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Developmental changes in exploration 
resemble stochastic optimization

Anna P. Giron1,2,12, Simon Ciranka    3,4,12, Eric Schulz    5, Wouter van den Bos6,7, 
Azzurra Ruggeri    8,9,10, Björn Meder    8,11 & Charley M. Wu    1,3 

Human development is often described as a ‘cooling off’ process, analogous 
to stochastic optimization algorithms that implement a gradual reduction 
in randomness over time. Yet there is ambiguity in how to interpret this 
analogy, due to a lack of concrete empirical comparisons. Using data from 
n = 281 participants ages 5 to 55, we show that cooling off does not only 
apply to the single dimension of randomness. Rather, human development 
resembles an optimization process of multiple learning parameters, for 
example, reward generalization, uncertainty-directed exploration and 
random temperature. Rapid changes in parameters occur during childhood, 
but these changes plateau and converge to efficient values in adulthood. 
We show that while the developmental trajectory of human parameters is 
strikingly similar to several stochastic optimization algorithms, there are 
important differences in convergence. None of the optimization algorithms 
tested were able to discover reliably better regions of the strategy space than 
adult participants on this task.

Human development has fascinated researchers of both biological 
and artificial intelligence alike. As the only known process that reliably 
produces human-level intelligence1, there is broad interest in charac-
terizing the developmental trajectory of human learning2–4 and under-
standing why we observe specific patterns of change5.

One influential hypothesis describes human development as a 
‘cooling off’ process4,6,7, comparable to simulated annealing (SA)8,9. SA is 
a stochastic optimization algorithm named in analogy to a piece of metal 
that becomes harder to manipulate as it cools off. Initialized with high 
temperature, SA starts off highly flexible and likely to consider worse 
solutions as it explores the optimization landscape. But as the tempera-
ture cools down, the algorithm becomes increasingly greedy and more 
narrowly favours only local improvements, eventually converging on 
an (approximately) optimal solution. Algorithms with similar cool-
ing mechanisms, such as stochastic gradient descent and its discrete 

counterpart stochastic hill climbing (SHC) are abundant in machine 
learning and have played a pivotal role in the rise of deep learning10–13.

This analogy of stochastic optimization applied to human devel-
opment is quite alluring: young children start off highly stochastic 
and flexible in generating hypotheses4,14–16 and selecting actions17, 
which gradually tapers off over the lifespan. This allows children to 
catch information that adults overlook18, and learn unusual causal 
relationships adults might never consider4,15. Yet this high variability 
also results in large deviations from reward-maximizing behaviour3,19–22, 
with gradual improvements during development. Adults, in turn, are 
well calibrated to their environment and quickly solve familiar prob-
lems, but at the cost of flexibility, since they experience difficulty 
adapting to novel circumstances23–26.

While intuitively appealing, the implications and possible bound-
aries of the optimization analogy remain ambiguous without a clear 
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Goals and scope
In this work, we aim to resolve ambiguities around commonly used anal-
ogies to stochastic optimization in developmental psychology. While 
past work has compared differences in parameters between discrete age 
groups in both structured27,30 and unstructured reward domains19,32,33, 
here we characterize the shape of developmental change across the 
lifespan, from ages 5 to 55. Instead of relying on verbal descriptions, we 
use formal computational models to clarify which cognitive processes 
are being tweaked during development through explicit commitments 
to free parameters. We then directly compare the trajectory of various 
optimization algorithms to age differences in those parameters, allow-
ing us to finally put the metaphor to a direct empirical test.

Behavioural analyses show that rather than a uni-dimensional 
transition from exploration to exploitation, human development 
produces improvements in both faculties. Through computational 
models, we find simultaneous changes across multiple dimensions of 
learning, starting with large tweaks during childhood and plateauing in 
adulthood. We then provide direct empirical comparisons to multiple 
optimization algorithms as a meta-level analysis to describe changes 
in model parameters over the lifespan, where the best-performing 
algorithm is the most similar to human development. However, we also 
find notable differences in convergence between human development 
and algorithmic optimization. Yet, this disparity fails to translate into 
reliable differences in performance, suggesting a remarkable efficiency 
of human development.

Results
We analyse experimental data from n = 281 participants between the 
ages of 5 and 55, performing a spatially correlated multi-armed bandit 
task that is both intuitive and richly complex (Fig. 1a)38. Participants 
were given a limited search horizon (25 choices) to maximize rewards 
by either selecting an unobserved or previously revealed tile on an  
8 × 8 grid. Each choice yielded normally distributed rewards, with 
reward expectations correlated based on spatial proximity (Fig. 1b), 
such that tiles close to one another tended to have similar rewards. 
Since the search horizon was substantially smaller than the number of 
unique options, generalization and efficient exploration were required 
to obtain high rewards.

Our dataset (Fig. 1c) combines openly available data from two 
previously published experiments27,30 targeting children and adult 
participants (n = 52 and n = 79, respectively; after filtering), along with 
new unpublished data (n = 150) targeting the missing gap of adoles-
cents. Although experimental designs differed in minor details (for 
example, tablet versus computer; Methods), the majority of differences 
were removed by filtering out participants (for example, assigned to a 

definition of the process and a specification of what is being opti-
mized. As a consequence, there is a need for a direct empirical test 
of the similarities and differences between human development and 
algorithmic optimization.

Perhaps the most direct interpretation is to apply cooling off to 
the single dimension of random decision temperature, controlling the 
amount of noise when selecting actions or sampling hypotheses6,16,27, 
although alternative implementations are also possible28,29. Evidence 
from experimental studies suggest that young children are harder to 
predict than adults17,30, implying greater stochasticity, which is ampli-
fied in neurodevelopmental disorders such as attention deficit hyper-
activity disorder28 and impulsivity31. However, this interpretation is only 
part of the story, since developmental differences in choice variability 
can be traced to changes affecting multiple aspects of learning and 
choice behaviour. Aside from a decrease in randomness, development 
is also related to changes in more systematic, uncertainty-directed 
exploration19,27,32, which is also reduced over the lifespan. Additionally, 
changes in how people generalize rewards to novel choices27 and the 
integration of new experiences33,34 affect how beliefs are formed and 
different actions are valued, also influencing choice variability. In sum, 
while decision noise certainly diminishes over the lifespan, this is only 
a single aspect of human development.

