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Abstract: This study describes a multistage methodology to detect minute amounts of tetrodotoxin
in fishes, a plan that may be broadened to include other marine organisms. This methodology was
applied to porcupinefish (Diodon hystrix) collected in Punta Chiquirín, El Salvador. A three-stage
approach along with post-acquisition processing was employed, to wit: (a) Sample screening by se-
lected reaction monitoring (HPLC-MS/MS-SRM) analyses to quickly identify possible toxin presence
via a LC/MS/MS API 3200 system with a triple quadrupole; (b) HPLC-HRFTMS-full scan analyses
using an ion trap-Orbitrap spectrometer combined with an MZmine 2-enhanced dereplication-like
workflow to collect high-resolution mass spectra; and (c) HPLC-HRMS2 analyses. This is the first
time tetrodotoxin has been reported in D. hystrix specimens collected in El Salvador.

Keywords: tetrodotoxin; HPLC-HRMS; HPLC-MS/MS-SRM; HPLC-HRMS2; Diodon hystrix; MZmine;
natural products detection

Key Contribution: We have developed a sensitive three-stage approach to detect TTX traces in
marine organisms using MS techniques. In addition, the methodology was applied to detect TTX in
Diodon hystrix collected in El Salvador.

1. Introduction

Tetrodotoxin (TTX) is a powerful neurotoxin with a molecular weight of 319 Da, which
is widely distributed in nature [1]. Since the first report of this toxin isolated from the
ovaries of a pufferfish by Tahara and Hirata at the beginning of the 20th century, TTX
has been found in terrestrial vertebrates [2,3], invertebrates [4–6], bacteria [7–10], and
fishes, including Diodon hystrix [11–13], among others [14]. Although this toxin has been
found in several organs of adult pufferfish, TTX is mostly localized in the skin, muscles,
intestines, gonads, kidneys, and liver [15]. The true origin of TTX remains controversial. Its
production by symbiotic bacteria (endogenous route) or by accumulation through the diet
are the most accepted proposals. Moreover, feeding on TTX-bearing microalgae by fish and
its consequent accumulation is another explanation [9,16,17].

The deadliness of this potent neurotoxin is caused by its capacity to inhibit voltage-
gated sodium channels and thus provoke death through respiratory paralysis [1,18]. The
estimated minimum lethal dose value in humans is approximately 10,000 mouse units,
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nearly 2 mg [19]. The most useful approach to analyzing TTX is the LC/MS technique.
A review of the advantages and limitations of this technique to detect and analyze the
presence of TTX and its analogs has been recently reported [20].

The pufferfish D. hystrix (Linnaeus, 1758, Diodontidae), also known as spot-fin porcu-
pinefish, is characterized by being one of the most predominant shell-crushing predators of
mollusks in tropical coastal waters worldwide [21]. D. hystrix is distinguished for bearing
spines on the caudal peduncle, fins with dark spots, and a broad head, as well as slight
differences in the number of fin rays. D. hystrix is widespread in tropical and subtropical
waters of the Indian, Atlantic, and Pacific Oceans. It also dwells in the circumtropical
eastern Pacific from San Diego, California, to Chile, including the Galapagos Islands, and in
the western Atlantic, from Massachusetts and Bermuda, continuing down to the northern
waters of the Gulf of Mexico all the way down to Brazil [22,23].

The characteristic conditions of the high concentration of suspended material, coastal
currents, and surface temperatures that range between 26 and 31 ◦C present in the tropical
Pacific Ocean adjacent to El Salvador create a favorable environment for several tropical
species. Although D. hystrix is spread throughout the entire coast of El Salvador, from
the estuary of Rio Paz (13◦44′39′′ N, 90◦07′58′′ W) to Meanguera Island (13◦12′4′′ N,
97◦41′42′′ W), it is not commercially fished or consumed by Salvadorans, a distaste that is
shared by others in Central America and the Caribbean.

