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Abstract
Background: Short- term forecasts of infectious disease burden can contribute to situational 
awareness and aid capacity planning. Based on best practice in other fields and recent insights in 
infectious disease epidemiology, one can maximise the predictive performance of such forecasts if 
multiple models are combined into an ensemble. Here, we report on the performance of ensembles 
in predicting COVID- 19 cases and deaths across Europe between 08 March 2021 and 07 March 
2022.
Methods: We used open- source tools to develop a public European COVID- 19 Forecast Hub. We 
invited groups globally to contribute weekly forecasts for COVID- 19 cases and deaths reported by 
a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from 
March 2021 using standardised quantiles of the predictive distribution. Each week we created an 
ensemble forecast, where each predictive quantile was calculated as the equally- weighted average 
(initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. 
We measured the performance of each model using the relative Weighted Interval Score (WIS), 
comparing models’ forecast accuracy relative to all other models. We retrospectively explored alter-
native methods for ensemble forecasts, including weighted averages based on models’ past predic-
tive performance.
Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ 
forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consis-
tently strong performance across countries over time. Across all horizons and locations, the 
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ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident 
cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ 
forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble 
performance declined with longer forecast periods when forecasting cases, but remained stable 
over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble 
outperformed most contributing models when forecasting either cases or deaths, frequently outper-
forming all of its individual component models. Among several choices of ensemble methods we 
found that the most influential and best choice was to use a median average of models instead of 
using the mean, regardless of methods of weighting component forecast models.
Conclusions: Our results support the use of combining forecasts from individual models into an 
ensemble in order to improve predictive performance across epidemiological targets and popu-
lations during infectious disease epidemics. Our findings further suggest that median ensemble 
methods yield better predictive performance more than ones based on means. Our findings also 
highlight that forecast consumers should place more weight on incident death forecasts than inci-
dent case forecasts at forecast horizons greater than 2 weeks.
Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 
1R01GM109718, NSF BIG DATA Grant IIS- 1633028, NSF Grant No.: OAC- 1916805, NSF Expe-
ditions in Computing Grant CCF- 1918656, CCF- 1917819, NSF RAPID CNS- 2028004, NSF RAPID 
OAC- 2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from 
Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat 
Reduction Agency (DTRA) under Contract No. HDTRA1- 19- D- 0007, and respectively Virginia Dept 
of Health Grant VDH- 21- 501- 0141, VDH- 21- 501- 0143, VDH- 21- 501- 0147, VDH- 21- 501- 0145, 
VDH- 21- 501- 0146, VDH- 21- 501- 0142, VDH- 21- 501- 0148. AF, AMa, GL funded by SMIGE - Modelli 
statistici inferenziali per governare l'epidemia, FISR 2020- Covid- 19 I Fase, FISR2020IP- 00156, 
Codice Progetto: PRJ- 0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry 
of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. 
BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European 
H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission 
- Directorate- General for Communications Networks, Content and Technology through the contract 
LC- 01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project 
PGC2018- 095456- B- I00. DE., MGu funded by Spanish Ministry of Health / REACT- UE (FEDER). DO, 
GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos 
National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded 
by National Institutes of General Medical Sciences (R35GM119582; the content is solely the respon-
sibility of the authors and does not necessarily represent the official views of NIGMS or the National 
Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European 
Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries 
de Catalunya (AQuAS) through contract 2021- 021OE. JDe, SMo, VP funded by Netzwerk Universi-
tatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education 
and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the 
German Free State of Saxony. Presentation of data, model results and simulations also funded by 
the NFDI4Health Task Force COVID- 19 (https://www.nfdi4health.de/task-force-covid-19-2) within the 
framework of a DFG- project (LO- 342/17- 1). LP, VE funded by Mathematical and Statistical modelling 
project (MUNI/A/1615/2020), Online platform for real- time monitoring, analysis and management of 
epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastruc-
ture (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN 
EXCELLENCE (CZ.02.1.01/0.0/0.0/17- 043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/
16- 013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF 
funded by Wellcome Trust (210758/Z/18/Z).

Editor's evaluation
This large- scale collaborative study is a timely contribution that will be of interest to researchers 
working in the fields of infectious disease forecasting and epidemic control. This paper provides 
a comprehensive evaluation of the predictive skills of real- time COVID- 19 forecasting models in 
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Europe. The conclusions of the paper are well supported by the data and are consistent with find-
ings from studies in other countries.

