreciprocal coupling that leads to a85

rich phenomenology, including turbulent behaviour via defect86

proliferation and annihilation (31).87

A major open question is related to the scaling with the88

system size and the role of boundaries of the ciliated region.89

Recent theoretical work shows that the time needed to reach90

synchronisation scales quadratically with the number of cilia91

(50). In principle, the metachronal wave vector of the final state92

is not uniquely determined. However, the basins of attraction93

of different solutions can greatly differ in size, leading to a94

strong preference for one state (50). Boundaries are often 95

detrimental for synchronisation, because the cilia at the edge 96

have a smaller number of nearest neighbours, which can affect 97

their characteristic frequency, as demonstrated in a small 98

1D row of artificial oscillators (51). Boundary effects in a 99

finite system can even lead to the emergence of a chimera 100

state in which the oscillators split up into a coherent and an 101

incoherent population (52). The vast majority of theoretical 102

and computational studies focus on systems with periodic 103

boundary conditions as a representation of generic, infinite 104

systems (11, 26, 31, 32, 34, 38, 50, 53, 54). In nature, periodic 105

circular 1D chains of cilia exist, for instance the oral cilia of 106

Stentor (55) or in starfish larvae (56). However, for topological 107

reasons 2D arrangements of cilia need open boundaries or 108

topological defects, as it is impossible to have a polar field on 109

the topology of a sphere without discontinuities. 110

In this paper, we show that the near-field effects between 111

hydrodynamically coupled cilia can lead to an effective non- 112

reciprocal interaction, where cilium A can affect the phase of 113

cilium B more strongly than vice versa. As a result of this 114

nonreciprocity, the metachronal order propagates through the 115

array of cilia with a group velocity, which is not directly re- 116

lated to the velocity of the fluid transport or the phase velocity 117

of metachronal waves. In a finite group of cilia, order then 118

emerges at a boundary and propagates across the group in a 119

time that scales linearly with the system dimension, an order 120

of magnitude faster than an equivalent system without near- 121

field hydrodynamics. We suggest that nonreciprocal coupling 122

is key to understanding the fast emergence of synchronisation 123

in large ciliary carpets. The dynamics of the tissue are then 124

characterised by three independent velocities: the velocity 125

of fluid transport above the surface, the phase velocity of 126

metachronal waves, and the group velocity with which the 127

order propagates. 128

Results. Cilia are long and thin, and beat with a time- 129

irreversible whip-like stroke (1). Because of the complexity of 130

the ciliary stroke, its description quickly leads to an intractable 131

number of parameters. We therefore take a simplified approach 132

common to many theoretical models (e.g., 30, 34, 35) and re- 133

place the cilium with a small sphere, pushed along a fixed 134

trajectory by a position-dependent active force. The position 135

of the sphere represents the tip position of a cilium and the 136

active driving force represents the activity of dynein motors 137

of the cilium’s axoneme. We thus consider a sphere of radius 138

b moving on a fixed circular trajectory of radius a, with its 139

centre a distance h above a surface. The sphere is driven by 140

an internal driving force F dr(ϕ) and has an internal friction 141

coefficient Γ(ϕ), both of which act in the tangential direction 142

of the trajectory. The tilt of the trajectory is controlled by an 143

angle χ such that when χ = π/2, the trajectory lies in a plane 144

parallel to the substrate beneath the cilium, shown in Fig. 1A. 145

This choice to model the cilia as single spheres on fixed 146

tilted circular trajectories means that we neglect much of the 147

fluid flow driven by the cilium closer to the surface, while 148

preserving the irreversibility of the cilium beat – essential 149

given the inherent irreversibility of synchronisation. This 150

approximation also replicates the pumping ability of the cilium: 151

when the cilium is closer to the no-slip surface, it produces less 152

fluid flow, and when it is further away it produces more. Over 153

a cycle, the cilium moves a positive net amount of fluid in the 154

direction of its ‘power stroke’. At distances from the cilium 155

2 | Hickey et al.
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Fig. 2. Synchronisation in a one-dimensional row of cilia. (A) A snapshot from the simulation. The colours indicate the phases. (B) A kymograph showing the metachronal
waves in the system at different times. The simulation starts with random phases, but patches of order quickly assert themselves and give rise to waves that are initially
uneven but eventually become completely uniform. The waves travel with the phase velocity vph (orange triangle) in the direction of fluid transport, and are hence symplectic
waves. (C) The mean synchronisation time ⟨ts⟩ vs. the number of cilia N. The mean is calculated by simulating many systems at each size with different random initial phase
configurations, and measuring how long it takes to synchronise using a metric based on standard deviation of cilium frequencies. The figure shows that the synchronisation time
scales approximately linearly in the system size. Error bars are standard error of the mean, based on ≥ 92 simulations. (D) A kymograph showing the coherence between
adjacent pairs of cilia. On this graph each value of i on the abscissa corresponds to the coherence between cilium i and i + 1. Once an ordered patch forms on the right edge it
spreads across the row with the group velocity vg (green triangle) in the negative x direction. The fact that the synchronisation time is mainly limited by the propagation across
the system explains the linear size-dependence in panel (C).

that are several times greater than h, this approximation gives156

almost identical fluid flow to a more detailed treatment of the157

cilium (57). In the following, we orient the pumping direction158

in the positive x-direction.159

To study synchronisation and the emergence of metachronal160

waves, we now consider many cilia arranged on a two-161

dimensional surface. Each point ri = (xi, yi, 0) represents162

the position on the substrate directly below the centre of a163

cilium’s trajectory. A pair of cilia (i and j) is characterised by164

the angle βij , which is the angle between the working stroke165

of cilium i (along the x-axis, Fig. 1) and the line pointing from166

ri to rj . These quantities are illustrated in Fig. 1B.167

The position Ri of the sphere representing cilium i is pa-168

rameterised as a function of its phase ϕi following the notation169

used by Meng et al. (34):170

Ri(ϕi) = ri +

(
a cos ϕi

a sin ϕi sin χ
h − a sin ϕi cos χ

)
. [1]171

To replicate the beating cycle of a cilium, which consists of
a fast working stroke followed by a slower sweeping recovery
stroke, we introduce a position-dependent force and an internal
drag coefficient, which together determine the force-velocity
relationship of the active driving force F dr(ϕi) − Γ(ϕi)v. Both
can be expanded in a Fourier series as:

F dr(ϕi) = F dr
0

[
1 +

∞∑

n

An cos(nϕi) + Bn sin(nϕi)

]
, [2]

Γ(ϕi) = Γ0

[
1 +

∞∑

n

Cn cos(nϕi) + Dn sin(nϕi)

]
. [3]

