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Abstract: There is a growing interest in characterizing the
structure and dynamics of large biomolecular assemblies
and their interactions within the cellular environment. A
diverse array of experimental techniques allows us to study
biomolecular systems on a variety of length and time scales.
These techniques range from imaging with light, X-rays or
electrons, to spectroscopic methods, cross-linking mass
spectrometry and functional genomics approaches, and are
complemented by Al-assisted protein structure prediction
methods. A challenge is to integrate all of these data into a
model of the system and its functional dynamics. This review
focuses on Bayesian approaches to integrative structure
modeling. We sketch the principles of Bayesian inference,
highlight recent applications to integrative modeling and
conclude with a discussion of current challenges and future
perspectives.
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1 Introduction

Molecular machines composed of proteins and nucleic acids
are implicated in all essential processes of the living cell. To
gain a fundamental understanding of how these cellular
machines work, we need to transcend phenomenological
descriptions and replace them with quantitative models that
capture the structure and dynamics of the system, how it
responds to external signals, how it assembles and disas-
sembles functional units, and how it is embedded in the
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cellular context. Currently no single experimental method is
able to span all relevant spatial and temporal scales (Koukos
and Bonvin 2020; Rout and Sali 2019; Sali 2021). Rather we
need to study macromolecular complexes using an array of
experimental techniques including X-ray crystallography,
optical and electron 3D imaging, solution and solid-state
NMR, cross-linking mass spectrometry (XLMS) and solution
scattering (SAXS). In addition, protein structure prediction
using machine learning (ML) approaches and massive
training data generate complementary information. Pro-
grams such as AlphaFold2 (Jumper et al. 2021) and RoseT-
TAFold (Baek et al. 2021) have invigorated the field of protein
structure prediction by achieving unprecedented prediction
accuracy matching the quality of experimental structures.
EBI’s AlphaFold database (Varadi et al. 2022) is an invaluable
resource for integrative modeling. Predicted protein models
already play an essential part in integrative modeling (see
e.g. work by Mosalaganti et al. 2022) and will become even
more important in the future.

Integrated approaches to structural cell biology produce
diverse datasets that show different aspects of the system on
multiple spatial and temporal scales with varying quality
and information content. All experimental data must be in-
tegrated into a quantitative model that captures structural
and dynamical aspects of the system in the cellular envi-
ronment. Computational modeling approaches are pivotal in
achieving this synthesis, because our questions continue to
grow in complexity. The 3D structure of a macromolecular
complex only marks a point of departure. On the next level, it
will become part of a dynamic network in which movable
units change conformation and factors bind and dissociate.
Ultimately, the model should reproduce the kinetics of the
network and incorporate the cellular context.

Although integrative modeling with structural data is
often still done manually, it is clear that manual model
building risks to be biased and will soon be impractical in the
face of the wealth of data that is being generated by
emerging experimental techniques.

We should also keep in mind that all biomolecular
structures, even when determined at high resolution, are
models, and this is especially true for hybrid structures ob-
tained by integrative approaches (Rout and Sali 2019).
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Therefore, we need automated methods to not only estimate
unknown model parameters, but also to assess parameter
uncertainty and the validity of the model.

Bayesian probability theory offers a unique framework
to reason about scientific models in the presence of uncer-
tainty (Ghahramani 2015). Therefore Bayesian inference is
the appropriate framework to develop computational ap-
proaches to integrative structure determination (Rout and
Sali 2019). Among the first approaches to biomolecular
structure determination with a full-fledged Bayesian infer-
ence approach is Inferential Structure Determination (ISD)
by Rieping et al. (2005). ISD was originally formulated in the
context of NMR structure determination, but the framework
applies to all kinds of structural systems and data. The ISD
principle is particularly adequate and productive for inte-
grative structure determination (Rout and Sali 2019) and has
been implemented in powerful modeling software such as
the Integrative Modeling Platform (IMP) (Russel et al. 2012;
Saltzberg et al. 2021).

Although Bayesian principles are being embraced by
more and more researchers, the use of probabilistic
reasoning for integrative structural modeling has by far not
been exploited to its fullest potential. This review summa-
rizes the basic principles underlying the Bayesian approach
and highlights some recent applications and persistent
challenges. Due to limitations in space, this review is by no
means exhaustive and does not claim to describe all current
developments. It only provides a cursory, at times subjective
entry point for further studies. For an in-depth discussion of
integrative modeling approaches bridging the atomic and
cellular scale, the reader is invited to consult the recent re-
views by Braitbard et al. (2019); Koukos and Bonvin (2020);
Rout and Sali (2019); Sali (2021); Ziemianowicz and Kosinski
(2022).

2 Bayesian integrative structural
modeling

Bayesian probability theory is a general framework for
reasoning under uncertainty and highly suited for scientific
data analysis (Ghahramani 2015; Kinz-Thompson et al. 2021).
The hallmark of Bayesian inference is to express all informa-
tion including the experimental data and relevant background
knowledge through probabilities. The application of Bayesian
inference to structural modeling typically proceeds in two
steps: (1) modeling, i.e. formulating a probabilistic model for the
observed data, (2) computation, i.e. determining representative
model realizations that are probable explanations of the
observed data (see Figure 1). The following outlines the
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Pr(D | X,M) x Pr(X|M)
Model M

Inference
Pr(X|D,M) x Pr(D | M)

Figure 1: Bayesian integrative modeling consists of two steps. In the
modeling step, a probabilistic model M is constructed that generates the
observed data (right) from a structural model X (left) and additional
parameters (here, a projection direction and a noise model). In the
computation step, the model is “inverted” by multiplying the likelihood
Pr(D | X, M) with the prior Pr(X | M) and drawing conformational samples
from the resulting product.

