
Vol.:(0123456789)1 3

Acta Neuropathologica (2023) 146:369–385 
https://doi.org/10.1007/s00401-023-02601-0

REVIEW

More than meets the eye in Parkinson’s disease and other 
synucleinopathies: from proteinopathy to lipidopathy

Manuel Flores‑Leon1,2 · Tiago Fleming Outeiro1,3,4,5 

Received: 20 May 2023 / Revised: 12 June 2023 / Accepted: 14 June 2023 / Published online: 8 July 2023 
© The Author(s) 2023

Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as 
Alzheimer’s disease, Parkinson’s disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hall-
mark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid 
species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in 
genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have 
been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and 
alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In 
this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which 
require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation 
and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should 
broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
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Introduction

The accumulation of proteinaceous inclusions in the brain is 
a common feature among neurodegenerative diseases. Pro-
teins, often in the form of fibrillar amyloid structures, are 
the major components of those inclusions, and have been 
used to define them. Thus, neurodegenerative diseases are 

considered to be proteinopathies. Among these, Alzheimer’s 
Disease (AD), Parkinson’s Disease (PD), and dementia with 
Lewy bodies (DLB) are the most prevalent [34], affecting 
millions of people worldwide.

The histopathological hallmark of PD and DLB are 
inclusions enriched in α-synuclein (aSyn), known as Lewy 
bodies (LBs) [100, 173]. Although often ignored, LB are 
not only composed of proteins, but also contain a core of 
lipid species [7, 68] and, as recent data suggest, organelles, 
membranes, and even nucleic acids [166]. Interestingly, 
aSyn has been demonstrated to interact directly with lipids 
and certain membranes enriched with certain type of fatty 
acids [99]. Strikingly, several genetic risk factors for PD are 
mutations in genes involved in lipid metabolism, such as 
GBA1, VSP35, or PINK1 [145]. Intriguingly, the consump-
tion of certain fat in diets seems to have a significant impact 
in the development and progression of neurodegenerative 
diseases [79].

Although alterations in lipid metabolism and the balance 
of their species, known as lipid homeostasis (herein referred 
to as lipidostasis, in analogy to proteostasis), is deeply asso-
ciated with neurodegeneration in PD (also reviewed in [5, 
33, 39, 55, 59, 107]), the molecular mechanisms involved 
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are still poorly understood. Nevertheless, integrated genome-
wide association studies (GWAS) of PD show that several 
of the possible pathways implicated in PD are directly or 
indirectly connected with lipidostasis [103]. These include 
inflammation, altered intracellular and vesicular trafficking, 
mitochondrial dysfunction, and alterations in the protein 
degradation systems [41, 103]. The latter emerge from data 
showing that aSyn interacts with certain lipid species and 
that the accumulation of both occur in lysosomal storage dis-
eases, for example Gaucher’s disease. Mutations in GBA1, 
the gene causing Gaucher’s disease, increase the risk for PD. 
Additionally, given that the brain is highly enriched in lipids, 
and these molecules can, for example, regulate neuronal 
membrane arrangement, function as secondary messengers, 
store energy and participate in neuronal signaling pathways 
[179], imbalances in lipidostasis might be key players in 
altered neuronal function and possible neurodegeneration. In 
this review, we discuss the recent evidence that suggests how 
lipid biology can play major roles in PD pathology, empha-
sizing the implications on the accumulation and spreading 
of aSyn pathology, on mitochondrial dysfunction, and on 
endoplasmic reticulum (ER) stress.

Parkinson’s disease

PD is the second most common neurodegenerative disease 
and the first most common synucleinopathy, typically affect-
ing people over 65 years old. Over 10 million people world-
wide live with PD and this number is increasing alongside 
with the increase in life expectancy. Resting tremor, dysto-
nia, rigidity, bradykinesia, and postural instability are the 
characteristic features of PD [100]. These features result 
from the progressive loss of dopaminergic neurons in the 
substantia nigra pars compacta (SN). aSyn accumulation 
and LB formation are major components thought to trigger 
several cellular pathways that lead to this neuronal loss [171, 
173]. Although aging is the most significant risk factor for 
PD [38, 88, 142], lipid balance and their metabolism are 
emerging as important factors for PD, and will be discussed 
in the present review.

The scenario complicates considering that mutations in 
various genes, such as LRRK2, PINK1, SNCA, DJ-1, VPS35, 
and GBA1, have been implicated in familial and sporadic 
forms of PD [42, 44, 70, 140]. In particular, an overproduc-
tion of aSyn protein caused by duplications, or triplications 
of the SNCA locus, or point mutations in the SNCA gene, are 
associated with familial forms of PD [106, 152, 171, 199]. 
Even though most of these genetic alterations are either rare 
or confer variable risk to develop PD, they provide mecha-
nistic insight into the molecular pathways associated with 
disease, especially since several have also been found asso-
ciated with sporadic PD. In this sense, the overproduction 

of wild-type (WT) or mutant forms of aSyn has additional 
toxic effects, which might be independent of aggregation, for 
example when in contact with different lipids and through 
interactions with organelle membranes [36, 49, 60, 99, 126, 
162].