Cases of fish poisoning in Hawaii (USA) [24] and Papua New Guinea [25] have been
reported after D. hystrix consumption or following minor injuries caused by stabs from
its spines in The Netherlands [26]. TTX occurrence, however, was not confirmed through
analytical methods in the forenamed cases. Several studies focusing on TTX detection in
D. hystrix have been reported. A study published in 1997 on the neurotoxic and cytotoxic
activities of skin secretions from a specimen collected on the northern coast of Sao Paulo
State (Brazil) suggested the presence of neurotoxins other than TTX, although the existence
of a residual amount of TTX is not discarded [27]. As reported in 2014, the presence of
TTX was detected and quantified by LC-MS/MS in the liver, but not in the muscle, of
specimens from Sabah and Sarawak waters in Malaysia [11]. A genotoxicity study of TTX
extracted from different organs of D. hystrix from the southeastern Indian coast, reported in
2016, displayed its presence in the eyes, liver, intestines, and gonads. In this study, GC-MS
analyses confirmed TTX occurrence in all raw extracts except the eye. Extracts obtained
from the skin, gonads, and liver caused 100% mortality when they were tested on Zebra
fish [12]. More recently, TTX and analogs were detected and quantified by LC-MS /MS in
the liver of four D. hystrix specimens collected on the southern coast of Mozambique [13].
In contrast, TTX was not detected by LC-MS studies in a D. hystrix specimen collected
in Hawaiian waters nor in 42 distinct bacterial strains cultivated from this pufferfish [28].
In another study, no significant level of TTX was found in any organs of a D. hystrix
specimen collected in Okinawan waters in Japan [29]. Additionally, TTX uptake into liver
tissue slices of D. hystrix displayed no significant increase in TTX content over time during
incubation. This finding suggests a limited ability of this toxin for bioaccumulation [30].
These studies seem to indicate that TTX presence in D. hystrix is associated with the
geographic distribution of this pufferfish.

Continuing our search for bioactive natural products from different types of marine
organisms [31–33], and given the lack of TTX studies of pufferfish from El Salvador, we
endeavored to investigate the occurrence of TTX in D. hystrix collected in El Salvador due to
the lack of TTX studies in pufferfish from these coasts. This paper reports the occurrence of
TTX in extracts from different organs of D. hystrix sampled in Bahia Chiquirín, El Salvador,
for the first time. A multistage methodology based on different MS techniques allowed
the detection of TTX in minute amounts. These findings have given more insight into the
worldwide distribution of TTX in D. hystrix.
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2. Results and Discussion

Specimens of D. hystrix collected on the South coast of El Salvador were classified
by gender (male, female, and undefined), and their organs, i.e., skin, liver, kidneys, flesh,
and gonads, were dissected. All specimens collected were analyzed (three females, one
male, and two undefined) (Table 1, Figures S1 and S2). Upon processing the samples
(Figure S3), they underwent submission to HPLC-MS/MS-SRM, HPLC-HRFTMS, and
HPLC-HRFTMS2 analysis. The main criteria were that the parent ion and at least one
fragment ion of the toxin, as well as its retention time, be discernible [34]. Moreover, blank
samples were included to rule out false positives.

Table 1. Physical characteristics and extract weights of the D. hystrix specimens studied.