Bayesian approach in the context of biomolecular structure
determination (Rieping et al. 2005).

2.1 Probabilistic modeling

Let’s first discuss the modeling step. Here, the term model is
understood in a very broad sense, and by M we denote all of
our modeling assumptions in their entirety. The model pa-
rameters of primary interest are the 3D coordinates X of the
structural representation of the biomolecular system.
Because our major goal is to make inferences about X, the
structural parameters are listed explicitly in our probabi-
listic formulation. However, the model M comprises not only
the structural representation X, but all assumptions that are
required to model the data.

If D denotes the structural data that we want to use for
structure determination, then the modeling process involves
formulating a likelihood Pr(D | X, M), which is the probability of
measuring data D assuming that the system adopts structural
coordinates X. The likelihood connects the observed data D
with the structural parameters X via the model M. To establish
such a connection might require additional parameters that
are not of primary interest, but still necessary to formulate the
model. Here, we absorb these nuisance parameters into the
model M. Nuisance parameters are very common in integrative
modeling and typically needed for a complete description of the
data. For example, NMR data require the introduction of cali-
bration factors or alignment tensors. Another important type of
nuisance parameter are weighting factors that reflect the
amount of noise in the data (Habeck et al. 2006).

Typically the likelihood is constructed as follows. First,
we derive a forward model f that predicts idealized data
(mock data) that should ideally match the observed data. In
practice, a perfect match between observed and mock data is
highly unlikely due to experimental noise or shortcomings of
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the model itself (e.g. approximations in the forward model,
limited resolution of the representation, etc.). Second, we
choose an error model that accounts for deviations of
observed data D and mock data f{X). A common choice is a
Gaussian error model, but other choices might be more
appropriate such as a lognormal distribution for distance
data, or a Poisson distribution for counts.

The second ingredient of a Bayesian model is the prior
probability Pr(X | M). The prior expresses what we assume
about reasonable structural models independent of the data.
Depending on the representation, more or less detailed
knowledge about X is available. At atomic resolution, we can
use literature values for bond lengths, bond angles and other
stereochemical parameters which are encoded in molecular
mechanics force fields. At coarser resolution, common terms
such as excluded volume or statistical potentials will be
incorporated into the prior.

Bayes’ theorem stipulates that the posterior distribution
Pr(X| D, M)is proportional to the product of the prior and the
likelihood:

Pr(X|D,M)Pr(D|M) =Pr(D|X,M)Pr(X|M) (1)

The proportionality factor Pr(D | M) is called the model
evidence and not needed to compute structural models.
However, the model evidence is crucial when we want to
compare different modeling assumptions summarized by M
(Knuth et al. 2015).

Equation (1) nicely separates the two stages of applying
Bayesian inference in practice: Setting up the right hand side
involves making choices about the model that describes the
data and the structure. These choices need to be made by the
modeler and are therefore, in parts, subjective; they should be
challenged by alternative models. Bayesian inference demands
us to make all of the modeling assumptions explicit and esti-
mate them as well from the data, if we are uncertain about
them. The left hand side is the actual inference, which is
apparent from the fact that the role of the data D and the
structural coordinates X is swapped. Equation (1) is a direct
consequence of the rules of probability theory. The second
stage of applying Bayesian inference involves computation of
the factors on the left hand side, i.e. drawing samples from the
posterior distribution and evaluating the model evidence.

In the Bayesian view, the posterior Pr(X | D, M) captures
everything that can be said about the structural model X
given the experimental data D in the light of all our modeling
assumptions M. Assuming that the model is correct (or at
least useful) the posterior is the actual result of a structure
determination exercise. The resulting posterior probability
quantifies to which extent the structural coordinates are
determined by all of the information that is incorporated
into the model.
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certain uncertain ambiguous

Pr(X | D, M)
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Figure 2: The posterior probability Pr(X | D, M) reflects the uncertainty in
the structure when taking all data and model assumptions into account.

Figure 2 schematically shows possible posterior shapes
reflecting different states of uncertainty. If the posterior
peaks sharply at a single structure, then the experimental
data in combination with the background information suf-
fice to determine the structure unambiguously. This typi-
cally requires high-resolution data from X-ray, cryo-EM or
NMR. Next, the posterior could still exhibit a single dominant
peak which is broadened due to the lack of data. To represent
the increased uncertainty, we should not only try to locate
the maximum of the peak, but also generate structural
models that reflect the uncertainty under the peak. These
structures are suboptimal solutions which are missed by an
optimization approach. In the most general situation which
is typical for integrative modeling, the posterior distribution
will exhibit multiple peaks. Each peak corresponds to a
structure ensemble that explains the data (at least to some
degree). The higher the peak, the better is the agreement
between observed and mock data. But not only the height of
the peak, also the probability mass under the peak is
important, because it reflects how common a structure is,
which again argues for the use of sampling (rather than
optimization) methods for structure modeling.