Introduction
Epidemiological forecasts make quantitative statements about a disease outcome in the near future. 
Forecasting targets can include measures of prevalent or incident disease and its severity, for some 
population over a specified time horizon. Researchers, policy makers, and the general public have 
used such forecasts to understand and respond to the global outbreaks of COVID- 19 (Van Basshuysen 
et al., 2021; CDC, 2020; European Centre for Disease Prevention and Control, 2021c). At the same 
time, forecasters use a variety of methods and models for creating and publishing forecasts, varying in 
both defining the forecast outcome and in reporting the probability distribution of outcomes (Zelner 
et al., 2021; James et al., 2021).

Within Europe, comparing forecasts across both models and countries can support a range of 
national policy needs simultaneously. European public health professionals operate across national, 
regional, and continental scales, with strong existing policy networks in addition to rich patterns of 
cross- border migration influencing epidemic dynamics. A majority of European countries also coop-
erate in setting policy with inter- governmental European bodies such as the European Centre for 
Disease Prevention and Control (ECDC). In this case, a consistent approach to forecasting across 
the continent as a whole can support accurately informing cross- European monitoring, analysis, and 
guidance (European Centre for Disease Prevention and Control, 2021c). At a regional level, multi- 
country forecasts can support a better understanding of the impact of regional migration networks. 
Meanwhile, where there is limited capacity for infectious disease forecasting at a national level, fore-
casters generating multi- country results can provide an otherwise- unavailable opportunity for fore-
casts to inform national situational awareness. Some independent forecasting models have sought to 
address this by producing multi- country results (Aguas et al., 2020; Adib et al., 2021; Agosto and 
Giudici, 2020; Agosto et al., 2021).

Variation in forecast methods and presentation makes it difficult to compare predictive perfor-
mance between forecast models, and from there to derive objective arguments for using one forecast 
over another. This confounds the selection of a single representative forecast and reduces the reli-
ability of the evidence base for decisions based on forecasts. A ‘forecast hub’ is a centralised effort 
to improve the transparency and usefulness of forecasts, by standardising and collating the work of 
many independent teams producing forecasts (Reich et al., 2019a). A hub sets a commonly agreed- 
upon structure for forecast targets, such as type of disease event, spatio- temporal units, or the set 
of quantiles of the probability distribution to include from probabilistic forecasts. For instance, a hub 
may collect predictions of the total number of cases reported in a given country for each day in the 
next 2 weeks. Forecasters can adopt this format and contribute forecasts for centralised storage in 
the public domain.

This shared infrastructure allows forecasts produced from diverse teams and methods to be visual-
ised and quantitatively compared on a like- for- like basis, which can strengthen public and policy use 
of disease forecasts. The underlying approach to creating a forecast hub was pioneered in climate 
modelling and adapted for collaborative epidemiological forecasts of dengue (Johansson et  al., 
2019) and influenza in the USA (Reich et al., 2019a; Reich et al., 2019b). This infrastructure was 
adapted for forecasts of short- term COVID- 19 cases and deaths in the US (Cramer et al., 2021a; 
Ray et al., 2020), prompting similar efforts in some European countries (Bracher et al., 2021c; Funk 
et al., 2020; Bicher et al., 2020).

Standardising forecasts allows for combining multiple forecasts into a single ensemble with the 
potential for an improved predictive performance. Evidence from previous efforts in multi- model 
infectious disease forecasting suggests that forecasts from an ensemble of models can be consis-
tently high performing compared to any one of the component models (Johansson et  al., 2019; 
Reich et al., 2019b; Viboud et al., 2018). Elsewhere, weather forecasting has a long- standing use of 
building ensembles of models using diverse methods with standardised data and formatting in order 
to improve performance (Buizza, 2019; Moran et al., 2016).

The European COVID- 19 Forecast Hub (European Covid- 19 Forecast Hub, 2023d) is a project 
to collate short- term forecasts of COVID- 19 across 32 countries in the European region. The Hub is 
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funded and supported by the ECDC, with the primary aim to provide reliable information about the 
near- term epidemiology of the COVID- 19 pandemic to the research and policy communities and the 
general public (European Centre for Disease Prevention and Control, 2021c). Second, the Hub 
aims to create infrastructure for storing and analysing epidemiological forecasts made in real time by 
diverse research teams and methods across Europe. Third, the Hub aims to maintain a community of 
infectious disease modellers underpinned by open science principles.

We started formally collating and combining contributions to the European Forecast Hub in March 
2021. Here, we investigate the predictive performance of an ensemble of all forecasts contributed to 
the Hub in real time each week, as well as the performance of variations of ensemble methods created 
retrospectively.

Materials and methods
We developed infrastructure to host and analyse prospective forecasts of COVID- 19 cases and deaths. 
The infrastructure is compatible with equivalent research software from the US (Cramer et al., 2021c; 
Wang et al., 2021) and German and Polish COVID- 19 (Bracher et al., 2020) Forecast Hubs, and easy 
to replicate for new forecasting collaborations.

