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Abstract

Resting-state (rs) functional magnetic resonance imaging (fMRI) is used to detect low-

frequency fluctuations in the blood oxygen-level dependent (BOLD) signal across

brain regions. Correlations between temporal BOLD signal fluctuations are commonly

used to infer functional connectivity. However, because BOLD is based on the dilu-

tion of deoxyhemoglobin, it is sensitive to veins of all sizes, and its amplitude is biased

by draining veins. These biases affect local BOLD signal location and amplitude, and

may also influence BOLD-derived connectivity measures, but the magnitude of this

venous bias and its relation to vein size and proximity is unknown. Here, veins were

identified using high-resolution quantitative susceptibility maps and utilized in a bio-

physical model to investigate systematic venous biases on common local rsfMRI-

derived measures. Specifically, we studied the impact of vein diameter and distance

to veins on the amplitude of low-frequency fluctuations (ALFF), fractional ALFF

(fALFF), Hurst exponent (HE), regional homogeneity (ReHo), and eigenvector central-

ity values in the grey matter. Values were higher across all distances in smaller veins,

and decreased with increasing vein diameter. Additionally, rsfMRI values associated

with larger veins decrease with increasing distance from the veins. ALFF and ReHo

were the most biased by veins, while HE and fALFF exhibited the smallest bias.
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Across all metrics, the amplitude of the bias was limited in voxel-wise data, confirm-

ing that venous structure is not the dominant source of contrast in these rsfMRI met-

rics. Finally, the models presented can be used to correct this venous bias in rsfMRI

metrics.
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1 | INTRODUCTION

Resting-state (rs) functional magnetic resonance imaging (fMRI) is

used to measure functional connectivity and examine connectivity

changes in the brain during health and disease (Lee et al., 2013). In

this technique, the presence of a significant correlation between the

time course of voxels in different brain regions is used to infer a

functional coupling between them (Biswal et al., 1995). Functionally

connected areas are characterized by high correlations between vox-

els in the low-frequency range (0.01–0.1 Hz) in blood oxygen-level

dependent (BOLD) signal time courses. However, BOLD is a sensi-

tive but indirect measure of neuronal activity that is predominantly

based on the feed-forward blood flow response to local activity. The

BOLD signal in fact reflects the dilution of deoxyhemoglobin (dHb)

from veins, and animal studies have shown a moderate correlation

with neuronal activity (Logothetis & Wandell, 2004; Winder

et al., 2017). Because of this physiological underpinning, it is highly

sensitive to local vascular properties, especially venous structure,

and physiology (Tsvetanov et al., 2021). Recent research has focused

on the impact of vascular physiology on the BOLD signal

(Abdelkarim et al., 2019; Chen et al., 2010; Drew, 2019; Gagnon

et al., 2015; Garrett et al., 2017; Gauthier et al., 2013; Kalcher

et al., 2015; Liu & Li, 2016; Tsvetanov et al., 2021; Vigneau-Roy

et al., 2014). For instance, Gagnon et al. used two-photon micros-

copy as well as an oxygen-sensitive nanoprobe to investigate the

microscopic vascular behavior of the BOLD signal in rodents. They

showed that venous size and orientation was an important determi-

nant of the BOLD signal (Gagnon et al., 2015). Further, Kalcher et al.

used graph clustering to identify the regions with the greatest rest-

ing state correlations with other nodes within the graph. They found

that these high correlation areas overlap at more than 75% with vox-

els that contain large veins detected using susceptibility-weighted

imaging (SWI), showing that correlations of resting state signals are

biased by the presence of large veins (Kalcher et al., 2015). However,

the impact of local vascular properties such as vein diameter and dis-

tance of tissue voxels to veins has not been well documented as it is

typically not measured or reported. Furthermore, venous structures

are highly variable across brain regions and individuals (Bernier

et al., 2018a; Huck et al., 2019; Kannurpatti et al., 2010); and exhibit

different anatomical and physiological coupling properties in older or

diseased populations as a result of well-documented vascular

changes (Dai et al., 2012; Fulop et al., 2019; Paneni et al., 2017;

Plante, 2002; Sweeney et al., 2018; Xu et al., 2017).

RsfMRI can be used to compute a variety of metrics to quantify

connectivity. Some of the most commonly used local rsfMRI methods

include the amplitude of low-frequency fluctuations (ALFF), fractional

ALFF (fALFF), regional homogeneity (ReHo), newer methods such as

the Hurst exponent (HE) using Detrended Fluctuation Analysis (DFA)

as well as graph-based measures such as eigenvector centrality (EC).

ALFF analysis focuses on regional (voxel-wise) temporal dynamics and

is predicated on the idea that higher ALFF values reflect more brain

activity (Y.-F. Zang et al., 2007). fALFF is a variation of ALFF where all

signals are scaled by total power across all frequencies to determine

the relative contribution of different regions (J. A. Turner, 2013; Zou

et al., 2008). ReHo quantifies the similarity in time course with the

nearest neighbor voxels with the assumption that adjacent areas are

more likely to be involved in a specific function when they exhibit

similar temporal patterns (Jiao et al., 2019; Y. Zang et al., 2004). HE is

used to identify the fractal properties of the BOLD signal timeseries

to provide information about how self-similar the signal is across mul-

tiple time scales. Self-similarity is a relevant property of temporal sig-

nals in a wide variety of natural signals including fMRI (Hardstone

et al., 2012). EC is a graph-based approach to quantify network prop-

erties of BOLD rsfMRI. EC reflects the importance of a voxel within a

network, so that a voxel is attributed a large value when it shows

strong correlations to other voxels that are also important and central

to the network (Lohmann et al., 2010).

While the BOLD signal is sensitive to veins due to the paramag-

netic effects of dHb and shows low signal in venous voxels, it cannot

be used to assess venous structure because of the relatively large

voxel sizes used in standard BOLD experiments (1.5–3 mm typically),

since BOLD is optimized to capture temporal changes in dHb concen-

trations. Instead, venous structure can be imaged using higher-

resolution susceptibility-based imaging techniques. These imaging

techniques also rely on the paramagnetic properties of dHb to con-

trast veins from neighboring brain tissue. While SWI is known to have

blooming effects, especially for smaller veins, the quantitative variant

of this approach, called Quantitative Susceptibility Mapping (QSM),

ensures an accurate estimation of vein diameters (Cetin et al., 2016;

Hsieh et al., 2016; Wang & Liu, 2015). QSM has been used to identify

the location and size of veins (Huck et al., 2019), and their oxygen

extraction fraction (Fan et al., 2015). However, even with these tech-

niques, modeling the brain vasculature and estimating the effects of

draining veins on BOLD-derived measures is difficult due to the small

size of some of the relevant veins (diameter > 10 μm–4.8 mm;

Gagnon et al., 2015; Larson et al., 2020). Ultra-high field MRI allows
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the acquisition of higher resolution images to better model the effects

of small veins not typically visible at the resolution commonly used for

BOLD fMRI.