In the following, we only account for terms where n ≤ 2. This 172

simplification is justified, as the first harmonic is known to 173

be essential for synchronisation (and indeed is well-placed to 174

replicate the cilium’s beating pattern of a fast power stroke 175

and a slower recovery stroke) but the second harmonic is much 176

more effective at driving the onset of synchronisation and 177

ensuring a more stable synchronised state (28, 35, 36). 178

Due to the linearity of the Stokes flow, the hydrodynamic 179

force Fh
i on a particle is a linear function of the particle’s own 180

velocity and the velocities of all other particles it hydrodynam- 181

ically interacts with. It can be expressed with a generalised 182

friction tensor in the presence of a no-slip boundary, Γ(ϕi, ϕj), 183

as Fh
i = −

∑
j

Γ(ϕi, ϕj) · vj . Along with the driving force, 184

which is always tangential to the trajectory, and a perpen- 185

dicular constraint force Fcstr which keeps the particle on the 186

trajectory, the force balance on cilium i states: 187

Fdr(ϕi) + Fcstr − Γ(ϕi)vi −
∑

j

Γ(ϕi, ϕj) · vj = 0 . [4] 188

By considering only its tangential component (i.e., multiplying 189

the above equation with the tangent vector t(ϕi)), we obtain 190

the equations of motion for each cilium: 191

F dr(ϕi) = Γ(ϕt)vi +
∑

j

t(ϕi) · Γ(ϕi, ϕj) · t(ϕj)vj . [5] 192

Here, the velocities are related to the phase derivatives as 193

vi = (∂Ri/∂ϕi)ϕ̇i. By solving these equations numerically, 194

we can simulate the evolution of the cilium phases ϕi over 195

time. In the following, we non-dimensionalise all time units 196

using the time period of an isolated cilium t0, which can 197
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Fig. 3. Synchronisation in a two-dimensional
square lattice. (A) A schematic of the simulation of
the square L × L lattice at a synchronised state for
the specific case L = 10. The colour of each model
cilium indicates its phase, making the order clearly
visible. See also Movie S1 for an animated repre-
sentation. (B) A series of snapshots showing the
phases of the cilia in the square lattice, for the spe-
cific case of L = 10 (see movie S2 for a complete
time series). (C) The mean synchronisation time
⟨ts⟩ vs. the linear dimension of the system L. The
mean is calculated by simulating many systems at
each size with different random initial phase config-
urations, and measuring how long it takes for the
standard deviation of the cilium frequencies in each
system to drop below a certain threshold value. The
synchronisation time scales approximately linearly
in L. Error bars are standard error of the mean,
based on ≥ 31 samples. (D) The geometric mean
of the coherence between each cilium and all of
its neighbours for a specific simulation with L = 10.
The order emerges on the right side and spreads
across the system in negative x direction, leading
to the observed linear dependence between the
synchronisation time and the length L.

be determined as t0 =
∫ 2π

0

(
ϕ̇i

)−1 dϕi using Eq. (5) without198

interacting neighbours.199

Symmetries. Before discussing the numerical solutions, it is200

instructive to consider the symmetries of the system and their201

effect on synchronisation and formation of metachronal waves.202

Our model contains the following symmetries:203

(i) Swapping. Because all cilia are intrinsically equal, the204

equations of motion stay the same when exchanging two205

cilia (ϕ1 ↔ ϕ2) and re-arranging them such that β ↔206

β + π.207

(ii) Mirror symmetry. The trajectories of cilia (but not208

their drag and driving force) are symmetric with re-209

spect to y ↔ −y. The equations of motion there-210

fore contain the symmetry β ↔ π − β, ϕ ↔ π − ϕ,211

F dr
0 ↔ −F dr

0 with the adjustment of the coefficients de-212

fined in Eqs. (2, 3): (An, Cn) ↔ (−1)n(An, Cn) and213

(Bn, Dn) ↔ −(−1)n(Bn, Dn).214

(iii) Time reversal. Due to the time-reversibility of the Stokes215

equation, the equations of motion also remain invariant216

under the transformation F dr
0 ↔ −F dr

0 and t → −t. Be-217

cause of the time-reversal, a solution that is stable in218

the original system becomes unstable in the transformed219

system.220

(iv) Without near-field hydrodynamics: axial reflection. If221

the distance between cilia is sufficient that the near-field222

hydrodynamic interactions can be neglected (r ≫ h), the223

mobility tensor (M = Γ−1) for two particles at a distance224

∆x = (∆x, ∆y, 0), where ∆x = xj − xi and ∆y = yj − yi, 225

can be approximated as (30) 226

M(xi, xj) = 3
2πη

· zizj

|∆x|5

((∆x)2 ∆x∆y 0
∆y∆x (∆y)2 0

0 0 0

)
. [6] 227

At the same time, the variation of the horizontal positions 228

(x, y) of a cilium during a cycle can be neglected such 229

that the motion along the trajectory only affects the 230

vertical distances zi and zj . The far-field mobility tensor 231

is therefore symmetric with respect to β ↔ β + π. 232

The above symmetry properties have bold consequences for 233

the synchronisation. Consider a row of cilia arranged along the 234

x axis, in the direction of pumping. In such a row, the angles β 235

can only have values 0 and π. Without any of the coefficients 236

that change sign under (ii), i.e., A1, C1, B2, . . ., the motion 237

is symmetric upon the combination of transformations (i), 238

(ii) and (iii). Because the combined transformation contains 239

time reversal which renders a stable solution unstable, no 240

stable states are possible under these assumptions. The notion 241

is consistent with the result in (30) if two cilia are arranged 242

along the pumping direction. The existence of a stable solution 243

requires at least one of the terms A1, C1, B2, D2, A3, C3, etc. 244

to be nonzero. The same argument also holds for a row of 245

cilia arranged along the y axis (perpendicular to the pumping 246

direction) when the symmetries (ii) and (iii) are employed (see 247

related arguments in (9, 58)). 248

Without near-field effects (NFEs) in the hydrodynamic 249

coupling, the symmetry property (iv) immediately implies the 250

equivalence of metachronal waves with wave vectors k and 251

4 | Hickey et al.
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−k, as seen in (34). We therefore expect such systems to show252

