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Abstract

We present a novel method to compute assume-guarantee contracts
in non-zerosum two-player games over finite graphs where each player
has a different ω-regular winning condition. Given a game graph G and
two parity winning conditions Φ0 and Φ1 over G, we compute contracted
strategy-masks (csm) (Ψi, Πi) for each Player i. Within a csm, Πi is a
permissive strategy template which collects an infinite number of winning
strategies for Player i under the assumption that Player 1 − i chooses any
strategy from the permissive assumption template Ψi. The main feature
of csm’s is their power to fully decentralize all remaining strategy choices
– if the two player’s csm’s are compatible, they provide a pair of new local
specifications Φ•

0 and Φ•
1 such that Player i can locally and fully indepen-

dently choose any strategy satisfying Φ•
i and the resulting strategy profile

is ensured to be winning in the original two-objective game (G, Φ0, Φ1).
In addition, the new specifications Φ•

i are maximally cooperative, i.e., al-
low for the distributed synthesis of any cooperative solution. Further, our
algorithmic computation of csm’s is complete and ensured to terminate.

We illustrate how the unique features of our synthesis framework ef-
fectively address multiple challenges in the context of “correct-by-design”
logical control software synthesis for cyber-physical systems and provide
empirical evidence that our approach possess desirable structural and
computational properties compared to state-of-the-art techniques.

1 Introduction
Games on graphs provide an effective way to formalize synthesis problems in
the context of correct-by-construction cyber-physical systems (CPS) design. A
prime example are algorithms to synthesize control software that ensures the sat-
isfaction of logical specifications under the presence of an external environment,
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which e.g., causes changed task assignments, transient operating conditions, or
unavoidable interactions with other system components. The resulting logical
control software typically forms a higher layer of the control software stack. The
details of the underlying physical dynamics and actuations are then abstracted
away into the structure of the game graph utilized for synthesis [38, 2].

Algorithmically, the outlined control design procedure via games-on-graphs
utilizes reactive synthesis [25, 30], a well understood and highly automated
design flow originating from the formal methods community rooted in computer
science. The strength of utilizing reactive synthesis for logical control design is
its ability to provide strong correctness guarantees by treating the environment
as fully adversarial. While this view is useful if a single controller is designed for
a system which needs to obey the specification in an unknown environment, it
does not excel at synthesizing distributed and interacting logical control software
for large-scale CPS. In this context, each component acts as the “environment”
for another one and controllers for components are designed concurrently. Here,
if known a-priory, the control design of one component could take the needs of
other components into account and does not need to be treated fully adversarial.

Within this paper, we approach this problem by modelling a distributed logi-
cal control synthesis problem with two components as a non-zerosum two-player
game over a finite graph1 G where each player models one component and has
its own parity winning condition Φ0 and Φ1 over G. Given such a two-objective
parity game (G, Φ0, Φ1), we develop a new distributed synthesis method which
utilizes assume-guarantee contracts to formalize the needs for cooperation be-
tween components (i.e. players). Assume-guarantee reasoning has proven to be
very useful in the context of distributed program verification [34, 37, 31, 1].
Here, all component implementations are known and therefore allow to extract
contracts which are utilized to check their correctness locally. In distributed
synthesis, however, one encounters a chicken-and-egg problem – without exist-
ing implementations, no contracts can be extracted and without contracts, no
respecting implementations can be synthesized. Due to this difficulty, efficient
techniques for assume-guarantee distributed synthesis are mostly missing.

Component 1

Component 2

Contract

Assumption

Guarantee

Guarantee

Assumption

Synthesis

Synthesis

Figure 1: Schematic
representation of the
negotiation framework.

In order to close this gap, this paper devel-
ops a novel decentralized iterative negotiation frame-
work which co-designs contracts and implementations
via iterative contract refinements (see Fig. 1 for a
schematic representation). This iterative refinement
is enabled by a novel formalization of contracted
strategy-masks (csm) (Ψi, Πi) for each Player i which
encodes the essence of the required cooperation be-
tween players in a concise data structure. Contracted
strategy-masks are based on the idea of permissive
templates which were recently introduced to formalize
and synthesize permissive assumptions [4] and permis-
sive strategies [6] in (zero-sum) parity games. Within

1Please see Section 7.1 for more details on this connection along with illustrative examples.
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a csm, Πi is a strategy template which collects an in-
finite number of winning strategies for Player i under
the assumption that Player 1 − i chooses any strategy from the assumption
template Ψi. While the known efficient computability, adaptability, and com-
positionality of permissive templates enables us to achieve an efficient, surely
terminating algorithm for csm computation, the novel feature of csm’s is their
power to fully decentralize all remaining strategy choices – if the two player’s
csm’s encode a compatible contract, each player can locally and fully indepen-
dently choose any strategy contained in Πi and the resulting strategy profile is
ensured to be winning in the original two-objective game (G, Φ0, Φ1). In ad-
dition, our algorithmic computation of csm’s is both distributed and complete
– i.e., iff the original two-objective game (G, Φ0, Φ1) is realizable, compatible
csm’s are always returned by our negotiation framework, despite the fact that
most computations are done distributed in each component. To the best of our
knowledge, this is the first contract-based distributed synthesis framework for
the full class of ω-regular specifications with these capabilities.

To show the practical importance of our new technique, we utilize our syn-
thesis framework to efficiently tackle three relevant problems arising from ap-
plications of two-player games in the context of cyber-physical system design
– (i) distributed (privacy preserving) synthesis, i.e., local synthesis of coupled
mission controllers with limited shared specification and strategy information,
(ii) incremental synthesis and negotiation, i.e., adapting strategies to newly ar-
riving, additional ω-regular objectives Φ′i, and (ii) fault-tolerant strategy adap-
tation, i.e., online adaptation of local controllers to the occasional or persistent
unavailability of actuators.

Related Work. In the field of reactive synthesis, there are several approaches
to synthesize strategies for non-zerosum two-player games. In [12], even though
the setting is non-zerosum, the authors considered the players to be antago-
nistic. In particular, their work relies on secure equilibria [13], a refinement of
Nash equilibria [32], where players first try to satisfy their own specification,
and then try to falsify the specification of the other player. So, the algorithm
given by the authors computes a secure-equilibirum strategy profile. Similarly,
in [19], the authors search for a strategy profile that is an equilibiria in the sense
that the players have no incentive to deviate from their strategies. In [9, 15, 18],
the authors do not fix such a strategy profile for the players, but they assume a
particular rational behavior for the players, formalized as dominant or admis-
sible strategies. This leads to implicit assumptions on other players behavior
which can be exploited for local realizability. In contrast, our work computes
explicit assumptions and hence, gives players the freedom to choose any strategy
that satisfies imposed assumptions without requiring any particularly rational
strategy choice.

Similar to our approach, [17, 27, 26] also compute an explicit contract be-
tween components, and then each component can choose any strategy that
respects the contract. While [17] uses a single centralized bounded synthesis
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problem to find contracts between multiple interacting components, the ap-
proaches in [27] and [26] employ a negotiation algorithm between two local
synthesis problems, and are, therefore conceptually more similar to ours. How-
ever, the problem tackled in [26] comes from the area of supervisory control and
therefore uses a different formulation of component interaction2. The work clos-
est to ours is [27], which constructs assumptions using the work of [11], which
are, however not maximally cooperative. We discuss the unique features of our
approach compared to [17, 27] for the application to CPS synthesis problems
again in Section 7, where we also provide a limited empirical comparison.

Outline. This paper consists of two parts. First, in Section 2-6, we develop
the theory behind our new negotiation framework, derive the algorithms to solve
it and prove their correctness. Second, in Section 7, we show how two-objective
parity games arise in the synthesis of logical control software for CPS and for-
malize the additional features of our synthesis framework in this application
domain. We further provide empirical evidence that our negotiation framework
also possess desirable computational properties.

For readers looking for additional motivation of the considered synthesis
problem, we recommend reading Section 7.1 before moving on to Section 2.

2 Preliminaries
Notations We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the set
{n ∈ N | a ≤ n ≤ b}.

Let Σ be a finite alphabet. The notations Σ∗ and Σω respectively denote the
set of finite and infinite words over Σ. Given two words u ∈ Σ∗ and v ∈ Σ∗∪Σω,
the concatenation of u and v is written as the word uv.

Game Graphs A game graph is a tuple G =
(
V = V 0 ·∪ V 1, E

)
where (V, E)

is a finite directed graph with vertices V and edges E, and V0, V1 ⊆ V form a
partition of V . Without loss of generality, we assume that for every v ∈ V there
exists v′ ∈ V s.t. (v, v′) ∈ E. A play originating at a vertex v0 is an infinite
sequence of vertices ρ = v0v1 . . . ∈ V ω.

Winning Conditions Given a game graph G, a winning condition (or objec-
tive) is a set of plays specified using a formula Φ in linear temporal logic (LTL)
over the vertex set V . That is, we consider LTL formulas whose atomic propo-
sitions are sets of vertices from V . In this case the set of desired infinite plays
is given by the semantics of Φ which is an ω-regular language L(G, Φ) ⊆ V ω.
When clear from the context, we will drop the mention of game graph G, and
simply write L(Φ) instead. Every game graph with an arbitrary ω-regular set

2See [16, 36, 28] for an in-depth discussion of the differences and similarities between
supervisory control and reactive synthesis.
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of desired plays can be reduced to a game graph (possibly with a different set of
vertices) with a LTL winning condition. The standard definitions of ω-regular
languages and LTL are omitted for brevity and can be found in standard text-
books [7].

Games A two-players (turn-based) game is a tuple G = (G, Φ), where G is a
game graph, and Φ is the winning condition over G. A two-players (turn-based)
two-objectives game is a triple G = (G, Φ0, Φ1), where G is a game graph, and Φ0
and Φ1 are winning conditions over G, respectively, for Player 0 and Player 1.

Strategies A strategy of Player i (for i ∈ {0, 1}) is a function πi : V ∗Vi → V
such that for every ρv ∈ V ∗Vi holds that πi(ρv) ∈ E(v). A strategy profile
(π0, π1) is a pair where πi is a strategy for Player i. Given a strategy πi,
we say that the play ρ = v0v1 . . . is compliant with πi if vk−1 ∈ Vi implies
vk = πi(v0 . . . vk−1) for all k. We refer to a play compliant with πi and a
play compliant with a strategy profile (π0,π1) as a πi-play and a π0π1-play,
respectively.

Winning Given a game G = (G, Φ), a play ρ in G is winning if it satisfies3 Φ,
i.e., ρ ∈ L(Φ). A strategy πi for Player i is winning from a vertex v ∈ V if all
πi-plays from v are winning. A vertex v ∈ V is winning for Player i, if there
exists a Player i winning strategy πi from v. We collect all winning vertices of
Player i in the Player i winning region ⟨⟨i⟩⟩Φ ⊆ V . We say a Player i strategy
is winning for Player i if it is winning from every vertex in ⟨⟨i⟩⟩Φ.

Furthemore, given a game (G, Φ), we say a strategy profile (π0, π1) is winning
from a vertex v ∈ V if the π0π1-play from v is winning. We say a vertex v ∈ V is
cooperatively winning, if there exists a winning strategy profile (π0, π1) from v.
We collect all such vertices in the cooperative winning region ⟨⟨0, 1⟩⟩Φ ⊆ V . We
say a strategy profile is winning if it is winning from every vertex in ⟨⟨0, 1⟩⟩Φ.
Winning strategies and cooperative winning region for a two-objective game
(G, Φ0, Φ1) is defined analogous to those of game (G, Φ0 ∧ Φ1).

3 Contract-Based Distributed Synthesis
Towards a formalization of our proposed negotiation framework for distributed
synthesis (schematically depicted in Fig. 1), this section introduces the notion
of assume-guarantee contracts (Section 3.1) that we build upon, the notion of
iRmaC-specifications (Section 3.2) that describes our main goal, and formally
states the synthesis problem we solve in this paper (Section 3.3).

3Throughout the paper, we use the terms “winning for objective Φ” and “satisfying Φ”
interchangibly.
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3.1 Assume-Guarantee Contracts
Given a two-objective game G = (G, Φ0, Φ1) we define an assume-guarantee
contract over G — a contract for short — as a tuple C := ((A0, G0), (A1, G1))
where Ai and Gi are LTL specifications over the graph G called the assumption
and the guarantee for player i, respectively. It is well known that such contracts
provide a certified interface between both players, if they are

(i) compatible, i.e.,
L(Gi) ⊆ L(A1−i), and (1)

(ii) realizable by both players from at least one vertex, i.e.,

∃v ∈ V . ∀i ∈ {0, 1} . v ∈ ⟨⟨i⟩⟩(Ai ⇒ (Gi ∧ Φi)). (2)

Unfortunately, it is also well known that for the full class of ω-regular con-
tracts, conditions (1)-(2) are not strong enough to provide a sound (and com-
plete) proof rule for verification, left alone the harder problem of synthesis. In
verification, one typically resorts to strengthening the contracts with less ex-
pressive properties [34, 37, 31, 1]. This approach was also followed by [27] for
synthesis, requiring contracts to be safety formulas. This, however, always re-
sults in an unavoidable conservatism, resulting in incompleteness of the proposed
approaches.

Within this paper, we take a novel approach to this problem which does
not restrict the expressiveness of the formulas in (Ai, Gi) but rather liberally
changes the considered local specification in (2) to one which is “well-behaved”
for contract-based distributed synthesis. We then show, that this liberty does
still result in a sound and complete distributed synthesis technique by develop-
ing an algorithm to compute such “well-behaved” specifications whenever the
original two-objective game has a cooperative solution. Before formalizing this
problem statement in Section 3.3 we first define such “well-behaved” specifica-
tions, called iRmaC– independently Realizable and maximally Cooperative.

3.2 iRmaC-Specifications
We begin by formalizing a new “well-behaved” local specification for contract
realizability.

Definition 1 (iR-Contracts). A contract C over a two-objective game G is called
independently realizable (iR) from a vertex v if (1) holds and for all i ∈ {0, 1}

v ∈ ⟨⟨i⟩⟩Φ•i with Φ•i := Gi ∧ (Ai ⇒ Φi), (3)

where Φ•i is called a contracted local specification.

Intuitively, (3) requires the guarantees to be realizable by Player i without
the “help” of player Player 1 − i, i.e., unconditioned from the assumption. It
is therefore not surprising that iR-Contracts allow to solve the local contracted
games (G, Φ•i ) fully independently (and in a zero-sum fashion) while still ensur-
ing that the resulting strategy profile solves the original game G.
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Proposition 2. Given a two-objective game G = (G, Φ0, Φ1) with iR-contract
C := ((A0, G0), (A1, G1)) realizable from a vertex v, and contracted local specifi-
cations (Φ•0, Φ•1), let πi be a winning strategy in the (zero-sum) game (G, Φ•i ).