Alternatively, one could apply the cooling off metaphor to an opti-
mization process in the space of learning strategies, which can be char-
acterized across multiple dimensions of learning. Development might 
thus be framed as parameter optimization, which tunes the parameters 
of an individual’s learning strategy, starting off by making large tweaks 
in childhood, followed by gradually lesser and more-refined adjust-
ments over the lifespan. In the stochastic optimization metaphor, 
training iterations of the algorithm become a proxy for age.

This interpretation connects the metaphor of stochastic optimi-
zation with Bayesian models of cognitive development, which share 
a common notion of gradual convergence35,36. In Bayesian models 
of development, individuals in early developmental stages possess 
broad priors and vague theories about the world, which become 
refined with experience35. Bayesian principles dictate that, over 
time, novel experiences will have a lesser impact on future beliefs or 
behaviour as one’s priors become more narrow36,37. Observed over 
the lifespan, this process will result in large changes to beliefs and 
behaviour early in childhood and smaller changes in later stages, 
implying a similar developmental pattern as the stochastic optimi-
zation metaphor. In sum, not only might the outcomes of behaviour 
be more stochastic during childhood, but the changes to the param-
eters governing behaviour might also be more stochastic in earlier 
developmental stages.
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different class of reward environments). Reliability tests revealed no 
differences in performance, model accuracy and parameter estimates 
for overlapping age groups across experiments (all P > 0.128 and Bayes 
Factor (BF) < 0.73; Supplementary Fig. 1 and Supplementary Table 1). 
Additionally, robust model and parameter recovery (Supplementary 
Figs. 4–6) provide high confidence in our ability to capture the key 
components of learning across the lifespan.

Behavioural analyses
We first analysed participant performance and behavioural patterns of 
choices (Fig. 2). We treat age as a continuous variable when possible, 

but also discretize participants into seven similarly sized age groups 
(n ∈ [30, 50], see Supplementary Table 4 for exact sample sizes). These 
behavioural results reveal clear age-related trends in learning and explo-
ration captured by our task.

Performance. Participants monotonically achieved higher rewards 
as a function of age (Pearson correlation: r = 0.51, P < 0.001, BF > 100), 
with even the youngest age group (five-to-six year olds) strongly out-
performing chance (one-sample t test: t(29) = 5.1, P < 0.001, Cohen’s 
d = 0.9, BF > 100; Fig. 2a). The learning curves in Fig. 2b show aver-
age reward as a function of trial, revealing a similar trend, with older 
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Fig. 2 | Behavioural results. a, Mean reward across age groups. Each dot is 
one participant, Tukey boxplots showing median and 1.5 × interquartile range 
(IQR), with the white diamond indicating the group mean. The red dashed line 
indicates a random baseline (in all plots). The same colours are used to indicate 
age in all plots. b, Learning curves showing mean reward over trials, averaged 
across all rounds. Lines indicate group means, while the ribbons show the 95% 
CI. c, Learning curves showing maximum reward earned up until a given trial, 
averaged across all rounds. d, The number of unique options sampled per round 

as a function of age. Each dot is one participant, while the line and ribbon show 
a locally smoothed regression (±95% CI). e, The proportion of repeat, near 
(distance = 1) and far (distance > 1) choices as a function of age. Each dot indicates 
a group mean, while the error bars indicate the 95% CI. f, Search distance as a 
function of the previous reward value. Each line is the fixed effect of a hierarchical 
Bayesian regression (Supplementary Table 3) with the ribbons indicating 95% CI. 
Each dot is the mean of the raw data.
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participants displaying steeper increases in average reward. Notably, 
the two youngest age groups (five-to-six and seven-to-eight year olds) 
displayed decaying learning curves with decreasing average reward on 
later trials, suggesting a tendency to overexplore (supported by sub-
sequent analyses below). We did not find any reliable effect of learning 
over rounds (Supplementary Fig. 2).

We also analysed maximum reward (up until a given trial) as a 
measure of exploration efficacy, where older participants reliably dis-
covered greater maximum rewards (Kendall rank correlation: rτ = 0.23, 
P < 0.001, BF > 100) and showed steeper increases on a trial-by-trial 
basis (Fig. 2c). Thus, the reduction in the average reward acquired by 
the youngest age groups did not convert into improved exploration 
outcomes, measured in terms of maximum reward.

Behavioural patterns. Next, we looked at search patterns to better 
understand the behavioural signatures of age-related changes in 
exploration. The youngest participants (five-to-six year olds) sampled 
more unique options than chance (Wilcoxon signed-rank test: Z = −4.7, 
P < 0.001, r = −0.85, BF > 100), but also less than the upper-bound on 
exploration (that is, unique options on all 25 trials: Z = −4.1, P < 0.001, 
r = −0.76, BF > 100). The number of unique options decreased strongly 
as a function of age (rτ = −0.33, P < 0.001, BF > 100; Fig. 2d), consistent 
with the overall pattern of reduced exploration over the lifespan. Note 
that all participants were informed and tested about the fact they could 
repeat choices.

We then classified choices into repeat, near (distance = 1) and far 
(distance > 1), and compared this pattern of choices to a random base-
line (red dashed line; Fig. 2e). Five-to-six year olds started off with very 
few repeat choices (comparable to chance: Z = 0.9, P = 0.820, r = 0.17, 
BF = 0.27) and a strong preference for near choices (more than chance: 
Z = −4.6, P < 0.001, r = −0.84, BF > 100). Over the lifespan, the rate of 
repeat choices increased, while near decisions decreased, gradually 
reaching parity for 14–17 year olds (comparing repeat versus near: 
Z = −1.0, P = 0.167, r = −0.15, BF = 0.46) and remaining equivalent for all 
older age groups (all P > 0.484, BF < 0.23). In contrast, the proportion of 
far choices remained unchanged over the lifespan (rτ = −0.08, P = 0.062, 
BF = 0.48). These choice patterns indicate that even young children do 
not simply behave randomly, with the amount of randomness decreas-
ing over time. Rather, younger participants exploit past options less 
than older participants (repeat choices), preferring instead to explore 
unknown tiles within a local radius (near choices). While the tendency 
to prefer exploring near rather than far options gradually diminished 
over the lifespan, this preference for local search distinguished par-
ticipants of all age groups from the random model.