Although tremendous progress has been made over the 
past decades, the precise molecular mechanisms underly-
ing neuronal death are still unclear. Particularly, those that 
involve the interplay between genetic and environmental risk 
factors.

Neuropathology of PD: protein and lipid deposition/
alterations

The accumulation of aSyn in proteinaceus aggregates known 
as LBs and/or Lewy neurites (LNs) is one of the main neuro-
pathological hallmarks of PD [100]. aSyn is a 14.5-kDa pro-
tein that is enriched in the presynaptic terminals of neurons 
[94, 125] and has been implicated as an important player 
in synaptic vesicle trafficking and dopamine release [1, 
25, 50, 124, 198]. However, aSyn interacts with lipids and 
membranes and is present in various other tissues, including 
blood, where it likely performs other functions.aSyn aggre-
gation is not limited to the SN, as aggregates can be found 
in other brain structures progressively many years before 
the symptomatology. Efforts have been made to classify 
the progression of the disease, based on the distribution of 
Lewy-pathology-in the brain [20–22].

Importantly, the morphology of LBs can vary depending 
on the brain structure where they occur, probably as a result 
of the stage the pathology, and likely representing a progres-
sive process that is caught at a particular stage at the time 
of death. At the early stages of PD, aSyn staining starts as a 
diffuse-granular and pale cytoplasmic mark. As the pathol-
ogy progresses, the staining becomes more intense and 
structures, referred to as Pale bodies, start to emerge. Finally, 
LBs appear, probably as a consequence of the peripheral 
condensation of the Pale bodies [190]. Given that as much 
as 90% of aSyn found in LB is phosphorylated at serine 129 
[6, 65], it has been suggested that this form is involved in the 
initial stages of LB formation and PD pathology.

Initially, the LB structure was thought to consist of fibril-
lar aSyn [12, 22, 190] but it is becoming accepted that more 
components are involved in LB formation and maturation. 
The biochemical composition of LBs is highly complex and 
includes ~ 300 other proteins [115], ~ 90 of which have been 
confirmed by immunohistochemistry assays [190]. Further-
more, LBs were found to be enriched in lipids [68], mem-
branous components that might come from vesicles, and 
fragmented organelles, as shown by several methods such as 
Fourier transform infrared micro-spectroscopy (FTIRM) [7], 
correlative light and electron microscopy (CLEM), stimu-
lated emission depletion (STED)-based super-resolution 
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microscopy, and laser-capture microdissection micros-
copy coupled to liquid chromatography-mass spectrometry 
(LC–MS) [166]. Particularly, this study identified that sphin-
gomyelin and phosphatidylcholine are strongly enriched in 
these samples, further confirming that LBs are also com-
posed of lipid species and membranes of organelles taken at 
some point from the cell. The latter study suggests that lipid 
species are tightly linked to LBs formation and/or matura-
tion and might be associated to aSyn function, localization, 
and/or dynamics. Additionally, the fact that lipids are found 
in the core and are involved in LBs’ formation also suggests 
that lipidostasis impairment might be an important factor 
prior to protein deposition in PD.

Recently, metabolomics has opened a new door for poten-
tial biochemical biomarkers that may inform on the begin-
ning of the disease, progression, or prognosis. Among these 
markers, lipid profiles or different species of fatty acids are 
emerging as potential ones based on evidence found in PD 
models and in patients [176, 180, 194, 201].

Lipidomic analyses of PD patient samples revealed altera-
tions in 80 lipid species out of 200 that were analyzed in 
the visual cortex of PD patients in the Braak stage IV or V 
[32, 83, 165, 176]. The lipid species identified belong to the 
following major lipid families: sphingolipids (SL), glycer-
ophospholipids and cholesterol. In the SL family, multiple 
species of sphingomyelin, ceramides, and gangliosides were 
found to be increased, while most lipids from the glycer-
ophospholipid family were decreased. In this family, spe-
cies of phosphatidylcholine, phosphatidylethanolamine, and 
phosphatidylinositol decreased [32], while phosphatidylser-
ine species increased [32]. Interestingly, the primary visual 
cortex is affected in advanced stages of PD, and, among the 
non-motor symptoms of PD, visual hallucinations are one 
of the most common features [63, 85]. Furthermore, this 
alteration in lipidostasis reflects neuronal dysfunction that 
compromises the circuitry and may precede neuronal death. 
This finding was consistent with those by another group 
that found phosphatidylcholine, phosphatidylethanolamine, 
and phosphatidylinositol decreased in the SN of male PD 
patients [165]. Interestingly, modifying the concentration 
of certain lipid species, such as the synthesis of phosphati-
dylethanolamine, in PD models, leads to the accumulation 
of aSyn, to ER stress and mitochondrial dysfunction [193]. 
These reports further support the role of specific lipid spe-
cies in PD, raising the possibility that some lipid species 
might be important players in the early or advanced neuro-
pathological stages.