Then the tuple (π0, π1) is a winning strategy profile for G from v.

Proof. As v ∈ ⟨⟨i⟩⟩Φ•i , πi is winning from v for game (G, Φ•i ). Hence, every
πi-play from v satisfies Φ•i = Gi∧ (Ai ⇒ Φi). Therefore, every (π0, π1)-play from
v satisfies both Φ•0 and Φ•1. Now, let us show that L(Φ•0 ∩ Φ•1) ⊆ L(Φ0 ∧ Φ1).
Using the definition of contracted local specifications and by (1), we have

L(Φ•0 ∧ Φ•1) = L(G0 ∧ (A0 ⇒ Φ0)) ∩ L(G1 ∧ (A1 ⇒ Φ1))
⊆(1) L(A1 ∧ (A0 ⇒ Φ0)) ∩ L(A0 ∧ (A1 ⇒ Φ1))
= L(A0) ∩ L(A1) ∩ L(A0 ⇒ Φ0) ∩ L(A1 ⇒ Φ1)
= L(Φ0) ∩ L(Φ1) = L(Φ0 ∧ Φ1).

Therefore, every (π0, π1)-play from v satisfies Φ0 ∧ Φ1, and hence, the tuple
(π0, π1) is a winning strategy profile for G from v.

By the way they are defined, iR-Contracts can be used to simply encode a sin-
gle winning strategy profile from a vertex, which essentially de-grades contract-
based synthesis to solving a single cooperative game with specification Φ0 ∪Φ1.
The true potential of iR-Contracts is only reveled if they are reduced to the
“essential cooperation” between both players. Then the local contracted speci-
fications Φ•i will give each player as much freedom as possible to choose its local
strategy. This is formalized next.

Definition 3 (iRmaC-Specifications). Given a two-objective game G = (G, Φ0, Φ1),
a pair of specifications (Φ•0, Φ•1) is said to be independently realizable and maxi-
mally cooperative (iRmaC) if

L(Φ0 ∧ Φ1) = L(Φ•0 ∧ Φ•1), and (4a)
⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1) = ⟨⟨0⟩⟩Φ•0 ∩ ⟨⟨1⟩⟩Φ•1. (4b)

Intuitively, (4a) ensures that the contracted local games (G, Φ•i ) do not elim-
inate any cooperative winning play allowed by the original specifications, while
(4b) ensures that the combination of local winning regions does not restrict the
cooperative winning region.

Proposition 4. Given a two-objective game G = (G, Φ0, Φ1) with iRmaC
specifications-(Φ•0, Φ•1), the following are equivalent for every vertex v:

(i) there exists a winning strategy profile from v for the game (G, Φ0, Φ1),

(ii) for each i ∈ {0, 1}, there exists a Player i winning strategy from v for the
game (G, Φ•i ).

Proof. Let us prove both direction of the equivalence Item i ⇔ Item ii.
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(⇒) If there exists a winning strategy profile from v for the game (G, Φ0, Φ1),
then v ∈ ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1). Then, by (4b), v ∈ ⟨⟨i⟩⟩Φ•i for each i ∈ {0, 1}.
Hence, there exists a Player i winning strategy from v for the game (G, Φ•i )
for each i ∈ {0, 1}.

(⇐) Similarly, if there exists a Player i winning strategy from v for the game
(G, Φ•i ) for each i ∈ {0, 1}, then v ∈ ⟨⟨i⟩⟩Φ•i for each i ∈ {0, 1}. Then,
by (4b), v ∈ ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1), and hence, there exists a winning strategy
profile from v for the game (G, Φ0, Φ1).

With Proposition 4 we see that an iR-contract is maximally cooperative if it
induces iRmaC-specifications via (3).

3.3 Problem Statement and Outline
The main contribution of this paper is an algorithm to compute iRmaC-specifications
for two-objective parity games. In particular, we give an algorithm which is
sound and complete, i.e., our algorithm always outputs an iRmaC-specification,
which in-turn allows to solve the cooperative synthesis problem in a decentral-
ized manner. This is formalized the in following problem statement.

Problem 5. Given a two-objective game G = (G, Φ0, Φ1), compute iRmaC-
specifications (Φ•0, Φ•1).

We note that, due to (4b), given an iRmaC-specification we can immediately
assess if the original two-objective game is cooperatively realizable, i.e., if the
cooperative winning region is empty or not.

Our algorithm for solving Problem 5 is introduced in Section 4-Section 6.
Conceptually, this algorithm builds upon the recently introduced formalism of
permissive templates from [4, 6] and utilizes their efficient computability, adapt-
ability and permissiveness to solve Problem 5. Moreover, we show that our
algorithm is sound and complete, i.e., it always terminates and returns an iR-
maC-specification pair.

4 Characterizing Contracts via Templates
This section shows how templates can be used to solve Problem 5. Before we
show the technical connection, we give an illustrative example.

4.1 Illustrative Example
In order to apprechiate the simplicity, adaptability and compositionality of tem-
plates consider the two-objective game, depicted in Fig. 2 (left).

The winning condition Φ0 for Player 0 requires vertex c to be seen infinitely
often. Intuitively, every winning strategy for Player 0 w.r.t. Φ0 needs to eventu-
ally take the edge eac if it sees vertex a infinately often. Furthermore, Player 0
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can only win from vertex b with the help of Player 1. In particular, Player 1
needs to ensure that whenever vertex b is seen infinitely often it takes edge ebc

infinitely often. These two conditions can be concisely formulated via the strat-
egy template Π0 = Λlive({eac}) and an assumption template Ψ0 = Λlive({ebd}),
both given by what we call a live-edge template – if the source is seen infinitely
often, the given edge has to be taken infinitely often. It is easy to see that every
Player 0 strategy that satisfies Π0 is winning for Φ0 under the assumption that
Player 1 chooses a strategy that satisfies Ψ0.

Now, consider the winning condition Φ1 for Player 1 which requires the play
to eventually stay in region {a, c, d}. This induces assumption Ψ1 on Player 0
and strategy template Π1 for Player 1 given in Fig. 2 (right). Both are co-
liveness templates – the corresponding edge can only be taken finately often.
This ensures that all edges that lead to the region {a, c, d} (i.e., eab and ebb) are
taken only finitely often.

The tuples of strategy and assumption templates (Ψi, Πi) we have con-
structed for both players in the above example will be called contracted strategy-
masks, csm for short. If the players now share the assumptions from their local
csm’s, it is easy to see that in the above example both players can ensure the
assumptions made by other player in addition to their own strategy templates,
i.e., each Player i can realize Ψ1−i ∧ Πi from all vertices. In this case, we call
the csm’s (Ψi, Πi) compaitble. In such situations, the new specifications (Φ•0, Φ•1)
with Φ•i = Ψ1−i ∧ (Ψi ⇒ Φi) are directly computable from the given csm’s and
indeed form an iRmaC-contract.

Unfortunately, locally computed csm’s are not always compaitble. In order
to see this, consider the slightly modified winning condition Φ′1 for Player 1 that
induces strategy template Π′1 for Player 1. This template requires the edge ebd

to be taken only finitely often. Now, Player 1 cannot realize both Ψ0 and Π′1
as the conditions given by both templates for edge ebd are conflicting – one can
not ensure that it is taken infinitely often and only finitely often, at the same
time.

In this case one more round of negotiation is needed to ensure that both
players eventually avoid vertex d by modifying the objectives to Φ′i = Φi∧♢□¬d.
This will give us a new pair of csm’s that are indeed compatible, and a new pair
of objectives (Φ•0, Φ•1) that are now again an iRmaC specification.

In the following we formalize the notion of templates and csm’s and show
that, if compatible, they indeed provide iRmaC-specifications. We then show
how to compute csm’s in Section 5 and formalize the outlined negotiation for
compatibility in Section 6.

4.2 Permissive Templates
This section recalls the concept of templates from [4, 6]. In principle, a template
is simply an LTL formula Λ over a game graph G. We will, however, restrict
attention to four distinct types of such formulas, and interpret them as a succinct
way to represent a set of strategies for each player, in particular all strategies
that follow Λ. Formally, a Player i strategy πi follows Λ if every πi-play belongs

9



a b

c d

Φ0 = □♢{c}
Φ1 = ♢□{a, c, d}
Φ′1 = ♢□{a, b, c}

⇒ Ψ0 = Λlive({ebd}),
⇒ Ψ1 = Λcolive(eab),
⇒ Ψ′1 = ALL,

Π0 = Λlive({eac})
Π1 = Λcolive(ebb)
Π′1 = Λcolive(ebd)

Figure 2: A two-player game graph with Player 1 (squares) and Player 0 (circles)
vertices, different winning conditions Φi, and corresponding winning strategy
templates Ψi.
to L(Λ), i.e., strategy πi is winning from all vertices in game (G, Λ). The
exposition in this section follows the presentation in [4] where more illustrative
examples and illustrations can be found.

Safety Templates. Given a set S ⊆ E of unsafe edges, the safety template
is defined as

Λunsafe(S) := □ ∧e∈S ¬e, (5)
where an edge e = (u, v) is equivalent to the LTL formula u ∧⃝v. The safety
template says that an edge to S should never be taken by a following strategy.

Live-Group Templates. A live-group H = {ej}j≥0 is a set of edges ej =
(sj , tj) with source vertices src(H) := {sj}j≥0. Given a set of live-groups Hℓ =
{Hi}i≥0 we define a live-group template as

Λlive(Hℓ) :=
∧
i≥0

□♢src(Hi)⇒ □♢Hi. (6)

The live-group template says that if some vertex from the source of a live-
group is visited infinitely often, then some edge from this group should be taken
infinitely often by the following strategy.

Conditional Live-Group Templates. Then a conditional live-group over G
is a pair (R, Hℓ), where R ⊆ V and Hℓ is a set of live groups. Given a set of
conditional live groups H we define a conditional live-group template as

Λcond(H) :=
∧

(R,Hℓ)∈H (□♢R⇒ Λlive(Hℓ)) . (7)

The conditional live-group template says that for every pair (R, Hℓ), if some
vertex from the set R is visited infinitely often, then a following strategy must
follow the live-group template Λlive(Hℓ).

Co-liveness Templates. The co-liveness template is defined by a set of co-
live edges D as follows,

Λcolive(D) :=
∧

e∈D

♢□¬e. (8)

Intuitively, the co-liveness template says that a following strategy must not allow
complient plays to leave the vertex set I infinitely often via an edge in D.
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Composed Templates. In the following we will use the tuple (S, D,H) to
denote the template Λ := Λunsafe(S) ∧ Λcolive(D) ∧ Λcond(H). Further, we use
(S, D, Hℓ) to denote the template Λ := Λunsafe(S)∧Λcolive(D)∧Λlive(Hℓ). We
further note that the conjunction of two templates (S, D,H) and (S′, D′,H′) is
equivalent to the template (S∪S′, D∪D′,H∪H′) by the definition of conjunction
of LTL formulas.

4.3 Contracted Strategy-Masks
Towards our goal of formalizing iRmaC-specifications via templates, this section
defines contracted strategy-masks which contain two templates Ψi and Πi, rep-
resenting a set of Player 1 − i- and Player i-strategies respectively, which can
be interpreted as the assumption Ψi on player Player 1− i under which Player i
can win the local game (G, Φi) with any strategy from Πi.

Towards this goal, we first observe that every template in (5)-(8) is defined
via a set of edges that a following strategy needs to handle in a particular way.
Intuitively, we can therefore “split” each template into a part restricting strategy
choices for Player 0 (by only considering edges originating from V0) and a part
restricting strategy choices for Player 1 (by only considering edges originating
from V1). This is formalized next.

Definition 6. Given a game graph G = (V, E), a template Λ over G induced by
(S, D,H) is an assumption template (respectivly a strategy template) for player
i if for all edges e ∈ S∪D∪H holds that src(e) ∈ V1−i (respectively src(e) ∈ Vi)
where H :=

⋃
{H ∈ Hℓ | (·, Hℓ) ∈ H}.

With this, we can formally define contracted strategy-masks as follows.

Definition 7. Given a game (G, Φi), a contracted strategy-mask (csm) for player
i is a tuple (Ψi, Πi), such that Ψi and Πi are assumption and strategy templates
for player i, respectively.

To formalize the intuition that csm’s collect winning strategies for Player i
under assumptions on Player 1− i, we next formalize winning of csm’s.

Definition 8. A csm (Ψi, Πi) is winning for Player i in (G, Φi) from vertex v if
for every Player i strategy πi following Πi and every Player 1− i strategy π1−i

following Ψi the π0π1-play originating from v is winning. Moreover, we say a
csm (Ψi, Πi) is winning for Player i in (G, Φi) if it is winning from every vertices
in ⟨⟨0, 1⟩⟩Φi.

We denote by ⟨⟨i⟩⟩(Ψi, Πi) the set of vertices from which (Ψi, Πi) is winning
for Player i in (G, Φi). Due to localness of our templates, the next remark
follows.

Remark 9. If a csm (Ψi, Πi) is winning for Player i in (G, Φi) from vertex v,
then every Player i strategy πi following Πi is winning for Player i in the game
(G, Ψi ⇒ Φi).
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4.4 Representing Contracts via csm’s
The previous subsection has formalized the concept of a csm for a local (zero-
sum) game (G, Φi) . This section now shows how the combination of two csm’s
(Ψ0, Π0) and (Ψ1, Π1) (one for each player) allows to construct a contract

C := ((Ψ0, Ψ1), (Ψ1, Ψ0)), (9)

(i.e, setting Ai := Ψi and Gi := Ψ1−i), which is an iRmaC-contract. It turns
out, as we will see later, that this is possible only if the csm’s are compatible, as
formalized below.

Definition 10 (compatible csm’s). Two csm’s, (Ψ0, Π0) for Player 0 and (Ψ1, Π1)
for Player 1, are said to be compatible, if for each i ∈ {0, 1}, there exists a Player i
strategy πi that follows Πi ∧Ψ1−i.

Intuitively, as Ψ1−i is the assumption on Player i and Πi represents the
template that Player i will follow, we need to find a strategy that follows both
templates. Before going further, let us first show a simple result that follows
when the csm’s are compatible.

Proposition 11. Given a two-objective game G = (G, Φ0, Φ1), let (Ψ0, Π0)
and (Ψ1, Π1) be two compatible csm’s s.t. (Ψi, Πi) is winning from a vertex v
for Player i in (G, Φi). Then the contract C as in (9) is an iR-contract realizable
from v.