2.2 Bayesian computation via posterior
sampling

Often the posterior is converted into a scoring function by
taking its negative logarithm (Rout and Sali 2019). Highly
probable structures then correspond to structures with a low
scoring function-logPr(D | X,M)-logPr(X | M). The first term is a
restraint energy that favors structural models X minimizing
the discrepancy between the observed data and mock data
computed from X. The second term involving the log prior acts
like a regularizer. Structural models with high posterior
probability can be computed by minimizing the score.
However, optimization approaches are limited in that
they reduce the full posterior distribution to a few points in
conformation space. From a truly Bayesian perspective, the
solution of a structure determination problem is given by the
posterior distribution Pr(X | D,M) itself. Therefore, we should
try to capture the shape of the posterior as closely as possible. A



744 —— M. Habeck: Bayesian methods in integrative structure modeling

single or few structures cannot capture the shape of the pos-
terior distribution unless it collapsed into a single peak. This is
very unlikely to happen in integrative modeling where varied
data of different quality and amount need to be combined.

An advantage of the Bayesian approach is that all sources
of information about the structure of a biomolecular system
enter with an appropriate strength. Likelihoods are normal-
ized with respect to the data and therefore there is no freedom
or need to set weighting factors. The width of the likelihood
(which determines the weight of the log-likelihood) is deter-
mined by the quality of the data and is either known or can be
estimated along with the structure parameters (Habeck et al.
2006; Rieping et al. 2005).

To infer a probabilistic model and take full advantage of
the Bayesian approach, we can use statistical sampling
methods and generate representative model realizations from
the posterior distribution. Posterior samples can be used in
several ways to assess the reliability of a structural model. The
uncertainty of model parameters is readily available in the
form of posterior histograms. Uncertain parameters are rep-
resented by broad histograms; ambiguous model parameters
are indicated by multimodal posterior histograms.

In addition to the posterior probability, the model evi-
dence, also known as marginal likelihood, is an important
result of a Bayesian analysis. It is desirable to provide an
estimate of the model evidence in addition to posterior
samples, because different modeling approaches can be
compared in an objective way via the estimated model evi-
dences. Alternative models could differ in the choice of
representation of a structure (e.g. its resolution), the forward
model that connects structural data D with the structural
representation, the error model or prior information.

3 Applications of Bayesian
inference in integrative modeling

This section discusses some applications of Bayesian
methods to integrative modeling from a variety of data at
largely different scales. The selection of topics is limited and
does not intend to cover all aspects relevant to integrative
modeling. There is also no space to discuss the many
impressive applications of integrative modeling such as, for
example, the recent models of the nuclear pore complex
(Akey et al. 2022; Kim et al. 2018; Mosalaganti et al. 2022).

3.1 Structural modeling with cryo-EM maps

Cryo-electron microscopy (cryo-EM) has emerged as one of
the most powerful experimental methods for structure
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determination of large macromolecular complexes. Struc-
tural models are obtained from cryo-EM maps mainly by
solving one of two tasks: rigidbody docking or flexible fitting.

A common approach to obtain a structural model of a
multi-component complex is to first place the subunit
structures rigidly into the EM map and then refine these
structures flexibly. However, this approach requires that
high-resolution structures or homology models of the sub-
units are available, and that the subunits do not undergo a
drastic conformational change during the assembly of the
complex. A growing number of computational tools for
structural modeling with cryo-EM maps has been developed
(Villa and Lasker 2014). These are typically non-Bayesian
approaches that maximize the cross-correlation coefficient.

Here, the discussion is restricted to Bayesian ap-
proaches for structural modeling with cryo-EM maps.
Bonomi et al. (2019) proposed a method for rigid multi-body
docking that combines Bayesian inference with coarse-
grained Gaussian mixture model (GMM) representations of
the experimental map and subunit structures. They use
Monte Carlo sampling of the rigid transformations within
the IMP software. The approach is benchmarked on 21 pro-
tein/DNA complexes consisting of 2-7 subunits at interme-
diate resolution of 10 A. On 16 examples, the approach
achieves a good RMSD of 2.2 A on average. However, there
are a few instances where the correct assembly is missed
either partially or completely. The reason is most likely
inefficient sampling of rigid body poses in multi-component
complexes. A general Bayesian framework for rigid and
flexible fitting of protein structures into cryo-EM maps has
been introduced by Habeck (2017) and implemented in the
ISD software (also see Introduction). Both atomic and coarse-
grained representations of molecular systems are sup-
ported. In flexible fitting, the structural parameters are
updated with Hamiltonian Monte Carlo. On the Flex-EM
benchmark (Topf et al. 2008), ISD produces fits that are
systematically better than Flex-EM.

With the improvement of EM reconstructions towards
atomic resolution (Yip et al. 2020), full-atom modeling is
the final bottleneck to also obtain an atomic model in
addition to the density map. This is the domain of flexible
fitting of atomic structures into EM maps. Blau et al. (2016)
have combined molecular dynamics (MD) with a cryo-EM
fitting score that they derive in a Bayesian fashion. Vuil-
lemot and Joni¢ (2021) combine normal-mode based fitting
with cryo-EM maps within a Bayesian framework. A more
recent development is CryoFold (Shekhar et al. 2021)
which combines the Bayesian MELD approach (MacCal-
lum et al. 2015) with other modeling tools. CryoFold gen-
erates an ensemble of high-quality structural models
without requiring high-resolution subunit structures as
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input. However, the density map needs to be of a suffi-
ciently high resolution of about 3-5 A.