Studies in postmortem tissue and fibroblasts of PD 
patients revealed decreased levels of brain cholesterol, 
associated with a reduction in the expression of isopentenyl 
diphosphate isomerase and β-Hydroxy β-methylglutaryl-
CoA reductase (HMG-CoA reductase), key enzymes in 
the biosynthesis of isoprenoids [136, 137]. Additionally, 

isotope-dilution mass-spectrometry analyses of the choles-
terol metabolites 24S-hydroxycholesterol and 27-hydroxy-
cholesterol in cerebrospinal fluid of PD patients revealed 
higher levels than in non-PD patients [16]. Strikingly, the 
levels of 24S-hydroxycholesterol correlate with disease 
duration [16]. Altogether, these and other studies suggest 
that lipidostasis imbalances likely play an important role in 
PD. While some may influence disease onset, others may act 
as markers of damage at later stages of the disease process.

Interestingly, altered SL metabolism and fatty acid bio-
synthesis have been detected in sebum of PD patients versus 
non-PD subjects [170]. Additionally, staining of postmor-
tem brain sections from PD individuals using the lipid dye 
boron-dipyrromethene (BODIPY) showed that dopaminergic 
neurons in the SN accumulated lipids while astrocytes had a 
diminished lipid content [23]. This suggests lipidostasis is 
altered in different cell types in the brain and that this lipid 
alteration and accumulation seems to be specific for neurons.

PD risk is associated with deregulation 
of lipidostasis

Given that almost 50% of the brain’s dry weight are lipids 
[24], it would not be surprising that many neurodegenerative 
diseases, including PD, may be heavily influenced by imbal-
ances in lipidostasis [48], as evidenced by several genetic 
studies that we will discuss throughout this review. Consist-
ently, several genes associated with increased risk of PD are 
involved in lipid metabolism.

GWAS in different populations identified the GAK/
DGKQ/IDUA region as one of the top three risk loci for PD 
[31, 119, 138, 145, 169]. This region harbors the gene that 
encodes for the enzyme diacylglycerol kinase theta (DGKQ) 
that catalyzes the regeneration of phosphatidylinositol from 
diacylglycerol. This finding is consistent with reduced levels 
of phosphatidylinositol that are found in PD patients [32]. 
Transcriptomic studies found that the gene ELOVL7, that 
encodes for a fatty acid elongase, is also associated with PD 
[102, 116]. Furthermore, in several PD models, aSyn inclu-
sions and toxicity are reduced upon inhibition of stearoyl-
CoA desaturase (SCD) [58, 92, 186]. This enzyme catalyzes 
the rate-limiting step in the formation of monounsaturated 
fatty acids, suggesting that some lipid metabolic pathways 
have a tight relation with aSyn accumulation. Although no 
clear mechanism on how these genes might be involved in 
PD pathogenesis have been uncovered, it is important to 
highlight that additional genetic risk factors that involve 
lipid metabolism are being identified.

Fatty acids are not only important as membrane compo-
nents or energy sources, but also serve as donors for post-
translational modifications (PTMs). A mechanism that is 
dependent on specific lipid species, in this case palmitic 
acid, is protein palmitoylation. Palmitoylation can regulate 
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the localization and interaction between proteins with lipid 
membranes, and between proteins in the same lipid domains 
and organelles [75, 120]. In a recent study, the palmitome of 
PD patients was characterized, and identified an increase in 
the palmitoylation of several proteins that interact with PD-
associated proteins (LRRK2, DJ-1, GBA1 and aSyn) when 
compared to control subjects. Additionally, these proteins 
were found to be part of pathways associated to inflamma-
tion, cytoskeletal architecture, and mitochondrial dysfunc-
tion [30]. This suggests that lipid overload, particularly pal-
mitic acid, may lead to excessive protein palmitoylation that 
might affect interaction among proteins involved in neuronal 
dysfunction contributing to PD onset and progression.

Perhaps the strongest direct genetic connection is that 
linking GBA1 mutations with sporadic forms of PD. Glu-
cocerebrosidase (GCase), the enzyme encoded by the GBA1 

gene, regulates SL metabolism, further supporting the view 
that certain lipid species likely play a role in PD onset and 
progression. This is the topic of the next section.