Proof. We need to show that v ∈ ⟨⟨i⟩⟩(Ψ1−i ∧ (Ψi ⇒ Φi)) for each i = 0, 1.
Firstly, as the csm’s are compatible, for each i, there exists a Player i strategy
πi that follows Πi ∧ Ψ1−i. Hence, every πi-play satsifies both Ψ1−i. Secondly,
as csm (Ψi, Πi) is winning from v for Player i in game (G, Φi), by Remark 9,
every πi-play from v satisfies Ψi ⇒ Φi. Therefore, every πi-play from v satisfies
Ψ1−i ∧ (Ψi ⇒ Φi), and hence, v ∈ ⟨⟨i⟩⟩(Ψ1−i ∧ (Ψi ⇒ Φi)).

To ensure that two compatible csm’s as in Proposition 11 are not only an iR-
contract but also provide iRmaC-specifications, we utilize the main result from
[4] which showed that assumption templates can be computed in a adequately
permissive way over a given parity game. This notion is translated to csm’s
next.

Definition 12. Given a game (G, Φi) and a csm (Ψi, Πi) for Player i, we call
this csm adequately permissive for (G, Φi) if it is

(i) sufficient: ⟨⟨i⟩⟩(Ψi, Πi) ⊇ ⟨⟨0, 1⟩⟩Φi,

(ii) implementable: ⟨⟨1− i⟩⟩Ψi = V and ⟨⟨i⟩⟩Πi = V

(iii) permissive: L(Φi) ⊆ L(Ψi).

Note that the sufficiency condition makes the csm winning as formalizd in
the next remark.
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Remark 13. If a csm (Ψi, Πi) for Player i in a game (G, Φi) is sufficient, then
it is winning for Player i in (G, Φi).

With this, we are ready to prove the main theorem of this section, which
shows that synthesis of iRmaC-specifications reduces to finding adequately per-
missive csm’s which are compatible.

Theorem 14. Given a two-objective game G = (G, Φ0, Φ1), let (Ψ0, Π0) and
(Ψ1, Π1) be two compatible csm’s s.t. (Ψi, Πi) is adequately permissive for Player i
in (G, Φi). Then the contracted specifications (Φ•0, Φ•1) with Φ•i = Ψ1−i∧ (Ψi ⇒
Φi) are iRmaC-specifications.

Proof. We need to show that the pair (Φ•0, Φ•1) satisfies (4a) and (4b). The proof
for (4a) is completely set theoretic:

(⊆) For each i ∈ {0, 1}, it holds that

L(Φi) ⊆(iii) L(Φi) ∩ L(Ψi)
⊆ L(Ψi ⇒ Φi) ∩ L(Ψi).

Then we have,

L(Φ0 ∧ Φ1) ⊆ L(Φ0) ∩ L(Φ1)
⊆ L(Ψ0 ⇒ Φ0) ∩ L(Ψ0) ∩ L(Ψ1 ⇒ Φ1) ∩ L(Ψ1)
= L(Φ•0) ∩ L(Φ•1) = L(Φ•0 ∧ Φ•1).

(⊇) For each i ∈ {0, 1}, it holds that

L(Φ•i ) = L(Ψ1−i ∧ (Ψi ⇒ Φi))
= L(Ψ1−i ∧ (¬Ψi ∨ Φi))
= L((Ψ1−i ∧ ¬Ψi) ∨ (Ψ1−i ∧ Φi))
= L(Ψ1−i ∧ ¬Ψi) ∪ L(Ψ1−i ∧ Φi).

Then we have

L(Φ•0 ∧ Φ•1) = L(Φ•0) ∩ L(Φ•1)

=
⋂ {

(L(Ψ1 ∧ ¬Ψ0) ∪ L(Ψ1 ∧ Φ0))
(L(Ψ0 ∧ ¬Ψ1) ∪ L(Ψ0 ∧ Φ1))

=L(Ψ1 ∧ Φ0) ∩ L(Ψ0 ∧ Φ1) ⊆ L(Φ0 ∧ Φ1).

Next, we show that one side of (4b) follows from (4a), whereas the other
side follows from Proposition 11 as given below:

(⊇) If v ∈ ⟨⟨0⟩⟩Φ•0 ∩ ⟨⟨1⟩⟩Φ•1, then for each i ∈ {0, 1}, there exists a strategy πi

for Player i such that every πi-play from v belongs to L(Φ•i ). Hence, every
π0π1-play from v belongs to L(Φ•0)∩L(Φ•1) = L(Φ•0∧Φ•1) =(4a) L(Φ0∧Φ1).
Therefore, v ∈ ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).
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(⊆) If v ∈ ⟨⟨0, 1⟩⟩(Φ0∧Φ1) ⊆ ⟨⟨0, 1⟩⟩Φi, then by Item i, v ∈ ⟨⟨i⟩⟩(Πi, Ψi). Hence,
for each i, csm (Πi, Ψi) is winning for Player i from v. As the csm’s are also
compatible, by Proposition 11, the contract C = (Ψ0, Ψ1) is an iR-contract
realizable from v. Hence, by definition, v ∈ ⟨⟨i⟩⟩Ψ1−i∧(Ψi ⇒ Φi) = ⟨⟨i⟩⟩Φ•i .
Therefore, v ∈ ⟨⟨0⟩⟩Φ•0 ∩ ⟨⟨1⟩⟩Φ•1.

Based on Theorem 14, Section 5 provides an algorithm to compute ade-
quately permissive csm’s, while Section 6 sets up a negotiation-framework to
ensure conflict-freeness of csm’s. Together, both algorithms will be shown to
solve Problem 5.

5 Computing Adequately Permissive csm’s
The insight that we exploit in this section, is the fact that the algorithmic com-
putation of adequately permissive (and hence, also winning) csm’s is similar to
the computation of adequately permissive assumptions for parity games from [4],
with particular modifications to extract both assumption and winning strategy
templates at the same time. As the correctness proofs for these algorithms are
similar to the ones in [4] (available in [5]), we have moved all formal correctness
proofs to the appendix.

5.1 Set Transformers
We use some set transformation operators in the algorithms to compute strategy
templates. Let G = (V = V0 ·∪ V1, E) be a game graph, U ⊆ V be a subset
of vertices, and a ∈ {0, 1} be the player index. Then we define a predecessor,
controllable predecessor cprea

G(U) as

cprea
G(U) =

⋃ {
{v ∈ V a | ∃(v, u) ∈ E. u ∈ U}
{v ∈ V 1−a | ∀(v, u) ∈ E. u ∈ U}

(10)

cprea,1
G (U) = cprea

G(U) ∪ U (11)
cprea,i

G (U) = cprea
G(cprea,i−1

G (U)) ∪ cprea,i−1
G (U) (12)

where i ≥ 1. Intuitively, the operators cprea
G(U) and cprea,i

G (U) compute the set
of vertices from which Player a can force visiting U in at most one and i steps
respectively. In the following, we introduce the attractor operator attra

G(U) that
computes the set of vertices from which Player a can force at least a single visit
to U in finitely many but nonzero4 steps:

attra
G(U) =

( ⋃
i≥1 cprea,i(U)

)
\U (13)

4In existing literature, usually U ⊆ attra(U), i.e. attra(U) contains vertices from which U
is visited in zero steps. We exclude U from attra(U) for a minor technical reason.
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It is known that attra
G(U) can be computed in finite time, and by Attra(G, U),

we denote the procedure that takes a game graph G and a set of vertices U ⊆ V ,
and outputs attra

G(U), and the live groups {(u, v) | u ∈ cprea,i
G (U) and v ∈

cprea,i−1
G (U), i > 0}.
In the following, we show the algorithms to compute assumptions on the

other player, and a strategy template under the assumption for self, for one of
the most simple but useful objective.

5.2 Safety Games
A safety game is a game G = (G, Φ) with Φ = □U for some U ⊆ V , and a play
fulfills Φ if it never leaves U . It is well-known that an assumption satisfying the
properties of being adequately permissive, and a winning strategy template for
safety games disallow every move that leaves the cooperative winning region in
G. This is formalized in the following theorem.

Theorem 15 ([11, 22]). Let G = (G,□U) be a safety game, Z∗ := νY.U ∩
pre(Y ), and Si = {(u, v) ∈ E | (u ∈ Vi ∩ Z∗) ∧ (v /∈ Z∗)}. Then ⟨⟨0, 1⟩⟩□U = Z∗

is the cooperative winning region.
Furthermore, for both i ∈ {0, 1} the tuple (Ψi, Φi) is an adequately permis-

sive csm for Player i, where Ψi = (S1−i, ∅, ∅) and Φi = (Si, ∅, ∅).

We denote by Unsafe(G, U, i) the algorithm computing (Si, S1−i) via the
fixed point νY.U ∩pre(Y ) used within Theorem 15. This algorithm runs in time
O(m), where m = |E|.

5.3 Büchi games
A Büchi game is a game G = (G, Φ) where Φ = □♢I for some I ⊆ V . Intuitively,
a play is winning for a Büchi objective if it visits the vertex set I infinitely often.

Let us present Algorithm 1 that computes assumption and strategy tem-
plates for Büchi games. We observe that the algorithm only outputs safety and
group-liveness templates. The reason lies in the intrinsic nature of the Büchi
objective. Player i needs to visit I infinitely often. Since there is no restric-
tion on how frequently should they visit I, it suffices to always eventually make
progress towards I, and this behavior is precisely captured by live groups. The
algorithm exploits this observation and first finds the set of vertices from where
Player i can visit I infinitely often, possibly with help from Player 1− i. Then
all the edges going out from these vertices to the losing vertices becomes unsafe
for both players. Now, we need to find ways to find progress towards the goal
vertices. To this end, in Line 10, the algorithm finds the vertices from which
Player i can visit I without any help from Player 1 − i, while finding the live
groups to facilitate the progress. Then in Line 13, the algorithm finds the ver-
tices from which Player 1− i needs to help, and forms another live group from
these vertices towards the goal vertices. This procedure continues until all the
vertices have been covered, while making the covered vertices the new goal.
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Algorithm 1 BüchiTemp
Input: G = (V = V0 ·∪ V1, E), I ⊆ V , and i ∈ {0, 1}
Output: csm (Ψi, Πi)

1: Z∗ ← Büchi0,1(G, I)
2: (Ss, Sa)← Unsafe(G, Z∗, i)
3: G← G|Z∗ , I ← I ∩ Z∗

4: (Hs
ℓ , Ha

ℓ )←Live(G, I, i)
5: return ((Ss, ∅, Hs

ℓ ), (Sa, ∅, Ha
ℓ ))

6: procedure Live(G, I, i)
7: Hs

ℓ ← ∅; Ha
ℓ ← ∅

8: U ← I
9: while U ̸= V do

10: (Wattr, H ′ℓ)← Attri(G, U)
11: Hs

ℓ ← Hs
ℓ ∪H ′ℓ

12: U ← U ∪Wattr

13: C ← cpre1−i
G (U)

14: Ha
ℓ ← Ha

ℓ ∪ {{(u, v) ∈ E ∩ (C × U)}}
15: U ← U ∪ C
16: return (Hs

ℓ , Ha
ℓ )

The correctness of Algorithm 1 is formalized in the following theorem which
is proven in Appendix A.1.

Theorem 16. Given a game graph G = (V = V0 ·∪ V1, E) with Büchi objective
Φi = □♢I for Player i, Algorithm 1 terminates in time O(m), where m is the
number of edges in the graph. Moreover, (Ψi, Φi) = BüchiTemp(G, I, i) is an
adequately permissive csm for Player i.

5.4 co-Büchi games
A co-Büchi game is a game G = (G, Φ) where Φ = ♢□I for some I ⊆ V .
Intuitively, a play is winning for a co-Büchi objective if it eventually stays in I.

Let us present Algorithm 2 that computes assumption and strategy tem-
plates for co-Büchi games. The algorithm again only outputs two kinds of
templates for assumption and strategy templates: safety and co-liveness. While
Büchi requires visiting certain vertices infinitely often, dually, co-Büchi requires
avoiding a certain set of vertices eventually (or equivalently staying in the com-
plement eventually). Again, there is no restriction on when exactly a play should
stop visiting the said vertices. This paves the way for the application of co-live
templates which restrict taking some edges eventually (or equivalently, disal-
lows going away from the goal set of vertices eventually). Algorithm 2 starts by
finding the unsafe edges for both players as in the Büchi case. Then among the
vertices from which Player i can satisfy the co-Büchi objective (possibly with
help from Player 1 − i), the algorithm finds the vertices from which the play
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Algorithm 2 coBüchiTemp
Input: G = (V = V0 ·∪ V1, E) , I ⊆ V , and i ∈ {0, 1}
Output: csm (Ψi, Πi)

1: Z∗ ← CoBüchi0,1(G, I)
2: (Ss, Sa)← Unsafe(G, Z∗, i)
3: G← G|Z∗ , I ← I ∩ Z∗ ▷ All vertices are cooperatively co-Büchi winning
4: (Ds, Da)←CoLive(G, I, i)
5: return ((Ss, Ds, ∅), (Sa, Da, ∅))

6: procedure CoLive(G, I, i)
7: U ← Safety0,1(G, I) ▷ U ⊆ I
8: D ← (U × V \U) ∩ E
9: while U ̸= V do

10: D ← D ∪ ((preG(U)× preG(U)) ∩ E)
11: U ← U ∪ preG(U)
12: D ← D ∪ ((U × V \U) ∩ E)
13: Ds ← {e ∈ D | src(e) ∈ Vi}
14: Da ← {e ∈ D | src(e) ∈ V 1−i}
15: return (Ds, Da)

does not even need to leave I (i.e U). Clearly, these vertices belong to I, and
this is set of vertices where the play should eventually stay. Hence, in Line 8,
the edges going out of U are marked co-live, ensuring the play does not always
leave this set. Then we need to find vertices from which U may be reached in
one step, and mark the edges going away from U as co-live. This procedure is
repeated till all the vertices are covered. This allows the players to choose the
strategies that ensure that the play does not always go away from U (forcing it
to go towards U), and once the play is in U , it stays there eventually.

The correctness of Algorithm 2 is formalized in the following theorem which
is proven in Appendix A.2.

Theorem 17. Given a game graph G = (V = V0 ·∪ V1, E) with co-Büchi ob-
jective Φi = ♢□I for Player i, Algorithm 2 terminates in time O(m), where m
is the number of edges. Furthermore, (Ψi, Πi) := coBüchiTemp(G, I, i) is an
adequately permissive csm for Player i.