Lastly, we analysed how reward outcomes influenced search dis-
tance using a Bayesian hierarchical regression (Fig. 2f and Supplemen-
tary Table 3). This model predicted search distance as a function of the 
previous reward value and age group (including their interaction), with 
participants treated as random effects. This can be interpreted as a con-
tinuous analogue to past work using a win–stay lose–shift strategy17,38, 
and provides initial behavioural evidence for reward generalization. We 
found a negative linear relationship in all age groups, with participants 
searching locally following high rewards and searching further away 
after low rewards. This trend becomes stronger over the lifespan, with 
monotonically more negative slopes over the lifespan (Supplementary 
Table 3). While all age groups adapted their search patterns in response 
to reward, the degree of adaptation increased over the lifespan.

Behavioural summary. To summarize, younger children tended to 
explore unobserved tiles instead of exploiting options known to have 
good outcomes. This can be characterized as overexploration since 
increased exploration did not translate into higher maximum rewards 
(Fig. 2c). Older participants explored less but more effectively, and were 
more responsive in adapting their search patterns to reward observa-
tions (Fig. 2f). We now turn to model-based analyses to complement 

these results with a more precise characterization of how the different 
mechanisms of learning and exploration change over the lifespan.

Model-based analyses
We conducted a series of reinforcement learning39 analyses to charac-
terize changes in learning over the lifespan. We first compared models 
in their ability to predict out-of-sample choices (Fig. 3b,c) and simulate 
human-like learning curves across age groups (Fig. 3d). We then ana-
lysed the parameters of the winning model (Fig. 3e,f), which combined 
Gaussian process (GP) regression with upper confidence bound (UCB) 
sampling (described below). These parameters allow us to describe how 
three different dimensions of learning change with age: generaliza-
tion (λ; equation (2)), uncertainty-directed exploration (β; equation 
(3)) and decision temperature (τ; equation (4)). We then compare the 
developmental trajectory of these parameters to different stochastic 
optimization algorithms (Fig. 4).

Modelling learning and exploration. We first describe the GP-UCB 
model (Fig. 3a) combining all three components of generalization, 
exploration and decision temperature. We then lesion away each com-
ponent to demonstrate all are necessary for describing behaviour  
(Fig. 3b,c). We describe the key concepts below, while Fig. 3a provides 
a visual illustration of the model (see Methods for details).

GP regression40 provides a reinforcement learning model of value 
generalization38, where past reward observations can be generalized to 
novel choices. Here, we describe generalization as a function of spatial 
location, where closer observations exhibit a larger influence. However, 
the same model can also be used to generalize based on the similarity 
of arbitrary features41 or based on graph-structured relationships42.

Given previously observed data 𝒟𝒟t = {Xt,yt}  of choices 
Xt = [x1, …, xt] and rewards yt = [y1, …, yt] at time t, the GP uses Bayesian 
principles to compute posterior predictions about the expected 
rewards rt for any option x:

p(rt(x)|𝒟𝒟t) ∼ 𝒩𝒩(mt(x), vt(x)). (1)

The posterior in equation (1) takes the form of a Gaussian distribu-
tion, allowing it to be fully characterized by posterior mean mt(x) and 
uncertainty vt(x) (that is, variance; see equations (6) and (7) for details 
and Fig. 3a for an illustration).

The posterior mean and uncertainty predictions critically depend 
on the choice of kernel function k(x,x′), for which we use a radial basis 
function describing how observations from one option x generalize 
to another option x′ as a function of their distance:

k(x,x′) = exp (− ||x − x′||2
2λ2 ) . (2)

The model thus assumes that nearby options generate similar rewards, 
with the level of similarity decaying exponentially over increased dis-
tances. The generalization parameter λ describes the rate at which 
generalization decays, with larger estimates corresponding to stronger 
generalization over greater distances.

We then use UCB sampling to describe the value of each option 
q(x) as a weighted sum of expected reward m(x) and uncertainty v(x):

q(x) = m(x) + β√v(x). (3)

β captures uncertainty-directed exploration, determining the extent 
that uncertainty is valued positively, relative to exploiting options with 
high expectations of reward.

Lastly, we use a softmax policy to translate value q(x) into choice 
probabilities:

p(x) ∝ exp(q(x)/τ). (4)
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The decision temperature τ controls the amount of random explora-
tion. Larger values for τ introduce more choice stochasticity, where 
τ → ∞ converges on a random policy.

Lesioned models. To ensure all components of the GP-UCB model 
play a necessary role in capturing behaviour, we created model vari-
ants lesioning away each component. The λ lesion model removed 

the capacity for generalization, by replacing the GP component with 
a Bayesian reinforcement learning model that assumes independent 
reward distributions for each option (equations (8) to (11)). The β 
lesion model removed the capacity for uncertainty-directed explo-
ration by fixing β = 0, thus valuing options solely based on expecta-
tions of reward m(x). Lastly, the τ lesion model swapped the softmax 
policy for an epsilon-greedy policy, as an alternative form of choice 
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the amount of random (undirected) exploration. b, Hierarchical Bayesian model 
selection, where pxp defines the probability of each model being predominant 

in the population (see Supplementary Fig. 2 and Supplementary Table 3 for more 
details). c, Predictive accuracy (R2) as a function of age. Each dot is a participant and 
the lines and ribbons show the slope (±95% CI) of a linear regression. d, Simulated 
learning curves, using participant parameter estimates. Human data illustrates 
the mean (±95% CI), while model simulations report the mean. e, Top, participant 
parameter estimates as a function of age. Each dot is a single participant, with 
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bars indicate the 95% CI. Refer to Fig. 2a for sample sizes of age groups.
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stochasticity: with probability p(ϵ) a random option is sampled, and 
with probability p(1 − ϵ) the option with the highest UCB value is sam-
pled (equation (12)).