3.2 Coarse-graining of biomolecular systems

Choosing a good representation for structural modeling is an
essential part of integrative approaches. Coarse-graining
(CG) lumps groups of atoms together into structural building
blocks, typically spherical beads, while aiming to preserve
the structural and energetic properties as best as possible.
Representing biomolecules with CG models seems appro-
priate due to their hierarchical architecture. The goal is to
bridge between multiple spatial and temporal scales.
Various CG representations of proteins, lipids and other
biomolecules have been developed to enable MD simulations
of large systems that are not suitable for all-atom simula-
tions (Jin et al. 2022; Noid 2013; Pak and Voth 2018).

In the context of integrative modeling, CG representa-
tions are used to cope with the lack of data, resolution and
the large size of the systems. Statistical potentials and po-
tentials of mean force have a long tradition in protein
modeling and structure prediction. Here, we focus on recent
Bayesian approaches to coarse-graining. Bottom-up ap-
proaches typically run atomistic simulations from which CG
models are learned. Farrell et al. (2015) have developed a
general Bayesian framework to build, calibrate and validate
CG models of atomistic systems. Model selection is applied to
a family of CG models. Predictive coarse-graining is a
Bayesian approach for learning CG models from simulations
based on a combination of MAP and Monte Carlo simulation
(Schoberl et al. 2017). BICePs focuses on the generation of
conformational ensembles (Voelz et al. 2021). Posterior
sampling is coupled to model selection techniques to opti-
mize different types of hyperparameters. The framework
can be used to optimize reference potentials or CG repre-
sentations (Ge and Voelz 2018). Ultra-coarse-graining is more
relevant to modeling of large biomolecular systems. Here
many atoms are grouped together to form a bead (Jin and
Voth 2018).

The CG approaches mentioned so far try to map the
molecular representation so as to preserve the energetic
parameters as best as possible. More pragmatic approaches
focus on low-resolution representation of molecular struc-
tures. In cryo-EM modeling, Kawabata (2008) proposed the
use of Gaussian mixture models (GMMs) to represent density
maps as well as atomic structures. The GMM representation
has been adopted by a several modeling approaches, most
prominently by IMP (see work by Bonomi et al. (2019) and the
discussion in Section 3.1 for an application). CG representa-
tions can be learned both from static atomic biomolecular
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structures and cryo-EM reconstructions using a Bayesian
mixture model approach (Chen and Habeck 2017). This
approach estimates an optimal mapping between atoms and
beads, the bead positions as well as the non-bonded radius of
the particles and their interaction strengths.

Another application is to infer CG models from projec-
tion images obtained with cryoEM (Joubert and Habeck 2015;
Vakili and Habeck 2021). A highly coarse-grained represen-
tation of the 3D structure is generated from 2D projection
images via posterior sampling. The unknown structure is
represented by hundreds to thousands of beads rather than
a density map over a voxel grid. The particles are arranged
such that the 2D projection images are reproduced as best as
possible. Along with the particle positions the posterior
sampling algorithm estimates the unknown projection di-
rections and can therefore be used for initial structure
determination in single-particle analysis. The approach
samples reconstructions that are of a quality and resolution
similar to reconstructions generated with other approaches
for initial model generation such as PRIME (Elmlund et al.
2013). However, it remains unclear if the particle-based
reconstruction approach can be scaled to a larger number of
particles (>10,000 particles) and thereby yield initial re-
constructions at higher resolutions.

3.3 Structural modeling of chromosomes
and genomes

An emerging field is structural modeling of entire chromo-
somes or genomes. This development is powered by high-
throughput chromosome conformation capture (Hi—C)
techniques. Single-cell Hi-C (Nagano et al. 2013) probes
through-space contacts between different chromosomal re-
gions and can be used for structural modeling in a fashion
similar to NMR distance bounds. Due to limitations in reso-
lution, but also the sheer size of chromosomes only highly
coarse-grained representations of chromosomes are
amenable to structural modeling.

Among the multitude of chromosome structure
modeling software, we only mention Bayesian approaches
(Carstens et al. 2016; Hu et al. 2013; Meng et al. 2021; Rosenthal
et al. 2019; Wang et al. 2015; Xie et al. 2022). Typically, the
chromosome fiber is represented with a highly coarse-
grained polymer model, a “beads on a string” model, a chain
of beads that represent 50-500 kilobases of chromatin.
Carstens et al. (2016) applies the ISD framework to sparse
contacts from single-cell Hi-C. Chromosome structures
are generated from the posterior distribution with Monte
Carlo methods. The structural models computed with
ISD are consistent with independent measurements from
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fluorescence microscopy. More recently, Meng et al. (2021)
have developed Si-C, a Bayesian approach for genome
structure modeling from single-cell Hi-C data. Si-C works
with beads at 10 kb—100 kb resolution and can utilize whole-
genome data measured on single cells (Stevens et al. 2017).
The data were measured on haploid cells and allow the
reconstruction of the structure of an entire genome. The
models are better resolved than those originally obtained by
Stevens et al. (2017). Because with higher resolution the data
become increasingly sparse, it is unclear which resolution
(i.e. number of beads) still yields well-defined models. Using
an RMSD-based criterion, the authors find that a resolution
with at least 0.2 contacts per bead on average is required to
generate well-defined ensembles. The calculated “super-
resolution” structures are validated against independent
imaging data and yield unprecedented details on the archi-
tecture of entire genomes. Although the resolution of these
models is still orders of magnitude below base-pair resolu-
tion, the models are useful to study the global architecture of
genome organization such as the formation of topologically
associated domains (TADs) or A/B compartments.

