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Daytime experiences shape neural activity and
dream content in the sleeping brain
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Learning-related brain activity patterns are replayed during
sleep, and memories of recent experiences appear in our
dreams. The connection between these phenomena, however, re-
mains unclear. We investigated whether memory reinstatement
during sleep contributes to dreaming. Participants listened to
audiobooks before falling asleep. We could determine which au-
diobook they had studied based on dream reports collected dur-
ing the night. Audiobook content was also reinstated at the neu-
ral level, in high-density EEG recordings. Brain activity during
rapid eye movement sleep, particularly in the high-frequency
beta range, carried information about the audiobook and si-
multaneously benefitted memory retention. Crucially, when
the learning condition was manifest in neural activity, it also
emerged in dreams. Reprocessing of daytime experiences dur-
ing sleep thus shapes our brain activity, our dreams, and our
memories.
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Introduction

Sleep is an active state during which the brain processes new
experiences in service of long-term memory storage (1–3).
Dreams let us relive aspects of daytime experience (4, 5),
and neuronal replay during sleep strengthens and transforms
recent memories (6–9). It has been proposed that the frag-
ments of daytime episodes that resurface in dreams could re-
flect the neural reactivation of those experiences (5, 10, 11).
Whether the integration of memories into dreams depends on
their neural reactivation and is thus instrumental to memory
consolidation, however, remains elusive.

Converging evidence demonstrates spontaneous reactivation
of newly encoded memories in the sleeping brain (8). Such
experience-dependent reactivations have been observed in
both animals and humans. In rodents, neural activity pat-
terns in the hippocampus and neocortex during NREM (non-
rapid eye movement) sleep (9, 12) and REM sleep (13, 14)
reflect pre-sleep experience. Similarly, spontaneous human
brain activity in both REM (15) and NREM sleep (8, 16,
17) reflects previously encoded information and benefits later
memory performance. Furthermore, externally inducing re-
activation of a previous memory task by auditory or olfac-
tory cues during sleep boosts memory retention in REM and

NREM sleep (18–20). Interestingly, these findings paral-
lel evidence showing learning-related events resurfacing in
dreams (4). It has been shown that extensive daytime activ-
ities, like playing Tetris for several hours, influence hypna-
gogic imagery at sleep onset (21). Another study observed
that the content of sentences presented in an intensive study
session before sleep was incorporated more often into dreams
than that of other sentences (22). Dreaming of a learning
task, such as navigating a virtual maze, can also improve par-
ticipants’ performance in later memory tests (23, 24). Al-
though these findings have led to the proposal that memory
reprocessing during dreams could support memory consoli-
dation during sleep, the questions of how neural reactivation
of learning content is associated with our dreaming expe-
rience and how this benefits memory consolidation, remain
open.

We devised an experimental paradigm to investigate whether
daytime experiences are reactivated during sleep, both in neu-
ral activity and in dreaming. Participants were presented with
one of four different audiobooks while falling asleep (Fig.
1A). This systematic manipulation of pre-sleep experience
was aimed at introducing dissociable brain activity as well
as dreams during the ensuing sleep period. After sleeping
for one 90-min sleep cycle, the participants were awoken to
report their dreams and retrieve the previously presented au-
diobook content (Fig. 1A). This procedure was repeated mul-
tiple times during the night, with high-density EEG recorded
throughout the experiment. We predicted that the narrative of
the audiobooks should not only shape brain activity, but also
the content of the dreams our participants experienced during
sleep. We thus used pattern analyses to investigate whether
spontaneous electrical brain activity during sleep holds infor-
mation about the content of the recently encoded audiobook
narratives (Fig. 1B), and had blind raters judge, based on the
dream reports alone, which audiobook the participants had
encoded before going to sleep (Fig. 1C). Crucially, if neural
reactivation shapes the content of our dreams, we should ob-
serve a stronger neural processing signal in those participants
who dreamt of the audiobook.
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Fig. 1. Experimental procedure. A. During encoding, participants were presented with one of four audiobooks (e.g., The Mystery of the Blue Train by Agatha Christie).
While participants fell asleep, EEG was recorded using active electrode 128-channel EEG. After 90 min of sleep, participants were awoken. First, they were asked for
their dreams. Next, they then had to freely recall the audiobook content they had listened to while falling asleep. Finally, they indicated which sections of the audiobook
they recognized. The whole procedure was repeated up to five times over the night. B. We assessed representational similarity between participants using power spectral
density (PSD) within and between audiobook conditions in a leave-one-subject-out approach. The within-audiobook correlation was calculated as the Spearman correlation
between the average sleep PSD (dimensions: 32 channel x 60 Hz) of one individual and the average PSDs of all remaining participants in the same audiobook condition.
The between-audiobook correlations were computed between the average PSD of the left-out subject and the averaged PSDs of all participants in each other audiobook
condition, respectively. Results of all subjects were averaged for all possible within- and between-audiobook correlations. Finally, we computed corr as the difference between
within- and between-condition correlations. A higher corr indicates higher similarity of neural activity between subjects in the same audiobook condition and is a measure for
audiobook reinstatement in sleep EEG. C. We also assessed whether the specific content of an audiobook is reprocessed in subsequent dreams: three blind raters were
presented with isolated, anonymized dream reports and asked to judge which audiobook each participant had listened to before this dream.