the emergence of multiple long-lived domains with different253

metachronal wave vectors.254

Near-field effects in combination with (for instance) the255

rotational motion of cilia can break the spatial symmetry,256

and lead to antisymmetric coupling terms that synchronise257

the cilia into a state with a non-zero phase difference (9, 30,258

58–60). Here, we point out that the interactions are not259

only asymmetric with respect to the phase difference, but260

also nonreciprocal with respect to their strength. In a given261

configuration, the response of cilium i to the phase of cilium j262

can differ from the response of cilium j to cilium i both in the263

magnitude and in the phase dependence. This nonreciprocity264

has profound implications for the emergence of metachronal265

waves.266

Synchronisation in one dimension. We first consider a one-267

dimensional row of cilia with uniform spacing d and open268

boundaries such that cilium i is located at position ri =269

(id, 0, 0) (see Fig. 2A). This means that βij = 0 or π for every270

cilium pair i ̸= j. We used numerical simulations to see how271

order emerged in the system when the cilia were initialised272

with random initial phases.273

Figure 1B shows the phases of the cilia on a kymograph.274

The initially random phases quickly coalesce into mostly-275

ordered waves, which slowly become more ordered over time276

until the waves are completely uniform. The average time ts277

to reach a synchronised state scales approximately linearly278

with the system length (Fig. 1C). We consider the state as279

synchronised when the standard deviation of all cilium fre-280

quencies falls below a fixed threshold. The linear dependence281

can be understood by looking at the signal coherence between282

adjacent pairs of cilia (Fig. 1D). The signal coherence is a mea-283

sure of the degree of linear dependence between two signals,284

given as a function of the frequency, with values between 0285

and 1. For two signals in the time domain x(t) and x′(t), the286

coherence is calculated as287

Cxx′ (f) = |x̃∗(f)x̃′(f)|2
x̃(f)x̃′(f) , [7]288

where x̃(f) and x̃′(f) indicate the Fourier transforms of x(t)289

and x′(t), respectively. For every pair of cilia, we calculate the290

coherence between cos(ϕi(t)) and cos(ϕj(t)) at the frequency291

with the strongest cross-spectral density between the two292

signals (i.e., the frequency f that maximises the numerator in293

Eq. (7)).294

Random patches of order sometimes emerge and travel295

against the pumping direction (in this case the pumping direc-296

tion is rightwards), as the nonreciprocal nature of the hydrody-297

namic interactions causes the order to expand on one side and298

be extinguished by the disorder on its other side. However,299

when an ordered patch occurs close enough to the rightmost300

edge, there is no disorder to its right to extinguish it, so it301

spreads throughout the system. This explains why we see that302

the synchronisation time has a roughly affine relationship with303

the system length.304

Synchronisation in two dimensions. The vast majority of motile305

cilia are found in two-dimensional bundles on multiciliated306

cells, where the cells themselves are sparsely distributed (61).307

Hence, we consider a two-dimensional square lattice with side308

length L and lattice constant d (so that the total number309

Fig. 4. Time-averaged and instantaneous flow in a system of 8× 8 cilia after reaching
a synchronised metachronal state. The background colour indicates the flow speed
in units of h/t0 and the yellow dots represent the centre of cilium orbits. The side
view corresponds to a vertical cross-section through the middle of the array of cilia
(x/h = 10) and the top view to a slice at z = h. The structure of the metachronal
wave is clearly visible in the instantaneous flow fields.

of cilia is N = L × L). We enforce open boundaries, and 310

run a very similar simulation to the one described in the 311

previous section. Figure 3A shows the lattice, with the cilium 312

trajectories marked according to their phase, rendering the 313

structure of the metachronal wave clearly visible. Figure 3B 314

shows how the order of the cilia emerges over time: initially 315

there is no correlation between phases, but over time some 316

order emerges, which eventually solidifies into well-ordered 317

metachronal waves. 318

Figure 3C shows that the synchronisation time scales ap- 319

proximately linearly with the linear dimension of the system 320

L (i.e. ⟨ts⟩ ∼ L ∼
√

N), just as in the one-dimensional case. 321

This is explained by Fig. 3D, which illustrates the coherence 322

of each cilium with its neighbours. For each cilium i the value 323

is given by the geometric mean of coherence values with all 324

directly adjacent (not including diagonally adjacent) cilia: 325

Cgm
i =


 ∏

j∈{n.n.}

C ({ϕi} , {ϕj})




(1/Nn.n.)

, [8] 326

where C({ϕ} , {ϕ′}) is the coherence, defined over two time 327

series of phases. The resulting graph explains the linearity: 328

the order emerges along one edge and gradually spreads across 329

the entire lattice. Since the limiting factor to synchronisation 330

is the time taken for the order to spread through the length 331

of the system, this time depends on the linear dimension as 332

L/vg. 333

The flow field induced by a carpet of cilia that has reached 334

the synchronised state with steady metachronal waves is shown 335

in Figure 4. The time-averaged flows show a region of largely 336

homogeneous flow above the carpet where the fluid is pumped 337
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Fig. 5. The role of nonreciprocal hydrodynamic interactions and near-field effects in synchronisation. (A) The effective angular frequencies ω1 and ω2 of two interacting cilia (in
dimensionless units) as a function of the adjusted difference ∆ϕ′. The cilia are positioned at a fixed distance (r = 2.5h) in different directions β. When the cilia are arranged in
the x-direction (β = 0, π) there is a stark difference between ω1 and ω2, showing that the interaction is highly nonreciprocal. The nonreciprocity is much weaker when the cilia
are arranged y direction (β = π/2), and the nonreciprocity vanishes entirely when near-field hydrodynamic effects are disabled (dashed lines). (B) The mean time to reach the
synchronised state ⟨ts⟩ in a 1D row of N cilia with near-field effects disabled (orange) and with periodic boundary conditions (magenta). The synchronisation time is dramatically
longer in both of these cases than in the one-dimensional open boundary case (grey line, data from Fig. 2C). The inset indicates that the scaling of these synchronisation times
is close to ⟨ts⟩ ∼ N2. With open boundaries and no near-field effects, however, the synchronisation time reaches a plateau when the final state consists of multiple domains
with different wave vectors. Error bars are standard error of the mean, based on 9 samples for the periodic boundary case and ≥ 44 for the case without near-field effects. (C)
With near-field effects disabled, the final state typically contains multiple domains with different wave vectors. The red line (left scale) shows the percentage of simulation runs
that end in a monodomain state and cyan line (right scale) the average domain size as a function of the system size N. (D) Kymograph showing the coherence between
adjacent cilia with near-field effects disabled, with the phase kymograph as an inset. Unlike in the case of nonreciprocal coupling (see Fig. 2D), defects between domains with
different wave vectors remain after synchronisation (the example shows one defect). (E) Coherence kymograph of the system with near-field effects and periodic boundary
conditions. Defects between coherent regions move with the group velocity, but do not get extinguished at the boundaries, again resulting in a long synchronisation time.