GBA1 mutations and SL metabolism 
alterations as a risk factor for PD

GBA1 mutations are the most common genetic risk factor 
for PD, increasing the risk by approximately fivefold [35, 
148, 168]. GCase resides in lysosomes and is an important 
regulator of SL metabolism. The catabolic reaction of GCase 
results in the hydrolysis of glucosylceramide into glucose 
and ceramide [72, 164] (Fig. 1a). Homozygous loss-of-func-
tion mutations lead to a lysosomal storage disease called 
Gaucher’s Disease (OMIM 606423). Gaucher’s Disease 

Fig. 1  Putative loss- and gain-of-function effects of GCase muta-
tions. a GBA1 encodes for GCase. Wild type enzyme (purple pro-
tein) is correctly folded and can be transported to the lysosomes 
(blue complete circles) where it hydrolyzes glucosylceramide (Glc-
Cer) into glucose and ceramide. This contributes to the correct 
function of the autophagic system which, through the Chaperone 
Mediated Autophagy (CMA) pathway, is able to degrade proteins 
and prevent their accumulation, for example aSyn. b In the loss-of-
function hypothesis due to GBA1 mutations, unfolded GCase cannot 

be transported to the lysosome, sphingolipid metabolism is compro-
mised and GlcCer is accumulated. This also impairs the formation of 
autophagolysosomes, promoting the accumulation of aSyn oligomeric 
forms inside the cell. To reduce aSyn burden, changes in exosomal-
mediated release of aSyn may take place. c In the gain-of-function 
hypothesis, the retention of mutant GCase in the ER activates the 
UPR response proteins (PERK, IRE1 and ATF6), generating ER 
stress which may, in turn, alter lipidostasis
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patients can be classified into five types (1, 2, 3, perinatal 
lethal, and cardiovascular) according to substrate accumula-
tion and neuronal affections. Type 2 and 3 patients show a 
degree of neurodegeneration and neuropathic manifestations 
that resemble clinical features of PD (reviewed in [66]). Ini-
tially, this suggested that GCase deficiency degree could be 
an important mechanism involved in PD.

Consistently, GBA1 heterozygote mutations (haploin-
sufficiency) are associated with increased PD risk. N370S, 
associated with mild risk, and L444P, associated with 
higher risk, are the most common ones [8, 52, 69, 130, 168]. 
Patients carrying GBA1 haploinsufficiency mirror sporadic 
PD patients to a large extent (reviewed in [161]). Neverthe-
less, the onset is approximately 5 years earlier, and there 
is a faster progression of motor and cognitive impairment 
when compared to sporadic PD patients [35, 52, 69, 168]. 
Additionally, the levels and activity of GCase are decreased 
in PD brains [71, 91, 132, 135, 155], leading to altered SL 
metabolism. Strikingly, there is a decrease in GCase activity 
in normal aging that reaches the levels found in PD patients, 
alongside with the accumulation of glucosylsphingosine in 
the SN [110, 155]. This suggests that alterations of the SL 
metabolism might be an important component of PD neu-
ropathology, not only in carriers of GBA1 mutations but 
also for sporadic PD patients where age-associated reduc-
tion in GCase activity might contribute to the onset of the 
pathology.

The precise mechanisms by which mutant GCase muta-
tions increase PD risk are still unclear. There is evidence 
supporting both loss- or gain-of-function hypotheses 
(reviewed in [98]). The loss-of-function is due to defects in 
the correct folding of the enzyme, which leads to disrupted 
transport of GCase to the lysosome and a concomitant accu-
mulation in the ER [139, 156, 164] (Fig. 1b). This alteration 
in GCase localization leads to the accumulation of SLs, such 
as glucosylceramide and glucosylsphingosine [9, 77, 91]. 
Interestingly, some lipid species (sphingomyelin, ceramide 
and monohexosylceramides) have been found increased in 
the plasma of PD patients [77] and, importantly, their physi-
ological role is not only structural but also of high impor-
tance for cellular processes like autophagy, senescence, and 
inflammation, among others [2, 19, 93]. In the proposed 
loss-of-function mechanism, the reduction in GCase enzy-
matic activity also affects the protein degradation systems 
through impairment in lysosomal function and recycling 
[123, 153], which leads to impaired aSyn clearance and, 
consequently, to its accumulation [139]. Moreover, the 
accumulation of glucosylceramide affects aSyn aggregation 
by stabilizing soluble aSyn oligomers and also by induc-
ing aggregation [127, 149] (Fig. 1b). This creates a patho-
genic loop that further disrupts GCase stability and folding, 
fueling additional aSyn accumulation. Interestingly, when 
GCase mutants are overexpressed or wild type GCase is 

inhibited by pharmacological strategies there is an increase 
in the release of exosomes that contain aSyn [29, 98, 146]. 
In contrast, overexpression of wild type GCase results in 
a decrease in exosome secretion [146]. This suggests that 
the reduced activity of GCase contributes to aSyn spreading 
pathology [11, 98, 110, 131] (Fig. 1b).