5.5 Parity games
A parity game is a game G = (G, Φ) with parity objective Φ = Parity(P), where

Parity(P) :=
∧

i∈odd[0;d]

□♢P i =⇒
∨

j∈even[i+1;d]

□♢P j

 , (14)

with priority set P j = {v : P(v) = j} for 0 ≤ j ≤ d of vertices for some priority
function P : V → [0; d] that assigns each vertex a priority. An infinite play ρ
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is winning for Φ = Parity(P) if the highest priority appearing infinitely often
along ρ is even.

Algorithm 3 ParityTemp
Input: G = (V = V0 ·∪ V1, E), P : V → [0; d], and i ∈ {0, 1}
Output: csm (Ψi, Πi)

1: Z∗ ← Parity0,1(G,P)
2: (Ss, Sa)← Unsafe(G, Z∗, i)
3: G← G|Z∗ , P← P|Z∗

4: (Ds, Da,Hs,Ha)←ComputeSets((G,P, i), ∅, ∅, ∅, ∅, ∅)
5: return Z∗, C, (Ss, Ds,Hs), (Sa, Da,Ha)

6: procedure ComputeSets((G,P, i), C, Ds, Da,Hs,Ha)
7: d← max{l | P l ̸= ∅}
8: if d is odd then
9: W¬d ← Parity0,1(G|V \P d ,P)

10: (Ds, Da)← (Ds, Da) ∪CoLive(G, W¬d, i)
11: C ← C ∪W¬d

12: else
13: Wd ← Büchi0,1(G, P d), W¬d ← V \Wd

14: for all odd l ∈ [0; d] do
15: (Hs

ℓ , Ha
ℓ )← Live(G|Wd

, P l+1 ∪ P l+3 · · · ∪ P d, i)
16: (Hs,Ha)← (Hs ∪ (Wd ∩ P l, Hs

ℓ ),Ha ∪ (Wd ∩ P l, Ha
ℓ ))

17: if d > 0 then
18: G← G|W¬d

, P 0 ← P 0 ∪ P d, P d ← ∅
19: ComputeSets((G,P, i), C, Ds, Da,Hs,Ha)
20: else
21: return (Ds, Da,Hs,Ha)

Let us present Algorithm 3 that computes assumption and strategy tem-
plates for parity games. Since parity objectives are more complex than either
Büchi or co-Büchi objectives individually, but have some similarities with both
(i.e. nesting of trying to reach some priorities always eventually and to avoid
some others eventually), our algorithm outputs combinations of safety, condi-
tional group-liveness and co-liveness templates.

Algorithm 3 follows the approach in Zielonka’s algorithm [40]. The algorithm
again computes the cooperative winning region, the safety templates, and re-
stricts the graph to the cooperative winning region in lines 1-3. To further
understand the algorithm, we discuss two cases (visualized in Fig. 3) possible
in a parity game and see the reason for their different treatment. Firstly, if the
highest priority d occurring in the game graph is odd (see Fig. 3 (left)), then
clearly, Player i can not win if the play visits P d infinitely often. So any way to
win would involve eventually staying in V \P d. Within Algorithm 3, this case
is treated in lines 8-13. Here, we remove the vertices with priority d (shaded
yellow in Fig. 3 (left)) from the graph and compute the cooperative winning
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region W¬d (shaded green in Fig. 3 (left)) along with the assumption/strategy
templates for the restricted game (line 9). As Algorithm 3 already removes all
vertices which are not cooperatively winning in line 3, there must be a way to
satisfy the parity condition from vertices outside W¬d. Based on the above rea-
soning, the only way to do so is by visiting W¬d and eventually staying there,
i.e., winning a coBuechi objective for I := W¬d. The templates for states in
V \W¬d (shaded white and yellow in Fig. 3 (left)) are therefore computed by a
call to the co-Büchi algorithm giving co-liveness templates (line 10), visualized
by red arrows in Fig. 3 (left).

Now we consider the case when d is even (see Fig. 3 (right)) treated in lines
13-16 within Algorithm 3. Here, one way for Player i to win is to visit P d

infinitely often, giving the set Wd (shaded white and yellow in Fig. 3 (right))
computed in line 13. In this region, it suffices to construct templates which
ensure visiting a higher even priority vertex infinitely often (i.e., P l+1∪P l+3 · · ·∪
P d), whenever vertices P l of certain odd priority l are visited infinitely often.
This can be captured by conditional live-groups (Wd ∩ P l, Hℓ) (added via line
16 and visualized by green arrows in Fig. 3 (right)) where Wd ∩ P l encodes the
condition of seeing a vertex with odd priority l infinitely often, and Hℓ is the
live-group computed in line 15 ensuring progress towards a higher even priority
vertex.

W¬d

P d

When d is odd

W¬d

P d

0 1 2 d − 1 d· · ·

When d is even

Figure 3: Visualization of the case-distinction in Algorithm 3 for highest odd
(left, blue) and highest even (right, red) color. Yellow and green regions indicate
vertex sets P d and W¬d, respectively, (overlapping for red). The border colors
(blue for odd, and red for even) assist in case identification within Fig. 4. Red
and green arrows indicate co-live and live edges, respectively.

The reader should note that in either case, for the vertices in W¬d (shaded
green in Fig. 3) the only way to win is to satisfy the parity condition by visiting
even priority vertices with priority lesser than d infinitely often. Since vertices in
P d ∩W¬d can not be visited infinitely often from this region (by construction),
the priority of these vertices can be reduced to 0 (line 18), allowing us to get
a restricted game graph with fewer priorities. We then find the templates in
the restricted graph recursively (line 19). This recursion is visualized in Fig. 4
when the highest priority in the restricted graph is 3.

The correctness of Algorithm 3 is formalized in the following theorem which
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W¬4

W¬3

W¬2

W¬1

P 3

P 2

P 1

P 2 → P 0

Figure 4: Schematic representation of the recursion within Algorithm 3 for d = 3
using the color-coding from Fig. 3. Here, the only way to win is to see vertices
in P 2 infinitely often.

is proven in Appendix A.3.

Theorem 18. Given a game graph G = (V = V0 ·∪ V1, E) with parity objective
Φi = Parity(P) for Player i where P is some priority function, Algorithm 3 termi-
nates in time O(n4), where n is the number of vertices in the graph. Moreover,
with (·, ·, Ψi, Πi) := ParityTemp(G,P, i) the tuple (Ψi, Πi) is an adequately
permissive csm for Player i.

6 Negotiation for Compatible csm’s
In this section, we give our main algorithm to compute iRmaC specifications
for a two-objective game (G, Φ0, Φ1). The main intuition of our algorithm
is to compute adequately permissive csm’s (Ψi, Πi) for Player i in its corre-
sponding game (G, Φi) separately and then combine them to get the contract
C = ((Ψ0, Ψ1), (Ψ1, Ψ0)) as in (9). However, as we have discussed before, we
need the csm’s to be compatible, i.e., each player should be able to find a strat-
egy that follows the assumption Ψ1−i in addition to their strategy template Πi.
Hence, we provide a sound and complete algorithm where the players negotiate
between themselves in multiple rounds to find two compatible csm’s.

6.1 Checking Compatibility
Before going into the details of the negotiation algorithm, let us first describe
how to check if two csm’s are compatible. Checking compatibility of two csm’s
basically reduces to finding a strategy that follows a template as given in Defi-
nition 10. As our templates are just particular LTL formulas, one can of course
use automata-theoretic techniques for this. However, as the types of templates
we presented put some local restrictions on strategies, we can extract a strategy
much more efficiently. For instance, in the game in Fig. 2, a Player 1 strategy
that follows template Ψ0 ∧ Π1 = Λlive({ebd}) ∧ Λcolive(ebb) is simply the one
that always uses the edge ead from vertex a.

20



However, strategy extraction is not as straightforward for every template.
For instance, consider again the game graph from Fig. 2 with a template Ψ0 ∧
Π′1 = Λlive({ebd})∧Λcolive(ebd) for Player 1. This creates a conflict between Ψ0
and Π′1 as the edge ebd is both live and co-live. On the other hand, a template
like Λunsafe(ebd) ∧ Λcolive(ebb) also creates a conflict as none of the two choices
of Player 1 (i.e., outgoing edges) from vertex b can be taken infinitely often.
Interestingly, the methods we presented in Section 5 to compute csm’s never
create such conflicts and the computed templates are therefore conflict-free, as
formalized next.

Definition 19. A template Λ = (S, D,H) in a game graph G = (V, E) is
conflict-free if

(i) every vertex v has an outgoing edge that is neither co-live nor unsafe, i.e.,
v × E(v) ̸⊆ D ∪ S, and

(ii) in every live-group H ∈ Hℓ s.t. (·, Hℓ) ∈ H, every source vertex v has an
outgoing edge in H that is neither co-live nor unsafe, i.e., v×H(v) ̸⊆ D∪S.

As the conditions in Definition 19 are local for each vertex, checking conflict-
freeness of a template can be done in linear time in the size of the game graph.
Furthermore, given a template Λ in game graph G, we call the procedure of
checking conflict-freeness CheckTemplate(G, Λ), which returns true if the
template is conflict-free, and false otherwise.

Before going further, let us note that, by construction, the csm’s computed
by the algorithms given in the last section are actually conflict-free.

Proposition 20. Algorithms 1, 2, and 3 always return conflict-free csm’s.

Proposition 20 implies that all csm’s computed locally over (G, Φi) via Algo-
rithms 1-3 only contain conflict-free templates. However, when combining the
local csm’s of both players conflicts may arise.

Proposition 21. Given two csm’s (Ψ0, Π0) and (Ψ1, Π1) in a game graph G,
if for each i ∈ {0, 1} the template Ψ1−i ∧Πi is conflict-free, then the two csm’s
are compatible.

The proof of Proposition 21 follows from the fact that if Ψ1−i∧Πi is conflict-
free there exists a Player i strategy following it. However, note that the converse
of Proposition 21 is not true as there can be a strategy following Ψ1−i∧Πi even
when the corresponding csm’s are not conflict-free. However, this does not affect
the completeness of our result as we will see later in this section.

The main purpose of the negotiation algorithm, which is introduced in the
next subsection, is to iteratively resolve arising conflicts until compatible csm’s
are obtained.

6.2 The Negotiation Algorithm
The overall negotiation algorithm is depicted schematically in Fig. 5 and given
formally in Algorithm 4. Negotiate divides the given two-objective game in

21



(G, Φ0, Φ1)

(G, Φ0) (G, Φ1)

ParityTemp ParityTemp

winning region W0
co-Büchi region C0

assumption template Ψ0
strategy template Π0

winning region W1
co-Büchi region C1

assumption template Ψ1
strategy template Π1

CheckTemplate
Ψ0 ∧ Π0 ∧Ψ1 ∧ Π1

return ((Φ0, Φ1), (Ψ0, Π0), (Ψ1, Π1))

true

false

Φi ← Φi ∧□(W0 ∩W1)
∧♢□¬(C0 ∪ C1)

Figure 5: Flowchart illustration of the Negotiate algorithm (Algorithm 4).

two normal parity games (G, Φi) and solves them by the ParityTemp algo-
rithm (Algorithm 3). It then checks the compatibility of the resulting csm’s
using CheckTemplate. If they are not compatible, Negotiate starts a new
iteration with updated local objectives to resolve the conflicts and re-compute
the csm’s. If they are compatible Negotiate outputs both csm’s, which will be
proven in Theorem 23 to induce iRmaC specifications.

In order to check compatibility of the resulting csm’s, ParityTemp passes
more information to CheckTemplate to ease the computation. In particular,
it also communicates the winning region Wi and set of states Ci from which
co-live templates originate (see the orange boxes in Fig. 5). Intuitively, these
sets encode the information needed to check conflict situations arising due to S
and D, respectively, in Definition 19. In particular, we resolve the conflicts with
unsafe edges by ensuring that the losing regions are never visited (i.e., adding
the term □(W0 ∩ W1) to the specification), and we resolve the conflicts with
co-live edges by ensuring that the co-Büchi regions C are not visited infinitely
often (i.e., adding the term □¬(C0 ∪ C1) to the specification). Both is indicated
via the lable of the recursion-arc in Definition 19.

Remark 22. We note that, in Algorithm 4, we slightly abuse notation as we
use the objective □W ∧ Parity(P) as an input to Negotiate in latter itera-
tions, instead of P. Algorithmically, we handle this by adding a simple pre-
processing step to ParityTemp (i.e., Algorithm 3). Concretely, we compute
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Algorithm 4 Negotiate(G,P0,P1)
Input: G = (V = V0 ·∪ V1, E), P0 : V → [0; 2d0 + 1], P1 : V → [0; 2d1 + 1]
Output: modified specifications (Φ0, Φ1); csm’s (Ψ0, Π0), (Ψ1, Π1)

1: Wi, Ci, Πi, Ψi ← ParityTemp(G,Pi, i) for each i ∈ {0, 1}
2: W ←W0 ∩W1; C ← C0 ∪ C1
3: if CheckTemplate(G, Ψ0 ∧Π0 ∧Ψ1 ∧Π1) then
4: S0, S1 ← Unsafe(G,W, 0)
5: Πi ← Πi ∧ (Si, ∅, ∅), Ψi ← Ψi ∧ (S1−i, ∅, ∅) for each i ∈ {0, 1}
6: return (Φ0, Φ1), (Ψ0, Π0), (Ψ1, Π1)
7: else
8: Φ′i = □W ∧ Parity(P′i) with P′i ← Pi[C → 2di + 1] for i ∈ {0, 1}
9: return Negotiate(G, Φ′0, Φ′1)

the set (Ss, Sa) of edges from W to ¬W, restrict the gamegraph G to W and
add (Ss, Sa) to the unsafe edge templates computed in line 2 of Algorithm 3 on
the new restricted game.

With this, we are finally ready to state the main result of this paper.

Theorem 23. Given a two-objective parity game G = ((V, E), Φ0, Φ1) with
Φi = Parity(Pi), Algorithm 4 always terminates in O(n6) time, where n = |V |.
Furthermore, for

((Φ′′0 , Φ′′1), (Ψ0, Π0), (Ψ1, Π1)) := Negotiate(G,P0,P1)

holds that:

(i) the csm’s (Ψ0, Π0) and (Ψ1, Π1) are compatible,

(ii) the specification pair (Φ•0, Φ•1) with Φ•i = Ψ1−i ∧ (Ψi =⇒ Φ′′i ) are iRmaC
specifications for the two-objective game (G, Φ0, Φ0), and

(iii) every Player i strategy following Ψ1−i ∧ Πi is winning in the local game
(G, Φ•i ) from every vertex in ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).