Forecast targets and models
We sought forecasts for the incidence of COVID- 19 as the total reported number of cases and deaths 
per week. We considered forecasts for 32 countries in Europe, including all countries of the Euro-
pean Union, European Free Trade Area, and the United Kingdom. We compared forecasts against 
observed data reported for each country by Johns Hopkins University (JHU, Dong et al., 2020). JHU 
data sources included a mix of national and aggregated subnational data. We aggregated incidence 
over the Morbidity and Mortality Weekly Report (MMWR) epidemiological week definition of Sunday 
through Saturday.

Teams could express their uncertainty around any single forecast target by submitting predictions 
for up to 23 quantiles (from 0.01 to 0.99) of the predictive probability distribution. Teams could also 
submit a single point forecast. At the first submission, we asked teams to add a pre- specified set of 
metadata briefly describing the forecasting team and methods (provided online and in supplementary 
information). No restrictions were placed on who could submit forecasts. To increase participation, 
we actively contacted known forecasting teams across Europe and the US and advertised among 
the ECDC network. Teams submitted a broad spectrum of model types, ranging from mechanistic to 
empirical models, agent- based and statistical models, and ensembles of multiple quantitative or qual-
itative models (described at European Covid- 19 Forecast Hub, 2023a). We maintain a full project 
specification with a detailed submissions protocol (European Covid- 19 Forecast Hub, 2023c).

We collected forecasts submitted weekly in real time over the 52- week period from 08 March 2021 
to 07 March 2022. Teams submitted at latest 2 days after the complete dataset for the latest fore-
casting week became available each Sunday. We implemented an automated validation programme 
to check that each new forecast conformed to standardised formatting. Forecast validation ensured a 
monotonic increase of predictions with each increasing quantile, integer- valued non- negative counts 
of predicted cases, as well as consistent date and location definitions.

Each week we used all available valid forecasts to create a weekly real- time ensemble model 
(referred to as ‘the ensemble’ from here on), for each of the 256 possible forecast targets: incident 
cases and deaths in 32 locations over the following one through 4 weeks. The ensemble method was 
an unweighted average of all models’ forecast values, at each predictive quantile for a given location, 
target, and horizon. From 08 March 2021, we used the arithmetic mean. However we noticed that 
including highly anomalous forecasts in a mean ensemble produced extremely wide uncertainty. To 
mitigate this, from 26th July 2021 onwards the ensemble instead used a median of all predictive 
quantiles.

We created an open and publicly accessible interface to the forecasts and ensemble, including an 
online visualisation tool allowing viewers to see past data and interact with one or multiple forecasts 
for each country and target for up to 4 weeks’ horizon (European Covid- 19 Forecast Hub, 2023b). 
All forecasts, metadata, and evaluations are freely available and held on Github (European Covid- 19 
Forecast Hub, 2023d) (archived in real- time at Sherratt, 2022), and Zoltar, a platform for hosting 
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epidemiological forecasts (EpiForecasts, 2021; Reich et al., 2021). In the codebase for this study 
(covid19- forecast- hub- europe, 2022) we provide a simple method and instructions for downloading 
and preparing these data for analysis using R. We encourage other researchers to freely use and adapt 
this to support their own analyses.

Forecast evaluation
In this study, we focused only on the comparative performance of forecasting models relative to each 
other. Performance in absolute terms is available on the Hub website (European Covid- 19 Forecast 
Hub, 2023b). For each model, we assessed calibration and overall predictive performance. We eval-
uated all previous forecasts against actual observed values for each model, stratified by the forecast 
horizon, location, and target. We calculated scores using the scoringutils R package (Bosse et al., 
2023). We removed any forecast surrounding (both the week of, and the first week after) a strongly 
anomalous data point. We defined anomalous as where any subsequent data release revised that data 
point by over 5%.

To investigate calibration, we assessed coverage as the correspondence between the forecast 
probability of an event and the observed frequency of that event. This usage follows previous work 
in epidemic forecasting (Bracher et al., 2021a), and is related to the concept of reliability for binary 
forecasts. We established the accuracy of each model’s prediction boundaries as the coverage of the 
predictive intervals. We calculated coverage at a given interval level  k , where  k ∈ [0, 1] , as the propor-
tion  p  of observations that fell within the corresponding central predictive intervals across locations 
and forecast dates. A perfectly calibrated model would have  p = k  at all 11 levels (corresponding to 
22 quantiles excluding the median). An underconfident model at level  k  would have  p > k , i.e. more 
observations fall within a given interval than expected. In contrast, an overconfident model at level  k  
would have  p < k , i.e. fewer observations fall within a given interval than expected. We here focus on 
coverage at the  k = 0.5  and  k = 0.95  levels.