Although the loss-of-function hypothesis is valid and 
plausible, recent results from clinical trials suggest that 
therapeutic approaches that overexpress wild type GCase 
or try to correct its folding may not be completely suitable 
for PD patients, particularly since GBA1 mutations in PD 
patients are heterozygous (reviewed in [17]). An alternative 
is the gain-of-function hypothesis, whereby the retention of 
misfolded GCase in the ER would be responsible for lyso-
somal dysfunction, but through ER stress, and activation 
of the unfolded protein response (UPR) [61, 109] (Fig. 1c). 
Interestingly, the degree of GCase retention in the ER is 
influenced by the mutation, and this has been correlated with 
the severity of the pathology in Gaucher’s disease [156], and 
this is consistent with the reports that show that different 
mutations cause different risk degrees for PD.

Importantly, although there is evidence supporting loss- 
and gain-of-function hypotheses, one may be the result of 
the other. This is most likely the case in PD patients carrying 
GBA1 mutations [146] (Fig. 1b, c).

Further evidence linking SLs to PD involve other enzymes 
that participate in this particular type of lipid metabolism. 
Ceramides and sphingomyelin are increased in the brain of 
PD patients [32, 165]. The accumulation of these metabo-
lites correlates with an increase in the expression of genes 
that encode enzymes involved in the biosynthetic pathway, 
such as Serine palmitoyl transferase long chain base subu-
nit 2 (SPTLC2), degenerative spermatocyte homolog 1 lipid 
desaturase (DEGS), sphingomyelin synthase 1 (SGMS1), and 
UDP-galactosyltransferase 8A (UGT8A) [32]. Another study 
performed in the plasma and CSF of PD patients showed that 
several lipid species are altered, particularly those involved 
in the SL metabolism [176]. Nevertheless, since SL biology 
is highly complex, it will be important to explore further 
ramifications of the pathway in order to understand how they 
relate to PD [111].

The role of lipidostasis in aSyn pathology

Although progress has been made in identifying neuro-
pathological markers of PD, the molecular and cellular 
mechanisms that lead to them are still unclear. Strikingly, 
lipid biology alterations seem to be an important player 
in most of the described mechanisms, particularly due to 
their pleiotropic functions in cellular physiology. Thus, 
it is important to understand how alterations in lipid spe-
cies may directly affect key proteins in PD, such as aSyn, 
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and also how such alterations impact organelles, such as 
mitochondria and ER, which are lipid-rich compartments 
that have been identified as important players in PD onset 
and progression.

In cells, aSyn is thought to exist primarily as a mono-
mer [178] and, in some situations, as aggregation-resistant 
tetramers [13]. In pathological conditions it can be found 
as oligomers or fibrils. Structurally, aSyn is composed 
of three regions as folows: an N-terminal region that can 
fold into an amphipathic α-helical structure, and that binds 
to lipid membranes and vesicles; a central hydrophobic 
domain that can fold into β-sheets, the main domain 
responsible for its aggregation propensity; and an acidic 
and highly disordered C-terminal domain. Particularly, 
the N-terminal domain preferentially associates with gly-
cosphingolipids (usually containing sulfate, phosphate, or 
sialic acid) in the membrane of synaptic vesicles [97]. This 
interaction is important to promote the formation of the 
SNARE complex between two membranes and the con-
comitant vesicle docking [121]. Additionally, this domain 
can interact with apolipoproteins, such as apolipoprotein 
E (ApoE), which have been implicated in increased risk 
for PD and DLB when the APOE4 allele is present [18, 56, 
181]. This is mediated by an increase in the aggregation 
propensity of aSyn when APOE4 is present compared to 
other APOE isoforms [54]. It is interesting to highlight 
that most point mutations in the SNCA gene fall at the 
N-terminal domain of aSyn, the lipid interacting region, 
affecting the protein’s secondary structure and its lipid 
binding properties [28, 97, 150]. Evidence shows that 
aSyn interacts with lipids through several domains and that 
point mutations in these regions, or risk alleles involved 
in lipid metabolism, affect aSyn aggregation propensity.

The hydrophobic domain can also regulate the affinity of 
aSyn for lipid membranes [53, 67]. In this sense, it has been 
demonstrated a six-fold increase in the interaction between 
aSyn and the inner plasma membrane when gangliosides 
are enriched in this membrane [124]. Strikingly, a ~ 20% 
reduction in the levels of gangliosides is observed in PD 
patients [165]. This suggests that aSyn might lose some of 
its plasma membrane affinity, detaching and gaining aggre-
gation properties. Additionally, it has been proposed that 
lipid arrangements in the membranes can induce conforma-
tional changes in aSyn amphipathic α-helical structure [62], 
further supporting the idea that aSyn structure and aggre-
gation propensity could be modulated through membrane 
lipid composition. The evidence on how membrane lipid 
composition affects aSyn affinity highlights its relevance as 
a regulator of aSyn conformation.

Even though aSyn is traditionally seen as a presynaptic 
protein involved in vesicle trafficking, other functions, and 
interactions with membranes of other organelles, are emerg-
ing [64, 175].