Proof. We first show that the algorithm terminates using induction on the pair
(|W| ,

∣∣W \ P 2d1+1
∣∣) (ordered lexicographically), where P 2d+1 is the set of ver-

tices v such that P1(v) = 2d1 + 1. As the base case, observe that if |W| = 0
or

∣∣W \ P 2d+1
∣∣ = 0 the winning region for objective Φ1 is empty. Hence, the

templates Ψ1 and Π1 are also empty. So, the conjunction Ψ0 ∧Π0 ∧Ψ1 ∧Π1 is
conflict-free as the templates in csm (Ψ0, Π0) already are conflict-free by Propo-
sition 20. Hence, the algorithm terminates.

Now for the induction case, suppose |W| and
∣∣W \ P 2d+1

∣∣ are positive. If
Ψ0 ∧ Π0 ∧Ψ1 ∧ Π1 is conflict-free, then the algorithm terminates. Suppose the
csm’s are not conflict free. Then there are some conflicts in the templates cre-
ated by unsafe edges and/or co-live edges. Note that |W| cannot increase as
the additional specification □W in line 8 ensures that the winning region in
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the next iteration only includes the vertices in W. Hence, if there are unsafe
edges creating conflicts, then the size of the winning region |W| will decrease
in the next iteration. If |W| remains identical in the next iteration, then there
are some co-live edges creating conflicts in the conjunction of templates. Then,
by Algorithm 3, the co-live edges are added to the objectives by a conjunc-
tion with ♢□¬C0 and ♢□¬C1, respectively. Hence, C ≠ ∅, which implies that
some vertices are added to P 2d1+1 in Line 8 for the next iteration. There-
fore, (|W| ,

∣∣W \ P 2d+1
∣∣) is (lexicographically) smaller in the next iteration, and

hence, the algorithm terminates by induction hypothesis.
Furthermore, as

∣∣W \ P 2d+1
∣∣ ≤ |W|, and each iteration calls CheckTemplate

once and Parity twice which runs in O(|V |4) time, Algorithm 4 terminates in
O(|V |6) time.

Now, let Φ•i = Ψ1−i∧(Ψi =⇒ Φ′′i ) for each i ∈ {0, 1} be the new objectives.
We will show that Items i, ii, and iii hold.
(i) As the algorithm terminates only when the template Ψ0 ∧ Π0 ∧ Ψ1 ∧ Π1 is
conflict-free, by Proposition 21, the returned csm’s are compatible.
(ii) As csm (Ψi, Πi) is adequately permissive for Player i in the game (G, Φ′′i )
and as the returned csm’s are compatible, by using Theorem 14, the con-
tracted specifications (Φ•0, Φ•1) for the two-objective game (G, Φ′′0 , Φ′′1) are iR-
maC-specifications. Hence, it holds that

L(Φ′′0 ∧ Φ′′1) = L(Φ•0 ∧ Φ•1), and (15a)
⟨⟨0, 1⟩⟩Φ′′0 ∧ Φ′′1 = ⟨⟨0⟩⟩Φ•0 ∩ ⟨⟨1⟩⟩Φ•1. (15b)

Hence it is enough to show that Φ′′0 ∧ Φ′′1 is equivalent to Φ0 ∧ Φ1, i.e.,
L(Φ′′0 ∧ Φ′′1) = L(Φ0 ∧ Φ1). We will show that L(Φ′0 ∧ Φ′1) stays the same in
every iteration. As in Line 8, we add the additional safety specifications □W in
every iteration to the local objectives. However, as W is the intersection of the
current winning regions, the additional safety specification does not change the
language. Furthemore, in addition to the additional safety specifications, we also
assign priority 2di +1 to the vertices in C. However, we know that, from Line 10
of Algorithm 3, C contains the vertices that need to be visited finitely often to
satisfy the current parity objectives. Moreover, as 2di + 1 is odd and greater
than other priorities assigned by Pi, it is easy to see that this change in priority
function is equivalent to adding the co-Büchi specification ♢□¬C. Therefore, as
this additional co-Büchi specification does not change the language, L(Φ′0 ∧Φ′1)
stays the same in every iteration. Hence, L(Φ′′0 ∧ Φ′′1) = L(Φ0 ∧ Φ1).
(iii) Let πi be a Player i strategy following Ψ1−i ∧ Πi. As the csm (Ψi, Πi)
is adequately permissive for Player i in the game (G, Φ′′i ), by Remark 13,
the sufficiency condition makes it winning from all vertices in ⟨⟨0, 1⟩⟩Φ′′i ⊇
⟨⟨0, 1⟩⟩(Φ′′0 ∧ Φ′′1) = ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1). Moreover, as πi follows Πi, by using
Remark 9, πi is winning in the game (G, Ψi ⇒ Φ′′i ) from ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).
Hence, every πi-play from ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1) satisfies both Ψ1−i and Ψi ⇒ Φ′′i .
As Φ•i = Ψ1−i ∧ (Ψi ⇒ Φ′′i ), strategy πi is winning in the game (G, Φ•i ) from
⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).
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With this, it immediately follows from Theorem 23 (ii) that Negotiate
solves Problem 5.

6.3 Strategy Extraction
In order to complete the picture, we note that strategies which comply with
iRmaC-specifications can directly be extracted from the computed csm’s in linear
time, without the need to re-synthesize. This is formalized next.

Proposition 24. Given a game graph G = (V, E) with conflict-free template
Λ = (S, D,H) for Player i, a strategy π for Player i that follows Ψ can be
extracted in time O(m), where m is the number of edges.

The proof is straightforward by constructing the strategy as follows. We
first remove all unsafe and co-live edges from G and then construct a strategy
π0 that alternates between all remaining edges from every vertex. This strategy
is well defined as condition (i) in Definition 19 ensures that after removing all
the unsafe and co-live edges a choice from every vertex remains. Moreover, if
the vertex is a source of a live-group edge, condition (ii) in Definition 19 ensures
that there are outgoing edges satisfying every live-group. It is easy to see that
the constructed strategy indeed follows Λ. We call this procedure of strategy
extraction ExtractStrategy(G, Λ).

Due to Theorem 23 and Proposition 24, we have the following proposition
which shows that by using templates to formalize iRmaC contracts, we indeed
fully decouple the strategy choices for both players while retaining completeness
of our approach.

Proposition 25. In the context of Theorem 23, let πi be a strategy of player
i following Ψ1−i ∧ Πi. Then the strategy profile (π0, π1) is winning in the
two-objective parity game G := (G, Φ0, Φ1). Furthermore, for any vertex v from
which there exists a winning strategy profile (π′0, π′1) for the two-objective parity
game G, there exist strategies π′′i from v following Ψ1−i ∧Πi for both i ∈ {0, 1}.

The first part directly follows by a simple application of Theorem 23.iii and
then an application of Theorem 23.ii. For the second part, since Algorithm 4
outputs conflict-free templates (i.e. Ψ1−i∧Πi), then due to Proposition 24, there
are strategies π′′i for Player i following their respective templates Ψ1−i ∧Πi, for
i ∈ {0, 1}.

7 Applications within Cyber-Physical Systems
Our presented method to solve two-objective parity games via the negotiation
of contracted strategy-masks is heavily motivated by logical controller synthesis
problems in cyber-physical systems (CPS). This section outlines the benefits of
our new method within this application domain.
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(a) A strategy satisfying the specifica-
tion from Example 27 is highlighted.

(b) Part of the extended factory dis-
cussed in Example 28.

Figure 6: Illustration of an automated factory with two mobile robots R1 and
R2, discussed in Example 26-28. Cell Γi is located in line Γ ∈ {A, B, C} and
row i ∈ {1, 2, 3}. Walls are indicated by solid lines, conveyor belts are depicted
schematically.

7.1 Logical Controller Synthesis
Control architectures in modern technological systems usually consist of a large,
hierarchical software stack taking control decisions on different levels of granu-
larity and over different component clusters. While low-level controllers stabilize
component operations5, higher layer controllers manage logical (mission) spec-
ifications, depending on context changes or logical inputs.

Example 26. As a simple motivating example for a distributed logical control
problem consider a fully automated factory producing pens (see Fig. 6 for an
illustration of a part of the factory). It has a machine which takes raw materials
for pens at A1. When required, it can produce pens with erasers, for which it
needs erasers from C1. For this, it has a robot R1 (see Fig. 6a) that takes
the raw materials from B3 to the production machine at A1. Hence, the robot
R1 needs to visit A1 and B3 infinitely often, i.e. satisfy the LTL objective
φ1 := □♢R1 : A1 ∧ □♢R1 : B3, where Ri : P denotes that Ri is in the
cell P . For delivering the erasers to the machine, it has another robot R2
(see Fig. 6b) that takes raw material from B3 and feeds the machines via a
conveyor belt at C1 if R1 feeds the raw material at A1, i.e, the objective is to
satisfy φ2 := □♢R1 : A1 =⇒ □♢R2 : B3 ∧□♢R2 : C1.

The problem of synthesizing a logical controller for each component (i.e., a
mission controller for each robot within Example 26) which ensures that logical
(mission) specifications φi are realized, can be modeled as a game. Here, the

5While we exclude the interplay of continuous and logical controllers from the subsequent
discussion, we note that non-trivial continuous dynamics can be abstracted into a game graph
using well established abstraction techniques (see e.g.,[38, 2, 8] for an overview) and then
combined with the logical game considered in this paper in a straight-forward manner.
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graph of this game models the interaction of the existing technical components
(e.g., the robots) within their shared environment (e.g., their workspace). Logi-
cal (mission) specifications for different components are then naturally expressed
via propositions that are defined over sets of states of this shared underlying
game graph (as illustrated in Example 26), without changing its structure. This
naturally leads to the two-objective (parity) games which we use as a starting
point for synthesis.

While this reduces the need to create a game from a given LTL specification
prior to synthesis6, the requirements on both the synthesis procedure and the
synthesized controllers are typically different from the requirements in “classi-
cal” (distributed) reactive synthesis.

The first major benefit of our method, compared to the existing approaches
in [17, 27], is the computation of strategy templates which collect a (possibly
infinite) number of strategies, instead of a single (coupled) strategy profile. This
allows for easy adaptation and robustness of local controllers, as illustrated again
via our factory example.

Example 27. For simplicity, let us consider the scenario when the factory only
has R1 (see Fig. 6a). In order to complete its task, the robot can use the strat-
egy7 which keeps cycling along the path A1 → A2 → B2 → B3 → B2 → A2 →
A1. This strategy is fixed, and thereby does not allow easy modification when
scenarios change. For example, suppose that the factory grows and another pro-
duction machine is installed that takes the raw goods at A3, which R1 too needs
to collect and deposit as well. In standard methods, we would need to recom-
pute a strategy for the new conjunctive objective φ1 ∧ φ′1 with φ′1 = □♢A3. In
general, these computations are expensive and when more objectives are added,
this gets impractical very quickly.

However, our templates mitigate this issue. As noticeable from the example,
R1 does not really need to follow the path, and instead, only needs to always
eventually go from A1 to A2 or B1, from A2 and B1 to A3 or B2, from A3 and B2
to B3, and so on. This is a sufficient liveness property that R1 needs to satisfy
its initial objective φ1. This property can be formalized as a strategy template
(in particular via a live-group) and allows R1 to choose from different strategies
fulfilling this template. Now a similar template can easily and independently
be computed for the additional specification φ′1 when the new machine is in-
stalled. Then both templates can easily be composed by conjuncting all present
liveness properties and R1 can choose a strategy that satisfies both objectives
by complying with all these properties8. E.g., at B2, sometimes go to A2 → A1,
sometimes to A2 → A3, and sometimes to B3. Moreover, since templates do not
fix a particular strategy and just act as a guidance system for the robot, they

6We note that this structural separation of the graph and the specification and the resulting
reduced complexity of synthesis is also present in the well-known LTL fragment GR(1) [33]
which arguably contributed to its vast success in CPS applications [39, 3, 29, 23, 24]. Our
work follows this spirit.

7We do not mention the not-so-relevant parts of the strategy for ease of understanding
8Here, the resulting templates are conflict-free as in Definition 19 and strategy extraction

reduces to Proposition 24.
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additionally provide fault-tolerance to the robot. Suppose due to some reason
(presence of other robots), A1 is momentarily blocked due to maintenance, then
the robot can keep visiting B3 and A3, and when A1 becomes available, it can
continue visiting A1.

While the above example illustrates the flexibility of strategy templates for a
single component, their easy compositionality and adaptability enables an effi-
cient negotiation framework, which we have formalized in the previous sections.
We now illustrate this again with our running example.
Example 28. We first observe that robot R1 has no strategy on its own to
satisfy its respective objectives (if R2 always stays in B3 blocking R1 from
taking the raw material). Hence, the standard synthesis techniques will fail to
give a controller for R1. However, since both robots are built by the factory
designers, they can be made to cooperate instead of blocking the others. We
therefore assume that R1 can “ask” R2 to always eventually leave B3, so R1
can collect the raw goods. This leads us to the notion of adequately permissive
assumptions (as in Definition 12) which can be computed using the algorithms
in Section 5. Then both robots can compose their winning strategies with
the assumption templates provided by the other agents, using the negotiation
algorithm in Section 6, and play according to the obtained template. In our
running example, this would lead to a compatible pair of csm’s where R1 goes
to A1 when R2 is at B3, and goes to B3 only when the access is granted by R2
(which R2 will grant, by following the final template), and will also let R2 go
to B3 always eventually when it arrives.

Summarizing the above factory example, the key idea of our framework lies
in the use of strategy & assumption templates which allow for easy adaptability
both (i) during synthesis and (ii) at runtime. During synthesis, this adaptabil-
ity allows for mostly local and decentralized synthesis. Hence, in comparison to
[17], components do not need to share their mission specifications or their fi-
nal strategy choices which addresses specification- and strategy-related privacy
concerns. In addition, by ensuring templates to be adequately permissive we
still obtain a complete and surely terminating synthesis framework, which is
in contrast to [27] which has no termination guarantees. During runtime, the
adaptability of templates allows both for strategy adaptation and robustness,
which is not present in neither [17] nor [27].

In the next sections we present more details on these distinguishing features
of our framework in the context of logical control design for CPS. We further
provide empirical evidence that our negotiation framework possess desirable
computational properties by comparing our C++-based prototype tool CoSMo
(Contracted Strategy Mask Negotiation) with state-of-the-art solvers.