Daytime experiences shape dream content during
sleep
Our first prediction was that the narrative of an audiobook
should shape the content of ensuing dreams. To assess
whether the specific narrative of an audiobook is reactivated
in dreams, three independent and blind human raters were
asked to judge which audiobook each participant had lis-
tened to before having a particular dream. The blind raters
were able to determine which audiobook the participants
had listened to before sleep with above-chance-level accu-
racy based solely on their dream reports. We found signifi-
cant concordance between the rated book and the actual au-
diobook participants had listened to (κ = 0.107, z = 2.29,
P = 0.02, interrater agreement = 32.9%, (Fig. 2). We went
on to test whether dreams collected after awakenings from
REM and NREM sleep equally carried experience-driven in-
formation. Notably, it was REM dreams in particular that
contained information about the previous audiobook. Raters
were able to determine the correct audiobook based on dream
reports collected after REM sleep awakenings (κ = 0.343,
z = 2.88, P = 0.003, interrater agreement = 54.2%, Fig.
S1A). However, they were unable to do so above chance level

based on dream reports collected after NREM sleep awaken-
ings (κ = 0.08, z = 1.43, P = 0.154, interrater agreement
= 31.5%, Fig. S1B). Daytime experiences thus impact our
dreams during later sleep.

Daytime experiences shape neural activity during
sleep
Next, to test whether our experiences also shape neural ac-
tivity in the sleeping brain, we investigated whether spon-
taneous electrical brain activity during sleep holds informa-
tion about the previously played audiobook. For this, we as-
sumed, based on previous findings, that brain activity that is
influenced by similar experience will have similar features
(8, 25). We therefore extracted the spatial pattern of brain
oscillatory activity in different frequency bands (power spec-
tral density, PSD) from sleep EEG, for REM and NREM,
respectively. Correlating brain activity patterns between par-
ticipants in a representational similarity analysis (RSA, Fig.
1B), we found that during REM sleep, brain activity was
more similar between participants if they had listened to the
same audiobooks than if they had listened to different books
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(∆corr = 0.063). Calculating permutation statistics by per-
forming the same analyses with the effect of the audiobook
removed by shuffling the condition labels across participants
confirmed that the previous experience systematically shaped
brain activity during REM sleep (∆corr = 0.063, P = 0.039,
Fig. 3A). We did not find similar evidence of memory re-
processing in NREM sleep (∆corr = -0.052, P = 0.785, Fig.
3A). To test the robustness of our findings, we repeated all
analyses with two variant approaches to RSA data process-
ing, confirming the results (Fig. S2, Fig. S3). Information
about previous learning content can thus be detected in sleep,
demonstrating that daytime experiences are reinstated at the
neural level.

Higher frequency EEG activity reflects memory rein-
statement during REM sleep
To find out which aspects of the neural signal contribute
to memory reactivation in REM sleep, we performed a
frequency-of-interest (FOI) analysis on EEG activity in dif-
ferent frequency bands. We removed all audiobook condi-
tion information from specific EEG frequencies in the power
spectrum between 0.05 and 30 Hz, by randomly re-assigning
these parts of the signal between participants. If this pro-
cedure significantly lowers similarities between participants
who listened to the same audiobook, the respective frequency
band contains information about the narrative content and
thus reflects the processing of the audiobook during sleep.
Our results show that high-frequency beta activity (18–30
Hz) is critically involved in reprocessing of audiobook con-
tent during REM sleep (P = 0.006, Fig. 3B). We further con-
firmed this finding by performing RSA analyses on brain ac-
tivity from the FOI range only. Again, only activity in the
18–30 Hz beta band contained information about the previ-
ously presented audiobook (Fig. S4). We thus suggest that
high-frequency brain activity could serve as a neural finger-
print of memory reinstatement in human REM sleep.