For this study, we acquired rsfMRI BOLD and QSM images at

7 Tesla (T) in the same subjects to investigate the effects of vein dis-

tance and diameter on the different rsfMRI measures of ALFF, fALFF,

ReHo, HE, and EC. Furthermore, we assessed whether these venous

biases show regional heterogeneity and propose a model for correct-

ing for these effects. The model can be applied to future research on

rsfMRI connectivity to improve the physiological specificity of rsfMRI

connectivity measures.

2 | METHODS

2.1 | Participants

Thirty-nine right-handed healthy participants (21 females) between

the ages of 20 and 30 (24.18 ± 2.36 years) each with five scanning

time points were included in this study. Participants had no history of

neurological disorders and did not meet any of the regular MRI exclu-

sion criteria. They were recruited from the database of the Max

Planck Institute for Human Cognitive and Brain Sciences in Leipzig,

Germany, and gave written informed consent in accordance with the

Declaration of Helsinki.

2.2 | Scanning protocol

The dataset was acquired in the context of a longitudinal study, where

the participants learned to perform a motor sequence. Descriptions of

this data have previously been published (Huck et al., 2019; Jäger

et al., 2021; Tremblay et al., 2021). Briefly, participants were trained

on a motor task over a time period of 17 days. Each participant per-

formed the task for 7 days in total, of which five daily sessions took

place inside the MRI scanner (d0, d1, d2, d5, and d17). For five partici-

pants one session was omitted, and two sessions were omitted for

another participant due to image artifacts. Imaging data was acquired

on a 7 T MRI machine (MAGNETOM, Siemens Healthcare, Erlangen,

Germany) with a 32-channel Nova head coil (NOVA Medical Inc., Wil-

mington MA). Four of the sequences from this study were used: a

rsfMRI Echo Planar Imaging series (EPI; BOLD; Poser et al., 2010),

a whole brain T1 map acquired using the MP2RAGE technique

(Marques et al., 2010), a low resolution B0 field map, and a two-echo

3D Gradient Echo (GRE) FLASH (Haase et al., 1986). At the beginning

of each session, auto-align was used to ensure a comparable place-

ment of the image volume between time points. Dielectric pads were

placed at the sides of the participant's head to enhance signal in the

temporal lobes and the cerebellum (O'Reilly et al., 2016).

BOLD rsfMRI images from the GRE-EPI sequence were acquired

for 10 min while participants were instructed to keep their eyes

open and focused on a fixation cross [BOLD, voxel dimensions =

1.2 � 1.2 � 1.2 mm3, 512 whole brain volumes, Field of View (FOV)

= 192 � 192 mm2, slice acceleration factor: 6, 102 slices, GRAPPA

factor 2, partial Fourier 6/8, Repetition Time (TR) = 1130 ms, Echo

Time (TE) = 22 ms, flip angle = 40�, bandwidth = 1562 Hz/Px]. The

rsfMRI data were acquired before the task was performed during each

session. Uniform T1-weighted (T1w) (MP2RAGE) images were used

for image registration [TR = 5000 ms, TE = 2.45 ms, voxel

dimension = 0.7 � 0.7 � 0.7 mm3, matrix = 320 � 320 � 240, inflow

time 1 and 2 = 900 and 2750 ms, Flip angle 1 and 2 = 5� and 3�,

bandwidth = 250 Hz/Px, and Time of Acquisition (TA) = 10:57 min].

The FLASH images used to generate QSM images were stored

uncombined for each coil channel. Because there is a phase offset

between the channels, the phase offset for each channel was calcu-

lated using low-resolution field maps. The phase offset maps were

then registered and subtracted from the high-resolution FLASH

images. Here, low-resolution field maps [TR = 18 ms, TE = 4.08 and

9.18 ms, matrix = 128 � 128 � 80, flip angle = 10�, voxel

dimension = 2 � 2 � 2 mm3, bandwidth = 300 Hz/Px, and

TA = 3:24 min] were used to estimate the phase offset between the

channels (Deistung et al., 2013; Hammond et al., 2008). The first echo

of the multi-echo 3D FLASH images [TR = 29 ms, TE1 and

TE2 = 8.16 and 18.35 ms, voxel dimensions = 0.6 � 0.6 � 0.6 mm3,

matrix = 260 � 320 � 256, GRAPPA acceleration = 3,

bandwidth = 250 Hz/Px, and TA = 14:22 min] was flow compensated

along all three axes and used for the QSM reconstruction.

2.3 | Image processing: rsfMRI preprocessing and
feature extraction

A preprocessing pipeline, which was optimized for 7 T data, was used

on the rsfMRI data (Huntenburg et al., 2018). Preprocessing consisted

of removing the first five TRs to allow for signal stabilization, motion

correction with Nipy's (Millman & Brett, 2007) SpaceTimeRealign

(Roche, 2011) function implemented in Nipype (Gorgolewski

et al., 2011), fieldmap unwarping with FSL FUGUE (Jenkinson

et al., 2002), nuisance regression including image intensity and motion

outliers with Nipype's ArtefactDetect, as well as white matter and

cerebrospinal fluid signal regression using the CompCor algorithm

(Behzadi et al., 2007) implemented in Nilearn's high_variance_con-

founds (Abraham et al., 2014), bandpass filtering (0.01–0.1 Hz), spatial

smoothing with a 2.4 mm sigma Gaussian kernel and registration to

1.2 mm isotropic MNI space (details of the registration are in

Section 2.5).

The local feature maps [ALFF, fALFF, Kendall's Coefficient Con-

cordance (KCC) ReHo and Coherence (Cohe)-ReHo] were created

with the REST toolbox (Biswal et al., 1995; Song et al., 2011) imple-

mented in MATLAB. The bandpass filter was set to 0.01–0.1 Hz with

a TR of 1.13 s for all four metrics. For the ReHo maps a cluster size of

27 voxels was used.