Gender Weight (g) a L. (mm) b Weight c Liver Gonads d Kidney Skin Muscle

Female 913.9 199.3 ± 4.5

Organs (g) 82.9 17.7 8.5 87.2 95.4

Raw Extr. (g) 10.0 7.6 3.4 10.0 10.0

Ultrafiltr. (mg) 65.4 156.3 400.8 45.3 227.6

Male 1177.3 406.0

Organs (g) 33.5 6.5 10.1 22.5 75.3

Raw Extr. (g) 10.0 4.0 4.8 10.0 10.0

Ultrafiltr. (mg) 160.4 29.9 52.2 39.9 91.4

Undef. 411.9 184.0 ± 3.7

Organs (g) 39.8 3.5 3.2 52.6 48.6

Raw Extr. (g) 10.0 1.6 1.0 10.0 10.0

Ultrafiltr. (mg) 75.3 9.7 17.2 143.2 125.2

Undefined gender (Undef.); Raw extracts (Raw Extr.): weight of dried acidulated methanol extracts; Ultrafiltration
(Ultrafiltr.): weight of extract obtained after ultrafiltration procedure. a These amounts correspond to the sum of
the weights of three females, one male, and two undefined gender specimens, respectively; b Specimen length (L)
is expressed as the average of collected specimens; c These amounts correspond to the combination of the organ
weights and subsequent Raw Extr., and Ultrafiltr. weights of each gender; d Gonads are referred to as testicles
(Male), ovaries (Females), and gonads (Undefined gender).

2.1. HPLC-MS/MS-SRM

The first method to detect the toxin in extracts of D. hystrix implied the use of HPLC-
MS/MS-SRM. It indicated the presence of the two characteristic parent-product ion transi-
tions, 320/302 and 320/162, associated with TTX in the FG and MU samples (Figure 1 and
Figure S5, respectively).

However, further studies of the mass spectra showed that even though the retention
time variation (∆tR = 0.03 min) was within the accepted tolerance intervals in both FG
and MU, the transition ion ratio (TIR) was outside the acceptable range (1.3 ± 0.2) in both
samples, namely 0.59 and 0.21, respectively (Table 2). These findings indicate that the toxin
concentration in FG and MU would be between the limit of detection (LOD: 72 ng/mL)
and the limit of quantification (LOQ: 320 ng/mL). See the calculation of detection and
quantification limits of HPLC-MS/MS-SRM in the SM (Figure S4) [35–37]. Thus, the
concentration of TTX in those organs would be within the range of 4.1 and 18.1 µg.Kg−1,
which corresponds to a value between 2 and 9 mouse units [13]. In order to corroborate
the presence of the toxin, additional experimental approaches were employed, including
high-resolution parent ion separation and two high-resolution stages.

2.2. HPLC-HRFTMS

HPLC-HRFTMS, operating in Selected Ion Monitoring (SIM) and positive ionization
modes (ESI-(+)), was the second method used to detect TTX in D. hystrix. The method was
corroborated by a standard solution, shown in Figure S6. The sample analyses evidenced
the occurrence of TTX in both the female skin (FS) sample (Figures 2 and S7–S9) and the
male liver (ML) sample.
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Figure 1. Selected reaction monitoring (SRM) chromatograms of female gonads (FG) samples, where
the parent ion (m/z 320) is fragmented into the product ions (m/z 302 and 162). ∆tR found was
0.03 min, and TIR found was 0.59.

Table 2. Summary of Tetrodotoxin detection in extracts of D. hystrix.

Gnd. Spec.
Organs

Liver Gonads Kidney Skin Muscle

Female - HPLC-MS/MS-
SRM * - HPLC-

HRFTMS -

Male HPLC-
HRFTMS - - - -

Undef. HPLC-
HRFTMS2 - - - HPLC-MS/MS-

SRM *
Gnd. Spec.: Gender specimen. Undef.: Undefined (-): Not detected. (*) The presence of TTX was not confirmed
because the transition ion ratio (TIR) was outside the acceptable range for this technique.

The extracted Ion chromatogram (EIC) in a mass range of m/z 320.00–320.20 (Figure 2a)
in the FS sample displayed a sharp peak with ∆tR = 0.4 min. The exact mass spectrum
was computed by averaging the high-resolution mass detected at three different retention
times taken from the EIC (Figure 2b). The calculated mass measurement error (∆m/z) of
FS 0.75 (0.62) ppm matched the TTX molecular formula (Figure 2c) [38–40]. Moreover, the
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sample EIC fully overlapped that of the standard sample (Figures S6–S9). The Orbitrap
detector was permitted to positively confirm the occurrence of TTX in the FS sample. The
presence of TTX in the ML sample was also displayed by this method (Figure S10) based
on the HRMS values (∆m/z = 1.67 (0.5) ppm), although in this case, the Relative Isotope
Abundance error (RIAerror) was larger than the maximum tolerance value, presumably
due to the low ion counts [41]. The Orbitrap detector has a lower threshold setting, below
which no ions can be detected or accurately reported.
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Figure 2. HPLC–ESI(+)–HRFTMS (SIM mode) analysis of female skin (FS) sample of D. hystrix.
Extracted ion chromatogram, mass range: m/z 320.0–320.20 (a) and high-resolution mass spectra at
different retention times (b)-row. Occurrence of TTX in the FS sample was assured by the accuracy in
the detected mass (∆m/z = 0.75 (0.62) ppm). The calculation model is also shown (c).