We also assessed the overall predictive performance of weekly forecasts using the Weighted 
Interval Score~(WIS) across all available quantiles. The WIS represents a parsimonious approach 
to scoring forecasts based on uncertainty represented as forecast values across a set of quantiles 
(Bracher et al., 2021a), and is a strictly proper scoring rule, that is, it is optimal for predictions that 
come from the data- generating model. As a consequence, the WIS encourages forecasters to report 
predictions representing their true belief about the future (Gneiting and Raftery, 2007). Each fore-
cast for a given location and date is scored based on an observed count of weekly incidence, the 
median of the predictive distribution and the predictive upper and lower quantiles corresponding to 
the central predictive interval level.

Not all models provided forecasts for all locations and dates, and we needed to compare predic-
tive performance in the face of various levels of missingness across each forecast target. Therefore 
we calculated a relative WIS. This is a measure of forecast performance which takes into account that 
different teams may not cover the same set of forecast targets (i.e. weeks and locations). The relative 
WIS is computed using a pairwise comparison tournament where for each pair of models a mean 
score ratio is computed based on the set of shared targets. The relative WIS of a model with respect 
to another model is then the ratio of their respective geometric mean of the mean score ratios, such 
that smaller values indicate better performance.

We scaled the relative WIS of each model with the relative WIS of a baseline model, for each fore-
cast target, location, date, and horizon. The baseline model assumes case or death counts stay the 
same as the latest data point over all future horizons, with expanding uncertainty, described previ-
ously in Cramer et al., 2021b. In this study, we report the relative WIS of each model with respect to 
the baseline model.

Retrospective ensemble methods
We retrospectively explored alternative methods for combining forecasts for each target at each 
week. A natural way to combine probability distributions available in the quantile format Genest, 
1992 used here is

 
F −1(α) =

n∑
i=1

wiF−1
i (α),
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Where  F1 . . .Fn  are the cumulative distribution functions of the individual probability distributions (in 
our case, the predictive distributions of each forecast model  i  contributed to the hub), wi are a set 
of weights in  [0, 1] ; and  α  are the quantile levels, such that following notation introduced in Genest, 
1992,

 F −1(α) = inf{t : Fi(t) ≥ α}.  

Different ensemble choices then mainly translate to the choice of weights wi. An arithmetic mean 
ensemble uses weights at  wi = 1/n , where all weights are equal and sum up to 1.

Alternatively, we can choose a set of weights to apply to forecasts before they are combined. 
Numerous options exist for choosing these weights with the aim to maximise predictive performance, 
including choosing weights to reflect each forecast’s past performance (thereby moving from an 
untrained to a trained ensemble). A straightforward choice is so- called inverse score weighting. In this 
case, the weights are calculated as

 
wi = 1

Si
,
  

where  Si  reflects the forecasting skill calculated as the relative WIS of forecaster  i , calculated over all 
available model data, and normalised so that weights sum to 1. This method of weighting was found 
in the US to outperform unweighted scores during some time periods (Taylor and Taylor, 2023) but 
this was not confirmed in a similar study in Germany and Poland (Bracher et al., 2021c).

When constructing ensembles from quantile means, a single outlier can have an oversized effect 
on the ensemble forecast. Previous research has found that a median ensemble, replacing the arith-
metic mean of each quantile with a median of the same values, yields competitive performance while 

Figure 1. Total number of forecasts included in evaluation, by target location, week ahead horizon, and variable.
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maintaining robustness to outlying forecasts (Ray et  al., 2022). Building on this, we also created 
weighted median ensembles using the weights described above and a Harrel- Davis quantile esti-
mator with a beta function to approximate the weighted percentiles (Harrell and Davis, 1982). We 
then compared the performance of unweighted and inverse relative WIS weighted mean and median 
ensembles, comparing the ratio of interval scores between each ensemble model relative to the base-
line model.

Results
For 32 European countries, we collected, visualised, and made available online weekly COVID- 19 fore-
casts and observed data (Sherratt, 2022). Over the whole study period, we collected forecasts from 
48 unique models. Modellers created forecasts choosing from a set of 32 possible locations, four time 
horizons, and two variables, and modellers variously joined and left the Hub over time. This meant 
the number of models contributing to the Hub varied over time and by forecasting target. Using 
all models and the ensemble, we created 2139 forecasting scores, where each score summarises a 
unique combination of forecasting model, variable, country, and week ahead horizon (Figure 1).

