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Turing’s mechanism is often invoked to explain periodic patterns in nature,
although direct experimental support is scarce. Turing patterns form in reac-
tion–diffusion systems when the activating species diffuse much slower than
the inhibiting species, and the involved reactions are highly nonlinear. Such
reactions can originate from cooperativity, whose physical interactions should
also affect diffusion. We here take direct interactions into account and show
that they strongly affect Turing patterns. We find that weak repulsion between
the activator and inhibitor can substantially lower the required differential dif-
fusivity and reaction nonlinearity. By contrast, strong interactions can induce
phase separation, but the resulting length scale is still typically governed by
the fundamental reaction–diffusion length scale. Taken together, our theory
connects traditional Turing patterns with chemically active phase separation,
thus describing a wider range of systems. Moreover, we demonstrate
that even weak interactions affect patterns substantially, so they should be
incorporated when modelling realistic systems.
1. Introduction
Natural periodic patterns, ranging from nano-crystals [1], tissues [2], popu-
lations dynamics [3], to geophysical phenomena [4], are often explained by
the seminal Turing mechanism [5–8]. Turing patterns generally describe the
spatial distribution of an activator and an inhibitor that diffuse in space.
Patterns then form when the localized activator triggers production while the
inhibitor suppresses production globally, often summarized as local activation,
global inhibition [6,7]. However, it is not clear whether Turing’s mechanism
can actually explain natural patterns [9,10], since inhibitors need to diffuse
much faster than activators and the involved reactions need to be highly non-
linear [11–13]. Such nonlinear reactions are often motivated by cooperative
reactions, where multiple reactants lead to nonlinearities [12]. Cooperativity
typically originates from physical interactions, which should also affect the
diffusive motion of the species, but this is typically not taken into account.

Physical interactions are crucial for organizing biomolecules in cells [14],
cells in tissues [15] and even organisms in groups [16]. In particular, multivalent
interactions can induce phase separation, where a dense droplet phase segre-
gates spontaneously from a dilute surrounding phase. This is possible since
the enthalpic gain from the interactions overcompensates the entropic loss of
concentrating constituents [17,18]. In simple passive systems, surface tension
implies that large droplets grow to system size at the expense of small droplets
[19]. However, chemical reaction can suppress this Ostwald ripening [20] and
thus control the size and arrangement of droplets [21–23]. The predicted hexa-
gonal arrangements [24] are very reminiscent of Turing patterns, although
patterns are driven by phase separation in these systems. Taken together,
although droplets regulated by chemical reactions share some properties with
Turing patterns, it is unclear how the two models are related.

In this paper, we study a minimal system that is capable of forming droplets
as well as Turing patterns. Effectively, we add physical interactions between
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Figure 1. Interactions affect pattern formation. (a) Schematic of chemical and physical interactions of activator A, inhibitor I and the inert solvent. (b) Stationary
state amplitudes of fraction ϕA as a function of the interaction strength χ and the reaction nonlinearity h for diffusivity ratio DI/DA = 5. (c) Amplitude as a function
of χ and DI/DA for h = 5. (d ) Stationary patterns of ϕA (blue) and ϕI (orange) for the indicated parameters. (b,c) The homogeneous state is stable between the
white lines, obtained from a linear stability analysis of equation (2.4), and the grey triangles mark critical interaction values χ− and χ+; see electronic supplemen-
tary material. (b–d ) Model parameters are k = 0.1 DA/w

2 and ϕ0 = 0.2. Simulations ran for t = 105 w2/DA on a one-dimensional grid of length 200 w with periodic
boundary conditions.
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activator and inhibitor to a standard reaction–diffusion system.
This approach allows us to quantify how interactions affect pat-
tern formation and it unveils a range of systems that interpolate
between Turing’s mechanism and patterns formed in active
phase separating systems. In particular, we show how weak
repulsive interactions stabilize patterns by inducing cross-
diffusion, while strong interactions lead to phase separation,
where coarsening is arrested by chemical reactions.
2. Results
2.1. Interactions affect pattern formation
We start by considering a minimal pattern forming system
comprising two species: an activator A and an inhibitor I.
The basic Turing model describes the dynamics of the respect-
ive fractions fAðr, tÞ and fIðr, tÞ as a function of the spatial
position r and time t,

@tfi ¼
X
j¼A,I

Dijr2fj þ k
2f0

1þ ðfI=fAÞh
� fi

" #
ð2:1Þ

for i =A, I. Here, the first term on the right-hand side describes
ideal diffusion with a diffusivity matrix Dij and the second
term captures chemical reactions based on the Hill–Langmuir
equation [25]. For h≥ 1, these reactions promote the production
of A and I by activator A and suppress it by the inhibitor I,
while both species exhibit linear degradation with rate k.
This choice of chemical reactions allows us to independently
control the typical fraction ϕ0 of components A and I, the reac-
tion rate k, and the reaction nonlinearity h. We show in the
electronic supplementary material that equation (2.1) exhibits
a Turing instability for sufficiently large h when the inhibitor
I diffuses faster than the activator A, so I spreads out while A
stays localized.