Linking neural reinstatement and memory
Finally, to examine whether memory processing during sleep
is associated with retention of the audiobook content, we
correlated free recall and recognition performance for pas-
sages from the audiobook with EEG beta activity (18–30 Hz).
Beta activity was positively correlated both with free recall
performance (r = 0.55, P = 0.01) and recognition memory
(r = 0.45, P = 0.04, Fig. 3C), indicating that activation in
the beta frequency band during REM sleep benefits offline
memory consolidation, such that the content of a complex
narrative can be retained better over time.

Linking neural reinstatement and dreams
If neural reactivation shapes the content of our dreams, we
should observe a stronger neural reinstatement signal in par-
ticipants who dreamt of the audiobook. To test this hypoth-
esis, we compared the neural reactivation strength between
participants whose dreams contained information about the
audiobook condition and participants whose dreams did not
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Fig. 2. Classified dream content and neural reinstatement. Confusion matrix of
actual vs. rated audiobook. Blind raters were able to judge with better than chance
accuracy which audiobook the participants had listened to before sleep based on
the dream reports. (κ = 0.107, z = 2.29, P = 0.02, interrater agreement =
32.9%, based on 149 dream ratings).

reflect the audiobook. Besides assigning the likeliest au-
diobook to a dream report, dream raters also quantified the
amount of information in participants’ dreams pertaining to
the audiobook (see Methods). Based on this score, we iden-
tified dream incorporators and dream non-incorporators. As
predicted, we observe a higher neural reactivation signal in
participants who dreamt of the audiobook (t16 = 2.4, P =
0.03, Cohen’s d = 1.10, Fig. 4). The content of our dreams
is thus at least partially linked to experience-related neural
activity, demonstrating that daytime experiences effectively
shape both our brain activity and cognitive activity during
sleep.

Discussion

Brain activity patterns of REM sleep held information about
which audiobook our participants had listened to before
falling asleep. Although most recent studies focused on
memory reactivation in NREM sleep, previous studies pro-
vide noteworthy evidence of spontaneous reactivation of
learning experiences also during REM sleep (8, 13, 15, 30,
31). In the rat hippocampus, neuronal firing patterns ob-
served during path running are replayed in subsequent REM
sleep(13). Similarly, the distribution of cerebral activity dur-
ing REM sleep was found to be modified by previous learning
experience in humans (15). However, the memory function of
REM sleep has been understudied compared to NREM sleep
(1) and as a result, evidence for reactivation of memories dur-
ing REM sleep is scarce. Interestingly, a recent study in mice
suggests that rapid eye movements during REM sleep may
be accompanied by cognitive processes such as concordant
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Fig. 3. PRISMA flow diagram of the literature search, screening, and inclusion processes; It has previously been shown that brain activity patterns induced by stimulation
are similar across subjects (8, 25). Neural reinstatement is therefore measured as a higher similarity of brain activity in sleep in participants listening to the same audiobooks
before sleep as compared to participants listening to different audiobooks (difference in Fisher’s z transformed correlations, ∆corr). Histograms: permutation distributions
of within-between differences (∆corr); vertical lines: observed within-between differences. A. Brain activity during REM sleep but not NREM sleep was informative about
which audiobook participants listened to before sleep: participants who listened to the same audiobook had more similar REM activity patterns than participants who
listened to different audiobooks (∆corr = 0.063, P < 0.039). The representational similarity matrices for REM and NREM show within-audiobook (diagonal) and between-
audiobook (off-diagonal) correlation values (REM: within-audiobook correlation M = 0.398, between-audiobook correlation M = 0.334; NREM: within-audiobook correlation
M = 0.491, between-audiobook correlation M = 0.554). B. To assess the contribution of the different EEG frequency bands to memory processing in REM sleep, we
shuffled the frequency ranges of interest between participants, thus removing the association with the audiobook condition from these parts of the data while keeping the
correct condition labels intact for all other frequency ranges. If informativeness is removed from REM sleep beta activity (18–30 Hz), the audiobook condition can no longer
be discerned equally well from sleep EEG (P < 0.006). Neural reinstatement is thus strongest in REM-sleep high-frequency beta activity. Note that permutation distributions
for searchlight analyses are not centered on 0 because brain activity in other frequency ranges may also hold partial information about audiobook content. The observed
∆corr remains constant at the value reported above (∆corr = 0.063). C. Higher beta activity (18–30 Hz) in REM sleep correlated with better memory recall and retrieval after
sleep. *p < 0.05.

changes in perceived heading direction, which may reflect the
generation of related dreaming experiences (32). Studies fur-
ther support the idea that REM sleep has a functional role in
sleep-related neuronal plasticity. Direct evidence for this as-
sumption has accumulated over the past years, e.g., showing
that REM sleep does not only prune a subset of newly formed
spines in primary motor cortex but simultaneously strength-
ens others, dependent on calcium spikes on apical dendrites
during REM sleep (33) and that neural reactivation in REM
sleep might be related to regulating synaptic plasticity (33,
34).