3.4 Inference of conformational
heterogeneity

Biomolecular systems are highly dynamic and undergo
conformational changes. Therefore, representing the struc-
ture of a biomolecular system as a single conformational
state islimited. Some data might even require modeling with
a conformational ensemble composed of multiple states. For
example, methods such as NMR or bulk Hi-C observe
ensemble averages rather than single-state data. Multiple
states are observed with XLMS or cryo-EM.

There has been an abundance of research activity aimed
at developing Bayesian and maximum entropy methods for
the inference of ensembles representing diverse conforma-
tional states (Bonomi et al. 2017). Typical input data are
ensemble-averaged NMR or solution-scattering data. Several
groups have combined the principle of maximum entropy
with a Bayesian framework (Beauchamp et al. 2014; Bonomi
et al. 2016; Bottaro et al. 2020; Hummer and Koéfinger 2015).
BioEn uses reweighting techniques in combination within a
Bayesian framework and an entropic prior (Hummer and
Kofinger 2015). Metainference infers a multi-state model
(Bonomi et al. 2016). BME is another combination of Bayesian
methods and maximum entropy (Bottaro et al. 2020) and has
recently been applied to RNAs (Zhang and Frank 2021).

Various Bayesian approaches specialize on generating
protein ensembles from small-angle scattering (SAS) data
(Antonov et al. 2016; Pesce and Lindorff-Larsen 2021;
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Potrzebowski et al. 2018; Spill et al. 2021). Model selection
techniques have been used to determine the size of the
ensemble (Bowerman et al. 2019; Potrzebowski et al. 2018).
Ensembles with full-atom detail are generated using the
Bayesian approach of Shevchuk and Hub (2017). A method to
infer ensembles of disordered protein states from NMR, FRET
and SAXS data has been developed by Lincoff et al. (2020).

The principle of maximum entropy has also been
applied to chromosome structure modeling (Lin et al. 2021).
An application of Bayesian techniques to ensemble modeling
based on bulk Hi-C data chromosome modeling has been
developed. To choose the number of states, Carstens et al.
(2020) have used the model evidence, which is estimated
with an MCMC approach.

4 Challenges

Integrative modeling is a highly complex task that currently
requires a number of decisions and interventions by the
modeler. Bayesian inference has the potential to automate
these decisions and assign probabilities to them. Moreover,
models can be criticized and ranked relative to each other
within a Bayesian framework. Since Bayesian approaches
separate a data analysis into a modeling and a computation
task, it is also natural to think of challenges in integrative
modeling that belong to either of these two categories.

4.1 Modeling challenges

Molecular representation The choice of molecular repre-
sentation has a strong impact on the usefulness and success
of an integrative modeling exercise. Depending on the res-
olution and amount of data, a more or less detailed repre-
sentation is adequate. A multi-scale representation might be
required when data of different quality and resolution are
mixed. In particular, as we approach cellular-scale systems,
there is a large degree of arbitrariness in the choice of rep-
resentation. Even if high-resolution structures of the sub-
units of a macromolecular complex are available, it is not
generally clear what the optimal model representation is.
The degree of coarse-graining should be driven by the res-
olution and the amount of data. Likewise, the number of
states should also be sampled in ensemble modeling. To
address some of these challenges, Viswanath and Sali (2019)
have proposed a method to optimize the molecular repre-
sentation for integrative modeling.

Bridging between the molecular and cellular scale A
formidable challenge is to integrate data showing the system
at largely different scales. This requires the development of



DE GRUYTER M

multi-scale representations that describe the same molecu-
lar component at different resolutions such that they can be
linked to the different types of input data. A multi-scale
model needs to connect the different scales and their asso-
ciated conformational degrees of freedom. Different parts of
a structural model might be better resolved than others. A
multi-scale model should represent a hierarchy of spatial
scales and automatically adapt its maximum resolution so as
to avoid overfitting. The model should also quantify non-
specific interactions between hiomolecules. Moreover, since
the structures should be embedded into the cellular context,
also structural representations of the cellular environment
will become necessary (Im et al. 2016). New representations
as the one proposed by Singla et al. (2022) might be useful to
bridge between molecular and cellular scales. This repre-
sentation builds biological structures from tetrahedra and is
commonly used in numerical analysis to represent compli-
cated three-dimensional shapes. The representation might
be useful for modeling assemblies in crowded cellular en-
vironments with many diverse components.

Probabilistic models for structural data A diverse
array of structural data is already used to build integrative
structures (Rout and Sali 2019) and will become even more
heterogeneous in the future. Each method requires a prob-
abilistic model that links the data to the structural repre-
sentation of the system. The probabilistic model should be
realistic in the sense that the main characteristics of the data
and the noise are captured adequately. At the same time, the
model should be computationally efficient. For example,
SAXS curves can be computed with high accuracy and detail,
but evaluating these models is computationally expensive.
Efficient models for computing approximate EM maps exist,
but the noise models are typically very limited in that they
ignore correlations between neighboring voxels.

4.2 Computational challenges

Software Bayesian integrative modeling is enabled by soft-
ware packages such as the Integrative Modeling Platform (IMP)
(Russel et al. 2012; Saltzberg et al. 2021), BioEn (Hummer and
Kofinger 2015) or PLUMED-ISDB (Bonomi and Camilloni 2017).
In the future, it will be important to make Bayesian integrative
modeling available to non-experts. Given the diversity of the
data and the systems there are many challenges that a software
has to meet. The software should be easy to install, run and
used with diverse structural data. A related issue is to train
users of Bayesian integrative modeling software in probabi-
listic reasoning and modeling.