To include physical interactions between activator A and
inhibitor I, we first consider the thermodynamics of an incom-
pressible, isothermal fluid comprising the species A and I as
well as an inert solvent S; see figure 1a. This system is still
fully described by the volume fractions ϕA and ϕI, since the
solvent occupies the remaining fraction ϕS = 1− ϕA− ϕI. The
interactions of A and I in such a fluid can then be described
by the Flory–Huggins free energy [26–28]

F½fA, fI � ¼
kBT
n

ð �
fA lnfA þ fI lnfI þ fS lnfS þ xfAfI :

þw2

2
(jrfAj2 þ jrfI j2)

�
dr,

ð2:2Þ

where the integral is over the volume of the system, kB T is the
relevant energy scale and ν denotes amolecular volume,which
we assume to be the same for all species. The first three terms in
the square bracket capture the translational entropies of all
species, the fourth term describes the physical interaction
betweenA and I, and the last term limits thewidth of interfaces
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between coexisting phases to roughly w in strongly interacting
systems [28]. The interactions between A and I are quantified
by the Flory parameter χ: positive χ denotes effective repulsion,
which can originate from heterotypic repulsion or homotypic
attraction, while negative χ leads to attraction of A and I. Equi-
librium states, which minimize the free energy given by
equation (2.2), can be inhomogeneous when interactions are
sufficiently strong [29]: for strong attraction (large negative
χ), a phase enriched inA and Iwill segregate from one enriched
in the solvent, whereas strong repulsion (large positive χ) will
lead to segregation ofA from Iwith an equal amount of solvent
in both phases. However, it is unclear how this equilibrium be-
haviour is modified by the active reactions described
by equation (2.1) and how Turing patterns are affected by
weak interactions.

To model reaction–diffusion dynamics with interactions
described by the Flory parameter χ, we replace the ideal
diffusion term in equation (2.1) by a more general form
which describes diffusion in non-ideal fluids. Linear non-
equilibrium thermodynamics implies that diffusive fluxes
are then proportional to gradients of the chemical potentials
associated with the free energy given by equation (2.2),
and the proportionality constants (known as Onsager coeffi-
cients or mobilities) determine the kinetic rate [30,31].
Defining non-dimensional exchange chemical potentials
μi = ν(kB T )−1δF/δϕi,

mA ¼ lnðfAÞ � lnðfSÞ þ xfI � w2r2fA ð2:3aÞ
and

mI ¼ lnðfIÞ � lnðfSÞ þ xfA � w2r2fI , ð2:3bÞ
we thus find

@tfi ¼ r � ðDifirmiÞ þ k
2f0

1þ ðfI=fAÞh
� fi

" #
, ð2:4Þ

where Di are the diffusivities of the species i =A, I, which
are related to the mobilities Diϕi in this multi-component
system [32]. We show in the electronic supplementary material
that equation (2.4) reduces to equation (2.1), and thus describes
ideal diffusion, if physical interactions are absent (χ = 0)
and the wavelength of patterns is large compared with w.
Consequently, (2.4) describes a reaction–diffusion system
encompassing non-ideal diffusion and containing normal
Turing patterns as a limiting case.

To see how interactions affect patterns, we performed
numerical simulations of equations (2.3) and (2.4) in a one-
dimensional system with periodic boundary conditions; see
Methods. Figure 1 demonstrates that without interactions
(χ = 0), patterns with finite amplitudes only emerge if the reac-
tions are sufficiently nonlinear (large h) and the inhibitor
diffuses sufficiently fast (DI≫DA), as expected for Turing
patterns [5]. This trend persists for weak interactions, although
the corresponding threshold values of h and DI/DA change.
Apparently, repulsion between A and I promotes pattern for-
mation (χ > 0), while attraction suppresses it (χ < 0). However,
very strong attraction can again lead to large amplitudes
(x & �9), independent of h and DI/DA.

