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ABSTRACT
We present the implementation of two-moment based general-relativistic multi-group radiation trans-

port module in the General-relativistic multigrid numerical (Gmunu) code. On top of solving the general-
relativistic magnetohydrodynamics and the Einstein equations with conformally flat approximations,
the code solves the evolution equations of the zeroth- and first-order moments of the radiations in Eule-
rian frame. Analytic closure relation is used to obtain the higher order moments and close the system.
The finite-volume discretisation has been adopted for the radiation moments. The advection in spatial
and frequency spaces are handled explicitly. In addition, the radiation-matter interaction terms, which
are very stiff in the optically thick region, are solved implicitly. Implicit-explicit Runge-Kutta schemes
are adopted for time integration. We test the implementation with a number of numerical benchmarks
from frequency-integrated to frequency dependent cases. Furthermore, we also illustrate the astro-
physical applications in hot neutron star and core-collapse supernovae modellings, and compare with
other neutrino transport codes.

1. INTRODUCTION

Radiation transport plays a crucial role in many high
energy astrophysical events. For instance, radiation
cooling and transport can significantly affect the struc-
ture and behaviour of black hole accretion disks (see,
e.g., Fragile et al. (2012); Sądowski et al. (2013); Fragile
et al. (2014); McKinney et al. (2014); Takahashi et al.
(2016); Fragile et al. (2018)). On the other hand, neu-
trinos are responsible for the transport of energy and
lepton number in dense and hot scenarios. For exam-
ple, neutrinos largely determine the properties of the
matter ejected by neutron star mergers. This matter
is responsible for part of the observational electromag-
netic signatures powered by nuclear reactions, as well as
the contribution to astrophysical nucleosynthesis (see,

patrick.cheong@berkeley.edu

e.g. Dessart et al. (2009); Metzger & Fernández (2014);
Perego et al. (2014); Sekiguchi et al. (2015); Radice et al.
(2015); Foucart et al. (2016b); Sekiguchi et al. (2016);
Perego et al. (2017); Fujibayashi et al. (2017, 2018);
Fernández et al. (2019); Nedora et al. (2019); Miller
et al. (2019); Fujibayashi et al. (2020a,b); Estee et al.
(2021); Just et al. (2022)). Not only in the context
of neutron star mergers, neutrinos also significantly af-
fect the dynamics of the core-collapse of massive stars,
and are responsible for powering the explosion as super-
novae (see, e.g., Janka (2012); Burrows (2013); Foglizzo
et al. (2015); Lentz et al. (2015); Melson et al. (2015);
O’Connor & Couch (2018a); Burrows et al. (2020); Bol-
lig et al. (2021); Burrows & Vartanyan (2021)). In order
to have a better understanding of such high energy astro-
physical systems, not only do we need general relativistic
magnetohydrodynamics simulations, but a proper treat-
ment for radiation transport is essential.
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The full Boltzmann transport equation needs to be
solved for the evolution of radiation fields. Although
in principle this can be solved exactly by using the
short characteristic method (Davis et al. 2012), the SN

schemes (Sumiyoshi & Yamada 2012; Nagakura et al.
2014, 2017; Chan & Müller 2020; White et al. 2023),
the spherical harmonics schemes (McClarren & Hauck
2010; Radice et al. 2013), the lattice Boltzmann meth-
ods (Weih et al. 2020a), the method of characteristic
moment closure (Ryan & Dolence 2020) and the Monte
Carlo method (Abdikamalov et al. 2012; Miller et al.
2019; Foucart et al. 2021; Kawaguchi et al. 2022), solv-
ing the Boltzmann equation exactly is usually not prac-
tical due to the high computational cost. In practice,
simplified versions of the Boltzmann transport equation
are solved approximately.

One widely adopted approach is to solve only the
first few moments of the radiation distribution func-
tion based on the truncated moment formalism (Thorne
1981; Shibata et al. 2011; Cardall et al. 2013). For ex-
ample, the flux-limited diffusion approximation scheme
solves only the zeroth moment (Levermore & Pomran-
ing 1981; Pomraning 1981). In this scheme, only the
information of radiation intensity is available, while the
propagation directions are not. The direction of radia-
tion flow can be retained in an averaged fashion by solv-
ing the first moment as well; this is known as the two-
moment scheme (Levermore 1984; Dubroca & Feugeas
1999). This approach has been applied in the context of
neutron star merger (Wanajo et al. 2014; Foucart et al.
2015, 2016a,b; Sekiguchi et al. 2015; Radice et al. 2022)
(see also the review Foucart (2022)), core-collapse super-
novae (O’Connor 2015; Just et al. 2015; Roberts et al.
2016; Kuroda et al. 2016; O’Connor & Couch 2018a;
Skinner et al. 2019; Laiu et al. 2021; Santos-Pérez et al.
2023) (see also the review Mezzacappa et al. (2020)),
black hole accretions (Zanotti et al. 2011; Fragile et al.
2012; Sądowski et al. 2013; Fragile et al. 2014; McK-
inney et al. 2014; Takahashi et al. 2016; Fragile et al.
2018), and other purposes (González et al. 2007; Com-
merçon et al. 2011; Skinner & Ostriker 2013; Takahashi
& Ohsuga 2013; Rivera-Paleo & Guzmán 2019; Melon
Fuksman & Mignone 2019; Weih et al. 2020b; Anninos
& Fragile 2020; López-Miralles et al. 2023) as well. De-
spite the recent progress of radiation transport mod-
elling, the implementation of general-relativistic multi-
species multi-group radiation magnetohydrodynamics
codes which include fully coupled radiation-matter in-
teractions are still not very common (but see an notable
example Kuroda et al. (2016)), but are essential for as-
trophysics modelling.