As mentioned above, most studies investigating memory con-
solidation during sleep have focused on the role of NREM
sleep. We now show that daytime experiences like listening
to a complex narrative are reprocessed during REM sleep and

that this reprocessing benefits memory retention. We thus add
to existing evidence that also REM sleep has a significant role
in offline memory processing. Our results agree with very
early behavioral studies suggesting REM sleep actively facil-
itates memory consolidation (35, 36). This idea is supported
by reports of increased REM sleep density after periods of
learning (37), and of a positive association of post-learning
REM sleep with performance outcomes (38, 39). Whether
memories are processed during NREM or REM sleep may
depend on the type of learning task. Particularly complex
learning material may benefit from processing in REM sleep
(36, 40). Moreover, recall of learning material with simi-
lar complexity to ours (short stories) was impaired by REM
sleep deprivation (36). However, the function of REM sleep
for memory is still far from being understood (e.g., for studies
linking REM sleep and forgetting see (41, 42)). Our results
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provide clear evidence that REM sleep is involved in both
the processing and the consolidation of complex declarative
learning content.

While we could find neural reinstatement of daytime events
in REM sleep, we did not detect significant reprocessing of
memories during NREM sleep. Oscillatory activity in NREM
sleep is more variable than in REM sleep (e.g., spindles, slow
oscillations, mixed theta rhythms in NREM sleep), and fir-
ing behavior of neurons differs greatly between these sleep
stages (13). This variability could potentially have prohib-
ited equally efficient detection of learning-related activity in
NREM compared with in REM sleep. Indeed, a previous
study using a similar approach as we applied here was also
better at decoding memory content from REM sleep than
from NREM sleep (8).

Particularly higher frequency oscillatory activity in the beta
frequency range carried information about the previously pre-
sented material. Moreover, the amount of activation in the
beta frequency band during REM sleep predicted post-sleep
memory recall and recognition performance. These results
align with previous studies investigating the role of beta
activity in cognition including memory encoding, memory
search, and also dream recall (43–48). Beta activity reaches
its maximum across the night during REM sleep (49) and
increases when participants are able to report the content of
their dreams (43). Our results assign an active role of REM
sleep beta activity in memory processing, indicating that it
could serve as a neural fingerprint of memory reinstatement
in humans. That REM sleep beta is also elevated during
dreaming (43) suggests a tight interrelation between REM
sleep memory functions and the cognitive experiences that
accompany it. We suggest that in the present study, REM
sleep beta activity reflects the reactivation of memory con-
tent across brain regions that store information relating to the
studied narratives.

Our findings demonstrate that daytime events concurrently
influence our brain activity during sleep and the content of
our dreams. Learning material that was reinstated in REM
sleep brain activity was also integrated into the narratives of
dreams. We thus provide evidence that memory processing
during sleep shapes the content of our dreams. Our study
raises further questions about the memory sources of dream-
ing: in which form are life events recapitulated and inter-
preted by the sleeping brain? Does dreaming itself have a
functional role in memory processing? Our results suggest
an intricate interplay among our waking experiences, mem-
ory reactivation, dream content, and memory storage. Un-
raveling the neurophysiology of dreaming and its interaction
with memory functions can give insights into how memories
are reprocessed during sleep and will shed light on the mech-
anisms that govern the emergence of conscious experience in
the sleeping brain.

Fig. 4. Classified dream content and neural reinstatement. A two-sample t-test
revealed that the amount of neural reactivation was higher in participants who had
incorporated audiobook information into their dreams. *p < 0.05

Materials and Methods

Subjects
20 participants (10 male) aged 20 – 30 years (25.5 ± 2.7)
completed the study. They were healthy, nonsmokers, and
did not ingest any alcohol, caffeine or medication other than
oral contraceptives on the days of the experiment. The par-
ticipants reported sleeping between 6 and 10 hours per night,
had a regular circadian rhythm, and were neither extreme
morning nor evening chronotypes, as measured by the Mu-
nich Chronotype Questionnaire. They had no shift work or
long-distance flights during the six weeks preceding the ex-
periment and did not have any sleep-related pathology. All
participants were right-handed, confirmed by the Edinburgh
Handedness Questionnaire. The experiment was approved
by the local ethics committee (Department of Psychology,
Ludwig-Maximilians-Universität München). Informed con-
sent was obtained from all subjects.