The corresponding volume fraction profiles shown in
figure 1d corroborate these observations: without interactions
(middle column), the system stays either homogeneous
(pink parameter set) or forms normal Turing patterns (red
parameter set) with a localized activator A and a fairly
homogeneous inhibitor I. By contrast, strong attraction (left
column) leads to co-localization of A and I, reminiscent of
phase separation, albeit with a well-defined pattern length
scale. Similarly, A segregates from I for strong repulsion
(right column). Taken together, we thus showed that there
is an interesting interplay between stereotypical Turing
patterns and interactions promoting phase separation.
2.2. Weak interactions imply cross-diffusion
To understand how interactions affect pattern formation, we
first analyse weak interactions (x & 5) by treating them as a
perturbation to normal Turing patterns. Assuming the wave-
length of patterns is large compared with w, the generalized
diffusion in equation (2.4) can be approximated by ideal dif-
fusion to first order in χ; see electronic supplementary
material. Consequently, the dynamics are described by
equation (2.1) with the diffusivity matrix

Dij � DAð1þ cÞ DAðcþ xf0Þ
DIðcþ xf0Þ DIð1þ cÞ

� �
, ð2:5Þ

where ψ = ϕ0/(1− 2ϕ0). This analysis demonstrates that with-
out interactions (χ = 0) in dilute system (ϕ0≪ 1, avoiding
crowding effects), diffusion is dominated by the diagonal
entries, resulting in stereotypical Turing patterns. In this
case, we show analytically in the electronic supplementary
material that patterns can only form when the diffusivity
ratio DI/DA and the reaction nonlinearity h are sufficiently
large, consistent with the literature [12,13].

If A and I interact (χ≠ 0), equation (2.5) reveals that inter-
actions directly affect cross-diffusion of A and I. For example,
repulsive interactions (χ > 0) imply fluxes of A opposite to the
gradient of I, thus favouring the segregation of the two
species and enhancing patterns [33]. To quantify this behav-
iour, we analyse the covariance, cov(ϕA, ϕI) = 〈ϕAϕI〉− 〈ϕA〉
〈ϕI〉, where the brackets denote spatial averages in the station-
ary state. Figure 2 shows that the covariance generally
decreases with more repulsive interactions (larger χ, consist-
ent with enhanced cross-diffusion), increasing reaction
nonlinearity h, and diffusivity ratio DI/DA. The more detailed
stability analysis presented in the electronic supplementary
material demonstrates that repulsive interactions always pro-
mote pattern formation and lower the required reaction
nonlinearity h and diffusivity ratio DI/DA; see figure 3. By
contrast, attractive interactions (χ < 0) generally stabilize the
homogeneous system. However, this behaviour only holds
for moderate interactions χ since strong attraction (x & �9)
also leads to large amplitudes; see figure 1.
2.3. Strong interactions invoke phase separation
Turing’s mechanism cannot explain patterns that form when
the activator A and inhibitor I attract each other strongly
(χ <−9). Based on the strong correlations between A and I
seen in figure 2, we hypothesize that strong attraction leads
to associative phase separation of A and I from the solvent,
while the reactions play a minor role. Indeed, we show in
the electronic supplementary material that phase separation
is possible in the absence of reactions when χ < χ−, where
χ− = 8 arctanh(1− 4ϕ0)/(4ϕ0− 1) marks the binodal point for
a given average fraction ϕ0 of A and I. Figure 1 shows that
the value χ− is very close to the onset of patterns, and
that the resulting profiles are perfectly co-localized. Taken
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together, strong attraction between A and I leads to co-
segregation of the two components from the solvent while
the reactions barely affect the amplitude.

Strong repulsion between A and I should also lead to
phase separation. In fact, for χ > χ+ with χ+ = 1/ϕ0, we predict
that A can segregate from I spontaneously, even without reac-
tions present; see electronic supplementary material. Figures
1 and 2 suggest that increasing the repulsion beyond this
point indeed results in strong anti-correlation between A
and I and a vanishing threshold for h and DI/DA. These
numerical data indicate a continuous transition from patterns
formed by reactions and diffusion (Turing patterns for weak
interactions) to those formed by phase separation (strong
interactions, χ < χ− or χ > χ+). Taken together, we showed
that patterns can form by reactions and by phase separation
with an intricate interplay between them.