Once TTX was detected in the FS and ML samples by using the HPLC-HRFTMS
method, we endeavored to find the most common TTX analogs (4,9-anhydro-TTX; 5-deoxy-
TTX; 11-deoxy-TTX; 5,11-dideoxy-TT; 6,11-dideoxy-TTX; 5,6,11-trideoxy-TTX 11-nor-TTX-
6(R)-ol; and 11-oxo-TTX) in those samples by resorting to that methodology [42,43]. As a
result, no other analog of TTX was detected in either sample.

2.3. Post-Acquisition Data Analysis by MZmine

After the presence of TTX had been established by HPLC-HRFTMS in the D. hystrix sam-
ples, we provided a workflow allowing the automatization of toxin data analysis/dereplication.
Laboratories wishing to automatize natural product detection should validate their data-
analysis protocols. For data processing and metabolite detection, MZmine (V.2) has been
extensively utilized in metabolomics and natural product dereplication, along with LTQ
Orbitrap hybrid mass spectrometry [44–49]. The data analysis workflow software used here is
shown in Section 4.

The automatized mode was employed to process and analyze the Orbitrap HPLC-
HRFTMS files. After treating the FS sample raw file with XcaliburTM, a peak attributed to
TTX emerged at 8.1 min. The identification of TTX in the FS sample was achieved with the
help of existing high-resolution MS, isotope pattern, and Ring/Double Bond Equivalent
(DBE) available in online databases (Figure 3). We concluded that by using this scheme, it
was possible to routinely automatize toxin detection and ease data processing.

2.4. HPLC-HRFTMS2

Toxin presence in D. histrix was corroborated by multiple-stage mass spectrometry in
the LU sample. The method was corroborated, as before, by using a TTX standard solution
(Figure S11). To optimize the signal-to-noise ratio, parameters were configured by utilizing
a standard solution (see Section 4). The stock solution showed two distinct transitions,
suggesting the appropriateness of this method for TTX detection (Figure S11).
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Figure 3. HPLC–HRFTMS 3D projection of D. hystrix-FS sample generated after data processing with
MZmine (a). Extracted ion chromatogram (marked yellow) showing the peak attributed to TTX (b).

The analyzed fragment ions found in LU displayed molecular formulas that matched
those reported in the literature [34]. The parent ion at m/z 320.1088 (C11H18N3O8

+)
yielded distinctive fragment ions at the following m/z values: 302.0983 (C11H16N3O7

+,
∆m/z = 0.03 ppm) and 162.0656 Da (C8H8N3O+, ∆m/z = 3.64 ppm). The Ring/Double
Bond Equivalent (DBE) value changed from 4.5 to 5.5 for the fragment at m/z 302.0983,
suggesting the loss of a water molecule accompanied by an adjustment on the ring system
and resulting in the formation of an extra 5-member ring [9-O-4-4a-8a] (Figure 4a) [40]. On
the other hand, the DBE value change from 5.5 to 6.5 for the fragment at m/z 162.0662 im-
plied a significant modification in the molecular structure, suggesting the break of several
bonds and the ensuing formation of a heterocyclic aromatic structure (Figure 4b). Therefore,
based on the experimental evidence obtained through HPLC-HRFTMS2 experiments, the
presence of TTX in the LU sample was also confirmed.
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Figure 4. TTX was identified in the LU sample of D. hystrix via a LTQ-Orbitrap XL and by the
fragments generated during MS2 analysis. Fragmentation of the ion corresponding to the compound
eluted at 28.7± 0.1 min showing the distinct fragment at m/z 302.0983 Da (∆m/z 0.03 ppm) attributed
to the loss of a water molecule in TTX (a). Second fragmentation showing the ion at m/z 162.0656 Da
(∆m/z 3.64 ppm) attributed to the characteristic 2-aminohydroxyquinazoline fragmention detected
within the TTX fragmentation analysis (b).