in the positive x-direction, the direction of the cilium power338

stroke. The instantaneous flows, on the other hand, show a339

periodic structure that follows the movement of metachronal340

wavefronts.341

Although we used a square lattice as an example, the ability342

of cilia to synchronise is robust against the lattice type and343

the shape of the arrangement. Similar dynamics is obtained344

on a hexagonal lattice, as well as on an array with boundaries345

in the shape of an octagon (Fig. S1).346

Role of nonreciprocity and near-field effects. Our model shows347

strong nonreciprocity in the hydrodynamic interactions be-348

tween cilia. This can be seen by calculating the shift of beating349

frequencies caused by hydrodynamic interactions, relative to350

the unperturbed cilium (ω − ωunp). The frequency shifts, aver-351

aged over one cycle, are shown in Fig. 5A as a function of the352

phase difference ∆ϕ′ and the relative position of the two cilia,353

represented by the angle β. Nonreciprocity manifests itself354

as shifts in the beating frequency of the two interacting cilia.355

The two cilia can experience dramatically different frequency356

shifts, with very different magnitudes and functional forms.357

The degree of this nonreciprocity is highly anisotropic, being358

much greater in the pumping direction than perpendicular to359

it (Fig. 5A).360

As shown in the section Symmetries, nonreciprocal inter-361

actions are not possible when the hydrodynamic interactions362

are treated in the far-field approximation. In the far-field, the363

interaction with a cilium at position β has to be identical to 364

the interaction with a cilium at the opposite position β + π. 365

We demonstrate this by disabling the near-field effects and 366

replacing the off-diagonal elements of the mobility matrix with 367

the approximation given by Eq. (6). The resulting frequency 368

shifts (dashed lines in Fig. 5A) become reciprocal, as they 369

fulfil ω1(∆ϕ′) = ω2(−∆ϕ′). 370

To investigate the role of near-field effects in the formation 371

of metachronal waves, we simulated the dynamics of a row 372

of cilia (analogous to the results in Fig. 2) with only far- 373

field interactions. The resulting synchronisation times are 374

significantly longer (orange line in Fig. 5B) than with near- 375

field effects (grey line). In small systems, the scaling with size 376

becomes quadratic (inset in Fig. 5B), whereas we showed them 377

to be linear in the presence of nonreciprocal coupling. However, 378

in larger systems, the synchronisation times saturate, as the 379

final state no longer consists of a uniform metachronal wave. 380

Rather, the system evolves into a long-lived state consisting of 381

multiple domains with distinct wave vectors. An example with 382

two domains, separated by one defect, is shown in Fig. 5D. 383

The mean domain size and the likelihood that the system 384

evolves into a mono-domain metachronal wave are shown in 385

Fig. 5C. 386

To understand the role of open boundaries in our system, 387

we compared the results to the same system with periodic 388

boundary conditions. Periodic boundary conditions are typical 389

in other hydrodynamic models of ciliary or flagellar synchro- 390
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nisation (11, 12, 26, 31, 32, 34, 38, 50, 53, 54, 62) when there391

are many cilia present (though with rare exceptions (e.g. 41)),392

as they ensure that no cilia exist at an open boundary which393

could cause order to break down – indeed, when such mod-394

els are subjected to open boundary conditions, they often395

find only intermittent synchronisation (38). Our results show396

that introducing periodic boundaries, while preserving the397

nonreciprocal coupling, strongly increases the synchronisation398

timescale, which again scales quadratically with the system399

size (Fig. 5B). The reason why periodic boundary conditions400

become deleterious to synchronisation can be seen in the co-401

herence kymograph in Fig. 5E. It shows a number of defects,402

each propagating with the group velocity vg, that travel peri-403

odically across the system, so the system only slowly reaches404

a coherent state with a single metachronal wave.405

Discussion. In our study we used a strongly simplified model406

of a cilium. We replaced the cilium with a single particle407

moving along a tilted circular trajectory. The tilted trajectory408

breaks the most important symmetry of the cilium, namely409

that between the power stroke, when the distance to the410

surface is larger, and the recovery stroke, when the distance411

is smaller. This asymmetry is at the core of fluid transport,412

which does not rely on metachronal coordination, although413

the metachronal waves can improve the energetic efficiency414

of cilia (10, 11). At the same time, the driving force and415

the internal friction are modulated such that they reproduce416

a power stroke that is faster than the recovery stroke and417

also reproduce the fore-aft asymmetry that is present in cilia.418

The modulation of both parameters represents both the cyclic419

activity of dynein motors and the variations in the shape of the420

cilium, which is stretched during the power stroke and bent421

during the recovery stroke. Unlike theoretical models with422

fewer broken symmetries (35), our model allows the emergence423

of metachronal waves that are not directly linked to the fluid424

transport.425

The numerical solution of the model equations takes into426

account not only the the far-field hydrodynamics, as in (34),427

but also the near-field effects that become relevant when the428

size of a cilium becomes comparable to the distance between429

adjacent cilia. Near-field effects are definitely important in430

most ciliary systems that show metachronal coordination. For431

example, in Paramecium the intercilium distance is in the432

micrometre range, which is several times less than the cilium433

length (63). In respiratory epithelia the distances are even434

shorter at fractions of a micrometre (64). On the other hand,435

in Volvox colonies, pairs of flagella (one on each cell) are436

spaced at a distance comparable to their length and still form437

metachronal waves (15). The intermediate densities we chose438

here allow us to take a generic approach that does not depend439

on fine details of the trajectory, while qualitatively capturing440

the near-field interactions. We therefore expect that the mag-441

nitude of near-field effects, as well as interactions in general442

in our study, is underestimated, and that the underlying prin-443

ciples can account for significantly faster synchronisation in444

natural cilia.445

Our main finding is that the near-field effects can make446

the coupling nonreciprocal. The nonreciprocity goes beyond447

the asymmetry discussed in (50), which implies that two cilia448

tend to synchronise with a phase difference that depends on449

their relative orientation. The nonreciprocal magnitude of the450

interaction means that a cilium tends to follow a neighbour451

on one side and to entrain the neighbour in the opposite di- 452

rection. An easy-to-understand mechanism that contributes 453

to nonreciprocity is that the periodically modulated driving 454

force and internal drag make the cilium more susceptible to 455

hydrodynamic interactions in certain parts of the trajectory, 456

which are in turn closer to some neighbours than the others. 457

The nonreciprocal coupling introduces a third direction in the 458

plane, after the direction of fluid transport and the direction 459

of the preferred metachronal wave, which dictates the propa- 460

gation of order. We therefore refer to it as a group velocity. 461

However, we note that unlike in classical waves in linear media 462

with energy conservation, the group velocity is not related to 463

the phase velocity in a straightforward way (e.g. through a 464

dispersion relation). 465

Nonreciprocal coupling has two major effects on the forma- 466

tion of metachronal waves. First, it produces robust waves 467

in finite systems with open boundaries. While open bound- 468

aries are the standard in real systems, they are detrimental 469

in many models of synchronisation, and also in experimental 470

model systems (51). The majority of theoretical works on 471

cilia synchronisation therefore only investigate systems with 472

periodic boundary conditions. In the presence of nonreciprocal 473

coupling, the situation reverses and boundaries help seed the 474

order which then rapidly spreads across the system. With 475

nonreciprocal interactions, it is actually the periodic boundary 476

conditions that significantly slow down the convergence to 477

an ordered metachronal wave. The second major effect of 478

nonreciprocal coupling is that the timescale of metachronal 479

wave formation scales linearly with linear dimension of the 480

system. This holds in both one and two dimensions, due to 481

the linear spreading of order through the system from a bound- 482

ary. At each system size tested, as long as near-field effects 483

are not suppressed, the system always converges to the same 484

metachronal wavevector regardless of the random initial con- 485

ditions, meaning that the basin of attraction is effectively as 486

large as the phase space of the system. We have demonstrated 487

that suppressing the near-field hydrodynamic interactions (and 488

therefore the nonreciprocal coupling) gives rise to unfavourable 489

synchronisation time scaling and unpredictable final states 490

with long-living defects remaining. 491

Our model does not account for non-hydrodynamic interac- 492

tions which have been shown to be relevant for cilium synchro- 493

nisation, such as steric effects (65) and basal coupling (22). 494

Because it has been shown that hydrodynamic interactions 495

alone are sufficient to achieve synchronisation (66), one can 496

consider these other effects as intercilium coupling to fine-tune 497

the interactions rather than being an absolute requirement. 498

In particular, basal coupling could provide a means to align 499

metachronal waves in order to optimise efficiency (67). Finally, 500

we neglected any inertial effects which are known to be small 501

compared to viscous forces in systems of cilia. Nevertheless, 502

it is still possible that a small inertial effect can be decisive 503

for synchronisation in situations where other effects cancel 504

out (68, 69). 505

Our results leave some open questions that could be ad- 506

dressed in future work. For example, in real biological systems 507

there are a great many sources of noise (70), and at the scale 508

of cilia, noise may be very relevant for synchronisation (60) so 509

future extensions to our model could examine the role of noise 510

in the motion of the cilia. Additionally, we have assumed that 511

all cilia are of identical lengths, but in reality there can be 512
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variation in the lengths of cilia, and some studies have found513