Stimulus Material and Experimental Design
All participants visited the sleep laboratory twice, once for
an adaptation night to become familiar with the experimental
procedure and environment (i.e., wearing an EEG cap), and
again for the night of the main experiment. On the experi-
mental night, participants fell asleep while listening to one
of four randomly assigned audiobooks: Inkheart by Cornelia
Funke, The Mystery of the Blue Train by Agatha Christie,
Measuring the World by Daniel Kehlmann, or Percy Jackson
and the Olympians: The Lightning Thief by Rick Riordan.
Participants had not read the book or listened to the audio-
book prior to the experiment. Participants were instructed
to remember the content of the audiobook. The audiobook
was turned off once they reached consolidated stage 2 sleep.
Participants were awoken multiple times during the night, ap-
proximately every 90 minutes, to answer questions regarding
their cognitive experiences during sleep (i.e. dreaming) and
about the content of the audiobook passage they had listened
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to. After these tests, they continued listening to the same
audiobook while falling asleep again. Each participant was
awoken up to five times. One participant had to be excluded
because due to a technical problem we had no information
about audiobook timing. Two participants finished their au-
diobook before the experimental night was over. They later
continued listening to a different audiobook. Data from the
two affected awakenings was excluded. All other data from a
total of 67 awakenings from 19 participants entered the anal-
ysis (Fig. S5). Further details about the experimental proce-
dure can be found in Fig. 1.

Dreaming and Cognitive Measures
After each 90-min sleep cycle, participants were awoken and
reported their cognitive experience (i.e., dreaming) in a stan-
dardized dream recall procedure. They were asked up to
three times what was going through their minds immediately
before waking up. If the participants were able to remem-
ber any dream, we instructed them that they should proceed
to give a detailed report on who participated in the dream,
where the dream was set, and what happened in the dream.
We recorded their full dream report, asking up to three times
“Can you recall more?” We then proceeded to inquire fur-
ther details regarding the dream content with a custom ques-
tionnaire: Who had been part of the dream? Where had the
dream taken place? What happened in the dream? What
was the perspective of the dream? Did the participant ex-
perience any emotions while dreaming? What would they
name as the central element of their dream? After reporting
their dreams, participants also had to retrieve the audiobook
content. They were first asked to freely recall what they re-
membered from the audiobook passage they had listened to
before falling asleep, giving as much detail as possible. To
test audiobook recognition memory, they were then aurally
presented with parts of the audiobook passage they had lis-
tened to previously and asked to indicate whether they still
remembered having listened to it earlier. The whole ques-
tioning procedure was recorded on tape.

Behavioral Data Analyses

Dream reports
To analyze the content of the dreams, three blind and inde-
pendent raters received the dream reports in a randomized
order. They were asked to indicate which audiobook partic-
ipants had encoded and to rate how much information about
the audiobook they detected in the dream report, as a mea-
sure of decision confidence (0 = guessed, 1 = gut feeling, 2
= implicit indication, 3 = explicit indication). To compare
the rated and actual audiobook, we assessed Cohen’s Kappa
in 149 available dream ratings (150 values from 50 reported
dreams, one missing rating).

Audiobook dream reinstatement score
From the ratings on how much information about the audio-
book the scorers detected in the dream reports, we computed

a separate audiobook dream reinstatement score. If a rater
was able to correctly identify the audiobook, their informa-
tion score was multiplied by 1, otherwise by -1. Scores higher
than zero thus reflect that information pertaining to the au-
diobook was incorporated into the dream, allowing correct
judgements, with higher scores indicating more direct evi-
dence for incorporation, whereas scores of zero and lower
mean that no information about the previously listened au-
diobook was present in the dream report such that the con-
dition was judged incorrectly. For statistical analyses, we
averaged these dream reinstatement scores across all raters
and all awakenings per individual. We then divided partic-
ipants into dream incorporators (average value above zero)
and dream non-incorporators (average value below zero). A
subject-level dream reinstatement score was necessary to re-
late dream incorporation to participant-specific neural rein-
statement scores (see Relation of neural reinstatement and
reinstatement in dreaming).