DFA was used to quantify the temporal self-similarity of the time

series data, which was reported as the HE (Hurst, 1951). DFA com-

putes the least squares fit of the log–log relationship between the

number of time series samples in a given window (n) and the mean

HUCK ET AL. 3
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standard deviation of linearly detrended windows of data of size

n [Peng et al., 1994; for a comprehensive overview, see Hardstone

et al. (2012)]. The standard deviation was computed for a range of

window sizes n, and the slope of the least squares fit line between the

log(n) and log (standard deviation) measures were calculated as

the HE. For fitting, we used 15 log-spaced windows ranging from

10 to 55 samples per window.

The EC maps were generated with the fastECM algorithm (Wink

et al., 2012) in MATLAB (2017b).

2.4 | Vessel segmentation

The phase images from each channel were recombined offline using

the phase estimates from the low-resolution field maps to ensure a

high phase image quality for QSM reconstruction. QSM images were

reconstructed using the Total Generalized Variation (TGV) technique

(Langkammer et al., 2015). A brain mask based on magnitude images

was used for QSM reconstruction. A multiscale recursive ridge vessel

filter was used to extract bright tubular structures from the QSM

(Bazin et al., 2016; Huck et al., 2019). The filter extracts vessels by

using a ridge filter recursively to extract 2D and 1D ridges, where 1D

ridges are considered as vessels. In the first step, the vessel filter

searches for the minimum difference between a plane at position

x perpendicular to the direction d and the planes at x � d and x + d in

the same direction to find the minimum contrast between the plane

and its neighboring planes. The step is repeated for all 13 discrete

directions. The plane with the highest contrast is chosen. This

approach is repeated in the second step, where the search planes are

replaced by lines. Ridge filtering is performed over multiple scales

defined by Gaussian smoothing (in this work, from 1 to 4 mm FWHM),

and the maximum response is kept. The filter response is converted

into probability scores while considering outliers and null distributions,

and voxel-wise probabilities are propagated along the ridge direction

with a diffusion process. Since the basal ganglia system has a high iron

content and is likely to be detected by the vessel filter as veins, the

ATAG atlas (Keuken et al., 2014) was used as an exclusion prior during

the vessel segmentation. Segmented vessels with a final probability

above 0.5 are kept, and vessel diameter is estimated by modeling the

vessel locally as a tubular structure and optimizing over centerline

location and diameter to match local intensity differences in and

around the detected vessel (Woerz & Rohr, 2004). Finally, the tubular

model was used to derive partial volume (PV) maps indicating the esti-

mated volume of vasculature in each voxel.

Veins with a calculated diameter smaller than 0.3 mm were

excluded, since smaller vessels cannot reliably be quantified using

this technique. Some surface larger veins like the sagittal and trans-

verse sinuses were partly cropped out by the brain mask used for

QSM reconstruction, therefore diameter estimations in these veins

could be underestimated. However, other larger veins such as the

straight sinus can be fully segmented. To understand how rsfMRI

metrics are influenced by vein size and distance to veins, distance

and propagated diameter maps were generated. Distance maps,

indicating the distance to the nearest vein, were calculated from PV

images, and the diameter of each vein was propagated to neighbor-

ing regions (up to 10 mm) until it encountered the propagated diam-

eter of another vein (Figure 1). This process therefore ascribes a

diameter and a distance to all voxels within the brain, so that the dis-

tance and diameter of the closest vein is known for every voxel in

the rsfMRI metric map. Vessel filtering, distance maps, and diameter

propagation were all performed in Nighres (Huntenburg et al., 2018).

The propagated diameter maps and distance maps were masked to

the grey matter (GM) after their registration into MNI152 space.

2.5 | Registration

To bring the rsfMRI-derived measures and the segmented veins from

their native space to a common space, registrations were performed

using the Advanced Normalization Tools (ANTs) software (Avants

et al., 2009). Registration was divided into three steps: (1) T1w native

space to MNI; (2) QSM native space to T1w native space; (3) rsfMRI

native space to T1w native space. Deformation fields from Steps

1 and 2 were concatenated to bring the distance maps and propa-

gated diameter maps from native QSM space to MNI152 space. The

deformation fields from Steps 1 and 3 were concatenated to bring

the rsfMRI metrics to MNI152 space.

1. A two-level nonlinear registration was used to bring the T1w

images from native space to a group template (https://github.com/

CoBrALab/twolevel_ants_dbm; Manera et al., 2019). During the

first level, the five scans of each participant were nonlinearly regis-

tered across days into an average individual subject space. In the

second level, the data were registered from the individual subject

spaces across participants into a study-specific group space. The

resulting group space template was then nonlinearly registered to

a 1.2-mm isotropic down-sampled version of the MNI152 template

(version: ICBM2019b).

2. For the registration of the distance and diameter maps, the GRE

magnitude images were registered linearly to the T1w images for

each day of each participant.

3. The registration of the rsfMRI images to T1w space required an ini-

tial linear registration to coarsely align the rsfMRI images to the

masked MP2RAGE UNI images, followed by a nonlinear registration.

The deformation fields from the GRE magnitude and rsfMRI images

were concatenated with the deformation fields from the T1w to MNI

space registration (GRE magnitude/rsfMRI ! T1w ! subject space

! group space ! MNI space). During the registration, warping finer

structures such as vessels can lead to incorrect values. To avoid this,

the concatenated deformations from GRE magnitude/rsfMRI to MNI

were applied to the propagated diameter and distance maps and

rsfMRI metric maps to bring all images into the same final space.

Intra-subject variability of the propagated diameter maps and distance

maps were generated by calculating the mean of the standard devia-

tions across days, and inter-subject variability maps were calculated

4 HUCK ET AL.
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by taking the standard deviation of the mean values across days

(Figure 2).

2.6 | Analyses

The analysis of the relationship between veins and rsfMRI signals was

restricted to voxels with nonzero rsfMRI feature values. To predict

the influence of vein diameter and vein distance, models were gener-

ated from binned data, where the rsfMRI values of the different met-

rics were averaged first across days and then across participants. To

avoid a sparse amount of data in some bins at the extremes, the bin

edges were set to 5%–95% of the propagated diameter and distance

maps (resulting in 0–6.7 mm distance and 0.3–2.5 mm diameters; See

Figure S2 for a visualization of density for all bins). Diameters smaller

than 0.3 mm were excluded, and diameters larger than 2.5 mm were

included in the last bin. The data were divided into 10 diameter bins

[0.3–2.5+ mm; 0.22 mm steps] and 10 distance bins (0–6.7 mm;

0.67 mm steps). For each of these bins, the rsfMRI features were

averaged first across days and then across participants (Figure 3a).