Efficient conformational sampling Conformational
sampling refers to the process of generating representative
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structures X from the posterior Pr(X | D, M). Since X tends to
be high-dimensional, direct sampling is inefficient and not
viable. Therefore, one typically resorts to Markov chain
Monte Carlo (MCMC) sampling which explores the confor-
mation space by running a Markov chain. Conformational
sampling is more or less challenging depending on the
quality and amount of data. MCMC algorithms tend to
converge very slowly. Faster MCMC algorithms and imple-
mentations are required to enable Bayesian integrative
modeling of ever larger systems. Also pragmatic approaches
such as jump-starting an MCMC simulation from optimized
structures should be supported.

Automation of posterior inference MCMC algorithms
typically come with a number of parameters that need to be
optimized by the user. An example is the temperature
schedule of parallel tempering simulations, which is one of
the working horses of exhaustive posterior sampling in
integrative modeling. Often, a large fraction of computation
time is spent on optimizing algorithmic parameters so as to
guarantee the convergence of the MCMC simulation. Adap-
tive MCMC methods that optimize algorithmic parameters in
the course of simulation need to be developed to enable
Bayesian integrative modeling also for non-experts with
limited computational resources.

Validation of posterior sampling MCMC is an approxi-
mate method and can fail. A problem with all sampling
methods is that they rely on asymptotic guarantees, meaning
that they will produce correct samples only in the long run. But
there is no sufficient measure that assesses whether a Markov
chain has already converged. An MCMC simulation can fail in
several ways. The simulation might miss an important peak of
the posterior distribution, i.e. a structure that is a good expla-
nation of the data. The simulation might misrepresent the
probability mass under a peak, meaning that the frequency
with which a structure is visited by the Markov chain might be
biased and fail to reflect the true importance of the structure.
Viswanath et al. (2017) have developed several techniques to
assess the exhaustiveness of conformational sampling. These
need to be extended in the future.

4.3 Deposition, validation and analysis of
Bayesian integrative structures

Finally, there are a couple of challenges that are related to
the deposition, validation and analysis of integrative struc-
tures obtained with a Bayesian approach.

Deposition of posterior ensembles In the Bayesian
view, the solution of an integrative structure determination
is the full posterior distribution Pr(X | D,M) rather than a
single structure or a few structures. But how can we
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adequately represent a posterior distribution with finite
means? How many structures suffice to capture the poste-
rior? These questions are even more pressing, if ensembles
of structures are inferred that represent diverse conforma-
tional states. Thinning approaches that reduce the number
of MCMC samples could help us compress the large amount
of data and information contained in posterior samples. The
Protein Data Bank (PDB) has created an archive for inte-
grative structures (Vallat et al. 2021). PDB-Dev provides
timely support for integrative structure modeling, but might
require future extensions to represent all relevant aspects of
Bayesian integrative modeling. For example, it is desirable to
report the complete posterior sampling protocol as well as
samples of additional nuisance parameters. Moreover, the
modeling software and deposition system should aim to
ensure that the structure determination can be reproduced.

Validation of integrative structures Statistical
methods, in particular those based on Bayesian inference,
enable us to make sound statements about the quality of an
integrative structure. New quality measures for the valida-
tion of integrative structures need to be developed based on
concepts and techniques from Bayesian inference. A pre-
requisite for statistical model assessment is that we sample
conformational space exhaustively. Therefore, an important
aspect is to also improve and validate conformational sam-
pling techniques (Viswanath et al. 2017).

Although the number of integrative structures continues
to grow, the community still lacks a generally accepted quality
measure for structures obtained by integrating data from
multiple experimental sources. Estimated data weights
(Habeck et al. 2006) should prove useful for the validation of
integrative structures. From a Bayesian perspective, the data
weights have an intuitive interpretation: They are the inverse
squared error of a dataset, so high-quality data with low noise
levels will be assigned a high weight.

Other statistical figures of merit should also be reported
along with the structure. For example, the entropy of the pos-
terior measures the effective number of structures needed to
represent the posterior. Another largely unexplored quantity is
the model evidence Pr(D | M). The model evidence is the good-
ness of fit averaged over all possible conformations X. Since it
balances goodness of fit against model complexity, the model
evidence embodies Occam’s razor and can be used to select
among competing models of explaining the data.

Arroyuelo et al. (2021) have recently proposed various
Bayesian tools to assess the quality of an NMR ensemble.
These tools report per residue quality measures that allow
the authors to identify problematic residues. The approach
requires atomic structures and NMR chemical shifts. But
some of the strategies might be transferable to integrative
structures. We envision that based on PDB-Dev similar
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reference distributions can be derived for coarse-grained
representations and other types of data.