7.2 Factory Benchmark
Motivated by the running example in Section 7.1, we consider a simplified fac-
tory set-up depicted in Fig. 7 (left) along with an automated benchmark gener-
ator to generate problem instances with different computational difficulty. The
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Figure 7: Left: Example of a benchmark maze with parameters x = 3, y = 3,
w = 3, and c = 2. Solide lines denote walls, little up- and downward pointing
arrows indicate one-way corridors. Right: Data points for benchmark mazes
with Büchi objectives (blue circles) and parity objectives (green triangles) de-
scribing average execution time over all instances with the same grid size. The
y-axis is given in log-scale.

benchmark generator takes four parameters to change the characteristics of the
game graph: the number of columns x, the number of rows y, the number of
walls w, and the maximum number of one-way corridors c. Given these param-
eters, the workspace of the robots is constructed as follows: first, w horizontal
walls, i.e., walls between two adjacent rows, are generated randomly. We ensure
that there is at least one passage from every row to its adjacent rows (if this is
not possible with the given w, then w is set to the maximum possible number
for the given x and y). Next, for each passage from one row to another, we
randomly designate it to be a one-way corridor. For example, if a passage is
an up-corridor, then the robots can only travel in the upward direction through
this passage. We ensure that the maze has at most c one-way corridors. An
example of a benchmark maze with parameters x = 3, y = 3, w = 3, and c = 2
is shown in Fig. 7 (left). Given such a maze, we generate a game graph for two
robots, denoted R1 and R2, that navigate the maze starting at the lower-left
and lower-right corners of the maze, respectively. In this scenario the robots
only interact explicitly via their shared workspace, i.e., possibly blocking each
others way to the target.

7.2.1 Experimental Results

We have developed a C++-based prototype tool CoSMo that implements the
negotiation algorithm (Algorithm 4) for solving two-objective parity games. All
experiments were performed on a computer equipped with an Apple M1 Pro
8-core CPU and 16GB of RAM.

In a first set of experiments, we have have run CoSMo on a representative class
of 2357 benchmark instances generated as discussed before with two types of
objectives. First, we consider the Büchi objective that robots R1 and R2 should
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visit the upper-right and upper-left corners, respectively, of the maze infinitely
often, while ensuring that they never occupy the same location simultaneously
and do not bump into a wall. Second, we consider the parity objectives from
Example 26. We summarize our experimental results in Appendix B, Table 1
and plot all average run-times per grid-size (but with varying parameters for
c and w) in Fig. 7 (right). We see that CoSMo takes significantly more time
for parity objectives compared to Büchi objectives. That is because computing
templates for Büchi games takes linear time in the size of the games whereas
the same takes biquadratic time for parity games (as shown in Theorem 16 and
Theorem 18). Furthermore, the templates computed for Büchi objectives do
not contain co-liveness templates, and hence, they do not not raise any conflict
in most cases. However, tamplates for parity objectives contain all types of
templates and hence, needs several rounds of negotiations to ensure conflict-
freeness of the templates.

In a second set of experiments, we compared the performance of CoSMo, with
the related tool9 agnes implementing the contract-based distributed synthesis
method discussed from [27]. Unfortunately, agnes can only handle Büchi spec-
ifications and resulted in segmentation faults for many benchmark instances, in
particular for non-trivial c parameters. We have therefore always selected c = 0
and only report computation times for all instances that have not resulted in
segmentation faults.

The experimental results are summarized in Fig. 8-9 and Table 4. As CoSMo
implements a complete algorithm, it provably only concludes that a given bench-
mark instance is unrealizable, if it truly is unrealizable, i.e., for 1.67% of the
considered 120 instances. agnes however, concludes unrealizability in 36, 67%
of its instances (see Fig. 8 (left)), resulting an many false-negatives. Similarly,
as CoSMo is ensured to always terminate, we see that all considered instances
have terminated in the given time bound. While, agnes typically computes a
solution faster for a given instance (see Fig. 9 (left)), it enters a non-terminating
negotiation loop in 13, 34% of the instances (see Fig. 8 (right)). This happends
for almost all considered gid sizes, as visible from Fig. 9 (right) where all non-
terminating instances are included in the average after being mapped to 300s,
which was used as a time-out for the experiments.

While our experiments show that agnes outperforms CoSMo in terms of com-
putation times when it terminates on realizable instances (see Fig. 9 (left)), it
is unable to synthesize strategies either due to conservatism or non-termination
in almost 50% of the considered instances (in addition to the ones which re-
turned segmentation faults and which are therefore not included in the results).
In addition to the fact that agnes can only handle the small class of Büchi
specifications while CoSMo can handle parity objectives, we conclude that CoSMo
clearly solves the given synthesis task much more satisfactory.

9Unfortunately, a comparison with the only other related tool [17] which allows for parity
objectives was not possible, as we where told by the authors that their tool became incom-
patible with the new version of BoSy and is therefore currently unusable.

30



Figure 8: Left: Percentage of instances on which the respective tool reports
unrealizability after termination. Right: Percentage in which the respective
tool does not terminate. Both numbers are mutually exclusive.

Figure 9: Average computation times over all instances with the same grid size
for CoSMo (blue circles) and agnes (red squares) without timed-out instances
(left) and with timed-out instances mapped to the time-out of 300s (right). The
y-axis is given in log-scale.
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Algorithm 5 Compose(G, (Φj
0,Wj , Cj , Πj , Ψj)j≤ℓ0 , (Φj

1,Wj , Cj , Πj , Ψj)ℓ0<j<ℓ, Φℓ
i)

Input: A game graph G = (V, E); for each previous objective, a tuple contain-
ing the modified objective Φj

i with its winning region Wj , co-Büchi region
Cj , assumption template Ψj , strategy template Πj ; and a new objective Φℓ

i

such that Φj
i = Parity(Pj

i ) with Pj
i : V → [0; 2dj + 1].

Output: A tuple for each objective as in the input.
1: (Wℓ, Cℓ, Ψℓ, Πℓ)← ParityTemp(G,Pℓ

i , i)
2: while ¬CheckTemplate

(
G,

∧
j≤ℓ

(
Πj ∧Ψj

))
do

3: W ←
⋂

j≤ℓWj ; C ←
⋃

j≤ℓ Cj

4: Φj
0 ← □W ∧ Parity(Pj [C → 2dj + 1]) for j ≤ ℓ0

5: Φj
1 ← □W ∧ Parity(Pj [C → 2dj + 1]) for ℓ0 < j ≤ ℓ

6: Wj , Cj , Πj , Ψj ← ParityTemp(G, Φj
0, 0) for each j ≤ ℓ0

7: Wj , Cj , Πj , Ψj ← ParityTemp(G, Φj
1, 1) for each ℓ0 < j ≤ ℓ

8: return (Φj
0,Wj , Cj , Πj , Ψj)j≤ℓ0 , (Φj

1,Wj , Cj , Πj , Ψj)ℓ0<j≤ℓ

7.3 Incremental Synthesis and Negotiation
While the previous section evaluates our method for a single, static synthesis
task, we want to now emphasize the strength of our technique for the online
adaptation of strategies. We therefore assume that Algorithm 4 has already
terminated on the input (G, Φ0, Φ1) and compatible csm’s (Ψ0, Π0) and (Ψ1, Π1)
have been obtained. Then a new objective Φ′i arrives for component i.

As motivated in Section 7.1, we assume that this new specification again
uses propositions that can be interpreted over the existing game graph G (e.g.,
only consider new targets to be visited by the robots). We therefore treat the
new task as an additional parity objective P′i over G and compute an additional
csm (Ψ′i, Π′i) := ParityTemp(G,P′i, i) for component i. It is easy to observe
that if (Ψ′i, Π′i) does not introduce new conflicts (i.e., Ψi ∧Ψ′i ∧Πi−1 and Π̃i :=
Πi∧Π′i∧Ψi−1 are still conflict-free), no further negotiation needs to be done and
the csm of component i can simply be updated to (Ψi∧Ψ′i, Πi∧Π′i). Otherwise,
we simply re-negotiate by running more iterations of Algorithm 4. This is
formalized in Algorithm 5 where we again slightly abuse notation as discussed
in Remark 22.

The intuition behind Algorithm 5 is as follows. If no partial solution to the
synthesis problem exists so far we have ℓi = 0 for each i ∈ {0, 1}, otherwise the
game (G,

∧
j≤ℓ0

Φj
0,

∧
ℓ0<j<ℓ Φj

1) was already solved and the respective winning
region, co-Büchi region, and templates are known. In both cases, the algorithm
starts with computing a csm for the game (G, Φℓ

i) (line 1) and checks for conflicts
(line 2). If the csm’s have conflicts, the algorithm modifies the objectives as in
Algorithm 4 to ensure that the losing regions are never visited and the co-Büchi
regions are eventually not visited anymore (lines 4-5), and then re-computes the
templates (line 6-7) to check for conflicts again.

The correctness of Algorithm 5 is formalized in the following corollary which
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directly follows from Theorem 23 due to the fact that Algorithm 5 only outputs
conflict-free csm’s.

Corollary 29. Given a game G = (G,
∧

j≤ℓ0
Φj

0,
∧

ℓ0<i≤ℓ Φj
1), Compose always

terminates in O(ℓn6) time, where n = |V |. Moreover, if Compose returns
the tuples (Φj

0,Wj , Cj , Πj , Ψj)j≤ℓ0 , (Φj
1,Wj , Cj , Πj , Ψj)ℓ0<j≤ℓ by incrementally

adding objectives Φj
i one by one, then a strategy profile (π0, π1) is winning for

G if for each i ∈ {0, 1}, πi follows every strategy template Πj computed for
Player i objective Φj

i along with every assumption template Ψj computed for
Player 1− i objective Φj

1−i.

7.3.1 Experimental Evaluation

As our competing tool agnes already showed subpar performance in Section 7.2.1
and does not feature strategy templates for easy adaptation, we refrain from
comparing the incremental version of our tool CoSMo (implementing incremen-
tal negotiation and synthesis as in Algorithm 5) to the re-application of agnes
whenever a new objective arises. Instead, we note that, algorithmically, we are
solving a cooperative generalized parity game, i.e., a cooperative parity game
with a conjunction of a finite number of parity objectives, in an incremental
fashion. We therefore compare the performance of CoSMo on such synthesis
problems to the best known solver for generalized parity games, i.e, genZiel
from [14] (implemented by [10]).

To allow for a better interpretation our experimental results, we note the
following observations. First, similar to our approach, genZiel is based on
Zielonka’s algorithm. However, it solves one centralized cooperative game for
the conjunction of all players objectives, while our approach solves zero-sum
games locally only for the local objectives, allowing objectives and strategies
to be kept mostly private. Second, genZiel only outputs a single cooperative
strategy profile after termination. While this prevents the usage of strategies
in a fault-tolerant fashion (as exemplified in Section 7.4), it also implies that
genZiel needs to recompute a new strategy profile whenever a new specifi-
cation arises, without re-using any information from previous computations.
Third, while we have already compared the one-sided version of our tool, called
PeSTel with genZiel for a single zero-sum generalized parity game in [6], where
our method was (in comparison to genZiel) not complete, we note that in the
setting presented in this paper, both CoSMo and genZiel are sound and com-
plete, i.e., return winning strategies iff there exists a cooperative solution to the
given two-objective game.

Finally, due to the nature of Zielonka’s algorithm and the centralized syn-
thesis within genZiel, the latter tool terminates very quickly if the cooperative
winning region is empty. While this could be added as a pre-processing step,
this is not yet true for CoSMo, as its computations are decentralized. As more
conjuncted specifications result in a highly likelyhood of the winning region to
be empty, it is not surprising that our comparative evaluation becomes some-
what meaningless if too many objectives are added. In order to separate the

33



Figure 10: Experimental results over 2244 games with multiple parity objec-
tives comparing the performance of our tool CoSMo (indicated by blue circles)
against the state-of-the-art tool for solving games with multiple parity objectives
genZiel [14] (indicated by red squares). Data points give the average execution
time (in ms) over all instances with the same number of parity objectives when
the objectives are added incrementally one-by-one.

effect of (i) the increased number of re-computation and (ii) the shrinking of the
winning region, induced by an increased number of incrementally added objec-
tives, we consider a slightly more elaborate case-study compared to [6]. Instead
of blindly adding more and more (randomly generated) parity objectives, we
allow objectives to disappear again after some time (which is also very natural
in the robotic context discussed in Section 7.1).

Benchmark generation. We have generated 2244 benchmarks from the
games used for the Reactive Synthesis Competition (SYNTCOMP) [20] by
adding randomly generated parity objectives to given parity games. The ran-
dom generator takes two parameters: game graph G and maximum priority m;
and then it generates a random parity objectives with maximum priority m as
follows: 50% of the vertices in G are selected randomly, and those vertices are
assigned priorities ranging from 0 to m (including 0 and m) such that 1/m-th
(of those 50%) vertices are assigned priority 0 and 1/m-th are assigned priority
1 and so on. The rest 50% are assigned random priorities ranging from 0 to m.
Hence, for every priority, there are at least 1/(2m)-th vertices (i.e., 1/m-th of
50% vertices) with that priority.

Comparative evaluation. All experiments were performed on a computer
equipped with Apple M1 Pro 8-core CPU and 16GB RAM. We performed two
kinds of experiments.

First, we solved the benchmarks by adding the objectives incrementally one-
by-one, i.e., we solved the game with ℓ objectives, then we added one more ob-
jective for Player 1 and solved it again, and so on. The results are summarized in
Fig. 10. We see that for a low number of objectives, the negotiation of contracts
in a distributed fashion by CoSMo adds computational overhead compared to
genZiel, which reduces when more objectives are added. However, as more ob-
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Figure 11: Experimental results comparing the performance of our tool CoSMo
(indicated by blue circles) against the state-of-the-art tool for solving games with
multiple parity objectives genZiel [14] (indicated by red squares) for games with
either 5 (left) or 6 (right) long-term objectives with one temporary objective
added (and removed again) in each iteration. Data points give the average
execution time (in ms) over all instances with the same number of iterations.

jectives are added the chance of the winning region to become empty increases.
Further, typically more and more conflicts arise if more specifications are com-
bined so that CoSMo needs to recompute more often. This results in both lines
to eventually become closer again. Nevertheless, we want to emphasize that this
experiment also shows that even though CoSMo performs strategy computations
in a decentralized manner and computes strategy templates instead of a single
strategy profile, it shows similar and often superior performance compared to
the highly optimized and centralized genZiel algorithm.

Second, in order to rule out the competing effect of an empty winning re-
gion when too many objectives are added (given genZiel a clear advantage,
as discussed above), we considered benchmarks which have a fixed number of
long-term objectives, and then we iteratively add just one temporary objective.
The results are summarized in Fig. 11 when the number of long-term objectives
are 5 (left) and 6 (right), and we have added one temporary objective in each
iteration, after removing the temporal objective (along with all its templates)
from the previous iteration. We see that in this scenario the advantage of CoSMo
to avoid re-computations whenever no conflicts arrise is present more frequently,
showing that the gap between the performance of both tools increases with the
number of new specifications.