2.4. Reaction rate controls pattern length scale
We next ask what determines the length scale ℓ of the patterns.
We show in the electronic supplementary material that ℓ is
hardly affected by variations of the reaction nonlinearity h
and diffusivity ratio DI/DA. By contrast, the interaction
strength χ has a stronger influence: More repulsive interactions
lead to patternswith shorterwavelengths, presumably because
larger χ promote pattern formation. However, the strongest
influence on the pattern length scale ℓ is the reaction rate k:
numerical simulations and the linear stability analysis pre-
sented in figure 4 indicated that k allows adjusting ℓ over
several orders of magnitude with barely any changes in the
pattern amplitude.

To understand how the reaction rate k affects the pattern
length scale ℓ, we first focus on weak interactions. In this
case, interactions mainly cause cross-diffusion (see equation
(2.5) and electronic supplementary material), implying that
the reaction–diffusion lengths

ffiffiffiffiffiffiffiffiffiffiffi
DA=k

p
and

ffiffiffiffiffiffiffiffiffiffi
DI=k

p
are the

only length scales in the equations. Consequently, length
scales in the stationary state and in the initial instability
must scale with k−1/2 for weak interactions, consistent with
figure 4b. For strong interactions (χ < χ− or χ > χ+), the system
exhibits phase separation, implying that the initial instability
is dominated by short patterns of lengthwwhile the stationary
state patterns may exhibit much longer length scales due to
coarsening [34]. Figure 4b shows that the linear stability analy-
sis indeed predicts ℓ∼w in the region where we predict phase
separation. For associative phase separation at strong attraction
(χ < χ−), these patterns remain stable, and coarsening is sup-
pressed; the variation in ℓ reflects the influence of χ on the
interfacial width; see electronic supplementary material. In
the contrasting case of strong repulsion (χ > χ+), patterns coar-
sen to the reaction–diffusion length and thus scale with k−1/2;
see figure 4b. This behaviour is similar to the coarsening
observed in active droplets, where the final length scale is
also governed by the reaction–diffusion length [20]. Note that
the numerical data presented in figure 4b might not represent
the full stationary state since domain sizes only grow logar-
ithmically with time in these one-dimensional systems [34].
However, our analysis demonstrates that the length scale ℓ of
the final pattern is generally governed by reaction–diffusion
lengths, except when strong attraction between A and I leads
to associative phase separation.
2.5. Results generalize to higher dimensions
So far, we have focused on pattern formation in one dimension
for simplicity, but many natural patterns form in planar geo-
metries. To see whether our results hold for this relevant
case, we next perform a few selected simulations in two



(a)

(c)

re
ac

tio
n 

ra
te

 k
/k

0

10–3

10–2

10–1

re
ac

tio
n 

ra
te

 k
/k

0

10–3

10–2

10

–10 –5 0
0 1

10

102

103

0.1

0.2

0.3

0.4

interaction χ
5 –10 –5 0

interaction χ
5 –10 –5 0

interaction χ
5

pattern amplitude (b) pattern length scale instability length scale

length scale   /w

am
plitude of φ

A

0 20 40
x/w

0 20 40
x/w

0 20 40
x/w

0 100 200
x/w

0 100 200
x/w

0 100 200
x/w

φA

φI

k = 0.092, χ = –11 k = 0.092, χ = 0 k = 0.092, χ = 6 k = 0.0012, χ = –11 k = 0.0012, χ = 0 k = 0.0012, χ = 6

0.4

0.2

0

φi

Figure 4. Reaction rate k determines pattern length scale. (a) Amplitude of activator ϕA as a function of interaction χ and reaction rate k. (b) Pattern length scale ℓ
determined from the maximum of the structure factor of ϕA from numerical simulations (left) and from the fast growing mode in a linear stability analysis (right) as
a function of χ and k. (c) Stationary patterns of ϕA (blue) and ϕI (orange) for various parameters indicated in (a,b). (b,c) The homogeneous state is stable between
the white lines, obtained from a linear stability analysis of equation (2.4), and the grey triangles mark critical interaction values χ− and χ+; see electronic sup-
plementary material. (a–c) Model parameters are h = 5, DI/DA = 10, ϕ0 = 0.2 and k0 = DA/w

2. Simulations ran for t ¼ 107k�1
0 on a periodic one-dimensional grid

of length 2000 w.