Model comparison. We fitted all models using leave-one-round-out 
cross-validation (Methods). We then conducted hierarchical Bayesian 
model selection43 to compute the protected exceedance probability 
(pxp) for describing which model is most likely in the population. 
We found that GP-UCB was the best model for each individual age 
group and also aggregated across all data (Fig. 3a). There is still some 
ambiguity between models in the five-to-six year old group, but this 
quickly disappears in all subsequent age groups (pxpGP-UCB > 0.99). 
Figure 3b describes the out-of-sample predictive accuracy of each 
model as a continuous function of age, where a pseudo-R2 provides 
an intuitive comparison to random chance (equation (13)). Intuitively, 
R2 = 0 indicates chance-level predictions and R2 = 1 indicates theoreti-
cally perfect predictions. While there is again some ambiguity among 
five-to-six year olds, GP-UCB quickly dominates and remains the best 
model across all later ages.

Aside from only predicting choices, we also simulated learning 
curves for each model (using median participant parameter estimates) 
and compared them against human performance for each age group 
(Fig. 3c). The full GP-UCB model provides the best description across all 
age groups, although the β lesion model also produces similar patterns. 
However, only GP-UCB by virtue of the exploration bonus β is able to 
recreate the decaying learning curves for five-to-six and seven-to-eight 
year olds. Altogether, these results reveal that all three components 
of generalization (λ), uncertainty-directed exploration (β) and deci-
sion temperature (τ) play a vital role in describing behaviour. Next, 
we analyse how each of these parameters changes over the lifespan.

Parameters. We use both regression and similarity analyses to 
interpret age-related changes in GP-UCB parameters. The regres-
sion (Fig. 3e) modelled age-related changes in the log-transformed 
parameters using a multivariate Bayesian changepoint regression44  
(Methods). This approach models the relationship between age and 
each parameter as separate linear functions separated by an estimated 
changepoint ω, at which point the regression slope changes from b1 to 

b2 (equation (15)). Using leave-one-out cross-validation, we established 
that this simple changepoint model predicted all GP-UCB parameters 
better than linear or complex regression models up to fourth-degree 
polynomials (both with and without log-transformed variables and 
compared against lesioned intercept-only variants; Supplementary 
Tables 5 and 6).

The regression analysis (Fig. 3e) revealed how all parameters 
changed rapidly during childhood (all b1 confidence intervals (CIs) 
different from 0), but then plateaued such that there were no cred-
ible changes in parameters after the estimated changepoint (all b2 CIs 
overlapped with 0; Supplementary Table 7). More specifically, gener-
alization increased (b1(λ) = 0.08 [0.02,0.26]) until around 13 years of 
age (ω(λ) = 12.7 [7.70,19.80]), whereas there were sharp decreases in 
directed exploration (b1(β) = −0.39 [−0.79,−0.13]) and decision tem-
perature (b1(τ) = −0.59 [−1.05,−0.25]), until around nine (ω(β) = 9.10 
[7.44,11.40]) and eight (ω(τ) = 7.74 [6.88,8.77]) years of age, respec-
tively. In a multivariate similarity analysis, we computed the pair-wise 
similarity of all parameter estimates between participants (Kendall’s τ), 
which we then averaged over age groups (Fig. 3f). This shows that older 
participants were more similar to each other than were younger partici-
pants (Fig. 3f inset), suggesting development produces a convergence 
towards a more similar set of parameters. Whereas older participants 
achieved high rewards using similar learning strategies, younger par-
ticipants tended to overexplore and acquired lower rewards, but each 
in their own fashion, with more-diverse strategies.

These results highlight how development produces changes to all 
parameters governing learning, not only a uni-dimensional reduction 
in random sampling. An initially steep but plateauing rate of change 
across model parameters is broadly consistent with the metaphor of 
stochastic optimization in the space of learning strategies (Fig. 3e). 
The increasing similarity in participants’ parameters again speaks for 
a developmental process that gradually converges on a configuration 
of learning parameters (Fig. 3f), which can also be used to generate 
better performance (Fig. 3d).

Comparison of human and algorithmic trajectories
Beyond qualitative analogies, we now present a direct empirical com-
parison between human development and stochastic optimization. 
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Fig. 4 | Developmental trajectory. a, Mean reward in each iteration for SA and 
SHC algorithms, combined with fast, exponential and linear cooling schedules. 
The shaded purple band indicates the 95% CI of human performance in the 25–55 
age group. b, Comparison of human and algorithm trajectories, focusing on the 
best-performing SHC fast cooling algorithm. The annotated dots show the 
median parameter estimates of each age group, while the blue line shows the 

trajectory of the optimization algorithm (median overall all simulations). This 
two-dimensional illustration focuses on changes in generalization λ and directed 
exploration β (see Supplementary Fig. 6 for all algorithms and all parameter 
comparisons), with the underlying fitness landscape depicted using the median τ 
estimate across all human data ( ̄τ = 0.03).
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We first computed a fitness landscape (Supplementary Fig. 7) across 
one million combinations of plausible parameter values of the GP-UCB 
model (Methods), with each parameter combination yielding a mean 
reward based on 100 simulated rounds. We then simulated different 
optimization algorithms on the fitness landscape, using each of the 
cross-validated parameter estimates of the five-to-six year old age 
group as initialization points. Specifically, we tested SA and SHC in 
combination with three common cooling schedules (fast cooling, 
exponential cooling and linear cooling; Methods). Intuitively, SA uses 
rejection sampling to preferentially select better solutions in the fit-
ness landscape (equation (16)), with higher optimization temperatures 
relaxing this preference. SHC is a discrete analogue of stochastic gra-
dient descent, selecting new solutions proportional to their relative 
fitness (equation (17)), with higher optimization temperatures making 
it more likely to select lower fitness solutions.

While we do not attempt to curve-fit the exact cooling schedule 
that best describes human development, we observe that fast and 
exponential cooling generally performed better than linear cooling  
(Fig. 4a). The metaphor therefore holds: we do not observe linear 
changes in development, but rather rapid initial changes during child-
hood, followed by a gradual plateau and convergence. Yet remark-
ably, neither SA nor SHC converged on reliably better solutions than 
adult participants aged 25–55 (SA fast cooling t(149) = −0.4, P = 0.675, 
d = 0.08, BF = 0.23; SHC fast cooling t(149) = 0.8, P = 0.447, d = 0.2, 
BF = 0.27).