Interplay between lipid droplets and aSyn 
aggregation

Sterol esters and triglycerides (neutral lipids) [96, 167, 
200] can be stored in the core of highly dynamic organelles 
called lipid droplets (LD). These organelles are composed 
of a phospholipid monolayer, coating proteins (such as per-
ilipins), and enzymes [143]. A protective role against lipo-
toxicity is attributed to LD, due to their storing capacity dur-
ing periods of nutrient surplus where harmful lipid species 
might be consumed/synthesized [95, 141, 163].

In a diverse range of PD models, from yeast to human 
cell lines, overexpression of aSyn is accompanied by an 
accumulation of LD [74, 144, 172, 192]. Studies in primary 
cortical neurons demonstrated a tight connection between 
aSyn toxicity, lipids, and LD, where high concentrations of 
oleic acid were associated with increased aSyn inclusion 
formation. Furthermore, if LD biogenesis is prevented aSyn 
toxicity increases [58]. Interestingly, in cells exposed to fatty 
acids, aSyn translocates from the cytoplasm to the mem-
brane of the LD [37]. Even overexpression of selected aSyn 
mutants, like the A53T, induce an increase in LD accumula-
tion [160]. This suggests that there is a connection between 
the excess of free lipid species in the cytoplasm and aSyn 
inclusion formation and toxicity. This relationship is likely 
bidirectional, as lipids seem to be key contributors for aSyn 
toxicity and, in turn, physiological levels of aSyn maintain 
lipid homeostasis.

The role of lipidostasis in the life cycle of aSyn

The degradation and recycling of monomeric aSyn is 
thought to occur via chaperone-mediated autophagy, in the 
lysosome, and via the proteasome/ubiquitin system [109, 
127, 128]. Once aggregates are formed, aSyn degradation 
takes place via macroautophagy. Several mechanisms are 
triggered to avoid further accumulation and toxicity, like the 
induction of heat shock proteins, such as HSP70, in order to 
stabilize soluble forms of aSyn [46, 104, 122].

Several studies suggest that GCase mutants lead to aSyn 
accumulation in lysosomes [43] and, as a consequence, to 
increased cellular release [45, 61, 151, 197], to avoid further 
aggregation. This mechanism contributes to the hypothesis 
of the prion-like spreading of aSyn pathology. This aggrega-
tion and spreading of aSyn is exacerbated in the presence of 
certain gangliosides, GM1 and GM3, which are also found 
in exosomes. This might be related to the reduced levels of 
gangliosides found in PD patients. Interestingly, phospho-
lipase D1 can activate the autophagic flux, preventing the 
accumulation of aSyn and this enzyme is downregulated 
in patients with DLB [10]. This suggests that lipidostasis 
plays an important role in aSyn accumulation and release 
[4, 45, 177], saturating other neurons and disrupting their 
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cellular machinery and function [61, 87] and contributing 
to the spreading of aSyn pathology.

Interestingly, aSyn accumulation has not only been 
reported in synucleopathies or in Gaucher’s disease. Muta-
tions in genes that encode enzymes that are part of lipid 
metabolism in the lysosomes lead to diseases such as Fabry’s 
disease, Krabbe’s disease, and Niemann-Pick disease type 
C1. In these disorders, in addition to aSyn accumulation, 
there is also accumulation of certain SL species. Further-
more, these lysosomal storage diseases increase the risk for 
developing PD (reviewed in [80]). Again, this suggests that 
alterations in lipidostasis are associated with the accumula-
tion of lipid-binding proteins, such as aSyn, and that such 
lipidic alterations might be important neuropathological 
alterations prior to the onset of proteinopathy.

Lipidostasis alterations as a key player 
in mitochondrial impairment and ER stress

Several PD genes, such as PINK1 and VPS13, establish a 
direct bridge between lipidostasis and mitochondria [47, 101, 
114, 138, 185]. PINK1 is a mitochondrial serine/threonine 
kinase that, when accumulated in the outer membrane of the 
mitochondria, phosphorylates Parkin to induce mitophagy 
[105]. Several PD PINK1 deficient models display cera-
mide accumulation in mitochondria, negatively affecting the 
electron transport chain and reducing the β-oxidation rate 
(Fig. 2a) [133, 188]. These effects can be ameliorated when 
ceramide levels are lowered, or by induction of β-oxidation 
[188]. The lack of PINK1 is also associated with increased 
mitochondrial-ER contacts that cause abnormal lipid traf-
ficking, leading to a depletion in phosphatidylserine from 
the ER (Fig. 2c) [189]. Furthermore, if fatty acid synthase 
is inhibited in PINK1 deficient models, the toxicity caused 
by excess in fatty acid synthesis is reduced considerably. 
Additionally, the inhibition of the fatty acid synthase also 
lowers palmitate levels and increases cardiolipin, rescuing 
the defects in complex I of the electron transport chain [184]. 
A study using a cohort of Spanish patients harboring het-
erozygous mutations of PINK1 revealed the presence of LBs 
in the brainstem and SN, and neuronal loss in the SN [159]. 
These features mirror those found in sporadic PD patients, 
suggesting that similar mechanisms might be behind the 
neuropathological features of PD and, again, highlighting 
the idea that alterations in PD-associated proteins may lead 
to a disruption in lipidostasis.