The analysis was done within the whole GM voxels (whole brain), as

well as for each of the seven networks of the Yeo functional connec-

tivity parcellations (Yeo et al., 2011; Supporting Information) including

the visual, somatomotor, dorsal attention, ventral attention, limbic,

frontoparietal, and default mode networks. To predict the rsfMRI fea-

tures using the vein diameter and distance to veins, the 100 binned

values (10 diameter � 10 distance bins) were used to generate a

model for diameters (x1) and distances (x2) separately (αx1 + c; and

αx2 + c), a linear (αx1 + βx2 + c) and higher order polynomial model

(up to the fourth order; Figure 3b):

Second order : cþαx1þβx2þ γx21þδx1x2þϵx22,

Fourth order : ζx31þηx21xxþθx1x
2
2þ ιx32þκx41þλx31x2þμx21x

2
2þνx1x

3
2þξx42,

where α, β, γ, δ, ϵ, ζ, η, θ, ι, κ, λ, μ, ν, and ξ represent the coefficients

and c the intercept of the model for the GM (Table 1). To evaluate the

best fitting model, a likelihood ratio test (LRT) using the ANOVA func-

tion in R and Bayesian Information Criterion (BIC) was performed

(RStudio version 1.3.1073) (Table S1 and Table 2). The model that had

the last largest improvement in BIC in the polynomial models (smaller

BIC values compared to the lower order model; Table 2 and

Figure S3) with additionally a significantly better fit when compared

to immediately lower and higher complexity models (ANOVA) was

chosen. After a model evaluation, the best fitting was then applied

voxel-wise to each individual participant for all 5 days in each rsfMRI

metric (Figure 3c). The voxel-wise difference between the original and

the predicted values was calculated to yield the residuals. Since the

residuals were smaller than the measured rsfMRI values, the mean

F IGURE 1 Overview of the rsfMRI metrics in MNI152 space and the processing pipeline of the QSM images. The distance maps and the
propagated diameter maps were generated in native space from the veins extracted from the QSM images. The images were then registered to
MNI152 space. The top row depicts the rsfMRI metrics in MNI152 space: sagittal view of the amplitude of low-frequency fluctuations (ALFF),
fractional ALFF (fALFF), Hurst Exponent (HE), Coherence [Coherence (Cohe)-Regional Homogeneity (ReHo)], Kendall's Coefficient Concordance
(KCC)-ReHo and Eigenvector Centrality (EC) values for one participant. Bottom rows: Quantitative Susceptibility Mapping (QSM) image of the
same participant in native space with the resultant partial volume (PV; second row) and diameter map (third row) from the vessel segmentation
filer (threshold = 0.5; native space). PV and diameter maps excluded all veins <0.3 mm. Distance map and propagated diameter map were
calculated from the PV and diameter maps in native space, respectively. Tissue voxels with a distance >6.7 mm were excluded in both images.
Maps were registered to MNI152 space and restricted to the GM (last column in the second and third row).
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value of the rsfMRI GM was added as baseline to the residuals to

bring the residuals to a comparable magnitude as the rsfMRI values

for ease of visualization. The predicted and residual voxel-wise values

were binned and averaged across days and participants and displayed

as heat maps (Figures 3d and 5). Further, the voxel-wise maps of the

rsfMRI metrics, the predicted values, and residuals were averaged

across days and participants (without binning) and depicted as brain

surface plots (Figures 3e and 8) using Nilearn 0.7.1 in python 3.8.5. A

voxel-wise percentage change between the residuals and the mea-

sured data was calculated to better quantify the bias caused by the

presence of veins. The R2 values were calculated using the coefficient

of determination r2_score function from sklearn in python.

3 | RESULTS

3.1 | Venous properties

A voxel-wise average of the propagated diameter maps and distance

maps across participants is shown in Figure 4. The averaged

F IGURE 2 Reliability measure of propagated diameter (top) and distance maps (bottom) for participants across days (intra-subject variability)
and across participants (inter-subject variability).

6 HUCK ET AL.
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propagated diameter maps show that most voxels are located in the

vicinity of smaller veins (diameter < 0.48 mm). The mean and standard

deviation of segmented vein diameters for all participants and days is

1.05 ± 0.61 mm. Veins of larger diameters are observed mostly in

areas where the straight, sagittal, and transverse sinuses are located.

Furthermore, sulcal voxels were found to be typically located closer to

F IGURE 3 Schematic overview of the analysis pipeline. In the first step, the rsfMRI values from all acquisitions (5 per participant) were
divided into 100 bins. Binned values were then averaged across days and then participants (first row). The pooled binned data were used to
generate a model of the relationship between vein size and distance with each rsfMRI metric. This model was applied voxel-wise to each day of
each participant (second row). The resulting predicted and residual values were divided into the same 100 bins as the original rsfMRI values,
averaged across days, and participants are plotted in Figure 5 (third row). In addition, after the model was applied voxel-wise to the data, the
predicted and residual values were averaged voxel-wise across days and then participants and are depicted in Figure 8 (fourth row) to show
spatial patterns.

TABLE 1 Coefficients of the fourth-order polynomial model for ALFF, fALFF, HE, Cohe-ReHo, and KCC-ReHo, and EC (A + B).

(A) Second-order polynomial

R2 c α β γ δ ϵ

ALFF 0.994 3:08�10�2 1:63�10�4 6:54�10�2 �4:65�10�4 4:62�10�3 �1:13�10�1

fALFF 0.993 8:79�10�1 �6:37�10�4 4:14�10�2 �1:41�10�4 6:67�10�3 �8:21�10�2

HE 0.986 9:70�10�1 4:81�10�3 1:70�10�1 �3:33�10�3 3:83�10�3 �2:84�10�1

Cohe-ReHo 0.991 7:70�10�1 �1:83�10�2 4:84�10�1 �4:01�10�3 8:47�10�2 �9:45�10�1

KCC-ReHo 0.989 8:42�10�1 �1:70�10�2 4:14�10�1 �5:19�10�3 8:27�10�2 �8:34�10�1

EC 0.987 1:08�10�3 �4:15�10�6 1:42�10�4 8:32�10�8 1:10�10�5 �2:12�10�4

(B) Fourth-order polynomial

ζ η θ ι κ λ μ ν ξ

ALFF 9:84�10�5 �1:37�10�3 �2:23�10�4 6:18�10�2 �5:99�10�6 6:84�10�5 2:89�10�4 �5:07�10�4 1:10�10�2

fALFF 3:95�10�5 �1:35�10�3 �3:15�10�3 4:77�10�2 2:20�10�7 5:99�10�5 2:90�10�4 3:81�10�4 �8:91�10�3