Figure 4b compares the developmental trajectory of human par-
ticipants (labelled dots) to the trajectory of the best-performing SHC 
(fast cooling) algorithm (blue line; see Supplementary Fig. 8 for all 
algorithms and all parameter comparisons and Supplementary Fig. 9 
for variability of trajectories). We focus on changes in generalization 
and exploration parameters since rewards decrease monotonically 
with increased decision temperature. Particularly for younger age 
groups, age-related changes in parameters follow a similar trajectory to 
the optimization algorithms. However, a notable divergence emerges 
around adolescence (ages 14–17).

To concretely relate human and algorithmic trajectories, we 
estimated the same changepoint regression model (Fig. 3e) on the 
sequence of algorithmic parameters from the SHC (fast cooling) algo-
rithm (see Supplementary Fig. 10 for details). This revealed a similar 
pattern of rapid change before the changepoint with all b1 slopes having 
the same direction as humans, followed by a plateau of b2 slopes around 
0 (Supplementary Fig. 10a and Supplementary Table 8).

This analysis also allows us to quantify convergence differ-
ences between human development and stochastic optimization. 
For a given dataset (human versus algorithm) and a given parameter  
(λ, β, τ), we use the respective upper 95% CI of ω estimates as a threshold 
for convergence (Supplementary Fig. 10b). Comparing a matched sam-
ple of parameter estimates after the convergence threshold, we find 
that human generalization λ and directed-exploration β parameters 
converged at lower values than the algorithm (λ: U = 2740, P < 0.001, 
rτ = −0.38, BF > 100; β: U = 10,114, P < 0.001, rτ = −0.19, BF > 100), while 
decision temperature τ was not credibly higher or lower (U = 22,377, 
P = 0.188, rτ = 0.05, BF = 0.12; Supplementary Fig. 10c).

Since these deviations nevertheless fail to translate into reliable 
differences in performance, this may point towards resource rational 
constraints on human development45,46: aside from only optimizing for 
the best performance, the cognitive costs of different strategies may 
also be considered (Discussion).

Discussion
From a rich dataset of n = 281 participants ages 5 to 55, our results reveal 
human development cools off not only in the search for rewards or 
hypotheses, but also in the search for the best learning strategy. Thus, 
the stochastic optimization metaphor best applies to a multivariate 
optimization of all parameters of a learning model, rather than only 

a decrease in randomness when selecting actions or hypotheses.  
What begins as large tweaks to the cognitive mechanisms of learning 
and exploration during childhood gradually plateaus and converges 
in adulthood (Fig. 3e,f). This process is remarkably effective, resem-
bling the trajectory of the best-performing stochastic optimization 
algorithm (SHC fast cooling; Fig. 4) as it optimizes the psychologically 
interpretable parameters of a Bayesian reinforcement learning model 
(GP-UCB). While there are notable differences in the solutions that 
human development and stochastic optimization converged upon, 
none of the algorithms achieved reliably better performance than 
adult human participants (25–55 year olds; Fig. 4a). This work pro-
vides important insights into the nature of developmental changes in 
learning and offers normative explanations for why we observe these 
specific developmental patterns.

Rather than a uni-dimensional transition from exploration to 
exploitation over the lifespan25, we observe refinements in both the abil-
ity to explore (Fig. 2c) and exploit (Fig. 2f), with monotonic improve-
ments in both measures as a function of age. While even five-to-six 
year olds perform better than chance (Fig. 2a), exploration becomes 
more effective over the lifespan, as larger reward values are discov-
ered despite sampling fewer unique options (Fig. 2c,d). Meanwhile, 
exploitation becomes more responsive, with older participants adapt-
ing their search distance more strongly based on reward outcomes 
(Fig. 2e). This resembles a developmental refinement of a continuous 
win–stay lose–shift heuristic17,38, and is consistent with the hypothesis 
that people use heuristics more efficiently as they age47. These results 
also reaffirm past work showing a reduction of stochasticity over the 
lifespan4,14,16, but expand the scope of developmental changes across 
multiple dimensions of learning.

With a reinforcement learning model (GP-UCB), we characterize 
age-related changes in learning through the dimensions of gener-
alization (λ), uncertainty-directed exploration (β) and decision tem-
perature (τ). All three dimensions play an essential role in predicting 
choices (Fig. 3b,c) and simulating realistic learning curves across 
all ages (Fig. 3d), with recoverable models and parameter estimates 
(Supplementary Figs. 4–6).

Changes in all parameters occur rapidly during childhood 
(increase in generalization and decrease in both exploration and deci-
sion temperature), but then plateau around adolescence (Fig. 3e). 
Younger participants tend to be more diverse, whereas adults are more 
similar to one another, with continued convergence of parameter 
estimates until adulthood (25–55 year olds; Fig. 3f). Both the reduction 
of age-related differences and the increasing similarity of parameters 
support the analogy of development as a stochastic optimization 
process, which gradually converges upon an (approximately optimal) 
configuration of learning parameters.

Our direct comparison between the developmental trajectory of 
human parameters and various stochastic optimization algorithms 
(Fig. 4) revealed both striking similarities and intriguing differences. 
The best-performing algorithm (SHC with fast cooling) also most 
resembles the parameter trajectory of human development (Sup-
plementary Fig. 8), suggesting that optimization provides a useful 
characterization of developmental changes in learning strategy.

However, there are also limitations to the metaphor, and it should 
be noted that different parameters are optimal in different contexts48,49. 
Other developmental studies using reinforcement learning models 
suggest older participants may display more-optimal parameters in 
general3, by being better able to adapt their strategies to task demands. 
This raises the question of whether children indeed have less optimal 
parameters per se or are simply slower when adapting to the task. We 
partially address this possibility by analysing performance over rounds, 
where we found no reliable age-related differences in learning over 
rounds (Supplementary Fig. 2). Thus, it seems unlikely that given more 
time to adapt to the task (for example, adding more rounds), children 
would register more optimal parameters.