Cognitive Measures
Audiobook recognition was computed as the percentage of
the audiobook passage remembered that was listened to while
awake. Free recall was computed by dividing the number of
recalled words by the time that participants had listened to the
audiobook while awake. For further analyses, we separately
averaged recall and recognition values across sleep awaken-
ings for each participant.

EEG Recording

Sleep EEG was recorded using an active 128 channel
Ag/AgCl-electrode system (BrainAmp MR with ActiCap,
Brain Products, Gilching, Germany) with a 1 kHz sampling
frequency and a high-pass filter of 0.1 Hz. Electrodes were
positioned according to the extended international 10–20
electrode system. For sleep scoring, recordings were split
into 30-s epochs and sleep stages were determined on elec-
trodes C3/C4 according to standard rules by two independent
raters. Discrepant ratings were decided by a third rater. Av-
erage sleep durations are reported in Table S1.

EEG Analyses

EEG data were split into 4-s trials. Artefact rejection
was done in a semiautomatic process using custom MAT-
LAB 2021a (MathWorks) scripts. To compute the spec-
tral power, we performed Fourier transformation using the
Welch method by averaging over 10 Hamming windows of
2-s length with %95 overlap, resulting in smooth power spec-
tra with a final data resolution of 0.5 Hz. We then removed
channels with bad recording quality and interpolated them
using EEGLAB. To test whether memories of complex nar-
ratives are reactivated in sleep and whether this reactivation
is related to participants’ dreaming experience, we analyzed
neural similarity of brain activity patterns during the time be-
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fore we woke participants from their sleep. The last 250 tri-
als before awakening entered these analyses, corresponding
to the last 16.7 minutes of sleep where the reported dreams
were most likely to have occurred. We thus ensured that an
equal number of epochs per subject entered the representa-
tional similarity analysis (RSA). Following a previously pub-
lished procedure to detect spontaneous memory processing in
sleep (8), we averaged power spectra across electrodes within
a radius of approximately 3 cm around 32 evenly spread lo-
cations of the extended 10–20 system to reduce the dimen-
sionality of the data and to increase the signal-to-noise ratio.
To remove amplitude differences between channels, spec-
tra of all channels were then separately normalized between
zero and one, which also removes between-subject variabil-
ity unrelated to the experimental intervention. At the final
stage, we applied a spectral sharpening filter to remove the
baseline power spectrum by subtracting a moving average of
six neighboring frequency bins (window size: 3 Hz) from
the signal. This was done to emphasize signal differences
(8). We then calculated an average PSD of each participant
across all sleep segments of the night, separately for REM
and NREM sleep, to maximize signal-to-noise ratio. Data
between 0.5–30 Hz entered the final analyses (8).

Representational Similarity Analysis (RSA)

In the present study, we tested whether spontaneous electrical
brain activity during sleep holds information about the con-
tent of a recently encountered narrative. We employed repre-
sentational similarity analysis (RSA), a multivariate pattern
analysis method that allows comparing how different experi-
mental conditions shape neural activity patterns by assessing
the distinctiveness of brain responses across multiple data
features (50). We used PSD features for similarity calcula-
tion because these can integrate information across time and
do not depend on specific temporal events. If memory for the
story that participants encoded while listening to the audio-
book is reactivated during sleep, the narrative should shape
brain activity patterns in the sleeping brain, and we should
be able to detect information about the narrated content in
recordings of electrical brain activity. It can be assumed
that brain activity patterns induced by stimulation are simi-
lar across subjects (8, 25). We thus hypothesized that brain
activity patterns of participants who listened to the same au-
diobook would be more similar than brain activity pattern of
participants who listened to a different audiobook.

Leave-one-subject-out RSA
We employed a leave-one-subject-out (LOO) approach for
the RSA, correlating brain activity patterns of one partici-
pant with the average activity pattern of all other participants
who listened to either the same or a different audiobook.
This approach gives us a measure of how well an individ-
ual’s brain activity patterns conform to the estimated tem-
plate of brain activity reflecting audiobook reprocessing and
can serve as a measure of individual reinstatement strength.