that this can affect synchronisation (71). Similarly, even in514

healthy humans there are some cilia with structural abnormal-515

ities (72), which means that the influence on synchronisation516

of nonidentical cilia may be significant. Our circular trajectory517

retains many key features of the stroke of real cilia, but it is518

possible that some crucial feature is lost in this simplification,519

so future work could integrate realistic cilium strokes with520

elongated cilia. This would also enable a more realistic driving521

engine for the cilia: in our model the cilia have a time-varying522

driving force that always points along the tangent of the trajec-523

tory, but real cilia are driven by creating shear forces between524

pairs of dynein tubes that make up the internal structure of525

the cilium (73). It is possible that in the future, artificial or526

lab-grown cilia may have applications in microfluidic pumping,527

given the advancing state of the fields of growing artificial lab-528

on-a-chip cilia (74) and nanoscale artificial cilium production529

(75), which could offer real-world applications for our work530

and the future work proposed here.531

Materials and Methods532

Fluid flow. At the scale of cilia, the behaviour of the fluid flow field
u is well-approximated by the incompressible Stokes equations:

η∇2u − ∇p = 0,
∇ · u = 0,

where η is the fluid dynamic viscosity and p is the pressure.533

The hydrodynamic interactions between two particles are calcu-
lated using a modified Rotne-Prager approximation with corrections
to account for the no-slip fluid boundary on the surface below the
cilium. The Rotne-Prager tensor takes into account terms up to
the order ∼ r−3 and is equivalent to averaging the Green’s func-
tion (Oseen tensor) over the surfaces of both spheres. To take into
account the presence of the no-slip boundary at z = 0, we use the
method of images and replace the free-space Green’s function by
the Blake tensor (76), defined as

MBlake
ij = 1

8πη

[
GS(xi − xj) − GS(xi − x̄j)

+ 2z2
j GD(xi − x̄j) − 2zjGSD(xi − x̄j)

]
, [9]

where xk is the position of particles k, and x̄k is the position of the
image of particle k reflected in the no-slip boundary at z = 0, and
where

GS
αβ(r) =

δαβ

r
+

rαrβ

r3 , [10]

GD
αβ(r) = (1 − 2δβz) ∂

∂rβ

(
rα

r3

)
, [11]

GSD
αβ (r) = (1 − 2δβz) ∂

∂rβ
GS

αz(r). [12]

The Rotne-Prager tensor corrected for the no-slip boundary fol-534

lows by including the leading corrections that result from surface-535

averaging over each sphere. The non-diagonal terms, describing the536

interaction between two particles i ̸= j, can be calculated as537

Mij =
(

1 + a2

6
∇2

xi

)(
1 + a2

6
∇2

xj

)
MBlake

ij . [13]538

Explicit expressions for the elements of the mobility matrix can be539

found in (77).540

Solving equations of motion. The equations of motion as stated in541

Eq. (5) give a complete description of the system. However, they542

require the knowledge of the many-particle drag matrix Γ, whereas543

the Rotne-Prager approximation gives us the mobility matrix M =544

Γ−1. Simulating Eq. (5) directly for N cilia would therefore require545

the inversion of a 3N × 3N matrix at each simulation step, in 546

addition to solving a linear equation system with N unknowns. 547

To accelerate the numerical solution, we therefore rewrite the
equations of motion based on the mobility matrix M(ϕi, ϕj) which
gives the velocity response at the position of cilium i to a force at
cilium j. We can express the force balance and the hydrodynamic
equations with the hydrodynamic force Fh

i acting on the cilium:

0 = ti · Fh
i ({j}) + F dr

i (ϕi) − Γ(ϕi)vi, [14]

vi = −M(ϕi, ϕi) · Fh
i −
∑

j ̸=i

M(ϕi, ϕj) · Fh
j . [15]

By multiplying the first equation with ti and inserting it into the
second, we can derive a coupled set of 3N equations which allow us
to solve for all hydrodynamic force vectors simultaneously (assuming
that Γ(ϕ) is never zero):(

M(ϕi, ϕi) +
titT

i

Γ(ϕi)

)
· Fh

i +
∑

j ̸=i

M(ϕi, ϕj) · Fh
j = − F dr(ϕi)

Γ(ϕi)
ti.

In the above equation system the first term describing the self- 548

interaction of cilium i is always dominant, whereas the second 549

term describing the hydrodynamic interactions between cilia is 550

weaker and can be treated in a perturbative way. In matrix form 551

the equation is always block-diagonally dominant, which means 552

that it can be solved efficiently using an adapted Successive Over- 553

Relaxation (SOR) algorithm (78) that works on 3×3 blocks rather 554

than individual elements. In the initial time step of the simulation, 555

we use the solution to the purely diagonal matrix equation as the 556

first iteration, but in subsequent step it is more efficient to start 557

iterating with the solution of the previous step. In this way only a 558

very small number of iterations (Nit = 3) is required to converge to 559

remarkably good accuracy with a relative error ε < 10−6. Once the 560

hydrodynamic forces have been obtained, they can be substituted 561

back into Eq. (14) to find the cilium speeds vi, and this can be 562

trivially transformed into the time derivatives of the phases ϕ̇i. 563

Numerical integration. The phase of each cilium is updated using 564

the standard Runge-Kutta method (RK4). Unlike implicit meth- 565

ods, Runge-Kutta algorithms require a single calculation of the 566

hydrodynamic forces at each timestep, which is by far the most 567

computationally demanding simulation step. The timestep used 568

was approximately 0.001 t0. 569

Quantifying synchronisation. To determine whether the entire system 570

has reached a synchronised state, we find the average frequencies of 571

each cilium in a moving window of 50 time periods. We take the 572

standard deviation of these frequencies to be the order parameter 573

of the system. 574

When considering pairs of cilia, as in Figs. 2C, 3D, and 5D-E, 575

standard deviations were less useful. Instead, the signal coherence 576

was computed using the phases of adjacent pairs of cilia using 577

Welch’s method (79), with a moving window in the time domain 578

representing approximately 50 unperturbed cilium cycles. In the 579

2D case, we instead used the geometric mean of the coherence with 580

all neighbouring cilia. 581

Uniform phase angle. In Fig. 5 we used a transformed phase differ- 582

ence ∆ϕ′ = ϕ′
2 − ϕ′

1. These angles have the property that for a 583

single isolated cilium, ϕ̇′ is constant. The transformed phase can 584

be derived from the original phase angle using 585

ϕ′(ϕ) = 2π

t0

∫ ϕ

0

1
ϕ̇(ϕ′′)