Mitochondrial membranes have a high content of car-
diolipin [129] and, due to this glycerophospholipid, the 
binding affinity of aSyn to neuronal mitochondria is 
enhanced [27, 147, 182]. One of the first effects observed 
due to this enhancement is the formation of ion-permeable 
pores that allow the release of cytochrome c (Fig. 2b) [73]. 

Nevertheless, cardiolipin is also important and beneficial 
for aSyn refolding, preventing aggregation in some studies 
[158]. This suggests aSyn might be involved in the loss of 
mitochondrial integrity in a mechanism that is dependent on 
the balance between aSyn and cardiolipin.

Mitochondria and the ER communicate through physi-
cal contacts known as mitochondria-associated membranes 
(MAMs), which are enriched with lipids and proteins that 
regulate processes such as lipid synthesis and trafficking, 
autophagy, the unfolded protein response (UPR), redox 
states, among others [157]. aSyn can associate with the 
MAMs since it preferentially binds to membrane domains 
with a high composition of acidic phospholipids. However, 
mutations in aSyn (A30P and A53T) decrease the associa-
tion with to the MAMs, thereby impairing organelle func-
tion [76].

The VPS13 locus encodes 4 proteins (VPS13A, VPS13B, 
VPS13C, VPS13D) involved in the phospholipid exchange 
through the aqueous environment from one bilayer to another 
[183]. These lipid transfer proteins localize to different con-
tact sites between organelles [26]. VPS13A, VPS13C, and 
VPS13D are localized at the MAMs (Fig. 2c), at the ER, and 
in the endolysosomal system [78, 108]. When their expres-
sion is altered lipid composition changes [82], contributing 
to altered organelle function (ER stress and mitochondrial 
dysfunction).

MAMs also play an important role in lipid homeostasis 
and LD biogenesis. The enzyme acyl-CoA cholesterol acyl-
transferase (ACAT1), which is in charge of the conversion 
of free cholesterol into cholesteryl esters, is enriched and 
has higher enzymatic activity in the MAMs than in the ER 
[154]. The same has been observed for enzymes important 
for ceramide biosynthesis, such as ceramide synthase and 
sphingomyelin phosphodiesterase [15, 195]. Inhibition of 
these enzymes leads to a relocation of the characteristic pro-
teins of the MAMs [84], suggesting that lipid metabolism is 
important in maintaining these contact sites (Fig. 2c). Thus, 
alterations in lipidostasis causing dysfunction of the MAMs 
are associated with mitochondrial fragmentation [76], ER 
stress, and presumably even with LD biogenesis and main-
tenance [157]—dysfunction of all of these organelles have 
been observed in PD.

The ER plays a crucial role in lipid metabolism since 
this is the compartment where most of the lipids are synthe-
tized, particularly membrane lipids and neutral lipids [57, 
129]. Another role of the ER is to prevent the accumulation 
of lipids to avoid lipotoxicity [81, 174]. Additionally, the 
ER contains chaperones and proteins that respond to fluc-
tuations in proteostasis, inducing a response known as the 
UPR in conditions of stress [40, 51]. This clearly suggests 
a close association between lipidostasis and proteostasis in 
the ER, and that impairments in either or both networks 
may be related to a variety of cellular problems, including 
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those linked to neurodegeneration [89, 187]. First, a con-
nection between aSyn and the UPR was established in a 
neuronal model derived from induced pluripotent stem cells 
obtained from a patient with a SNCA triplication. Neurons 
containing an increased aSyn load displayed an activation 
of IRE1/XBP1 compared to the isogenic cell line. Addition-
ally, the presence of pIRE1α, pPERK, and pIF2a was found 
in neurons of PD patients that also contained LBs [86, 90], 
further confirming the activation of the UPR when neurons 
express increased levels of aSyn. Second, it is hypothesized 
that lipid perturbations may trigger ER stress and activate 
the UPR response through three known pathways: ATF6, 

IRE1, and PERK (Fig. 2d) [81]. Evidence supporting that 
alterations in lipidostasis are tightly linked with the UPR 
response has been obtained in non-neuronal tissues. For 
example, it was demonstrated that when Ire1α is deleted, 
an excess of triglycerides is detected in hepatocytes [191]. 
Furthermore, XBP, an important component of the IRE1 
pathway, has also been demonstrated to be involved in lipo-
genesis [113]. Compared to the IRE1/XBP pathway, over-
expression of PERK has been associated with overactivation 
of SREBP-1c, leading to lipid accumulation [112]. Interest-
ingly, transgenic Atf4-/- mice show a minor accumulation 
of triglycerides compared to wild type mice when fed with 