7.4 Fault-Tolerant Strategy Adaptation
While the previous sections outline the computational tractability of our de-
centralized, negotiation-based synthesis framework, this section shows the ad-
ditional benefit obtained by using strategy templates within control implemen-
tations during runtime.

As already discussed in Example 27, controlled technical components might
face restrictions in their moves during runtime (e.g., due to blocked pathways
or miss-function of motors on certain wheels within the robot example). These
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restrictions are generally called actuator faults in the control community.
Intuitively, the permissiveness of our strategy templates allows a controller

to be more robust against actuator faults, by offering more choices to handle
unavailable strategy choices.

The simplest instance of this problem is given if a certain set of actuators
is known to possibly become persistently unavailable, i.e. certain edges from
player 0 vertices will potentially disappear permanently. Then such faults can
simply be modelled as additional safety specifications over the systems. Sup-
pose F is a subset of Player 0 edges (analogous for Player 1), such that edges
from F may disappear during runtime. Then using the CheckTemplate pro-
cedure, Player 0 can check if their existing templates from a csm conflicts with
Λunsafe(F). If there are no conflicts, Player 0 can simply switch to another
strategy using the ExtractStrategy procedure from Section 6.3 under the
added safety template. If there are conflicts, both agents need to renegotiate
(using incremental negotiation and synthesis as in Algorithm 5).

In the above mentioned approach, the systems treats the potentially faulty
edges as unsafe edges and hence never takes such edges. In real-life, however,
it might not be known which actuators will fail – most of the time actually all
actuators might fail – making a worst-case analysis return no controller at all. It
is therefore often desirable to take favorable actions as long as they are actually
available. Formally, this scenario can be defined via a time-dependent graph
whose edges change over time, i.e., Et with E0 = E are the edges available
at time t ∈ N and F := {e ∈ E | e ̸∈ Et, for some t}. Given the original
game G = (G, Φ0, Φ1) with a compatible csm contract C we can easily modify
ExtractStrategy(G, Λ) to obtain a time-dependent strategy πg which reacts
to the unavailability of edges, i.e., at time t, πg takes an edge e ∈ Et\(S ∪
D) for all vertices without any live-group, and for the ones with live-groups,
it alternates between the edges satisfying the live-groups whenever they are
available, and an edge e ∈ Et\(S∪D) when no live-group edge is available. The
reader should notice that πg can be obtained in linear time.

The online strategy πg can be implemented even without knowing when
edges are available10, i.e., without knowing the time dependent edge sequence
{Et}t∈N up front. In this case πg is obviously winning in G = (G, Parity(P)) if
Ψ is conflict-free for G|E\F . If this is not the case, the optimal recomputation
is non-trivial and is out of scope of this paper. We can however collect the
vertices which do not satisfy the above property and alert the system engineer
that these vulnerable actuators require additional maintenance or protective
hardware. We have shown with experiments over a large benchmark set in11

[6], Sec. 6, that typically less then 5% of the vertices are vulnerable and, hence,
protecting them is typically reasonable in practice.

10We note that it is reasonable to assume that current actuator faults are visible to the
controller at runtime, see e.g. [35] for a real water gate control example.

11Although these experiments in [6] are done under adversarial Player 1, the trend remains
the same for our setting.
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8 Summary and Future Work
This paper provides a new framework for distributed, contract-based strategy
synthesis in two-objective parity games. The key idea of this framework, which
distinguishes it from existing works, lies in the use of strategy & assumption
templates which allow for easy adaptability both (i) during synthesis and (ii)
at runtime. This leads to a distributed algorithm which computes strategies lo-
cally, but still ensures completeness and guaranteed termination (given enough
computational resources). In particular, we have shown the effective applicabil-
ity of our method to synthesis problems in CPS design.

Arguably, the main draw-back of our method is its need to consider a com-
mon shared game graph, and hence imposes the requirement of full information,
which is not needed in other competing works. We leave the problem of uti-
lizing the adaptability and locality of templates for distributed synthesis under
partial observation for future work. While this setting clearly does not allow for
completness, we believe that in most scenarios where the resulting need for co-
operation is restricted to observable states (e.g., when robots are in each others
vicinity and know their respective location) our method will provide interesting
new solutions, in particular in the context of CPS design. Another interesting
direction is to explore the integration of qualitative objectives to pic strategies
from strategy templates after negotiation has terminated. Similarly, timing as-
pects both within the model or the specifications are interesting directions for
future work.

In summary, we believe that the use of templates provides a novel attack
angle for the problem of distributed synthesis which seems promising for many
problems in CPS design that require robustness and adaptation beyond what
can be provided by current reactive synthesis engines.
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A Additional Proofs for Section 5
A.1 Proof of Theorem 16
Theorem 16. Given a game graph G = (V = V0 ·∪ V1, E) with Büchi objective
Φi = □♢I for Player i, Algorithm 1 terminates in time O(m), where m is the
number of edges in the graph. Moreover, (Ψi, Φi) = BüchiTemp(G, I, i) is an
adequately permissive csm for Player i.

Proof. We first show that the algorithm terminates. We show that the procedure
Live terminates. Since in Line 3, the game graph is restricted to cooperative
Büchi winning region Z∗, we need to show that in the procedure, U = V = Z∗

eventually. Let Ul be the value of U after the l-th iteration of Live(G, I, i),
with U0 = I. Since vertices are only added to U (and never removed) and there
are only finitely many vertices, U0 ⊆ U1 ⊆ . . . ⊆ Um−1 = Um for some m ∈ N.

Since the other direction is trivial, we show that Z∗ ⊆ Um. Suppose this is
not the case, i.e. v ∈ Z∗\Um. Since v ∈ Z∗, both players cooperately can visit
I from v. Then there is a finite path ρ = v = v0v1 · · · vk for vk ∈ I. But since
I = U0 ⊆ Um, but v ̸∈ Um, ρ enters Um eventually. Let l be the highest index
such that vl ̸∈ Um but vl+1 ∈ Um.

Then if vl ∈ Vi, it would be added to U in Line 12 of (m + 1)-th iteration,
i.e. Um ̸= Um+1. Else if vl ∈ V1−i, it would be added to U in Line 15 of
(m + 1)-th iteration since vl+1 ∈ Um, i.e. Um ̸= Um+1. In either case, we get a
contradiction. Hence, v ∈ Um, implying Z∗ = Um. Hence the procedure Live,
and hence Algorithm 1, terminates.

We now show that the csm obtained is adequately permissive for Player i.
▶ (ii) Implementability: We first show that ⟨⟨1 − i⟩⟩Ψ = V , but since the
forward containment is trivial, we show ⟨⟨1− i⟩⟩Ψ ⊇ V . We note that in Line 13,
C ⊆ V1−i: since if v ∈ Vi ∩ C, then there is an edge from v to U , and hence
v ∈ U already by Line 10 and Line 12. Then since the source of live groups
(which are only added in Line 14) is a subset of Player 1 − i’s vertices, then if
Player 1− i plays one of these live group edges infinitely often, when the sources
are visited infinitely often, Player i can not falsify it, and hence ⟨⟨1− i⟩⟩Ψ ⊇ V .

Analogously, ⟨⟨i⟩⟩Π ⊇ V , since in Line 11, live group edges are added only
from Player i’s vertices, by definition of Attri.
▶ (i) Sufficiency: Again, let Ul and m be as defined earlier. Define Xl :=
Ul\Ul−1 for 1 ≤ l ≤ m, and X0 = U0 = I. Then every vertex v ∈ Z∗ is in Xl

for some l ∈ [0; m].
Consider the strategy πi for Player i: at a vertex v ∈ Vi ∩ Xl, she plays

the attri strategy to reach Ul−1, and for other vertices, she plays arbitrarily. It
is easy to observe that πi follows Φ. Then we show that for any Player 1 − i
strategy πj following Ψ, the resulting πiπj-play ρ from any v0 ∈ Z∗ belongs to
L(Φ).

Let v0 ∈ Z∗ = ⟨⟨0, 1⟩⟩□♢I (from Line 1). Let πj be an arbitrary strategy
that follows Ψ, and ρ = v0v1 . . . be an arbitrary πiπj-play. Then ρ ∈ L(Ψ). It
remains to show that ρ ∈ L(Φ).
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Suppose ρ ̸∈ L(Φ), i.e. inf(ρ) ∩ I = ∅. Note that ρ never leaves Z∗ due to
safety assumption template. Then consider the set R of vertices which occur
infinitely often in ρ. Let 0 ≤ k ≤ m be the least index such that R ∩Xk ̸= ∅.
From the assumption, k > 0. Let v ∈ R ∩Xk.

If v ∈ Vi, by the definition of πi, every time ρ reaches v, it must reach Uk−1,
contradicting the minimality of k. Else if v ∈ V1−i, then by the definition of
Ha

ℓ , infinitely often reaching v implies infinitely often reaching attri(Uk−1). But
again the play visits Uk−1 by arguments above, giving the contradiction.

In any case, we get a contradiction, implying that the assumption is wrong.
Hence, ρ ∈ L(Φ), and v0 ∈ ⟨⟨i⟩⟩(Ψ, Π).
▶ (iii) Permissiveness: Now for the permissiveness of the csm, let ρ ∈ L(Φ).
Suppose that ρ ̸∈ L(Ψ).

Case 1: If ρ ̸∈ L(Λunsafe(Sa)), then some edge (v, v′) ∈ Sa is taken in ρ.
Then after reaching v′, ρ still satisfies the Büchi condition. Hence, v′ ∈ Z∗ =
⟨⟨0, 1⟩⟩□♢I, but then (v, v′) ̸∈ Sa, which is a contradiction.

Case 2: If ρ ̸∈ L(Λlive(Ha
ℓ )), then ∃Hi ∈ Ha

ℓ , such that ρ visits src(Hi) = Cl

(for the value of C after l-th iteration) infinitely often, but no edge in Hi is taken
infinitely often. Then since the edges in Hi lead to attrUl−1

i (), the play must
stay in either Cl or goes to Uk \ U l for some k > l + 1. In the first case, since
I ∩Z∗ ⊆ U0, ρ ̸∈ Φ, which would be a contradiction. On the other hand, in the
second case, after going to Uk \U l, ρ has an edge going from some v ∈ Z∗\Uk−1

to some v′ ∈ U l (else I ∩Z∗ ⊆ U0 ⊆ U l can not be reached). But then v would
be added to Uk+1, which contradicts to the fact that k > l + 1. In either case,
we get a contradiction, so ρ ∈ L(Ψ).
▶ Complexity analysis. The computation of cooperative winning region can be
done in time linear in number of edges, i.e. O(m). The procedure Livetakes
O(m) time. Hence, resulting in time linear in number of edges in the game
graph.

A.2 Proof of Theorem 17
Theorem 17. Given a game graph G = (V = V0 ·∪ V1, E) with co-Büchi ob-
jective Φi = ♢□I for Player i, Algorithm 2 terminates in time O(m), where m
is the number of edges. Furthermore, (Ψi, Πi) := coBüchiTemp(G, I, i) is an
adequately permissive csm for Player i.

Proof. We first show that the algorithm terminates. We show that the procedure
CoLive terminates when all the vertices of the game graph are cooperatively
winning for the co-Büchi objective Φi = ♢□I, since we restrict the graph to the
cooperative winning region in Line 3. We claim that U = V = Z∗, eventually.

Let Ul be the value of the variable U after l-th iteration of the while loop,
with U0 = Safety0,1(G, I). Since vertices are only added in U , U0 ⊆ U1 ⊆
. . . ⊆ Uk = Uk+1 for some k ∈ N. Suppose V ̸⊆ Uk, then there exists v ∈ V \Uk.
Since v ∈ Z∗, there is a ρ = vv1v2 . . . from v to U0 and stays there forever.
Then consider the largest index m such that vm ̸∈ Uk, but vm+1 ∈ Uk. Note
that this index exists because U0 ⊆ Uk. But then vm ∈ preG(Uk), and hence
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Uk ̸= Uk+1, which is a contradiction. Hence, our assumption that v ̸∈ Uk is
incorrect, implying that U = V eventually.

Now we show that Ψ is an adequately permissive assumption. Again, let
Ul and m be as defined earlier. Define Xl := Ul\Ul−1 for 1 ≤ l ≤ m, and
X0 = U0 = I. Then every vertex v ∈ Z∗ is in Xl for some l ∈ [0; m].

We again prove (i)-(iii) of Definition 12 separately and finally comment on
the complexity of coBüchiTemp.
▶ (ii) Implementability: We again observe that the sources of the co-live
edges in Da are Player 1 − i’s vertices and hence can be easily implemented
by Player 1− i, by taking those edges only finitely often. Similarly, the sources
of the co-live edges in Ds are Player i’s vertices, giving the implementability of
Π by Player i.
▶ (i) Sufficiency: Consider the following strategy πi for Player i: at a vertex
v ∈ X0∩Vi, she takes edge (v, v′) ∈ E such that v′ ∈ X0, at a vertex v ∈ Xl∩Vi,
for l ∈ [1; m], she plays the edges not in Ss to reach Ul−1 (such edges exist by
definition of Ul’s), and for all other vertices, she plays arbitrarily.

Let v0 ∈ Z∗ = ⟨⟨0, 1⟩⟩♢□I (from Line 1). Let πj be an arbitrary strategy
of Player 1 − i following Ψ, and ρ = v0v1 . . . be an arbitrary πiπj-play. Then
ρ ∈ L(Ψ). It remains to show that ρ ∈ L(Φ).

Since ρ ∈ L(Λunsafe(S)) and by definition of πi, vi ∈ Z∗ for all i. Now
suppose ρ ̸∈ L(Φ), i.e. inf(ρ) ∩ (Z∗ \ I) ̸= ∅. Let u ∈ Z∗ \ I. Then to reach
u infinitely often some edge from Da must be taken infinitely often in ρ, since
πi makes the play go towards I. But this contradicts the fact that ρ ∈ L(Ψ).
Hence, ρ ∈ L(Φ).
▶ (iii) Permissiveness: Let ρ = v0v1 . . . such that v0 ∈ Z∗ and ρ ∈ L(Φ).
Suppose that ρ ̸∈ L(Ψ).

Case 1: If ρ ̸∈ Λunsafe(Sa). Then the same argument as in the Büchi case
gives a contradiction.

Case 2: If ρ ̸∈ Λcolive(Da), that is ∃(u, v) ∈ Da, such that ρ takes (u, v)
infinitely often. By the definition of Da, v ∈ Z∗ \ U0, implying v ̸∈ I, since if
v ∈ I then it would have been in U0. Hence, ρ ̸∈ L(Φ), giving a contradiction.
So ρ ∈ L(Ψ).
▶ Complexity analysis. Very similar to that for Büchi objectives and therefore
omitted.