dϕ′′, [16] 586

where all quantities on the right hand side are for an isolated cilium. 587

Periodic boundary conditions. When considering the effect of cilium 588

j on cilium i, only the closest instance of j was considered. In 589

simple terms, if j were right next to i, then we would proceed in 590

the same way as if we had no periodic boundaries. However, if j 591

were more than half of the system length away from i, then we 592

would instead consider a copy of j translated by the system length, 593

putting it closer to i. Since the mobility tensor decays quickly along 594

the surface as 1/r3, neglecting the distant cilia does not have any 595

effect on the results. 596
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Numerical parameters. In all simulations, we took the lattice constant597

to be d = 2.5h = 2.5a, and b = a/10. χ was always π/6 and we598

used A1 = −0.55, A2 = −0.2, B1 = −0.2, B2 = 0.35, C1 = 0.3,599

C2 = −0.4, D1 = −0.1, and D2 = −0.55. These parameters give600

a fast working stroke and a slower recovery stroke which break601

the fore-aft symmetry, consistent with the behaviour of real cilia.602

The slowest part of the stroke is just before the lowest part of the603

recovery stroke, where the cilium would be curling up and the tip604

would therefore be travelling at its minimum speed.605

ACKNOWLEDGMENTS. This work has received support from the606

Max Planck School Matter to Life and the MaxSynBio Consortium,607

which are jointly funded by the Federal Ministry of Education and608

Research (BMBF) of Germany, and the Max Planck Society. A.V.609

acknowledges support from the Slovenian Research Agency (grant610

no. P1-0099)611

1. C Brennen, H Winet, Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid612

Mech. 9, 339–398 (1977).613

2. MV Nachury, DU Mick, Establishing and regulating the composition of cilia for signal transduc-614

tion. Nat. Rev. Mol. Cell Biol. 20, 389–405 (2019).615

3. R Faubel, C Westendorf, E Bodenschatz, G Eichele, Cilia-based flow network in the brain616

ventricles. Science 353, 176–178 (2016).617

4. A Yaghi, MB Dolovich, Airway epithelial cell cilia and obstructive lung disease. Cells 5, 40618

(2016).619

5. V Bhandawat, J Reisert, KW Yau, Signaling by olfactory receptor neurons near threshold.620

Proc. Natl. Acad. Sci. U.S.A. 107, 18682–18687 (2010).621

6. A Dasgupta, JD Amack, Cilia in vertebrate left–right patterning. Phil. Trans. Royal Soc. B: Biol.622

Sci. 371, 20150410 (2016).623

7. L Prandtl, Aufgaben der Strömungsforschung (lecture delivered at the inauguration of the624

Kaiser Wilhelm Institute for Flow Research in Göttingen, 16 July 1925). Naturwissenschaften625

14, 335–338 (1926).626

8. GI Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. A 209,627

447–461 (1951).628

9. R Golestanian, JM Yeomans, N Uchida, Hydrodynamic synchronization at low Reynolds629

number. Soft Matter 7, 3074 (2011).630

10. N Osterman, A Vilfan, Finding the ciliary beating pattern with optimal efficiency. Proc. Natl.631

Acad. Sci. U.S.A. 108, 15727–15732 (2011).632

11. J Elgeti, G Gompper, Emergence of metachronal waves in cilia arrays. Proc. Natl. Acad. Sci.633

U.S.A. 110, 4470–4475 (2013).634

12. C Ringers, et al., Novel analytical tools reveal that local synchronization of cilia coincides with635

tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 12, e77701 (2023).636

13. D Hickey, A Vilfan, R Golestanian, Ciliary chemosensitivity is enhanced by cilium geometry637

and motility. eLife 10, e66322 (2021).638

14. A Funfak, et al., Paramecium swimming and ciliary beating patterns: a study on four RNA639

interference mutations. Integr. Biol. 7, 90–100 (2015).640

15. DR Brumley, M Polin, TJ Pedley, RE Goldstein, Hydrodynamic synchronization and641

metachronal waves on the surface of the colonial alga Volvox carteri. Phys. Rev. Lett. 109,642

268102 (2012).643

16. S Chateau, J Favier, S Poncet, U D’Ortona, Why antiplectic metachronal cilia waves are644

optimal to transport bronchial mucus. Phys. Rev. E 100, 791 (2019).645

17. ML Byron, et al., Metachronal motion across scales: Current challenges and future directions.646

Integr. Comp. Biol. 61, 1674–1688 (2021).647

18. EW Knight-Jones, Relations between metachronism and the direction of ciliary beat in metazoa.648

J. Cell Sci. 3, 503–521 (1954).649

19. RE Goldstein, M Polin, I Tuval, Noise and synchronization in pairs of beating eukaryotic flagella.650

Phys. Rev. Lett. 103, 168103 (2009).651

20. KY Wan, RE Goldstein, Coordinated beating of algal flagella is mediated by basal coupling.652

Proc. Natl. Acad. Sci. U.S.A. 113, E2784–E2793 (2016).653

21. G Quaranta, ME Aubin-Tam, D Tam, Hydrodynamics versus intracellular coupling in the654

synchronization of eukaryotic flagella. Phys. Rev. Lett. 115, 238101 (2015).655

22. Y Liu, R Claydon, M Polin, DR Brumley, Transitions in synchronization states of model cilia656

through basal-connection coupling. J. Royal Soc. Interface 15, 20180450 (2018).657

23. N Narematsu, R Quek, KH Chiam, Y Iwadate, Ciliary metachronal wave propagation on the658

compliant surface of Paramecium cells. Cytoskeleton 72, 633–646 (2015).659

24. M Reichert, H Stark, Synchronization of rotating helices by hydrodynamic interactions. Eur.660

Phys. J. E 17, 493–500 (2005).661

25. B Guirao, JF Joanny, Spontaneous creation of macroscopic flow and metachronal waves in an662

array of cilia. Biophys. J. 92, 1900–1917 (2007).663

26. T Niedermayer, B Eckhardt, P Lenz, Synchronization, phase locking, and metachronal wave664

formation in ciliary chains. Chaos 18, 037128 (2008).665

27. B Qian, H Jiang, DA Gagnon, KS Breuer, TR Powers, Minimal model for synchronization666

induced by hydrodynamic interactions. Phys. Rev. E 80, 061919 (2009).667

28. N Uchida, R Golestanian, Hydrodynamic synchronization between objects with cyclic rigid668

trajectories. Eur. Phys. J. E 35, 135 (2012).669

29. Y Man, E Kanso, Multisynchrony in Active Microfilaments. Phys. Rev. Lett. 125, 148101670

(2020).671

30. A Vilfan, F Jülicher, Hydrodynamic flow patterns and synchronization of beating cilia. Phys.672

Rev. Lett. 96, 1–4 (2006).673

31. N Uchida, R Golestanian, Synchronization and collective dynamics in a carpet of microfluidic674

rotors. Phys. Rev. Lett. 104, 178103 (2010).675

32. N Uchida, R Golestanian, Synchronization in a carpet of hydrodynamically coupled rotors with 676

random intrinsic frequency. Europhys. Lett. 89, 50011 (2010). 677

33. S Saha, S Ramaswamy, R Golestanian, Pairing, waltzing and scattering of chemotactic active 678

colloids. New J. Phys. 21, 063006 (2019). 679

34. F Meng, RR Bennett, N Uchida, R Golestanian, Conditions for metachronal coordination in 680

arrays of model cilia. Proc. Natl. Acad. Sci. U.S.A. 118 (2021). 681

35. AV Kanale, F Ling, H Guo, S Fürthauer, E Kanso, Spontaneous phase coordination and fluid 682

pumping in model ciliary carpets. Proc. Natl. Acad. Sci. U.S.A. 119, e2214413119 (2022). 683