Of the total 48 models, we received the most forecasts for Germany, with 29 unique models submit-
ting 1- week case forecasts, while only 12 models ever submitted 4- week case or death forecasts for 
Liechtenstein. Modelling teams also differed in how they expressed uncertainty. Only three models 
provided point forecasts with no estimate of uncertainty around their predictions, while 41 models 
provided the full set of 23 probabilistic quantiles across the predictive distribution for each target.

In this evaluation we included 29 models in comparison to the ensemble forecast (Figure 1). We 
have included metadata provided by modellers in the supplement and online (Sherratt, 2022). In this 
evaluation, at most 15 models contributed forecasts for cases in Germany at the 1 week horizon, with 
an accumulated 592 forecast scores for that single target over the study period. In contrast, deaths in 
Finland at the 2 week horizon saw the smallest number of forecasts, with only 6 independent models 
contributing 24 forecast scores at any time over the 52- week period. Of the 29 models included in this 
evaluation, 5 models provided less than the full set of 23 quantiles, and were excluded when creating 
the ensemble. No ensemble forecast was composed of less than 3 independent models.

We visually compared the absolute performance of forecasts in predicting numbers of incident 
cases and deaths. We observed that forecasts predicted well in times of stable epidemic behaviour, 

Figure 2. Ensemble forecasts of weekly incident cases in Germany over periods of increasing SARS- CoV- 2 variants Delta (B.1.617.2, left) and Omicron 
(B.1.1.529, right). Black indicates observed data. Coloured ribbons represent each weekly forecast of 1–4 weeks ahead (showing median, 50%, and 90% 
probability). For each variant, forecasts are shown over an x- axis bounded by the earliest dates at which 5% and 99% of sequenced cases were identified 
as the respective variant of concern, while vertical dotted lines indicate the approximate date that the variant reached dominance (>50% sequenced 
cases).
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while struggling to accurately predict at longer horizons around inflection points, for example during 
rapid changes in population- level behaviour or surveillance. Forecast models varied widely in their 
ability to predict and account for the introduction of new variants, giving the ensemble forecast over 
these periods a high level of uncertainty. An example of weekly forecasts from the ensemble model 
is shown in Figure 2.

In relative terms, the ensemble of all models performed well compared to both its component 
models and the baseline. By relative WIS scaled against a baseline of 1 (where a score <1 indicates 
outperforming the baseline), the median score of forecasts from the Hub ensemble model was 0.71, 
within an interquartile range of 0.61 at 25% probability to 0.88 at 75% probability. Meanwhile the 
median score of forecasts across all participating models (excluding the Hub ensemble) was 1.04 (IQR 
0.82–1.36).

Across all horizons and locations, the ensemble performed better on scaled relative WIS than 83% 
of forecast scores when forecasting cases (with a total N=886 from 23 unique models), and 91% of 
scores for forecasts of incident deaths (N=763 scores from 20 models). We also saw high performance 
from the ensemble when evaluating against all models including those who did not submit the full set 
of probabilistic quantile predictions (80% for cases with N=1006 scores from 28 models, and 88% for 
deaths, N=877 scores from 24 models).

The performance of individual and ensemble forecasts varied by length of the forecast horizon 
(Figure 3). At each horizon, the typical performance of the ensemble outperformed both the base-
line model and the aggregated scores of all its component models, although we saw wide variation 
between individual models in performance across horizons. Both individual models and the ensemble 
saw a trend of worsening performance at longer horizons when forecasting cases with the median 
scaled relative WIS of the ensemble across locations worsened from 0.62 for 1- week ahead forecasts 
to 0.9 when forecasting 4 weeks ahead. Performance for forecasts of deaths was more stable over one 
through 4 weeks, with median ensemble performance moving from 0.69 to 0.76 across the 4- week 
horizons.

We observed similar trends in performance across horizon when considering how well the ensemble 
was calibrated with respect to the observed data. At 1 week ahead the case ensemble was well cali-
brated (ca. 50% and 95% nominal coverage at the 50% and 95% levels, respectively). This did not 
hold at longer forecast horizons as the case forecasts became increasingly over- confident. Meanwhile, 
the ensemble of death forecasts was well calibrated at the 95% level across all horizons, and the cali-
bration of death forecasts at the 50% level improved with lengthening horizons compared to being 
underconfident at shorter horizons.