3. Conclusions

A trace detection methodology by MS techniques was proposed and applied to detect
TTX in specimens of porcupinefish (D. hystrix) collected in Punta Chiquirín, El Salvador.
The same extraction scheme for the toxin was used in all the samples, and an extra pu-
rification step was included in the HPLC-HRMS2 method to avoid matrix interference.
Several techniques, such as HPLC-MS/MS-SRM, HPLC-HRFTMS, and HPLC-HRFTMS2,

were employed in conjunction with post-processing data using MZmine 2. The approach
outlined here can be adjusted to study the occurrence of TTX in various other marine
organisms with an economic interest.

The toxin was detected in the gonads (FG) and skin (FS) of the female specimens,
in the liver of the male (ML) specimen, and in the liver (LU) and muscles (MU) of the
undefined specimens (Table 2). The quantification of TTX could not be determined in any of
the samples, most likely due to toxin levels falling below the limit of quantification (LOQ).

Although TTX had previously been detected in D. hystrix, this is the first time that this
toxin, distributed throughout the different organs of the fish, has been found in specimens
collected in El Salvador. Hence, the consumption of D. hystrix collected in the region
constitutes a potential threat of food poisoning. The traces of TTX detected in specimens
collected in Salvadoran waters contrast with the quantifiable amounts reported from
specimens collected on Malaysian, South East Indian, and Mozambican coasts and with
nondetection in Hawaiian and Okinawan waters. D. hystrix represents another case where
the concentration of TTX depends on the place of collection.

Extending the methodology proposed here to specimens collected on other coasts of El
Salvador would contribute to mapping the prevalence of TTX in the country. We encourage
further research into both TTX quantification and the geographical distribution of D. hystrix
and other pufferfishes in Salvadoran waters.
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4. Materials and Methods
4.1. General

All the reagents used for sample preparation, desalting, and solvents for MS analysis
were of the highest quality available. Reference tetrodotoxin (TTX) material was supplied
through a collaboration with the Spanish Company Laboratorios Dr. Esteve S.A. (Barcelona,
Spain). The certificate of analysis of the supplied sample showed a purity of 97.1%.

4.2. Specimen Collection

Specimens of female (3), male (1), and undefined gender (2) of D. hystrix were collected
by artisanal fishermen using gillnets on 1 October 2014 at Punta Chiquirín, Department of
La Unión, El Salvador (13◦17′31.01′′ N, 87◦47′03.60′′ W) (Figure 5).
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A male specimen of D. hystrix is shown in Figure 6 (a female specimen is displayed in
Figure S1). The specimens were grouped by gender and washed with deionized water.
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Their organs were dissected to obtain sample tissues of the liver, muscle, gonads,
kidneys, and skin (Table 1, Figure S2). The tissue samples were promptly frozen and
transported to Universidade da Coruña-Spain for subsequent processing and analysis.
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4.3. Sample Preparation

Sample preparations were carried out through the methodology shown in Figure 7.
After defrosting the organs, the tissues were extracted twice with 40 mL of CH3OH/H2O 1:4
(1% CH3COOH) in an ultrasonic bath at 55 Hz (5 min) and then centrifuged at 10,000 rpm for
30 min. The organic solvent was evaporated from the supernatant under reduced pressure
to afford an aqueous phase (aqueous fraction 1) that was extracted twice with 25 mL
of CH2Cl2. After removing the CH2Cl2 under reduced pressure, the resulting aqueous
fraction (aqueous fraction 2) was ultra-filtered (Amilcon® system) with two membrane
filters of 100,000 Da and 10,000 Da, and the filtrate was submitted to fine Bio Gel P-2
column chromatography (pH = 5.5) for desalting (Figure S3). The Bio Gel P-2 column was
eluted first with H2O to remove the salts and then with 0.5 mL of AcOH (0.03 mol/L) to
obtain a toxin-enriched fraction (Fraction G). Finally, the samples were lyophilized before
undergoing MS analyses [50].
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4.4. Methodology