36. N Uchida, R Golestanian, Generic conditions for hydrodynamic synchronization. Phys. Rev. 684

Lett. 106, 058104 (2011). 685

37. A Maestro, et al., Control of synchronization in models of hydrodynamically coupled motile 686

cilia. Commun. Phys. 1, 1–8 (2018). 687

38. C Wollin, H Stark, Metachronal waves in a chain of rowers with hydrodynamic interactions. 688

Eur. Phys. J. E 34, 42 (2011). 689

39. H Guo, L Fauci, M Shelley, E Kanso, Bistability in the synchronization of actuated microfila- 690

ments. J. Fluid Mech. 836, 304–323 (2018). 691

40. B Chakrabarti, D Saintillan, Hydrodynamic synchronization of spontaneously beating filaments. 692

Phys. Rev. Lett. 123, 208101 (2019). 693

41. B Chakrabarti, S Fürthauer, MJ Shelley, A multiscale biophysical model gives quantized 694

metachronal waves in a lattice of cilia. Proc. Natl. Acad. Sci. U.S.A. 119, e2113539119 (2022). 695

42. H Masoud, HA Stone, The reciprocal theorem in fluid dynamics and transport phenomena. J. 696

Fluid Mech. 879, P1 (2019). 697

43. R Soto, R Golestanian, Self-assembly of catalytically active colloidal molecules: Tailoring 698

activity through surface chemistry. Phys. Rev. Lett. 112, 068301 (2014). 699

44. R Soto, R Golestanian, Self-assembly of active colloidal molecules with dynamic function. 700

Phys. Rev. E 91, 052304 (2015). 701

45. J Agudo-Canalejo, R Golestanian, Active phase separation in mixtures of chemically interacting 702

particles. Phys. Rev. Lett. 123, 018101 (2019). 703

46. S Saha, J Agudo-Canalejo, R Golestanian, Scalar active mixtures: The nonreciprocal Cahn- 704

Hilliard model. Phys. Rev. X 10, 041009 (2020). 705

47. SAM Loos, SHL Klapp, Irreversibility, heat and information flows induced by non-reciprocal 706

interactions. New J. Phys. 22, 123051 (2020). 707

48. M Fruchart, R Hanai, PB Littlewood, V Vitelli, Non-reciprocal phase transitions. Nature 592, 708

363–369 (2021). 709

49. S Osat, R Golestanian, Non-reciprocal multifarious self-organization. Nat. Nanotechnol. 18, 710

79–85 (2023). 711

50. A Solovev, BM Friedrich, Synchronization in cilia carpets: multiple metachronal waves are 712

stable, but one wave dominates. New J. Phys. 24, 013015 (2022). 713
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4.5 Chapter summary

▶ Metachronal waves are relatively common phenomena
that lead to increased pumping effectiveness in cilia.

▶ Even in finite systems, hydrodynamic interactions are
sufficient to give fast stable metachronal waves.

▶ Nonreciprocity of hydrodynamic interactions is crucial
to retain this fast synchronisation. If the nonreciprocity
is somehow suppressed, synchronisation is now much
slower and the final synchronised state is no longer
deterministic, which (given that research has shown
that antiplectic waves are more efficient than symplectic
ones [113]) could lead to decreased pumping efficiency

[113]: Chateau et al. (2019), Why antiplectic
metachronal cilia waves are optimal to trans-
port bronchial mucus

even in the steady-state.



Conclusion 5

Treacle nodded. “I hadn’t looked at it like that,” he said,
“but you’re absolutely right. He’s really pushed back
the boundaries of ignorance. There’s so much about
the universe we don’t know.”

Sir Terry Pratchett, Equal Rites

Given the ubiquity of cilia, and their centrality to so many
biological processes, it is partly a shame, but mostly a fantastic
opportunity, that we still don’t fully understand why they
are built the way they are and act the way they do, and
they continue to be the source of so many interesting open
questions. We have tried to make some progress towards
closing some of these open questions, and in the process we
have opened a few new ones – as Pratchett put it, in this work
we have pushed the boundaries of ignorance, continuing a
process that presumably began when the first organism with
eyes looked up at the stars and wondered what they were.

In Chapter 3, by considering the mass transport to a perfectly
reactive cilium, we found that the geometry of the cilium con-
fers a chemosensory advantage over a chemosensory patch,
and that motility confers a chemosensory advantage over
immotility, even when motile cilia are bunched together in
groups. These results were robust at a wide range of biologi-
cally plausible values of the cilium beating frequency, and
would go some way towards explaining why chemoreceptors
are often found on cilia (both motile and primary).

That said, the model considered in this chapter has some
limitations. We assumed that particles are absorbed by the
cilium immediately upon first touching it, which is only
justified if the receptors cover a sufficient fraction of the
surface area (though the required fraction is extremely low:
in the absence of advection, only 1% of the surface must be
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covered by receptors to achieve near-perfect sensitivity [66]). [66]: Berg et al. (1977), Physics of chemore-
ception

The Rotne-Prager mobility tensor that we used does not
perfectly satisfy the no-slip boundary, especially at high
Péclet numbers, which should not change the qualitative
story told by the results but could have a quantitative impact.
We have also assumed that the signalling molecules being
detected are extremely small relative to the cilium, which
may not be completely true for large protein complexes or
vesicles.

Then, in Chapter 4, we considered the interactions of a lattice
of cilia, and found that stable order could emerge in linear
time even in finite systems with open boundaries, provided
the hydrodynamic intercilium coupling was nonreciprocal.
Without this nonreciprocal coupling, the order emerged in
nonlinear time, and the final state was non-deterministic. This
suggests that for cilia, nonreciprocal coupling is incredibly
important.