The ensemble also performed consistently well in comparison to individual models when fore-
casting across countries (Figure 4). In total, across 32 countries forecasting for 1 through 4 weeks, 
when forecasting cases the ensemble outperformed 75% of component models in 22 countries, and 
outperformed all available models in 3 countries. When forecasting deaths, the ensemble outper-
formed 75% and 100% of models in 30 and 8 countries, respectively. Considering only the the 2- week 
horizon shown in Figure 4, the ensemble of case forecasts outperformed 75% models in 25 countries 
and all models in only 12 countries. At the 2- week horizon for forecasts of deaths, the ensemble 
outperformed 75% and 100% of its component models in 30 and 26 countries, respectively.

We considered alternative methods for creating ensembles from the participating forecasts, using 
either a mean or median to combine either weighted or unweighted forecasts. We evaluated each 
alternative ensemble model against the baseline model, taking the mean score ratio across all targets 
(Table  1). Across locations we observed that the median outperformed the mean across all one 
through 4 week horizons and both cases and death targets, for all but cases at the 1 week horizon. 
This held regardless of whether the component forecasts were weighted or unweighted by their indi-
vidual past performance. Between methods of combination, weighting made little difference to the 
performance of the median ensemble, but appeared to improve performance of a mean ensemble in 
forecasting deaths.

Discussion
We collated 12 months of forecasts of COVID- 19 cases and deaths across 32 countries in Europe, 
collecting from multiple independent teams and using a principled approach to standardising both 
forecast targets and the predictive distribution of forecasts. We combined these into an ensemble 
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forecast and compared the relative performance of forecasts between models, finding that the 
ensemble forecasts outperformed most individual models across all countries and horizons over time.

Across all models we observed that forecasting changes in trend in real time was particularly chal-
lenging. Our study period included multiple fundamental changes in viral-, individual-, and population- 
level factors driving the transmission of COVID- 19 across Europe. In early 2021, the introduction of 
vaccination started to change population- level associations between infections, cases, and deaths 
(European Centre for Disease Prevention and Control, 2021b), while the Delta variant emerged 
and became dominant (European Centre for Disease Prevention and Control, 2021a). Similarly from 

Figure 3. Performance of short- term forecasts aggregated across all individually submitted models and the Hub 
ensemble, by horizon, forecasting cases (left) and deaths (right). Performance measured by relative weighted 
interval score scaled against a baseline (dotted line, 1), and coverage of uncertainty at the 50% and 95% levels. 
Boxplot, with width proportional to number of observations, show interquartile ranges with outlying scores as 
faded points. The target range for each set of scores is shaded in yellow.
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Figure 4. Performance of short- term forecasts across models and median ensemble (asterisk), by country, forecasting cases (top) and deaths (bottom) 
for 2- week ahead forecasts, according to the relative weighted interval score. Boxplots show interquartile ranges, with outliers as faded points, and the 
ensemble model performance is marked by an asterisk. y- axis is cut- off to an upper bound of 4 for readability.

Table 1. Predictive performance of main ensembles, as measured by the mean ratio of interval 
scores against the baseline ensemble.

Horizon Weighted mean Weighted median Unweighted mean Unweighted median

Cases

1 week 0.63 0.64 0.61 0.64

2 weeks 0.72 0.71 0.69 0.69

3 weeks 0.82 0.76 0.82 0.72

4 weeks 1.07 0.86 1.12 0.78

Deaths

1 week 0.65 0.61 1.81 0.61

2 weeks 0.58 0.54 1.29 0.54

3 weeks 0.64 0.57 1.17 0.53

4 weeks 0.82 0.67 0.84 0.62

https://doi.org/10.7554/eLife.81916


 Research article      Epidemiology and Global Health

Sherratt et al. eLife 2023;12:e81916. DOI: https://doi.org/10.7554/eLife.81916  12 of 19

late 2021 we saw the interaction of individually waning immunity during the emergence and global 
spread of the Omicron variant (European Centre for Disease Prevention and Control, 2022b). 
Neither the extent nor timing of these factors were uniform across European countries covered by 
the Forecast Hub (European Centre for Disease Prevention and Control, 2023). This meant that 
the performance of any single forecasting model depended partly on the ability, speed, and precision 
with which it could adapt to new conditions for each forecast target.

We observed a contrast between a more stable performance of forecasting deaths further into the 
future compared to forecasts of cases. Previous work has found rapidly declining performance for case 
forecasts with increasing horizon (Cramer et al., 2021b; Castro et al., 2020), while death forecasts 
can perform well with up to 6 weeks lead time (Friedman et al., 2021). We can link this to the specific 
epidemic dynamics in this study.

First, COVID- 19 has a typical serial interval of less than a week (Alene et al., 2021). This implies 
that case forecasts of more than 2 weeks only remain valid if rates of both transmission and detection 
remain stable over the entire forecast horizon. In contrast, we saw rapid changes in epidemic dynamics 
across many countries in Europe over our study period, impacting the longer term case forecasts.