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 7 | November 2023 | 1955–1967 1962

Article https://doi.org/10.1038/s41562-023-01662-1

Nevertheless, suboptimality of task-specific parameters does not 
suggest that younger individuals are maladaptive from a developmen-
tal context. Rather, development prepares children to learn about the 
world more generally, beyond the scope of any specific experimental 
paradigm or computational model. In line with the stochastic opti-
mization analogy, younger children could try diverse strategies that 
our model does not account for, which then registers as suboptimal 
parameter estimates. This is consistent with the result that the pre-
dictive accuracy of the model generally increases over the lifespan  
(that is, R2; Fig. 3c).

We also observed intriguing differences in the parameters 
that humans converged on compared to the algorithm trajecto-
ries, with adult participants displaying lower generalization and 
less uncertainty-directed exploration (Supplementary Fig. 10). Yet 
remarkably, none of the optimization algorithms achieved signifi-
cantly better performance than adult participants (Fig. 4). Thus, 
these differences might point towards cognitive costs, which are not 
justified by any increased performance benefits. Generalization over 
a greater extent may require remembering and performing computa-
tions over a larger set of past observations42,50, which is why some GP 
approximations reduce the number of inputs to save computational 
costs51. Similarly, deploying uncertainty-directed exploration is also 
associated with increased cognitive costs52, and can be systemati-
cally diminished through working memory load53 or time pressure54 
manipulations.

Limitations and future directions
One limitation of our analyses is that we rely on cross-sectional rather 
than longitudinal data, observing changes in learning not only across 
the lifespan but also across individuals. Yet despite the advantages 
of the longitudinal study, it might not be appropriate in this setting 
because we would be unable to distinguish between performance 
improvement due to cognitive development and practice. Having par-
ticipants repeatedly interact with the same task at different stages of 
development could conflate task-specific changes in reward learning 
with domain-general changes in their learning strategy. Yet future 
longitudinal analyses may be possible using a richer paradigm. For 
instance, modelling how we learn intuitive theories about the world55 or 
compositional programs56 as a search process in some latent hypothesis 
space. The richness of these domains may allow similar dimensions of 
learning to be measured from sufficiently distinct tasks administered 
at different developmental stages.

While we have characterized behavioural changes in learning using 
the distinct and recoverable parameters of a reinforcement learning 
model, future work is needed to relate these parameters to the devel-
opment of specific neural mechanisms. Existing research provides 
some promising candidates. Blocking dopamine D2 receptors has been 
shown to impact stimulus generalization57, selectively modulating 
similarity-based responses in the hippocampus. Similar multi-armed 
bandit tasks have linked the frontopolar cortex and the intraparietal 
sulcus to exploratory decisions58, where more specifically the right 
frontopolar cortex has been causally linked to uncertainty-directed 
exploration59, which can be selectively inhibited via transcranial mag-
netic stimulation.

Stochastic optimization also allows for ‘re-heating’8 by adding 
more flexibility in later optimization stages. Re-heating is often used 
in dynamic environments or when insensitivities of the fitness land-
scape can cause the algorithm to get stuck. Since deviations from the 
algorithm trajectories start in adolescence, this may coincide with a 
second window of developmental plasticity during adolescence60,61. 
While we observed relatively minor changes in the parameters govern-
ing individual learning, plasticity in adolescents is thought to specifi-
cally target social learning mechanisms7,62. Thus, different aspects of 
development may fall under different cooling schedules and similar 
analyses should also be applied to other learning contexts.

Additionally, our participant sample is potentially limited by a 
WEIRD (western, educated, industrialized, rich and democratic) bias63, 
where the relative safety of developmental environments may promote 
more exploration. While we would expect to find a similar qualitative 
pattern in more-diverse cultural settings, different expectations about 
the richness or predictability of environments may promote quantita-
tively different levels of each parameter. Indeed, previous work using 
a similar task but with risky outcomes found evidence for a similar 
generalization mechanism, but a different exploration strategy that 
prioritized safety64.

Finally, our research also has implications for the role of the envi-
ronment in maladaptive development. Our comparison to stochastic 
optimization suggests, in line with life history theory65 and empirical 
work in rodents and humans4,61,66, that childhood and adolescence are 
sensitive periods for configuring learning and exploration parameters. 
Indeed, adverse childhood experiences have been shown to reduce 
exploration and impair reward learning67. Organisms utilize early life 
experience to configure strategies for interacting with their environ-
ment, which for most species remain stable throughout the lifespan68. 
Once the configuration of learning strategies has cooled off, there is 
less flexibility for adapting to novel circumstances in later develop-
mental stages. In the machine learning analogy we have used, some 
childhood experiences can produce a mismatch between training 
and test environments, where deviations from the expected environ-
ment have been linked to a number of psychopathologies69. Such a 
mismatch would set the developmental trajectory towards regions 
of the parameter space that are poorly suited for some features of the 
adult environment, but may provide hidden benefits for other types of 
problems more similar to the ones encountered during development70. 
Rather than only focusing on adult phenotypes at a single point in time, 
accounting for adaptation and optimization over the lifespan provides 
a more complete understanding of developmental processes.

Conclusions
Scientists often look to statistical and computational tools for explana-
tions and analogies71. With recent advances in machine learning and 
artificial intelligence, these tools are increasingly vivid mirrors into the 
nature of human cognition and its development. We can understand idi-
osyncrasies of hypothesis generation through Monte Carlo sampling72, 
individual learning through optimization73–75, and development as 
programming or ‘hacking’56. An important advantage of computational 
explanations is that they offer direct empirical demonstrations, instead 
of remaining as vague, verbal comparisons. Here, we provided such a 
demonstration, and added much-needed clarity to commonly used 
analogies of stochastic optimization in developmental psychology.

Methods
Experiments
All experiments were approved by the ethics committee of the Max 
Planck Institute for Human Development (protocols ABC2016/08, 
ABC2017/04 and A2018/23). We combined open data from two pre-
viously published experiments (Meder et al.30 (n = 52, Mage = 6.35, 
s.d. = 0.95, 25 female) and Schulz et al.27 (n = 79, Mage = 16.67, s.d. = 12.82, 
33 female) targeting children and adult participants, together with new 
unpublished data targeting adolescent participants (n = 150, Mage = 16.1, 
s.d. = 4.97, 69 female). The experimental designs differed in a few 
details, the majority of which were removed by filtering participants. 
The combined and filtered data consisted of 281 participants between 
the ages of 5 and 55 (Mage = 14.46, s.d. = 8.61, 126 female). Informed 
consent was obtained from all participants or their legal guardians 
before participation.