Analysis of posterior samples A Bayesian integrative
structure is encoded in the marginal posterior distribution of
the structural parameters. This distribution needs to he
approximated with efficient clustering methods that analyze
the large amount of structural samples. Based on a cluster
analysis we can then report the number of clusters, theirs
weights and precisions to obtain insights into the shape and
quality of the posterior ensemble. High-quality data will result
in a single, narrow cluster, whereas ambiguous and sparse data
result in several, broad clusters. This information should feed
back into the validation of integrative structures. To validate
structural models at atomic resolution it is also important to
compare the models with related structures in the PDB.
Bayesian methods for structural alignment of proteins
have been developed by Rodriguez and Schmidler (2014)
and Fallaize et al. (2020). In addition, powerful probabilistic
methods for characterizing structure ensembles are also
available (Theobald and Wuttke 2008). However, when
working at non-atomic resolution, new tools for assessing
the precision of structural models need to he developed.
PrISM identifies regions of low and high precision in ensem-
bles of bead models (Ullanat et al. 2022) and color-codes them
in a graphical representation. That way, reliable and ambig-
uous regions can easily be identified. In addition, it is desirable
to devise new visual analytics tools for Bayesian integrative
structures. These tools could show distributions of structural
degrees of freedom and additional model parameters.

5 Perspectives

5.1 High-resolution integrative modeling
powered by ML-based structure
prediction

Protein structures predicted with ML-based systems such as
AlphaFold2 (AF2) and RoseTTAFold are already used in inte-
grative modeling. For example, the combination of cryo-ET
maps with high-resolution structure prediction has enabled
near-atomic modeling of the nuclear pore complex (Mosala-
ganti et al. 2022). Another example is the integration of
intermediate-resolution cryo-EM and AF2 to obtain a detailed
model of the cytoplasmic ring of the nuclear pore complex
(Fontana et al. 2022). A natural next step in protein structure
prediction was to use ML-systems to predict protein complexes.
In their assessment of the impact of AF2 on structural biology,
Akdel et al. (2022) found that AF2 is already capable of pre-
dicting the structure of some protein complexes and
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outperforms standard docking approaches. Several extensions
of AF2 and other ML systems have been proposed that will also
facilitate integrative modeling. AF2 has recently been extended
to specifically target protein complexes (Evans et al. 2021).
AlphaFold-multimer outperforms AF2 on predicting protein
complexes. While the performance is already quite impressive,
the predictions of protein complexes tends to be more accurate
for symmetric complexes rather than heteromeric assemblies.
To improve the prediction of heteromeric complexes, FoldDock
(Bryant et al. 2022a) combines AF2 with docking methods.
AF2Complex predicts physical contacts between subunit
structures without requiring paired sequence alignments (Gao
et al. 2022). Several large-scale modeling studies have been
carried out to predict the structures of entire interactomes.
Humphreys et al. (2021) applied RoseTTAFold and AF2 to pre-
dict protein complexes and model their 3D structures. Fold-
Dock has been used to predict complex structures of the human
protein interaction network (Burke et al. 2023). Bryant et al.
(2022b) use AF-Multimer and FoldDock to predict the assem-
blies that comprise as many as 30 chains. Nonetheless large
assemblies still pose a formidable challenge and typically
require additional information. Another challenge is that sys-
tems like AF2 do not predict all accessible conformations of a
biomolecule (Lane 2023) and miss out on the structure of
nucleic acids (Tunyasuvunakool 2022). RoseTTAFoldNA pre-
dicts complexes of proteins and nucleic acids (Baek et al. 2022).
More applications of AF2 and RoseTTAFold relevant to chal-
lenges in integrative modeling are under development. For
example, Terwilliger et al. (2022) combined AF2 with experi-
mental information. Stein and Mchaourab (2022) have modi-
fied AF2 so as to generate conformational ensembles. There is
no foreseeable end to the development of ML methods in
protein structure prediction in the near future. For example,
language models have recently be used to enable rapid and
highly reliable prediction of protein structures (Lin et al. 2023).
For integrative modeling, we expect that physics-based
modeling in combination with experimental data and
ML-based models of subunits will continue to be the most
promising approach given the scarcity and heterogeneity of
training data.

5.2 Learning of coarse-grained
representations and forcefields

In principle, Bayesian methods can be used to infer any type of
parameter including parameters of the forcefield used in the
prior distribution Pr(X | M). The technical difficulty of learning
these hyperparameters is that the normalizing constant of the
prior depends on the parameters, but is not available in closed
form resulting in a doubly intractable model. Approximate
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MCMC algorithms have been developed to infer doubly intrac-
table models. Various approaches to learn forcefields with
Bayesian methods have been proposed (Bottaro and Lindorff-
Larsen 2018; Ge and Voelz 2018; Habeck 2014; Kofinger and
Hummer 2021; Madin et al. 2022). These need to be improved
and should become a part of integrative modeling itself.
Machine learning also impacts coarse-graining of pro-
teins and their forcefields (Ding et al. 2023; Durumeric et al.
2023). A promising development is the use of representation
learning in the context of molecular structures. These
models could serve as prior distributions over the structural
degrees of freedom. Particle-based simulator models have
been inferred for deformable objects and fluids (Li et al.
2018) and might also be learnable for biomolecular systems.
Wang et al. (2022) use generative models to train CG repre-
sentations of molecules including short peptides.