HE 5:67�10�4 �8:41�10�4 �1:39�10�4 1:50�10�1 �3:10�10�5 �1:94�10�6 3:64�10�4 �7:08�10�4 �2:57�10�2

Cohe-

ReHo

2:51�10�3 �2:29�10�2 4:61�10�3 5:12�10�1 �2:32�10�4 7:82�10�4 5:25�10�3 �1:10�10�2 �8:57�10�2

KCC-

ReHo

3:12�10�3 �2:35�10�2 1:16�10�2 4:42�10�1 �2:97�10�4 7:55�10�4 5:57�10�3 �1:34�10�2 �7:04�10�2

EC 1:35�10�7 �2:70�10�6 �2:90�10�6 1:16�10�4 �5:33�10�9 �1:16�10�8 1:02�10�6 �5:97�10�7 �2:14�10�5

HUCK ET AL. 7
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veins, while gyral voxels were located further from veins in the

distance map.

3.2 | Venous bias model

The relationship between binned values for all metrics and vein diam-

eter and distance is depicted in Figure 5. These binned values were

used to generate a linear model and a higher-order polynomial model

(coefficients Table 1) within the GM. A model comparison with LRT

(ANOVA function in R) and BIC (Tables S1 and 2) showed that for all

models the fourth-order polynomial model provided the best improve-

ment in BIC with a significantly better fit compared to the third-order

polynomial model (p < .001). While the BIC values continue to

decrease after the fourth polynomial model, the decrease was small,

and values seemed to reach a plateau. To avoid overfitting, the

fourth-order polynomial model was chosen for all metrics. The out-

puts of the models are shown in Figure 5, with plots showing the

binned measured rsfMRI metric values (left column), the binned pre-

dicted values (middle column), and the binned residuals across the

entire GM (right column). Similar plots for the seven rsfMRI networks

of the binned rsfMRI metric values are depicted in Figure S1.

The measured and predicted values for ALFF, fALFF, HE, and EC

showed a similar gradient-like pattern with two main distinct features.

Values were higher across all distances in small compared to large

veins, and decreased with increasing vein diameter. Additionally,

rsfMRI values associated with larger diameter veins decrease with

increasing distance from the veins.

Both ReHo metrics, KCC, and Cohe, show low values close to

veins (for diameters 1.14–2.06 mm) in addition to low values in voxels

further away from big veins. The R2 values in Table 1 measure the fit

of the model on the binned data, without considering the variability of

the true rsfMRI values. In all cases, the model shows a good fit to the

average binned data (R2 values in Table 1).

Residuals show a relative uniform pattern and higher overall

rsfMRI values due to the addition of the GM mean as baseline.

3.3 | Voxel-wise venous bias

To examine how predictive the model is locally, 2D histograms of the

predicted versus measured voxel-wise values were generated and are

shown in Figure 6. The range of predicted values was found to be

smaller than the range of values for all metrics. In the 2D histograms

comparing predicted and actual values, the highest densities between

rsfMRI and predicted values have a flat profile for ALFF and fALFF,

while HE, and EC show a higher density cluster in the middle and

KCC-ReHo and Cohe-ReHo at higher values. The model was found to

TABLE 2 BIC values of each model; values in bold denote the BIC value with the largest changes compared to the direct lower model.

Diameter Distance Linear

Second

order

Third

order

Fourth

order

Fifth

order

Sixth

order

Seventh

order

Eighth

order

ALFF �876.03 �752.18 �919.71 �978.16 �1007.35 �1187.26 �1199.76 �1233.33 �1226.80 �1223.51

fALFF �877.49 �715.00 �918.64 �999.42 �1026.39 �1134.91 �1126.55 �1116.38 �1087.87 �1061.12

HE �695.96 �526.27 �731.37 �770.10 �813.51 �885.37 �893.20 �914.55 �916.68 �911.64

Cohe-ReHo �400.76 �321.70 �397.58 �513.28 �548.60 �732.66 �738.94 �777.60 �782.84 �778.39

KCC-ReHo �386.51 �337.72 �382.55 �516.04 �553.44 �726.48 �740.87 �789.34 �799.03 �797.72

EC �2092.09 �2072.86 �2212.49 �2244.40 �2241.44 �2404.32 �2400.38 �2419.49 �2423.00 �2414.45

Note: BIC values of each model; values in bold denote the BIC value with the largest changes compared to the direct lower model (see Fig. S3 in the

supplementary material as visualization of the BIC values).

F IGURE 4 Propagated diameter maps
and distance maps were averaged voxel-
wise across days and then across
participants. The average data is depicted
as brain surface plots. Panel (a) shows that
the distribution is fairly uniform over the
brain, with most regions being close to
veins of smaller diameters (darker red).
Panel (b) shows a pattern whereby
regions along the midline are closer to
veins (darker red), while there appears to
be more spatial variability in distance on
the external cortical surface with veins
further away from veins, especially along
gyri (light yellow).
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F IGURE 5 rsfMRI data for ALFF, fALFF, HE, KCC-ReHo, Cohe-ReHo, and EC averaged according to the diameter and distance to the closest
vein. Values are binned (100 bins) for 10 distances (0–6.7 mm) and 10 diameter ranges (0.3–2.5+ mm). The binned measured rsfMRI values were
used for each metric to generate a model. The model was applied voxel-wise and the resulting predicted and residual values were binned and
averaged (depicted in the second and third column for each metric). Mean GM value was added back to the residuals for visualization only, to
bring all quantities on the same scale.

HUCK ET AL. 9

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26431 by M
PI 374 H

um
an C

ognitive and B
rain Sciences, W

iley O
nline L

ibrary on [23/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



predict predominantly lower values for ALFF, but higher values for

fALFF, KCC-ReHo, and Cohe-ReHo. HE and EC predictions show a

more normal distribution close to the mean of their data range.

The R2 values for the correlation between measured and pre-

dicted rsfMRI metric values calculated individually for each participant

and day ranged between 4.89 � 10�9 and 0.12 and are represented

in Figure 7. Overall, the vascular model does not predict a large por-

tion of the actual rsfMRI metrics values at the individual voxel-wise

level, indicating that the corresponding bias is systematic, but limited.