Second, we can interpret the higher reliability of death forecasts as due to the different lengths and 
distributions of time lags from infection to case and death reporting (Jin, 2021). For example, a spike 
in infections may be matched by a consistently sharp increase in case reporting, but a longer tailed 
distribution of the subsequent increase in death reports. This creates a lower magnitude of fluctuation 
in the time- series of deaths compared to that of cases. Similarly, surveillance data for death reporting 
is substantially more consistent, with fewer errors and retrospective corrections, than case reporting 
(Català et al., 2021).

Third, we also note that the performance of trend- based forecasts may have benefited from the 
slower changes to trends in incident deaths caused by gradually increasing vaccination rates. These 
features allow forecasters to incorporate the effect of changes in transmission more easily when fore-
casting deaths, compared to cases.

We found the ensemble in this study continued to outperform both other models and the baseline 
at up to 4 weeks ahead. Our results support previous findings that ensemble forecasts are the best or 
nearly the best performing models with respect to absolute predictive performance and appropriate 
coverage of uncertainty (Funk et al., 2020; Viboud et al., 2018; Cramer et al., 2021b). While the 
ensemble was consistently high performing, it was not strictly dominant across all forecast targets, 
reflecting findings from previous comparable studies of COVID- 19 forecasts (Bracher et al., 2021c; 
Brooks, 2020). Our finding suggests the usefulness of an ensemble as a robust summary when fore-
casting across many spatio- temporal targets, without replacing the importance of communicating the 
full range of model predictions.

When exploring variations in ensemble methods, we found that the choice of median over means 
yielded the most consistent improvement in predictive performance, regardless of the method of 
weighting. Other work has supported the importance of the median in providing a stable forecast 
that better accounts for outlier forecasts than the mean (Brooks, 2020), although this finding may be 
dependent on the quality of the individual forecast submissions. In contrast, weighing models by past 
performance did not result in any consistent improvement in performance. This is in line with existing 
mixed evidence for any optimal ensemble method for combining short term probabilistic infectious 
disease forecasts. Many methods of combination have performed competitively in analyses of fore-
casts for COVID- 19 in the US, including the simple mean and weighted approaches outperforming 
unweighted or median methods (Taylor and Taylor, 2023). This contrasts with later analyses finding 
weighted methods to give similar performance to a median average (Ray et al., 2020; Brooks, 2020). 
We can partly explain this inconsistency if performance of each method depends on the outcome 
being predicted (cases, deaths), its count (incident, cumulative) and absolute level, the changing 
disease dynamics, and the varying quality and quantity of forecasting teams over time.

We note several limitations in our approach to assessing the relative performance of an ensemble 
among forecast models. While we have described differences in model scores, we have not used any 
formal statistical test for comparing forecast scores, such as the Diebold- Mariano test (Diebold and 
Mariano, 1995), recognising that it is unclear how this is best achieved across many models. Our 
results are the outcome of evaluating forecasts against a specific performance metric and baseline, 
where multiple options for evaluation exist and the choice reflects the aim of the evaluation process. 
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Further, our choice of baseline model affects the given performance scores in absolute terms, and 
more generally the choice of appropriate baseline for epidemic forecast models is not obvious when 
assessing infectious disease forecasts. The model used here is supported by previous work (Cramer 
et  al., 2021b), yet previous evaluation in a similar context has suggested that choice of baseline 
affects relative performance in general (Bracher et al., 2021b), and future research should be done 
on the best choices of baseline models in the context of infectious disease epidemics.

Our assessment of forecast performance may further have been inaccurate due to limitations in the 
observed data against which we evaluated forecasts. We sourced data from a globally aggregated 
database to maintain compatibility across 32 countries (Dong et al., 2020). However, this made it 
difficult to identify the origin of lags and inconsistencies between national data streams, and to what 
extent these could bias forecasts for different targets. In particular, we saw some real time data revised 
retrospectively, introducing bias in either direction where the data used to create forecasts was not 
the same as that used to evaluate it. We attempted to mitigate this by using an automated process for 
determining data revisions, and excluding forecasts made at a time of missing, unreliable, or heavily 
revised data. We also recognise that evaluating forecasts against updated data is a valid alternative 
approach used elsewhere (Cramer et al., 2021b). More generally it is unclear if the expectation of 
observation revisions should be a feature built into forecasts. Further research is needed to under-
stand the perspective of end- users of forecasts in order to assess this.