Generic materials and procedure. All participants performed a spa-
tially correlated bandit task38 on an 8 × 8 grid of 64 options (that is, 
tiles). A random tile was revealed at the beginning of each round, with 
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participants given a limited search horizon of 25 trials to acquire as 
many cumulative rewards as possible by choosing either new or pre-
viously revealed tiles. After each round, participants were rewarded a 
maximum of five stars reflecting their performance relative to always 
selecting the optimal tile. The number of stars earned in each round 
stayed visible until the end of the experiment.

When choosing a tile, participants earned rewards corrupted by 
normally distributed noise ϵ ∼ 𝒩𝒩(0, 1). Reward expectations were spa-
tially correlated across the grid, such that nearby tiles had similar 
reward expectations (described below). Earned rewards were depicted 
numerically along with a corresponding colour (colours only in Meder 
et al.30; see below), with darker colours depicting higher rewards. Figure 
1a provides a screenshot of the task and Fig. 1b depicts the distribution 
of rewards on a fully revealed environment.

All experiments (after filtering, see next section) used the same 
set of 40 underlying reward environments, which define a bivariate 
function on the grid, mapping each tile’s location on the grid to an 
expected reward value. The environments were generated by sampling 
from a multivariate Gaussian distribution ∼ 𝒩𝒩(0,Σ), with covariance 
matrix Σ defined by a radial basis function kernel (equation (2)) with 
λ = 4. In each round, a new environment was chosen without replace-
ment from the list of environments. To prevent participants from 
knowing when they found the highest reward, a different maximum 
range was sampled from a uniform distribution ∼ 𝒰𝒰(30,40)  for each 
round and all reward values were rescaled accordingly. The rescaled 
rewards were then shifted by +5 to avoid reward observations below 0. 
Hence, the effective rewards ranged from 5 to 45, with a different maxi-
mum in each round. All experiments included an initial training round 
designed to interactively explain the nature of the task, and ended with 
a bonus round in which they were asked to predict the rewards of 
unseen tiles. All analyses exclude the training and bonus rounds.

Differences across experiments. Participants from the Meder et al.30 
and Schulz et al.64 studies were recruited from museums in Berlin and 
paid with stickers (Meder et al.30) or with money (Schulz et al.64) pro-
portional to their performance in the task. The new adolescent data 
was collected at the Max Planck Institute for Human Development 
in Berlin along with a battery of ten other decision-making tasks on 
a desktop computer. These participants were given a fixed payment 
of €10 per hour.

The studies by both Meder et al.30 and Schulz et al.64 used a 
between-subject manipulation of the strength of rewards correlations 
(smooth versus rough environments: λsmooth = 4, λrough = 1). Because only 
minimal differences in model parameters were found in previous stud-
ies27,30,38, the rough condition was omitted in the adolescent sample. 
Thus, we filtered out all participants assigned to the rough condition 
such that only participants assigned to the smooth environments 
were included in the final sample. Lastly, both Schulz et al.64 and the 
adolescent experiment used ten rounds, while Meder et al.30 included 
only six rounds to avoid lapses in attention in the younger age group. In 
addition, numerical depictions of rewards were removed in the Meder 
et al.30 experiment, and participants were instructed to focus on the 
colours (deeper red indicating more rewards) to avoid difficulties with 
reading large numbers.

After filtering, the remaining differences in modality (tablet versus 
computer), incentives (stickers versus variable money versus fixed 
money), number of rounds (six versus ten) and visualization of rewards 
(numbers plus colours versus colours only) did not result in any dif-
ferences in performance (Supplementary Fig. 1a), model fits (Sup-
plementary Fig. 1b) or parameter estimates (Supplementary Fig. 1c).

Computational models
Gaussian process generalization. GP regression40 provides a 
non-parametric Bayesian framework for function learning, which we 
use as a method of value generalization38. We use the GP to infer a value 

functions f ∶ 𝒳𝒳 𝒳 𝒳n mapping input space 𝒳𝒳  (all possible options on 
the grid) to a real-valued scalar outputs r (reward expectations). The 
GP performs this inference in a Bayesian manner, by first defining a 
prior distribution over functions p(r0), which is assumed to be multi-
variate Gaussian:

p(r0(x)) ∼ 𝒢𝒢𝒢𝒢 (m (x), k (x,x′)), (5)

with the prior mean m(x) defining the expected output of input x, and 
with covariance defined by the kernel function k(x,x′), for which we 
use a radial basis function kernel (equation (2)). Per convention, we set 
the prior mean to zero, without loss of generality40.

Conditioned on a set of observations 𝒟𝒟t = {Xt,yt}, the GP computes 
a posterior distribution p(rt(x∗)|𝒟𝒟t) (equation (1)) for some new input 
X∗, which is also Gaussian, with posterior mean and variance defined 
as:

m(x∗|𝒟𝒟t) = k⊤∗,t(K + σ2ϵ I)
−1
yt, (6)

v(x∗|𝒟𝒟t) = k(x∗,x∗) − k⊤∗,t(K + σ2ϵ I)
−1
k∗,t, (7)

where K∗,t = k(Xt, X∗)  is the covariance matrix between each 
observed input and the new input X∗ and K = k(Xt, Xt) is the covariance 
matrix between each pair of observed inputs. I is the identity matrix 
and σ2ϵ  is the observation variance, corresponding to assumed inde-
pendent and identically distributed Gaussian noise on each reward 
observation.

Lesioned models. The λ lesion model removes the capacity for gen-
eralization, by replacing the GP with a Bayesian mean tracker (BMT) 
as a reinforcement learning model that learns reward estimates for 
each option independently using the dynamics of a Kalman filter with 
time-invariant rewards. Reward estimates are updated as a function 
of prediction error, and thus the BMT can be interpreted as a Bayesian 
variant of the classic Rescorla–Wagner model76,77 and has been used 
to describe human behaviour in a variety of learning and decision- 
making tasks54,78,79.