We first removed the PSD of one individual (left-out subject)
from one audiobook category and averaged the remaining
subjects’ PSDs within that audiobook category (Fig. 2B). To
compute the within-audiobook correlation, we calculated the
correlation between the PSD of the left-out subject and the
average PSD of all other subjects within that category. The
between-audiobook correlations were computed between the
PSD of the left-out subject and the averaged PSD of partic-
ipants in the three other audiobook categories, separately, as
shown in Fig 2B. This procedure was repeated for each of
the participants. The correlations were implemented using
a non-parametric Spearman’s correlation (ρ) across the PSD
values (1-30 Hz, 0.5 Hz resolution) for all 32 electrode lo-
cations (n = 32 × 60), separately for NREM (stages S2, S3,
and S4) and REM sleep. We then converted the correlation
values to a normal distribution using the inverse hyperbolic
tangent (Fisher’s z-transform) and quantified the amount of
audiobook-specific neural processing during sleep by con-
trasting the average within-audiobook correlations with the
average between-audiobook correlations. Positive within-
between correlation differences (∆corr) indicate audiobook
reprocessing during sleep.

Pairwise RSA
In an additional analysis, we re-ran the RSA using the more
traditional pairwise correlation approach. Here, we calcu-
lated pairwise non-parametric Spearman’s correlations be-
tween the average PSDs of all individuals across 32 elec-
trodes, again separately for NREM and REM sleep. We then
converted the rho values to a normal distribution using the in-
verse hyperbolic tangent and averaged all within-audiobook
condition correlations, as well as all between audiobook con-
dition correlations that were obtained, to again calculate the
within-between difference measure.

Permutation testing
To test for statistical significance of the within-between sim-
ilarity differences, permutation tests were computed sepa-
rately for all reported analyses. Audiobook labels were shuf-
fled randomly between participants to remove information
about audiobook conditions. Then, the exact analysis as
reported above was repeated 1000 times, resulting in 1000
average within-between similarity differences that provide
the permutation distribution of results when no information
about the audiobook is present in the data. The p-value was
then computed as the number of averaged within-between
differences generated by randomly labeled data that were
greater than or equal to the size of the observed average of
within-between differences from the correctly labeled data,
divided by the number of random permutations and the ob-
served difference (n+1).

Searchlight analyses for frequency bands of interest
(FOI)
We assessed the contribution of different oscillatory frequen-
cies to memory reprocessing during REM sleep by removing
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information about the audiobook condition from specific fre-
quency bands and testing its effect on signal similarity dif-
ferences in the RSA described above. This was done by
randomly swapping the features of interest between condi-
tions. We randomly shuffled the data only regarding the FOI,
to test whether this significantly decreases informative con-
tent. To achieve this, we randomly reassigned the parts of the
PSD corresponding to the FOIs between participants, leav-
ing the remaining data structure intact and maintaining cor-
rect audiobook labelling for all other frequency bands (delta:
0.5–3.5 Hz, theta: 4–7.5 Hz, alpha: 8–10.5 Hz, beta: 18–30
Hz). An advantage of this procedure is that the number of
features and the overall data structure are kept constant for
all analyses, regardless of the widths of the frequency bands.
This procedure was completed 1000 times for each FOI. If
the observed within-between similarity difference exceeds
95% of the values in the randomization distribution obtained
by shuffling data in the FOI, the respective frequency band
can be assumed to hold crucial information about the audio-
book and thus significantly contributes to memory processing
in sleep. As a control analysis, we also ran a LOO RSA on
data within the FOI only, with a reduced number of features
that consequently varied between FOIs. This type of analy-
sis regards a limited number of features only, without con-
trolling for the overall structure and dependencies in the data
to be analyzed. Results of this supplementary analysis align
with the FOI results reported in the main manuscript and are
displayed in Fig. 3.

Correlation of neural activity with behavioral perfor-
mance
To examine whether EEG activity that reflects audiobook re-
processing during sleep is associated with retention of the
content of the audiobook after sleep, we further correlated
beta activity with recall and recognition measures. To obtain
a measure of beta activity, we averaged the PSD in the beta
frequency range (18–30 Hz) for each participant. We then
correlated these values with the individual average recogni-
tion and recall performance throughout the night.