The focus of this study was describing and summarising an ensemble of many models. We note 
that we have little insight into the individual methods and wide variety of assumptions that modellers 
used. While we asked modellers to provide a short description of their methods, we did not create a 
rigorous framework for this, and we did not document whether modellers changed the methods for 
a particular submitted model over time. Both the content of and variation in modelling methods and 
assumptions are likely to be critical to explaining performance, rather than describing or summarising 
it. Exploring modellers’ methods and relating this to forecast performance will be an important area 
of future work.

In an emergency setting, access to visualised forecasts and underlying data is useful for researchers, 
policymakers, and the public (CDC, 2020). Previous European multi- country efforts to forecast 
COVID- 19 have included only single models adapted to country- specific parameters (Aguas et al., 
2020; Adib et al., 2021; Agosto et al., 2021).

The European Forecasting Hub acted as a unique tool for creating an open- access, cross- country 
modelling network, and connecting this to public health policy across Europe. By opening participa-
tion to many modelling teams and with international high participation, we were able to create robust 
ensemble forecasts across Europe. This also allows comparison across forecasts built with different 
interpretations of current data, on a like for like scale in real time. The European Hub has supported 
policy outputs at an international, regional, and national level, including Hub forecasts cited weekly 
in ECDC Communicable Disease Threats Reports (European Centre for Disease Prevention and 
Control, 2022a).

For forecast producers, an easily accessible comparison between results from different methods 
can highlight individual strengths and weaknesses and help prioritise new areas of work. Collating 
time- stamped predictions ensures that we can test true out- of- sample performance of models and 
avoid retrospective claims of performance. Testing the limits of forecasting ability with these compar-
isons forms an important part of communicating any model- based prediction to decision makers. For 
example, the weekly ECDC Communicable Disease Threats reports include the specific results of this 
work by qualitatively highlighting the greater uncertainty around case forecasts compared to death 
forecasts.

This study raises many further questions which could inform epidemic forecast modellers and users. 
The dataset created by the European Forecast Hub is an openly accessible, standardised, and exten-
sively documented catalogue of real time forecasting work from a range of teams and models across 
Europe (European Covid- 19 Forecast Hub, 2023b), and we recommend its use for further research 
on forecast performance. In the code developed for this study, we provide a worked example of 
downloading and using both the forecasts and their evaluation scores (covid19- forecast- hub- europe, 
2022).

Future work could explore the impact on forecast models of changing epidemiology at a broad 
spatial scale by combining analyses of trends and turning points in cases and deaths with forecast 
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performance, or extending to include data on vaccination, variant, or policy changes over time. There 
is also much scope for future research into methods for combining forecasts to improve performance 
of an ensemble. This includes altering the inclusion criteria of forecast models based on different 
thresholds of past performance, excluding or including only forecasts that predict the lowest and 
highest values (trimming) (Taylor and Taylor, 2023), or using alternative weighting methods such as 
quantile regression averaging (Funk et al., 2020). Exploring these questions would add to our under-
standing of real time performance, supporting and improving future forecasting efforts.

We see additional scope to adapt the Hub format to the changing COVID- 19 situation across 
Europe. We have extended the Forecast Hub infrastructure to include short term forecasts for hospi-
talisations with COVID- 19, which is a challenging task due to limited data across the locations covered 
by the hub. As the policy focus shifts from immediate response to anticipating changes brought by 
vaccinations or the geographic spread of new variants (European Centre for Disease Prevention 
and Control, 2023), we are also separately investigating models for longer term scenarios in addi-
tion to the short term forecasts in a similar framework to existing scenario modelling work in the US 
(Borchering et al., 2021).

In conclusion, we have shown that during a rapidly evolving epidemic spreading through multiple 
populations, an ensemble forecast performed highly consistently across a large matrix of forecast 
targets, typically outperforming the majority of its separate component models and a naive baseline 
model. In addition, we have linked issues with the predictability of short- term case forecasts to under-
lying COVID- 19 epidemiology, and shown that ensemble methods based on past model performance 
were unable to reliably improve forecast performance. Our work constitutes a step towards both 
unifying COVID- 19 forecasts and improving our understanding of them.
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Additional files
Supplementary files
•  Supplementary file 1. EPIFORGE reporting guidelines Completed checklist following reporting 
guidelines on epidemic forecasting research.

•  Supplementary file 2. Participating team metadata Team metadata for teams participating in the 
European Forecast Hub and evaluated in this study.

•  MDAR checklist 

Data availability
All source data were openly available before the study, originally available at: https://github.com/ 
covid19-forecast-hub-europe/covid19-forecast-hub-europe (copy archived at swh:1:rev:b4d66c495e-
07c12d88384506154cf58f08592365). All data and code for this study are openly available on Github: 
covid19- forecast- hub- europe/euro- hub- ensemble.
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