A.3 Proof of Theorem 18
Theorem 18. Given a game graph G = (V = V0 ·∪ V1, E) with parity objective
Φi = Parity(P) for Player i where P is some priority function, Algorithm 3 termi-
nates in time O(n4), where n is the number of vertices in the graph. Moreover,
with (·, ·, Ψi, Πi) := ParityTemp(G,P, i) the tuple (Ψi, Πi) is an adequately
permissive csm for Player i.

Proof. The termination of the algorithm follows from the termination of the
ComputeSets procedure. Note that if the graph is either empty or if every
vertex has priority 0, then the procedure terminates trivially. Now, in every
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iteration of the procedure, either at least a vertex is removed (if d is odd, then
W¬D has fewer vertices) or the number of priority is reduced (if d is even, then
G |W¬D

has fewer priorities). Then, after finitely many iterations, Compute-
Sets terminates.

We prove sufficiency, implementability and permissiveness below and then
analyze the complexity of Algorithm 3.
▶ (ii) Implementability: We note that the assumption template Ψ is imple-
mentable by Player 1 − i due to the implementability of safety, liveness and
co-liveness assumptions: if for a conditional live group, the corresponding ver-
tex set is reached infinitely often, and also the sources of live groups are visited
infinitely often, Player 1 − i can choose the live group edges, since they are
controlled by Player 1− i. Moreover, there won’t be any conflict due to the live
groups as there can be no unsafe or co-live edge that is included in a conditional
live group by construction. Analogously, Π is implementable by Player i.
▶ (i) Sufficiency: We give a strategy for Player 0 depending on the parity
of the highest priority d occurring in the game and show that it is winning
under assumption Ψ for all vertices in the cooperative winning region Z∗ =
Parity(G,P). The strategy uses finite memory and the winning strategies for
Player 1 in subgames with Büchi (Theorem 16) and co-Büchi (Theorem 17)
objectives.

By Büchi(G, U), we denote the game (G,□♢U), and by co-Büchi(G, U), we
denote the game (G,♢□U). We also use the definitions of d, Wd and W¬d, as
in the Algorithm 3. Consider the following strategy π0 of Player 0:

▷ d is odd: If the play is in V \W¬d, then Player 0 plays the co-Büchi(G, W¬d)
winning strategy to eventually end up in W¬d. If the play is in W¬d ∩ Z∗,
Player 0 plays the recursive winning strategy for (G|W¬d

, Parity(P)). Other-
wise, she plays arbitrarily.

▷ d is even: If the play is in Wd, Player 0 switches its strategy among
Büchi(G, Wd), Büchi(G, Wd∪Wd−2), . . ., Büchi(G, Wd∪Wd−2∪· · ·W2) winning
strategies, i.e., for each vertex, she first uses the first strategy in the above
sequence, then when that vertex is repeated, she uses the second strategy for
the next move, and keeps switching to the next strategies for every move from
the same vertex. If the play is in V \Wd ∩ Z∗, then she plays the recursive
winning strategy for (G|W¬d

, Parity(P)), where P is modified again as in Line 18.
Otherwise, she plays arbitrarily.

We prove by induction, on the highest occurring priority d, that the above
constructed strategy π0 for Player 0 ensures satisfying the parity objective on
the original game graph if the assumption Ψ is satisfied. For the base case, when
d = 0, the constructed strategy is trivially winning, because the only existing
color is even. Now let the strategy be winning for d− 1 ≥ 0.

Let v0 ∈ Z∗ = Parity(G,P). Let π1 be an arbitrary strategy of Player 1
following Ψ, and ρ = v0v1 . . . be an arbitrary π0π1-play. Then ρ ∈ L(Ψ).
We need to show that ρ is winning, i.e., ρ ∈ L(Φ). Note that by the safety
assumption and by the construction of π0, ρ stays in the vertex set Z∗.

Case 1: If d is odd, then since at vertices in V \W¬d, Player 0 plays to even-
tually stay in W¬d, the play can not stay in W¬d without violating Λcolive(D).
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And if ρ eventually stays in W¬d, then by the induction hypothesis, it is winning,
since W¬d ∩ P d = ∅.

Case 2: If d is even, then if the play stays in Wd eventually, and if the play vis-
its vertices of an odd priority i infinitely often, then π1 satisfies Live(G, P i+1 ∪
P i+2 ∪ · · · ∪P d, i) by the conditional live group assumption. Note that Player 0
plays the Büchi(G, P i+1 ∪P i+2 ∪ · · · ∪P d) winning strategy for infinitely many
moves from every vertex occurring in ρ. Since π1 satisfies Live(G, P i+1∪P i+2∪
· · · ∪ P d, i), after these moves as well, the play visits (P i+1 ∪ P i+2 ∪ · · · ∪ P d).
Hence the play will visit vertices of an even color > i infinitely often, implying
that ρ is winning. Else if ρ stays in V \Wd eventually, then it is winning by
induction hypothesis. This gives the sufficiency of the csm computed by the
algorithm.
▶ (iii) Permissiveness: Now for the permissiveness of the csm, let ρ ∈ L(Φ).
We prove the claim by contradiction and suppose that ρ ̸∈ L(Ψ).

Case 1: If ρ ̸∈ Λunsafe(S). Then some edge (v, v′) ∈ S is taken in ρ. Then
after reaching v′, ρ still satisfies the parity objective. Hence, v′ ∈ Z∗, but then
(v, v′) ̸∈ S, which is a contradiction.

Case 2: If ρ ̸∈ Λcond(H). Then for some even j and odd i < j, ρ visits
Wj∩P i infinitely often but does not satisfy the live transition group assumption
Live(G′, P i+1∪P i+2 · · ·∪P j), i), where G′ = G|Wj

. Due to the construction of
the set Wj , it is easy to see that once ρ visits Wj , it can never visit V \Wj . Hence,
eventually ρ stays in the game G′ and visits P i infinitely often. Since ρ ∈ L(Φ),
it also visits some vertices of some even priority > i infinitely often, and hence, it
satisfies □♢(P i+1∪P i+3 · · ·∪P j)) in G′. Since Live(G′, P i+1∪P i+3 · · ·∪P j , i)
is a permissive assumption for (G′,□♢(P i+1 ∪ P i+3 · · · ∪ P j)), the play ρ must
satisfy Live(G′, P i+1 ∪ P i+3 · · · ∪ P j , i), which contradicts the assumption.

Case 3: If ρ ̸∈ Λcolive(D). Then for some odd i an edge (u, v) ∈ CoLive(G, W¬i, i)
is taken infinitely often. Then the vertex v ∈ V \W¬i is visited infinitely often.
Note that ρ can not be winning by visiting an even j > i, since otherwise v
would have been in Büchi(G, P j) as from v we can infinitely often see j, and
hence would have been removed from G for the next recursive step. Hence, ρ
visits some even j < i infinitely often, i.e. i is not visited infinitely often. Then
v would be in W¬d, which is a contradiction.
▶ Complexity analysis. We note that the cooperative parity game can be solved
in time O((n + m) log d), where n, m and d are the number of of vertices, edges
and priorities respectively: consider the graph where pz owns all the vertices,
find the strongly connected components in time O(n + m), check which of these
components have a cycle with highest priority even by reduction to even-cycle
problem [21]. Then ComputeSets takes time O(n2) for the even case, but is
dominated by O(n3) time for the odd case. For every priority, ComputeSets
is called once, that is at most 2n calls in total. Then the total running time of
the algorithm is O((n + m) log d + 2n.(n3)) = O(n4).

B Additional Experimental Results
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maze two-objective game mean-time (ms)
size of
grid

average
#walls

average
#corridors

average
#vertices

average
#edges

Büchi
objectives

parity
objectives

2×2 1 0 12 24 0 33
3×3 2 1 144 405 14 4835
4×4 5 2 437 1332 176 97466
5×5 8 5 1127 3670 1492 1164359
5×6 10 6 1603 5318 3774 3999150
5×7 12 7 2152 7212 8060 -
5×8 14 9 2877 9699 16718 -
5×9 14 11 3693 12645 32659 -
5×10 11 14 4153 15132 58238 -

Table 1: Table summarizing parts of the experiments for 2357 benchmark in-
stances.

mean-time
(ms)

non-timeout
mean-time (ms)

% of instances
timeouts (300s)

% of instances
unrealizable

CoSMo 29826 29826 0 1.67
Agnes 54772 1750 13.34 36.67

Table 2: Summary of the experimental results for CoSMo and Agnes over the
120 instances of factory benchmarks.

size of grid 3 × 3 3 × 4 3 × 5 4 × 4 3 × 6 4 × 5 4 × 6 5 × 5 5 × 6
CoSMo mean-time 221 968 4133 4571 12133 19072 54612 65475 172555
Agnes mean-time 30024 90056 30179 90294 60159 31164 32304 91829 36941
Agnes mean-time
(non-timeouts) 27 81 199 420 199 1294 2560 2613 7712

Table 3: Average executation time (ms) of CoSMo and Agnes for the 120 instances
of factory benchmarks with a fixed size grid.
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Table 4: Summary of all 120 benchmark instances considered for comparing
CoSMo and Agnes

maze CoSMo Agnes
#columns #rows #walls realizable? time realizable? time

3 3 1 1 214 0 70
3 3 1 1 213 0 73
3 3 2 1 112 0 60
3 3 1 1 214 1 0
3 3 1 1 277 1 12
3 3 2 0 36 1 0
3 3 2 1 123 1 15
3 3 2 1 478 1 13
3 3 2 1 385 1 0
3 3 1 1 167 * 300000
3 4 1 1 956 0 130
3 4 1 1 935 0 125
3 4 3 1 1261 0 146
3 4 3 1 200 0 139
3 4 1 1 1361 1 29
3 4 3 1 244 1 0
3 4 3 1 1305 1 0
3 4 1 1 1424 * 300000
3 4 1 1 941 * 300000
3 4 3 1 980 * 300000
4 3 1 1 1052 * error
4 3 1 1 1025 * error
4 3 1 1 1017 * error
4 3 1 1 1059 * error
4 3 1 1 1017 * error
4 3 3 1 248 * error
4 3 3 1 1438 * error
4 3 3 1 945 * error
4 3 3 1 952 * error
4 3 3 1 1005 * error
3 5 1 1 3522 0 311
3 5 1 1 4917 0 303
3 5 1 1 4023 0 692
3 5 3 1 4875 0 262
3 5 1 1 4046 1 1
3 5 3 1 5213 1 57
3 5 3 1 4810 1 59
3 5 3 1 4882 1 54
3 5 3 1 7506 1 55
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3 5 1 1 3504 * 300000
5 3 1 1 3739 * error
5 3 1 1 3817 * error
5 3 1 1 3715 * error
5 3 1 1 3813 * error
5 3 1 1 3693 * error
5 3 3 1 3382 * error
5 3 3 1 3417 * error
5 3 3 1 3108 * error
5 3 3 1 3339 * error
5 3 3 1 3347 * error
4 4 1 1 4874 0 609
4 4 1 1 4826 0 614
4 4 1 1 4885 0 608
4 4 1 1 4870 0 607
4 4 4 1 5936 0 369
4 4 4 1 1438 1 68
4 4 4 1 1251 1 66
4 4 1 1 4850 * 300000
4 4 4 1 5892 * 300000
4 4 4 1 6888 * 300000
3 6 1 1 10656 0 639
3 6 4 1 13848 0 656
3 6 1 1 11545 1 0
3 6 1 1 14357 1 102
3 6 1 1 11907 1 103
3 6 4 1 14004 1 96
3 6 4 1 13552 1 0
3 6 4 0 1 1 0
3 6 1 1 10374 * 300000
3 6 4 1 21091 * 300000
4 5 1 1 20451 0 1597
4 5 1 1 16861 0 1604
4 5 1 1 17695 0 1611
4 5 1 1 18732 0 1794
4 5 1 1 17732 0 1593
4 5 5 1 22110 0 966
4 5 5 1 19974 0 1219
4 5 5 1 29738 0 1133
4 5 5 1 18549 1 131
4 5 5 1 21562 * 300000
5 4 1 1 17837 * error
5 4 1 1 17875 * error
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5 4 1 1 17778 * error
5 4 1 1 18008 * error
5 4 1 1 17904 * error
5 4 5 1 23192 * error
5 4 5 1 17127 * error
5 4 5 1 16525 * error
5 4 5 1 15058 * error
5 4 5 1 16746 * error
4 6 1 1 46419 0 3582
4 6 1 1 59717 0 3560
4 6 1 1 46803 0 3605
4 6 1 1 48283 0 3594
4 6 1 1 59657 0 3567
4 6 6 1 50641 0 4460
4 6 6 1 61846 1 223
4 6 6 1 66552 1 223
4 6 6 1 58691 1 226
4 6 6 1 47512 * 300000
5 5 1 1 61049 0 4358
5 5 1 1 58548 0 4381
5 5 1 1 58346 0 4373
5 5 1 1 56358 0 4415
5 5 6 1 88741 1 253
5 5 6 1 52986 1 257
5 5 6 1 86862 1 255
5 5 1 1 57913 * 300000
5 5 6 1 81961 * 300000
5 5 6 1 51987 * 300000
5 6 1 1 158670 0 9538
5 6 1 1 178930 0 9380
5 6 1 1 158885 0 9504
5 6 1 1 167700 0 9713
5 6 1 1 151135 0 9417
5 6 8 1 174292 0 6441
5 6 8 1 183375 0 3379
5 6 8 1 197101 0 11602
5 6 8 1 176039 1 440
5 6 8 1 179430 * 300000

50


	Introduction
	Preliminaries
	Contract-Based Distributed Synthesis
	Assume-Guarantee Contracts
	iRmaC-Specifications
	Problem Statement and Outline

	Characterizing Contracts via Templates
	Illustrative Example
	Permissive Templates
	Contracted Strategy-Masks
	Representing Contracts via csm's

	Computing Adequately Permissive csm's
	Set Transformers
	Safety Games
	Büchi games
	co-Büchi games
	Parity games

	Negotiation for Compatible csm's
	Checking Compatibility
	The Negotiation Algorithm
	Strategy Extraction

	Applications within Cyber-Physical Systems
	Logical Controller Synthesis
	Factory Benchmark
	Experimental Results

	Incremental Synthesis and Negotiation
	Experimental Evaluation

	Fault-Tolerant Strategy Adaptation

	Summary and Future Work
	Additional Proofs for section:template extraction
	Proof of thm:Buechi assumptions
	Proof of thm:coBuechi assumptions
	Proof of thm:parity assumption

	Additional Experimental Results