Relation of neural reinstatement and reinstatement in
dreaming
To relate the strength of neural reinstatement with the incor-
poration auf audiobook material into dreams, we calculated a
neural reinstatement score for each of the participants. This
score was quantified by how similar their brain activity dur-
ing REM sleep was to the activity template gained from the
average activity of the other participants in the same audio-
book condition (see Leave-one-subject-out RSA). We then
compared whether participants who incorporated audiobook
information in their dreams showed higher neural reinstate-
ment scores than participants who did not dream of the au-
diobook.
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Fig. S1. Classified dream content separately for REM and NREM sleep Cohen’s Kappa was used to compare the rated and actual audiobooks, separately for REM and
NREM sleep. We observe that the blind raters were able to judge which audiobook participants encoded based on the content of subsequent dreams when the participants
were awoken in A. REM sleep (κ = 0.343, z = 2.88, P = 0.003, % agree = 54.2), but not in B. NREM sleep (stages S2, S3, S4; κ = 0.08, z = 1.43, P = 0.154, %
agree = 31.5). Note that some participants were awoken from S1 sleep (k = 15) or were already awake (k = 18) when we entered the sleep chambers to record dream
reports such that the combined number of REM sleep and NREM sleep dream ratings is lower than the available total of k = 149 dream ratings reported in Fig. 2.
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Fig. S2. Neural reinstatement using pairwise instead of LOO representational similarity analyses. A. We calculated a non-parametric Spearman’s correlation between
power spectral density values (PSD, dimensions: 32 channel x 60 Hz) of individuals. We then converted the obtained rho values to a normal distribution using Fisher’s inverse
hyperbolic tangent transform. B. RSA results for REM and NREM sleep. We converted correlation values (rho) to a normal distribution using the Fisher inverse hyperbolic
tangent transformation. The histograms represent the permutation distribution of within-between differences for randomly relabeled data (x-axis; ∆corr). Representational
similarity matrices are displayed to the right. Upper triangle: entries on the diagonal of the similarity matrix denoted by black lines represent pairwise within-audiobook
correlations, off-diagonal entries show pairwise between-audiobook correlations. Lower triangle: average within (diagonal) and between (off-diagonal) correlation values for
each audiobook condition. REM: within-audiobook correlation M = 0.312, between-audiobook correlation M = 0.275; NREM: within-audiobook correlation M = 0.393,
between-audiobook correlation M = 0.409.
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Fig. S3. Neural reinstatement using whole brain EEG with all 128 individual channels instead of 32 averaged channels. The histograms represent the permutation
distribution of within-between differences for randomly relabeled data (x-axis; ∆corr) computed using the leave-one-subject-out representational similarity analysis approach,
separately for A. NREM(∆corr = -0.040, P = 0.747) and B. REM sleep (∆corr = -0.040, P = 0.047). C. To assess the contribution of the different oscillatory activity to
memory processing in REM sleep, we shuffled power spectral density (PSD) patterns between participants in specific frequency bands, thus removing audiobook information
from these parts of the data while keeping the correct audiobook labels intact for all other frequency bands. The vertical black lines indicate the observed ∆corr for REM
sleep with all frequency ranges intact. REM sleep beta activity (18–30 Hz) contributes significantly to neural reinstatement.
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Fig. S4. The contribution of individual frequency bands to neural reinstatement. Only data in individual frequency bands was included in this analysis. The histograms
represent the permutation distribution of random within-between differences (x-axis; ∆corr), while the black line indicates the observed differences. To assess the contribution
of the different frequencies to RSA during REM sleep, we shuffled individuals’ frequency bands (delta: 0.5–3.5 Hz, theta: 4–7.5 Hz, alpha: 8–10.5 Hz, beta: 18–30 Hz,
frequency of interest (FOI); shown in dot line). Only beta frequency (18–30 Hz) contributes significantly to the neural reinstatement.
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Fig. S5. Flow chart visualizing the selection process of dataset. k: number of sleep periods, N: number of participants.
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Table S1. Averaged sleep data in minutes (mean ± SD)

time to fall a sleep S1 S2 S3 S4 REM TST
SP 1 21 ± 18.8 7.1 ± 4.6 19.6 ± 13.7 11.7 ± 6.7 25.9 ± 24 9.7 ± 0.8 73.9 ± 7.8
SP 2 20.1 ± 18.2 8.2 ± 4.5 34.8 ± 15.6 10.7 ± 7.7 9.6 ± 9.8 16.8 ± 18.1 80 ± 11
SP 3 21.3 ± 13.8 18 ± 33.5 46.7 ± 20.7 8.3 ± 5.7 9.4 ± 5 23.6 ± 14.7 106 ± 15.6
SP 4 14.8 ± 10.8 9.9 ± 6.3 39.7 ± 22 10.6 ± 10.2 7.8 ± 7.6 31.4 ± 17.1 99.5 ± 14.7
SP 5 9 ± 9.5 5.3 ± 3.3 12.7 ± 10.8 8.9* 20.5* 38 ± 26.9 85.5 ± 13

SP = Sleep Period, TST = Total Sleep Time, *note that only one participant reached S3/S4 in the 5th sleep segment.
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