5.3 Improved posterior sampling via coarse-
graining and variational inference

Uncertainty quantification requires posterior sampling.
Therefore, drawing structural models from the posterior dis-
tribution is at the core of a truly Bayesian approach to inte-
grative modeling. It is also a major bottleneck in scaling the
Bayesian approach to large complexes and cellular systems.
Coarse-graining might not only help to cope with the scarcity of
data, but also benefit posterior sampling and should be
exploited for sampling in a more systematic fashion.
Posterior sampling typically relies on Markov chain
Monte Carlo simulation. The current working horse in
Bayesian integrative modeling are MCMC methods such as
Hamiltonian Monte Carlo and parallel tempering (Rieping
et al. 2005; Saltzberg et al. 2021). A viable alternative might be
to learn a variational approximation of the posterior.
Therefore, ML techniques powered by deep generative
models could also help overcome the sampling problem in
integrative modeling. For example, Boltzmann generators
introduced by Noé et al. (2019) use deep architectures for
sampling the Boltzmann distribution of biomolecules. These
should be applicable to posterior distributions arising in
integrative structure determination. More, recently Monroe
and Shen (2022) have demonstrated learning of efficient,
collective Monte Carlo moves with variational autoencoders.

5.4 Modeling the dynamics of biomolecular
systems

Biological function involves dynamical changes in the
structure and composition of biomolecular systems.
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Therefore, integrative modeling has to go beyond static
structures and infer structure and dynamics simultaneously
from the data. Inference of conformational ensembles and
multi-state models is a first step to go beyond static models.
Simultaneous determination of protein structure and dy-
namics from cryo-EM data has been proposed by Bonomi et al.
(2018). Giraldo-Barreto et al. (2021) extract free-energy profiles
from cryo-EM micrographs using a Bayesian approach called
BIFE. BIFE recovers free-energy profiles along a path collective
variable from cryo-EM images. On a real data set, not only the
most probable conformation but also metastable states are
found and activation barriers are estimated thereby providing
a more complete characterization of the thermodynamic
ensemble. Recent developments in representation learning
also enable the reconstruction of heterogeneous structures
directly from cryo-EM data. CryoDRGN uses a variational
autoencoder (VAE) to learn ensembles of cryo-EM structures
from projection images (Zhong et al. 2021).

What are efficient representations of dynamic struc-
tures? An explicit representation is a trajectory of successive
conformational states. Also in the context of representing
biomolecular dynamics, deep generative models inspired by
recent developments in representation learning are a
promising approach (Hoseini et al. 2021). It is becoming
apparent that going beyond structures and searching for
efficient and expressive representations will become
important. In the light of the ongoing success of ML-based
approaches to structure prediction, also more conceptual
questions such as “What is a structural model?” will become
relevant. We are used to think of structural models as an
explicit set of 3D coordinates. Implicit models that generate
coordinate arrays, potentially at varying resolution, might
replace explicit representations. This is would have vast
implications on the way biomolecular structures are repre-
sented, stored and used. Guo et al. (2021) generate protein
structures with graph VAEs. Diffusion models such as
torsional diffusion (Jing et al. 2022) or EigenFold (Jing et al.
2023) can generate protein structures and could be efficient
representations of conformationally heterogeneous and
flexible protein structures. More generally, differential
programs such as simulators will play an important role in
modeling biophysical processes (AlQuraishi and Sorger
2021). For example, Ingraham et al. (2019) propose a differ-
entiable simulator to model protein structures.

5.5 Emerging data

A number of emerging experimental techniques will provide
additional sources for integrative modeling. These data need
to be supported by new probabilistic models linking the data
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to the structural degrees of freedom. New types of data will
help us bridge the gap between the atomic and cellular scale.
For example, tomographic methods such as cryo-ET and soft
X-ray tomography provide 3D maps of organelles and other
cellular compartments (Loconte et al. 2022, 2023). The 4D
nucleome project collects detailed information about the
structural organization of the cell nucleus at various stages
of the cell cycle (Dekker et al. 2017). A multitude of proximity
ligation and imaging methods enables the study of genome
organization (Jerkovic and Cavalli 2021; Misteli 2020)
including ChromEMT (Ou et al. 2017). These developments
are complemented by light microscopy techniques that
allow for structural structures of protein complexes and
larger structural units (Sieben et al. 2018; Sigal et al. 2018).
Correlative microscopy combining fluorescence with elec-
tron microscopy allows the visualization of whole cells at
many scales (Hoffman et al. 2020). Multiscale modeling of
biological systems will require neighborhood information
obtained by mapping physical and functional proximities
(Schaffer and Ideker 2021). There is a growing array of
proximity ligation assays that allows the characterization
the structure of genomes, chromosomes or large RNAs.
Advanced cross-linking techniques uncover interactions
within and between interacting proteins (Braberg et al. 2020;
Graziadei and Rappsilber 2022; Mintseris and Gygi 2020;
O’Reilly et al. 2020; Sae-Lee et al. 2022; Yperman et al. 2021).
We also see a continued improvement of cryo-EM maps to-
wards atomic resolution (Yip et al. 2020) and the emergence
of single-molecule diffraction techniques based on, for
example, free electron lasers (von Ardenne et al. 2018).

5.6 Structural cell modeling

The long-term goal of integrative modeling is the creation of
physical molecular models of cellular components and of
entire cells (Singla et al. 2018; Zhong et al. 2022). To achieve
this goal, a large array of data and additional information
needs to be fed into the modeling procedure to produce a
consistent model of the cell. A promising approach is to
couple simulation software such as cellPACK (Johnson et al.
2015) to cellular data. An impressive demonstration of this
approach is the structural model of a mycoplasma cell
(Maritan et al. 2022). Structural cell modeling is facing a
number of challenges (Im et al. 2016). Bayesian metamod-
eling of cellular systems is a highly exciting development
that asims to tackle these challenges within a Bayesian
framework (Raveh et al. 2021).
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