Possibly the primary limitation in the model in this chapter
is that it does not consider the role of non-identical cilium
forms and noisy behaviour. Thermal noise will play a role in
cilium motion simply due to their small size, but additionally
the driving process for the motile cilium is itself stochastic,
i.e. there are active fluctuations [186]. In biological systems, [186]: Ma et al. (2014), Active Phase and

Amplitude Fluctuations of Flagellar Beating

ciliary synchronisation is highly resistant to noise [77] and [77]: Gilpin et al. (2020), The multiscale
physics of cilia and flagella

it would be useful to know if this behaviour is reproduced
by our model. Different cilia, even on the same cell, can
have differing intrinsic beat frequencies [121], and there is

[121]: Goldstein et al. (2009), Noise and Syn-
chronization in Pairs of Beating Eukaryotic
Flagella

no reason we would necessarily expect every cilium to be
identical in length, especially when they have been subject
to damage or disease [187]. The simplification of the entire [187]: Leopold et al. (2009), Smoking Is

Associated with Shortened Airway Cilia

cilium to a single sphere on a circular trajectory simplified the
calculations and simulation to a huge degree, and probably
does not qualitatively affect the results, but it does remove
certain near-field effects. Given that we found near-field
hydrodynamic interactions to be incredibly important to
synchronisation, it is possible that the synchronisation would
be even faster with a cilium model more akin to the chain
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of beads used in Ch. 3, so this is another avenue worth
exploring.

Considering the work as a whole, we see that interactions
between motile cilia are extremely beneficial, increasing
sensing and pumping efficiency. It should therefore come as
no surprise that motile cilia are often found in carpets, as
the close proximity ensures that per-cilium chemosensitivity
sees an improvement, as well as permitting the cilia to benefit
from near-field hydrodynamic interactions so that they can
coordinate their beating.

Other than addressing the limitations discussed above, there
is plenty of additional research to be done on these and similar
models. For example, we showed that motile cilia in close
proximity can quickly synchronise to form a metachronal
wave, and we also showed that a bundle of motile cilia with
random phases can be more chemosensitive per cilium than
a single motile cilium on its own. It would be interesting
to see whether this increase is retained if the cilium phases
are metachronally synchronised rather than randomised,
which seems probable given that the high volume flow rates
achieved by metachronal waves could draw a large amount
of signalling molecules into the cilium carpet.

Coronaviruses in general frequently attack and damage cili-
ated cells [188], and patients with SARS-CoV-2 are known

[188]: Jonsdottir et al. (2016), Coronaviruses
and the human airway: A universal system for
virus-host interaction studies

to have ciliated cells that have lost their cilia entirely [189], [189]: Buqaileh et al. (2021), Can cilia provide
an entry gateway for SARS-CoV-2 to human
ciliated cells?resulting in a reduced rate of mucus clearance from the lungs

and airway by cilia [190]. Since this mucociliary clearance is [190]: Robinot et al. (2021), SARS-CoV-2
infection induces the dedifferentiation of mul-
ticiliated cells and impairs mucociliary clear-
anceone of the first lines of defence against airborne pathogens

and particulates, this results in higher susceptibility to dis-
ease and damage [191]. It is possible that the lower cilium [191]: Tilley et al. (2015), Cilia Dysfunction

in Lung Disease

density results in a loss of metachronal coordination, which
in turn causes this decreased pumping efficiency seen in
SARS-CoV-2 patients, but it could simply be the case that a
lower cilium density results in impeded clearance of mucus
from the airways due to fewer cilia moving mucus. Better
understanding the mechanisms underlying this reduced
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pumping efficiency could be of significant value, and could
be achieved by using a version of our model to investigate
how the loss or damage of cilia affects the ability of ciliary
carpets to synchronise, though it would need to be adapted
to account for the non-Newtonian nature of the mucus.

It has been mentioned several times in this work that the
left-right differentiation in many vertebrates originates with
cilia. The exact mechanism isn’t known, but it is known
that motile cilia can generate asymmetrical fluid flows in
structures generally referred to as ‘left-right organisers’. One
hypothesis is that these asymmetric flows create nonuniform
distributions of signalling molecules that are then detected
by other cilia, but it has also been proposed that mechanosen-
sitive cilia detect these asymmetrical flows directly [152]. We [152]: Dasgupta et al. (2016), Cilia in verte-

brate left-right patterning

could potentially adapt our models to the geometry of the
left-right organiser, and thus try to better understand the
origins of left-right differentiation.

One recent paper suggested a role for organisms like Parame-
cium in surgery [56]. Paramecium can sense chemical gradients

[56]: Sarvestani et al. (2016), Simulation of
Paramecium Chemotaxis Exposed to Calcium
Gradients

and swim along them, so if Paramecium were inserted into
a human body, perhaps it could be guided around by in-
jecting inert calcium salts in the right places in the body.
This obviously all remains highly speculative, but perhaps in
the future artificial chemosensing microswimmers could see
actual clinical use, and in this case it would be helpful if they
were able to sense and swim effectively, perhaps by taking
advantage of the efficiency afforded by cilium synchronisa-
tion and the chemosensitivity afforded by cilium geometry
and motility.

This thesis began by imagining the surprise that our pre-
decessors experienced when they came across something
as shocking and inexplicable as situs inversus, something
that was completely contrary to their experiences and ex-
pectations. While we were carrying out the work we have
described, we were often surprised by what we found out.
Even with centuries of scientific progress, the bizarre be-
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haviour of cilia and the wonderful world they inhabit have
clearly still not run out of surprises waiting for the interested
researcher.
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A.1 Supplementary figures: Ciliary chemosensitivity is

enhanced by cilium geometry and motility



Figure 2—figure supplement 1. Capture rate as a function of the Péclet number for passive cilia in a shear flow, obtained from numerical simulations.

The lines show the capture rates for cilia that absorb particles only on a fraction of their length, starting from the tip. The schematics indicate the

absorbing part of the cilium in blue and the non-absorbing part in black.

Hickey et al. eLife 2021;10:e66322. DOI: https://doi.org/10.7554/eLife.66322 4 of 10

Research article Physics of Living Systems



Figure 3—figure supplement 1. Capture rate of an actively beating cilium tracing out a tilted cone, plotted as a function of the Péclet number. These

results were obtained from numerical simulations. The lines show the capture rates for cilia that absorb particles only on a fraction of their length,

starting from the tip. The schematics indicate the absorbing part of the cilium in blue and the non-absorbing part in black.

Hickey et al. eLife 2021;10:e66322. DOI: https://doi.org/10.7554/eLife.66322 6 of 10

Research article Physics of Living Systems
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Fig. S1. Emergent metachronal waves on different lattices, with pumping direction in the x-direction (indicated). (A) 64 cilia arranged on a square lattice forming an octagon. (B)
144 cilia in the same arrangement. (C) 64 cilia on a hexagonal lattice, oriented such that one base vector is aligned with the direction of the power stroke. (D) as in (C), but with
a lattice that is rotated by 90◦.
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Fig. S2. Synchronisation times on a 1D lattice. The orange line shows cilia arranged along the y-axis (i.e. in the direction of weaker nonreciprocity). The grey line shows cilia
arranged along the x-axis, as in Fig. 2C (main text). Synchronisation times still scale linearly when cilia are arranged in the y-direction, but are higher by some numerical factor,
as expected from the weaker (but still present) nonreciprocity.
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Movie S1. Animation of a metachronal wave in 2D.11

Movie S2. Emergence of a metachronal wave on a lattice of 8×8 cilia.12
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