Fig. 2  Mitochondrial dysfunc-
tion, ER stress and alterations 
in membrane contact sites 
(MAMs) are related to lipi-
dostasis alterations. a Deple-
tion or mutations in PINK1 
are associated with increased 
ceramide levels, thereby 
altering beta-oxidation and 
the electron transport chain. 
b When the balance between 
aSyn and cardiolipin is altered, 
favoring the accumulation of 
aSyn, aSyn associates with the 
cardiolipin on the mitochondrial 
outer membrane inducing the 
formation of pores that release 
cytochrome c (Cyt c). c When 
proteins related to lipid metabo-
lism, such as ACAT1, sphin-
gomyelin phosphodiesterase, 
ceramide synthase or VPS13 
are downregulated, processes 
such as lipid biosynthesis and 
phosphoserine trafficking are 
affected. Additionally, the 
reduction in the levels or muta-
tions in PINK1 are also associ-
ated with altered phosphoserine 
trafficking between organelles. 
All of them lead to altered 
lipidostasis in the MAMs, 
contributing to mitochondrial 
dysfunction and ER stress. d 
When PERK is overexpressed, 
SREBP-1c is activated leading 
to lipid accumulation. A reduc-
tion in IRE1 and ATF leads to 
increased or diminished tri-
glyceride content, respectively. 
Therefore, the UPR pathways 
in the ER can modulate and 
contribute to alterations in 
lipidostasis
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either a high-carbohydrate or high-fructose diet [117, 196]. 
However, besides aSyn accumulation, alterations in lipi-
dostasis may also trigger ER stress and further contribute to 
protein aggregation in neurons.

In total, and although additional studies will be necessary 
to firmly establish the role of lipidostasis in neurodegen-
eration, the findings above clearly demonstrate that several 
components of the lipid metabolic network are tightly linked 
to known PD-related proteins, suggesting that modulation of 
lipid species may constitute valid strategies for therapeutic 
intervention.

Concluding remarks

PD and related synucleinopathies have been traditionally 
classified as a proteinopathies due to an imbalance between 
protein synthesis and degradation systems that lead to mis-
folding and accumulation of aSyn, and to a concomitant neu-
ronal dysfunction and death. However, a fresher view into 
genetic, epidemiological, and mechanistic data, has brought 
lipidostasis into the spotlight. This idea is also fueled by the 
limited success in clinical trials focusing on the traditional 
view of synucleinopathies purely as proteinopathies, which 
calls for critical reconsideration of the hypotheses being 
tested, in the hope that greater progress can be made in the 
coming years. In this context, lipidostasis alterations are an 

Fig. 3  PD and synucleinopathies as lipidopathies. Alterations in lipi-
dostasis have been observed in several brain regions (highlighted in 
yellow) that are also affected by the spreading of aSyn pathology 
(green pathways with arrows). Given that: (i) lipids/membranes are 
core components of LB; (ii) that aSyn structure and lipid-binding 
properties are affected by the proportion of lipids in organelles; (iii) 
that lipidostasis alterations are linked to impaired organelle function; 

(iv) that neuronal lipid accumulation and high concentration of lipids 
in the parenchyma are associated with microglial activation and neu-
roinflammation; (v) that several genes involved in lipid metabolism 
have been identified as genetic risk factors for PD and progression; 
and (vi) that there is a general alteration in lipidostasis leading to 
accumulation of particular lipid species, we posit that these diseases 
should be considered not only proteinopathies but also lipidopathies



378 Acta Neuropathologica (2023) 146:369–385

1 3

emerging and exciting area. Strong evidence suggests that 
membrane lipids are of high importance for aSyn biology/
pathobiology, contributing to aSyn fibrilization and accumu-
lation in laboratory models. Strikingly, aSyn-lipid interac-
tions are likely an important component in LB formation 
and, possible also for spreading of pathology. In summary, 
lipids are emerging as major contributors and drivers of PD 
(Fig. 3) given  the following:

• Several genes involved in lipid metabolism have been 
identified as genetic risk factors for PD onset and pro-
gression.

• Lipids are abundant components of LB.
• aSyn structure and lipid binding is affected by the mem-

brane composition.
• Lipidostasis imbalances are linked to impaired orga-

nelle function, such as mitochondrial dysfunction and 
ER stress.

• Alterations between aSyn-lipid interactions impact on 
organelle function.

• aSyn accumulation alters lipid droplet homeostasis.
• SLs and long-chain ceramides have been implicated in 

pro-inflammatory processes (reviewed in [3, 14, 19, 80, 
118, 134]), consistent with the growing role of neuroin-
flammation and immune response in PD.

In conclusion, since lipid imbalances are emerging as an 
important driver of neurodegeneration, we posit that a better 
understanding of how alterations of lipidostasis contribute 
to neuropathology in PD and in other synucleinopathies will 
open novel avenues for therapeutic intervention and, per-
haps, also for the development of novel disease biomarkers.
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