3.3.1 | Spatial pattern of venous bias

Voxel-wise averages across days and participants for (1) rsfMRI met-

rics values, (2) predicted values from the group-based GM model,

(3) residuals, and (4) a percentage difference between the rsfMRI

values and the residuals are mapped on the surface in Figure 8. Resid-

uals describe the rsfMRI metric values without the venous component

calculated by the model. Overall, the voxel-wise predicted values did

not show any common specific spatial pattern across metrics, showing

a relatively spatially uniform relationship between vein diameter and

rsfMRI metrics, and the residuals showed similar spatial patterns to

the original rsfMRI metric values.

The percentage change quantifies the relative amount of signal

veins that contribute to the rsfMRI signal. ALFF showed the largest

percentage change between measured rsfMRI metric values and

residuals (>5% and <�5%) of all metrics, followed by KCC and Cohe-

ReHo. fALFF, HE, and EC were all relatively unaffected by the

model, with lower percentage changes. All metrics, except for EC,

showed a positive percentage change in the anterior medial temporal

component of the limbic network. ALFF, HE, KCC, and Cohe-ReHo

showed a consistent percentage change >5% in the posterior tempo-

ral component of the frontoparietal, ventral attention, and limbic

networks. The anterior component of superior, middle, and inferior

temporal gyri showed a change of >5% and <�5% in ALFF, >�5% in

Cohe-ReHo and EC, while KCC-ReHo also demonstrated a negative

change in this area. HE was the only metric with a positive percent

change in this region. The posterior medial component of the default

mode network also showed a positive change >5% for ALFF, KCC,

and Cohe-ReHo.

F IGURE 6 2D histograms of the measured and predicted values. The figure shows the distribution of the values of the measured rsfMRI
values compared to the predicted values of the model. The 1D histogram of measured and predicted values is shown on the top and right sides of
each graph, respectively. The graphs show a narrower distribution for predicted values as compared to measured values, showing that venous
structure explains only part of rsfMRI metrics.

10 HUCK ET AL.
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4 | DISCUSSION

Here we present results showing the effect of vein diameter and dis-

tance to veins on six rsfMRI metrics (ALFF, fALFF, KCC-ReHo, Cohe-

ReHo, HE, and EC) over the GM and in seven rsfMRI networks (visual,

somatomotor, dorsal attention, ventral attention, limbic, frontoparie-

tal, and default). Our findings indicate that the presence of veins intro-

duces a systematic gradient across these common local rsfMRI

metrics. The most prominent venous bias identified here was that,

across most metrics and networks, values were highest near small

veins, becoming lower close to large veins and decreasing further with

increasing distance to larger veins. The averaged bias values were

used to generate polynomial models to correct for these effects. The

high R2 values of the model on binned data indicate a good fit of the

relationship between veins and metrics pooled across brain regions,

days, and participants. However, on a voxel-wise level, the low R2

values and the 2D histograms indicate that not everything can be

explained by the model, and although regional vascular organization

results in systematic differences, the overall patterns of the different

metrics are still largely independent of venous bias. Overall, we show

that network properties and connectivity can be affected by venous

biases that are especially prominent near large veins and should there-

fore be interpreted with caution or corrected using our model. The

extent of this bias is limited and dependent on the metric used, with

ALFF being the most affected (average percentage change across the

cortex: 0.73%) and fALFF, and HE the least affected (average percent-

age change across the cortex: 0.03%, �0.19%, respectively). Overall,

our data, therefore, supports the presence of a bias from venous prox-

imity and larger venous sizes, though our results are consistent with

rsfMRI being predominantly a reflection of other physiological proper-

ties relevant to connectivity and metabolism.

4.1 | Vein properties

The propagated diameter map (Figure 4) shows that most voxels are

located closest to veins of small diameters (<0.48 mm). This is

expected as most veins in the brain are small and there are fewer

larger veins (Duvernoy et al., 1981). This finding is also partially the

result of the diameter distribution of the segmented veins. The mean

and standard deviation of the diameter of segmented veins of all par-

ticipants and days is 1.05 ± 0.61 (standard deviation of the mean

F IGURE 7 Histogram of R2 values, which were calculated using the coefficient of determination. The R2 values were calculated voxel-wise
between measured rsfMRI values and the predicted rsfMRI metric values from the group-based model. The voxel-wise R2 values show the fit of
the model to the data and demonstrate that while some of the data is explained by the presence of veins, other aspects of physiology contribute
to the rsfMRI metrics.

HUCK ET AL. 11
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F IGURE 8 Voxel-wise rsfMRI metric values (first row), predicted (second row), residuals (third row), and percentage change between the
original rsfMRI metric values and the predicted values (fourth row) for ALFF, fALFF, HE, KCC-ReHo, Cohe-ReHo, and EC. Mean GM value was
added back to the residuals for visualization only, to bring all quantities on the same scale. The percentage change shows the bias caused by the
veins on the different rsfMRI metrics. Veins cause the largest bias on ALFF and the lowest bias on HE and EC.

12 HUCK ET AL.
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diameter across participants: 0.03). It is important to note that while

sinuses have diameters >4.8 mm (Larson et al., 2020), most of these

veins are located outside the cortex and were partially cropped to

avoid air-tissue artifacts in the QSM reconstruction used to detect

veins (Fang et al., 2017). The seemingly uniform vein diameter distri-

bution over most cortical voxels is likely attributable to averaging over

the highly variable venous architecture (in size and location as well as

connections to other veins) across individuals as indicated by inter-

subject variability in Figure 2 (see also Bernier et al., 2018b; Duvernoy

et al., 1981; Rhoton, 2002). Larger veins have been shown to have a

more consistent location (Bernier et al., 2018a), which is reflected in

our data by the presence of regions with larger average diameters

across participants. For example, larger average diameters in the pos-

terior medial component of the default mode network and visual net-

work could be caused by their proximity to the straight sinus. Large

diameter veins in the posterior temporal component of the frontopar-

ietal, ventral attention and limbic system, the anterior ventral compo-

nent of the default mode network, and the posterior occipital

component of the visual network could be due to the transverse

sinus.

The distance map shows that sulcal voxels are typically located closer

to veins (lower values) compared to gyral voxels (higher values; Figure 4).