(a) (b)

0

10

y/
w 20

30

40

0

10

y/
w 20

30

40

0

10

20

30

40

0 0

10

10
10–3

10–2

10–1

102

102

0.1
0.2
0.3
0.4
0.5

0
0.1
0.2
0.3
0.4
0.5

10

20

30

40

0

50

100

150

200

0

50

100

150

200

χ = –11, k = 0.01 k0 χ = 1, k = 0.01 k0 χ = 7, k = 0.05 k0

0 20 40
x/w

0 20 40
x/w

0 100 200
x/w

φA

φI

one-dimensional length scale  1D/w
re

ac
tio

n 
ra

te
 k

/k
0

tw
o-

di
m

en
si

on
al

 le
ng

th
sc

al
e 

 2D
/w

Figure 5. Interactions also control patterns in higher dimensions. (a) Two-dimensional stationary patterns of ϕA (upper panels) and ϕI (lower panels) for strong
attraction (χ =−11), weak interaction (χ = 1) and strong repulsion (χ = 7) from left to right. (b) Correlation of length scales ℓ determined from numerical
simulations in one and two dimensions for various reaction rates k (colour scale) and interactions χ (marker size). (a,b) Additional model parameters are h =
5, DI/DA = 10, ϕ0 = 0.2 and k0 = DA/w

2.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230244

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 A

ug
us

t 2
02

3 
dimensions; see figure 5. Analogously to one dimension, we
find Turing patterns for weak interactions (middle column of
figure 5a) and strong interactions induce phase separation. In
particular, strong attraction between A and I leads to co-local-
ization (left column) whereas strong repulsion induces anti-
correlated patterns (right column). Interestingly, in both cases
of phase separation droplets form instead of stripe patterns,
even though both phases occupy roughly half of the space.
In such a case, normal phase separating systems exhibit
stripe patterns [35], but the reaction–diffusion dynamics in
our system apparently alter the picture. In any case, figure 5b
shows that the pattern length scales we measured in one
dimension are very close to the ones measured in two-dimen-
sional simulations for the same parameters, suggesting that the
results from the simple one-dimensional system translate to the
more complex two-dimensional system and also hold in higher
dimensions.
3. Discussion
We propose an extension to Turing patterns that takes into
account physical interactions that occur naturally. Weak
repulsion between activator and inhibitor enhances patterns
by inducing cross-diffusion, thus amplifying local activation
and global inhibition. By contrast, strong interactions lead
to phase separation, which can either be associative (A and
I co-localize) or segregative (A separates from I). Both cases
exhibit patterns for a much larger range of diffusivities
and reaction nonlinearities than normal Turing patterns,
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and the resulting length scales differ: in the segregative case
of strong repulsion, patterns are governed by the reaction–
diffusion length scale and thus grow larger for weaker reac-
tions. By contrast, patterns in the associative case of strong
attraction are arrested at the interfacial width. Taken together,
we thus demonstrated that interactions can affect patterns
substantially. Our linear stability analysis presented in the elec-
tronic supplementary material and a recent pre-print [36]
demonstrate that these results do not depend on the specific
choice of the reactions. Instead, interactions can generally lift
restrictions on diffusivities and reaction nonlinearities imposed
byordinary Turing patterns. Since physical interactions are vir-
tually always present, many natural patterns can probably be
explained by similar mechanisms.

Physical interactions in natural systems can stem from
various sources and are virtually unavoidable in multi-
component systems. We need to investigate such systems in
more detail, both in terms of physical interactions [30], chemi-
cal reaction networks [11,37], and conservation laws [38]. For
instance, Turing patterns can form when two species have
equal diffusivity, while a third one is immobile [39], to pro-
duce effective differences in diffusivities. Explaining natural
patterns in detail also requires incorporating growth [40],
flows [41], noise and delays [10]. Moreover, natural patterns
often form in complex geometries, including coupled layers
[42] and curved surfaces [43,44], where the mechano-
chemical coupling [45] can lead to dynamic patterns [46].
The organization of biological cells is a particularly exciting
example since biomolecules are known to interact and react
[14]. While this sometimes leads to spatial patterns explained
by Turing’s mechanism [7], other examples are akin to active
droplets [21]. Another possibility is patterns formed by self-
propelled agents, which can exhibit motility-induced phase
separation [47] and explain some population patterns suc-
cessfully [16]. In all these cases, physical interactions will
affect patterns qualitatively and quantitatively, opening new
perspectives on how natural patterns emerge.
4. Methods
We perform numerical simulations of equations (2.3) and (2.4)
on an equidistantly discretized grid using second-order finite-
differences to approximate differential operators [48]. We
evaluate rmi on a staggered grid to ensure material conservation
and use an explicit Euler scheme for the time evolution.
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