The stock solution was prepared by dissolving the TTX standard in CH3COOH (1 mM).
Then, a 9-point calibration curve was prepared by serial dilution, covering a TTX concentra-
tion range of 6.3–1010 ng/mL (Table S1, Figure S4). The solution matrix was kept at −20 ◦C.
The detection of the toxin in the D. hystrix solutions was tested by using HPLC-HRMS/MS-
SRM, HPLC-HRFTMS, and HPLC-HRFTMS2 by an in-house method. The corroboration
of the HPLC-MS/MS method was based on the estimated limit of quantification (LOQ)
and transition ion ratio (TIR) tolerance, as well as on the retention time tolerance. The
corroboration of the HRMS method was focused on the reproducibility of retention time
and on the detection or absence of 13C1/12Cn−1 ions ratio in both the standard and several
blank solutions. The HRMS calculations were undertaken using five significant figures
(Sig. figs.), indicated in subscript format, although only four were used.

4.5. Analytic Methodologies Used in Tetrodotoxin Detection
4.5.1. HPLC-MS/MS-SRM

Measurements were performed utilizing an HPLC-MS/MS API 3200 System (Ap-
plied Biosystems) supplied with a triple quadrupole MS/MS. The retention time, m/z,
and presence of parent-product ion transitions were taken into account for a positive
identification [51,52]. The following analytical conditions were employed: Mobile phase:
CH3CO2NH4 16 mM/CH3CN (3:7), pH 5.5, 40.0 min isocratic elution in a TSKgel Amide-80
HILIC-column (150 × 2.0 mm i.d.; 5 µm, Tosho, Tokyo Japan), flow 0.2 mL/min, column
oven temperature: 25 ◦C. Sample volume injection: 5 µsL. Two ion transitions: 320→ 302
and 320→ 162, corresponding to [M + H-H2O]+ and [C8H8N3O]+ ions of TTX fragmenta-
tion, respectively, were used. Ionization was achieved via electrospray ionization (ESI) in
positive mode with selected reaction monitoring (SRM).

The occurrence of the toxin was determined by comparing the retention time variation
(∆tR) with the transition ion ratio (TIR) of the standard variables [53,54]. They were
computed using the following equation:

∆tR =
∣∣∣tR,TTX − tR,sample

∣∣∣ (1)

TIR =
∑n

i=1

(
Area1,i
Area2,i

)
n

(2)

where tR,TTX is the retention time of the TTX standard sample and tR,sample is the retention
time of any of the D. hystrix samples; Area1,i and Area2,i correspond to the area of 320/302
and 320/162 transitions, respectively, at each concentration of the calibration curve, n being
the number of points of the curve.

Preparation of the calibration curve: A concentrated TTX solution was prepared
gravimetrically and utilized on a daily basis, ensuring freshness. Nine calibration stan-
dards were prepared from that solution by serial dilution at 6.3, 13, 25, 50, 100, 200,
600, 800, and 1010 ng/mL and used to plot the calibration curve (R2

(320→302) = 0.996;
R2

(320→162) = 0.994; LOQ: 320 ng/mL; LOD: 76 ng/mL). The ∆tR tolerance used was
0.1 min [55], and the TIR tolerance was obtained as 1.3379 ± 0.2006 (TIR ± 15%). The cali-
bration curve and the parameters derived from the calibration process are presented in the
Supplementary Material (SM).