This is consistent with post-mortem observations showing that the super-

ficial veins we most likely detect here mainly follow fissures or sulci,

though some do pass across gyri (Mancall et al., 2011). Furthermore,

while Duvernoy et al. report a thin, delicate venous network covering the

surface of gyri, superficial veins were removed as part of the preproces-

sing. The largest veins Duvernoy et al. described on gyri had diameters of

280–300 μm (Auer & Loew, 1983) but these veins would be too small to

be detectable or at the detection limit with the resolution used here.

4.2 | Venous bias model

The binned data (Figure 5) show the presence of a systematic venous

bias on rsfMRI metrics. This is consistent with evidence that veins

lead to uncertainty in the true location of fMRI signals (Menon, 2012;

R. Turner, 2002; Ugurbil, 2016). Previous research has shown that the

vasculature influences rsfMRI connectivity of BOLD timeseries in sev-

eral ways, including increases in spurious anti-correlations and nega-

tive BOLD signal in regions close to large veins in rest conditions

(Bianciardi et al., 2011; Curtis et al., 2014; Olbrich et al., 2009). Fur-

thermore, Kay et al. (2019) showed that BOLD measurements are sys-

tematically influenced by cortical depth and curvature, indicating an

effect of vein orientation in relation to the main magnetic field

(Gagnon et al., 2015; Huber et al., 2017; Markuerkiaga et al., 2016).

These venous influences may affect the computations of any rsfMRI

metric, though the amplitude of this effect is currently unknown.

While previous findings mostly focused on voxels in and directly adja-

cent to veins, we extend those findings to show a gradient effect of

the vasculature up to 6.7 mm away from the vein. Hence, our data

provide evidence for a more extensive venous influence on rsfMRI

metrics from surrounding veins, which may affect all GM regions.

The underlying mechanism driving this gradient venous bias

effect is likely related to blood volume and deoxyhemoglobin concen-

tration effects in large veins, with the strongest effects occurring in

voxels with high proportions of venous blood (Bianciardi et al., 2011).

These effects are expected to be exacerbated in voxels containing

larger draining veins, because these reflect oxygen accumulation from

further away rather than a BOLD response from surrounding neural

tissue (R. Turner, 2002). Here all metrics were found to be higher in

and close to smaller veins, as compared to larger ones (Figure 5).

Using the formula (y¼35d1:5υ with y=distance, dv=diameter of veins)

from R. Turner (2002), veins with a diameter between 0.3 and 2.5mm

drain tissue from a distance up to 5.75–138.35mm, respectively.

Therefore, the signal measured from larger veins arises from a larger

area, while the signal for smaller veins is more local. For larger veins,

averaging contributions from several local areas could result in a

dampening effect on local fluctuations, leading to a lowering of the

amplitude of most metrics. Further, some of the larger veins detected

here are located in regions prone to signal loss, additionally contribut-

ing to reduced rsfMRI-derived values.

At larger distances, similarly, higher values were detected away

from small veins, but lower values for larger veins. This phenomenon

may partly be because we cannot detect the numerous veins that are

smaller than 0.3 mm (Bollmann et al., 2022). Since the vascular tree is

composed of progressively smaller veins at each branching point, a

large number of voxels are likely located closer to a vein smaller than

0.3 mm. However, since we cannot detect these veins, these voxels

will be classified as being closest to one of the smaller veins detected

by our technique (0.3–0.5 mm) because these veins are more ubiqui-

tous in our maps. Therefore, the distance measure for the smaller

veins detected here may in part reflect an integration of the contribu-

tion of a large number of smaller undetected veins within an area of

5.75 mm (R. Turner, 2002). This could mask distance effects similar to

those of larger veins, since the distance detected may not accurately

reflect the actual distance to a vein in instances where a smaller vein

is close-by but not detected. This effect is likely to be less present for

the larger vein sizes detected here since our ability to accurately

detect nearby smaller branching veins means that voxels are therefore

more likely to be classified as being closer to those smaller branching

veins. This hypothesis is consistent with the fact that fewer voxels are

detected further from veins with larger diameters. In addition to these

effects, we found that KCC-ReHo and Cohe-ReHo also have low

values close to larger veins. ReHo is based on regional homogeneity,

and since larger veins contain more dHb with a larger susceptibility

shift (He & Yablonskiy, 2007), larger veins could therefore have a

stronger effect on these metrics (Kay et al., 2019).

To evaluate if the systematic biases described above can be pre-

dicted by a simple model, the binned rsfMRI metric data were used to

generate higher-order polynomial models. This model can be used in

the future to correct for the systematic bias caused by veins on ALFF,

fALFF, HE, KCC-ReHo, Cohe-ReHo, and EC, if venous maps are avail-

able. An alternative could be to use venous atlases (Bernier

et al., 2018b; Huck et al., 2019; Ward et al., 2018) to identify the local

venous properties to be entered into the model.
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4.3 | Voxel-wise venous bias

To evaluate the model and to estimate the venous bias locally, the

model was applied voxel-wise. Figure 6 depicts the 2D histogram

showing the relationship between the voxel-wise measure rsfMRI and

predicted values. As the model only captures the average influence of

veins and does not capture other aspects of the BOLD signal, the

range of predicted variations is narrower than measured values. This

is an indication that the data is only partly biased by the presence of

veins and still predominantly reflects the relevant physiological

sources the rsfMRI is used to measure, such as neuronal activity fluc-

tuations. To understand the spatial pattern of these relationships we

plotted the voxel-wise averaged rsfMRI metrics, predicted values from

the model, and residual values on the brain surface in Figure 8. Unlike

the binned predicted values, which looked similar to the binned mea-

sure rsfMRI values, the voxel-wise averaged predicted values show a

more uniform distribution with little spatial variability. This is likely

related to the diameter distributions of the veins (Figure 4). Because

the average venous diameter detected in most voxels is small and

fairly uniform across the brain, the predicted values are mainly com-

puted from these small veins, and therefore, the residuals show the

same pattern as the original rsfMRI metrics values. This indicates that

while the model captures a systematic venous bias, much of the spa-

tial variability in rsfMRI remains intact. Therefore, the overall spatial

patterns of the metrics cannot be explained by the venous bias identi-

fied here, but are related to other physiological components captured

by the rsfMRI metrics, such as regional differences in neuronal activity

fluctuations, validating the use of rsfMRI despite the presence of this

venous bias.

The percentage change between the residuals (which have been

corrected for venous effects) and the measure rsfMRI metric values

was calculated and mapped onto the brain to quantify the influence

of veins on the different rsfMRI metrics and show its spatial pattern.