The BMT also defines a Gaussian prior distribution of the reward 
expectations, but does so independently for each option x:

p(r0(x)) ∼ 𝒩𝒩(m0(x), v0(x)). (8)

The BMT computes an equivalent posterior distribution for the 
expected reward for each option (equation (1)), also in the form of a 
Gaussian, but where the posterior mean mt(x) and posterior variance 
vt(x) are defined independently for each option and computed by the 
following updates:

mt+1(x) = mt(x) + δt(x)Gt(x) (yt(x) −mt(x)) , (9)

vt+1(x) = vt(x) (1 − δt(x)Gt(x)) . (10)

Both updates use δt(x) = 1 if option x was chosen on trial t, and δt(x) = 0 
otherwise. Thus, the posterior mean and variance are only updated for 
the chosen option. The update of the mean is based on the prediction 
error yt(x) − mt(x) between observed and anticipated reward, while the 
magnitude of the update is based on the Kalman gain Gt(x):

Gt(x) =
vt(x)

vt(x) + θ2
ϵ
, (11)

analogous to the learning rate of the Rescorla–Wagner model. Here, 
the Kalman gain is dynamically defined as a ratio of variance terms, 
where vt(x) is the posterior variance estimate and θ2

ϵ  is the error  
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variance, which (analogous to the GP) models the level of noise 
associated with reward observations. Smaller values of θ2

ϵ  thus result 
in larger updates of the mean.

The β lesion simply fixes β = 0, making the valuation of options 
solely defined by the expected rewards q(x) = m(x).

The τ lesion model swaps the softmax policy (characterized by 
decision temperature τ) for an epsilon-greedy policy39, since it is not 
feasible to simply remove the softmax component or fix τ = 0 making it 
an argmax policy (due to infinite log loss from zero probability predic-
tions). Instead, we take the opportunity to compare the softmax policy 
against epsilon-greedy as an alternative mechanism of random explora-
tion28. We still combine epsilon-greedy with GP and UCB components, 
but rather than choosing options proportional to their UCB value, the τ 
lesion estimates ϵ as a parameter controlling the probability of choos-
ing an option at random versus the highest UCB option:

p(x) = {
argmaxq(x), withprobability 1 − ϵ

1/64, withprobability ϵ
. (12)

Model cross-validation. Each model was fitted using leave-one- 
round-out cross-validation for each individual participant using maxi-
mum likelihood estimation. Model fits are described using negative 
log likelihoods summed over all out-of-sample predictions, while 
individual participant parameter estimates are based on averaging 
over the cross-validated maximum likelihood estimations. Figure 3c  
reports model fits in terms of a pseudo-R2, which compares the out-of- 
sample negative log likelihoods for each model k against a random 
model:

R2 = 1 − logℒ(Mk)
logℒ(Mrandom)

. (13)

Changepoint regression
We use a hierarchical Bayesian changepoint model to quantify univari-
ate changes in model parameters as a function of age:

estimate ∼ 𝒩𝒩(μage, σ2), (14)

μage = b0 + b1 × (age − ω) × I(age ≤ ω)

+b2 × (age − ω) × I(age > ω).
(15)

I(⋅) is an indicator function, b0 is the intercept, and ω is the age at which 
the slope b1 changes to b2. We included random intercepts for dif-
ferent experiments. To account for potential outliers in the param-
eter estimates, we used a student-t likelihood function as a form of 
robust regression. Supplementary Table 5 depicts a model comparison 
between this robust regression reported in the main text, a regression 
with a Gaussian likelihood that attenuates skew by log transforming 
the dependent variable and regressions with a Gaussian likelihood that 
does not account for skew in the dependent variable. Using approxi-
mate leave-one-out cross-validation we found that the robust regres-
sion consistently fitted the parameter distributions best.

Fitness landscape
We used Tukey’s fence to define a credible interval for each GP-UCB 
parameter (λ, β, τ) based on participant estimates and created a grid of 
100 equally sized log-space intervals for each parameter. This defines 
a space of plausible learning strategies corresponding to one million 
parameter combinations. We then ran 100 simulations of the GP-UCB 
model for each parameter combination (sampling one of the 40 reward 
environments with replacement each time) and computed the mean 
reward across iterations (Supplementary Fig. 7).

Optimization algorithms
Using this fitness landscape defined across learning strategies, we 
simulated the trajectories of various optimization algorithms. Specifi-
cally, we tested SA4,9 and SHC12,13, the latter of which provides a discrete 
analogue to the better-known stochastic gradient descent method 
commonly used to optimize neural networks10,11. Each optimization 
algorithm (SA versus SHC) was combined with one of three common 
cooling schedules80 defining how the optimization temperature (temp) 
changes as a function of the iteration number i. Fast cooling uses 
tempi = 1/(1 + i), exponential cooling uses tempi = exp(−i1/3)  and  
linear cooling uses tempi = 1 − (i + 1)/max(i). As the optimization tem-
perature decreases over iterations, there is a general decrease in the 
amount of randomness or stochasticity.

SA is a stochastic sampling algorithm, which is more likely to select 
solutions with lower fitness when the optimization temperature is 
high. After initialization, SA iteratively selects a random neighbouring 
solution snew in the fitness landscape (that is, one step in the grid of one 
million parameter combinations), and deterministically accepts it if it 
corresponds to higher fitness than the current solution sold; otherwise, 
it accepts worse solutions with probability:

p(accept) ∝ exp ( snew−sold
tempi

) , (16)

where tempi is the current optimization temperature.
SHC is similar, but considers all neighbouring solutions 

s′ ∈ 𝒮𝒮neighbors and selects a new solution proportional to its fitness:

p(s′) ∝ exp(s′/tempi). (17)

For each combination of optimization algorithm and cooling 
function, we simulated optimization trajectories over 1500 itera-
tions. Each simulated was initialized on each of the cross-validated 
parameter estimates of all participants of the youngest age group 
as starting points. This resulted in 120 (30 participants × 4 rounds 
of cross-validation) trajectories for each combination of algorithm 
and cooling schedule.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are publicly available at https://github.com/AnnaGiron/
developmental_trajectory.

Code availability
Code is publicly available at https://github.com/AnnaGiron/
developmental_trajectory.
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