4.5.2. HPLC-HRFTMS

Acquisition parameters: They were set to increase analyte response and diminish
isobaric ion interference as much as possible. HPLC-HRFTMS analyses were accomplished
in an LTQ-Orbitrap Discovery mass spectrometer coupled with a Thermo Scientific Ac-
cela ESI-HPLC system. The chromatographic separation was achieved using a TSKgel
Amide-80 HILIC-column (150 × 2.0 mm i.d., 5 µm, Tosho, Tokyo, Japan) at 25 ◦C and
a 40.0 min isocratic elution with a mobile phase of CH3CO2NH4 16 mM/CH3CN (3:7)
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pH 5.5. The sample was dissolved in CH3COOH (1%). Injection volume: 25 µL. Elution
flow: 0.2 mL/min. Scan Event: FTMS. Mode: Full scan: 65–450. Resolution: 30,000. ESI-(+)
ion source parameters were set as follows: Capillary temp: 350 ◦C. Capillary voltage: 26.00,
and Source voltage: 4.50 kV.

Data analysis: The accurate mass measured (m) was calculated by averaging the
masses detected (mi) at three different randomly selected peak positions in the extracted
ion chromatogram (Figure 2). The mass measurement error (or accuracy) was deter-
mined by calculating the difference in ppm between the theoretical exact mass (ma) and
m (∆m/z) [56,57] and expressed as 12Cn (13C1

12Cn−1) ppm.

m =
3

∑
i=1

mi
3

(3)

∆m/z =

∣∣∣∣ma −m
ma

× 106ppm
∣∣∣∣ (4)

The natural isotope pattern was also included as an additional means to refine the
potential candidates for toxin identification, and it is presented as Relative Isotope Abun-
dance (RIA) of 13C1

12Cn−1 relative to 12C (5) [56,58]. The theoretical (RIATheo) and the
experimental RIA (RIAexp) were automatically computed using ChemDraw V 20.1 and
Thermo Xcalibur V 3.0, respectively. The identification was deemed valid when the isotopic
ion abundance ratio error (RIAerror) remained below the maximum recommended value of
|16%| for positive ionization mode [ESI(+)-full scan] on peaks exhibiting intensities ranging
between 1 × 105 and 1 × 106 [58,59].

RIAerror(%) =

∣∣∣∣RIAexp − RIAtheo

RIAtheo

∣∣∣∣× 100 (5)

4.5.3. HPLC-HRFTMS2

Sample preparation: Samples were concentrated by manually submitting them through
a Waters Sep-Pak Plus C18 Short Cartridge (Part No. WAT020515) to mitigate any possi-
ble matrix interferences (Figure 7). Analysis conditions: The equipment and separation
conditions were the same as in the HPLC-HRMS section, although the scan type was in
Selected Reaction Monitoring Mode (SRM). The MS conditions were: parent ion mass (m/z)
320.00, Normalized Collision Energy (eV): 35.0, Acquisition Time (ms): 30.00, and mass
range detected (m/z): 320.10→301.50–302.50 and 320.10→161.50–162.50, corresponding to
[M + H-H2O]+ and [C8H8N3O]+ ions, respectively. Resolution: 30,000 and CID: 35%. Data
analysis: Molecular formulae and Ring/Double Bond Equivalents (DBE) were computed
in Xcalibur V 3.0 by using the exact mass detected. Fragments selected for the analysis
met two criteria: they were abundant during fragmentation and did not originate from the
same part of the molecule under study.

4.6. Post-Acquisition Data Processing

The thermo Orbitrap files (*.Raw) were handled in Xcalibur V3.0 from Thermo Fisher
Scientific V3.0 and MZmine V 2.53 [49,60]. The HPLC-HRMS2 data analyses were carried
out as previously described [61,62]. The calibration curve, the linear regression analysis,
and the graphics were carried out using Microsoft Excel (Microsoft 365 MSO, version 2309).
The chemical structures were performed in ChemDraw V20.1. The figures were handled
in Affinity Designer V 2.1. The treatment of MZmine data was carried out, as shown in
Figure 8. For a detailed software setup, see SM.
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