The metrics with the highest percentage change are ALFF, KCC-

ReHo, and Cohe-ReHo with changes exceeding ±5%. These metrics

show higher percentage changes in the regions where veins with

diameters above 0.5 mm were detected. Figure 8 shows that the

larger venous-related changes are located in the vicinity of the larger

veins such as the great cerebral vein (vein of Galen), the sagittal sinus,

and the transverse sinus. This is consistent with the fact that these

larger veins collect blood from large areas, so while their BOLD

dynamic range is larger, the data presented here suggest that the

effect of large veins on these metrics may be predominantly related

to a dampening effect from the influence of several regions with

potentially different patterns of fluctuations. While KCC-ReHo and

Cohe-ReHo show smaller percentage changes than ALFF, the areas

with the highest changes are located in similar regions, indicating that

the two ReHo methods are similarly affected by the venous bias

identified here.

EC and HE show lower percentage changes than both ReHo met-

rics and ALFF throughout the brain, with most changes below j5j%.

However, one area of the right temporal lobe shows percentage

changes above 5% (EC and HE) and below �5% (EC). Although high

percentage changes were also observed in the temporal lobe with

ALFF and ReHo, the laterality of the effect was not as prominent.

These temporal lobe effects may be because we acquired our data on

a head-only 7 T MRI machine, which are known to suffer more from

field inhomogeneities and signal loss than lower field magnets

(Abduljalil & Robitaille, 1999; Yang et al., 2006), especially at the edge

of the magnetic field. Since this was a head-only system, the edge of

the uniform field was therefore close to the lower temporal lobe. To

alleviate these effects, piezoelectric pads were used at the base of the

head (O'Reilly et al., 2016), but the placement of these pads may not

have been optimal for all participants or not enough to reliably

improve field homogeneity around the temporal lobe.

Since the percentage change in fALFF was lower than the per-

centage change in HE, fALFF may be one of the metrics least biased

by the presence of veins. Interestingly, ALFF shows the highest per-

centage change, the large difference between the two related metrics

is likely because fALFF is a ratio measure, and the venous bias may be

similar across all or multiple frequencies. Taking the ratio of the power

spectrum of low-frequency (0.01–0.1 Hz) to that of the entire fre-

quency range will lessen the metric's dependence on the amplitude of

the BOLD signal, and therefore reduce the venous bias. This is consis-

tent with previous findings, showing that fALFF effectively suppresses

nonspecific signal components and provides an improved sensitivity

and specificity in the detection of spontaneous regional brain activa-

tion (Zou et al., 2008). Consistent with this, HE shows a similarly low

venous bias since it is based on self-similarity across different scales,

and is therefore also less dependent on the amplitude of the signal

per se. The other metrics examined here are more directly dependent

on the amplitude of the signal.

In summary, while the model demonstrates a high fit on binned

data, indicating the presence of a systematic bias that can be captured

by a fairly simple polynomial model, a large proportion of the variabil-

ity in rsfMRI metrics at the voxel-wise level remains intact, indicating

that this bias is modest at the voxel-wise level and therefore not the

dominant source of contrast for these metrics. While some metrics

(ALFF, Cohe-ReHo, and KCC-ReHo) have a stronger venous bias than

others (fALFF, HE, and EC), the overall impact of veins on BOLD-

derived rsfMRI metrics is small. In addition, the model proposed here

can be used to remove this bias, either by vein segmentation or with a

venous atlas, and can improve the accuracy of rsfMRI quantifications.

4.4 | Limitations

The main limitation of this work is related to resolution, both the

QSM images and the rsfMRI images. While acquiring this data on an

ultra-high field 7 T Magnetic Resonance Imaging (MRI) scanner

allowed us to acquire the GRE sequence with a 0.6 mm isotropic reso-

lution, it was still only possible to measure relatively large veins

(>0.3 mm). These veins can drain an area up to 5.75 mm. This is prob-

lematic for the bias calculation, because a part of the bias in BOLD

arises from smaller veins. The resolution of the rsfMRI data was

coarser than that of the QSM, with a voxel size of 1.2 mm isotropic. A
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higher resolution would alleviate some of these effects and lead to a

more accurate model of the relationship between rsfMRI and venous

proximity and size. However, the resolution for the GRE and BOLD

sequences is limited by acquisition time and participant movement,

especially for QSM data.

The quality of the model is dependent on the quality of the QSM

reconstruction and in turn on our ability to detect a comprehensive

vascular tree. There are many different QSM reconstruction methods

available, each of which can lead to a different number of detected

vessels, and with various sensitivity to detect veins at the cortical sur-

face (Berg et al., 2021; Biondetti et al., 2020). Here we used TGV-

QSM (Langkammer et al., 2015) because it was found to yield the larg-

est number of veins, but at this resolution and data quality, the vascu-

lar tree remains incomplete with disconnected vessel segments.

Because QSM is an ill-posed problem, some veins are not fully detect-

able depending on their orientation to the main magnetic field (Fan

et al., 2014). This means that even though the distance maps and the

propagated diameter maps were used, the closest identified vein may

not in fact be the closest vein if venous segments were not detected

in our QSM. Future studies could seek to use multiple head orienta-

tions for their QSM to alleviate some of these issues, though the use

of multiple orientations significantly increases the length and difficulty

of the acquisition.

Here, the venous bias affecting six different rsfMRI metrics were

calculated. Other rsfMRI metrics exist and could be investigated in

this manner, to create correction models for the effects of venous

proximity and size. While the list used here is not complete, it includes

a variety of local metrics, which cover short-, mid-, and long-range

connectivity and cover different functional connectivity analyses, like

voxel-wise (ALFF, fALFF, KCC-ReHo, and Cohe-ReHo), graph-based

(EC), and temporal dynamics-based (HE). Therefore, it makes a repre-

sentative subset of analyses commonly used in the field, and this man-

uscript can be used as a blueprint for investigating the effects on

other metrics.

Finally, the data used in this study was acquired on a 7 T MRI

scanner. While 7 T scanners provide better signal, they are also

known to have greater field inhomogeneities, especially in the tempo-

ral lobe and orbitofrontal regions. Furthermore, the models presented

here may be field dependent since the effect of intravascular hemo-

globin on tissue BOLD signal has been shown to be field-strength

dependent (Barth & Poser, 2011; Gati et al., 1997; Triantafyllou

et al., 2011). Future studies could extend our findings to 3 T to inves-

tigate potentially different effects in the temporal lobe and to create

field-specific models.
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