In this work, we extend Gmunu (Cheong et al. 2020,
2021, 2022; Ng et al. 2024) by implementing the two-
moment based multi-frequency multi-species general-
relativistic radiation transport module. In particular,
we evolve the zeroth- and first-order moments, and
adopt the maximum-entropy closure (Minerbo 1978) to
close the system. The advection in spatial space is han-
dled by the standard high-resolution-shock-capturing
method with a small modification on the Harten, Lax
and van Leer (HLL) flux (Harten et al. 1983) in order to
reduce the asymptotic diffusion limit in the high opacity
region. The advection in frequency space is evolved ex-
plicitly in a way that the energy-momentum is conserved
(Müller et al. 2010; Kuroda et al. 2016). As such, our
code is able to capture the Doppler and gravitational
redshift effects. The radiation-matter interaction terms
are solved implicitly since they are very stiff in the op-
tically thick region. As in our previous work Cheong
et al. (2022), we adopt the Implicit-explicit (IMEX)
Runge-Kutta time integrators (see, e.g., Ascher et al.
(1997); Pareschi & Russo (2005)) to implicitly handle
the stiff source terms while keeping the time step rea-
sonable. These schemes have been applied and tested in
several radiation hydrodynamics codes, e.g. Weih et al.
(2020b); Anninos & Fragile (2020); Laiu et al. (2021);
Izquierdo et al. (2022). We test the implementation
with a number of numerical benchmarks, ranging from
special-relativistic to general-relativistic, from optically
thick to optically thin and from frequency-integrated to
frequency-dependent cases. Moreover, we also include
core-collapse supernova and hot neutron star modelling
as astrophysical application examples. We then compare
the result with other neutrino (magneto)hydrodynamics
codes.

Accompanying this work, we have also developed a
new neutrino microphysics library Weakhub (Ng et al.
2023). This library includes the state-of-the-art neutrino
microphysics, and provides advanced neutrino opacities
and kernels that are essential to neutron star mergers
and core-collapse supernovae modellings. Since the main
focus of this work is to present and test the implementa-
tion of our new radiative transfer hydrodynamics mod-
ule, the details of the neutrino microphysics are not in-
cluded in this paper. For a formal discussion of neutrino
microphysics, we refer readers to Ng et al. (2023).

The paper is organised as follows. In section 2 we out-
line the formalism we used in this work. The details of
the methodology and implementation of our radiation
transport module are presented in section 3. The code
tests and results with idealised neutrino opacities are
presented in section 4. The comparison of different neu-
trino transport code with a conventional set of neutrino
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opacities in the context of core-collapse supernovae and
hot neutron star are presented in section 5. This paper
ends with a discussion in section 6.

Unless explicitly stated, the unit of which the speed of
light c, gravitational constant G, solar mass M⊙ and the
Boltzmann constant kB are all equal to one (c = G =

M⊙ = kB = 1). Greek indices, running from 0 to 3, are
used for 4-quantities while the Roman indices, running
from 1 to 3, are used for 3-quantities.

2. FORMULATIONS

The comoving-frame zeroth-, first-, second- and third-
order moments are defined as (Cardall et al. 2013; Mez-
zacappa et al. 2020)

J (xµ, ν) ≡ ν

4π

∫
f (xµ, ν,Ω) dΩ ,

Hα (xµ, ν) ≡ ν

4π

∫
ℓαf (xµ, ν,Ω) dΩ ,

Kαβ (xµ, ν) ≡ ν

4π

∫
ℓαℓβf (xµ, ν,Ω) dΩ ,

Lαβγ (xµ, ν) ≡ ν

4π

∫
ℓαℓβℓγf (xµ, ν,Ω) dΩ ,

(1)

where f is the distribution function, ℓα is the unit three-
vector tangent to the three-momentum in the comoving
frame, namely uµℓµ = 0. ν is the frequency of radiation
observed in the comoving frame while dΩ is the solid
angle in the comoving frame.

The monochromatic energy-momentum tensor T µν

and the corresponding third-rank momentum moment
Uµνρ can be Lagrangian decomposed with respect to the
comoving observer with four-velocity uµ as follows:

T µν = J uµuν +Hµuν + uµHν +Kµν , (2)

Uµνρ =ν
(
J uµuνuρ +Hµuνuρ + uµHνuρ + uµuνHρ

+Kµνuρ +Kνρuµ +Kρµuν + Lµνρ
)
,

(3)

where Hµuµ and Kµνuµ = 0 = Kµνuν . The corre-
sponding frequency-integrated energy-momentum ten-
sor of the radiation can be obtained by

Tµν
rad =

∫ ∞

0

4πν2T µν dν =

∫ ∞

0

T µν dVν , (4)

where we have defined dVν ≡ 4πν2 dν.
Alternatively, the monochromatic energy-momentum

tensor T µν and the third-rank momentum moment Uµνρ

can be Eulerian decomposed with respect to the Eule-

rian observer with four-velocity nµ as follows

T µν =Enµnν + Fµnν + nµFν + Pµν ,

Uµνρ =ν
(
Znµnνnρ + Yµnνnρ + nµYνnρ + nµnνYρ

+ X µνnρ + X νρnµ + X ρµnν +Wµνρ
)
,

(5)
where Fµnµ and Pµνnµ = 0 = Pµνnν .

The evolution equations of the radiation can be ob-
tained by

∇νT µν − 1

ν2
∂

∂ν

(
ν2Uµνρ∇ρuν

)
= Sµ

rad, (6)

where Sµ
rad is the radiation four-force, which describes

the interaction between the radiation and the fluid.
The choice of the radiation four-force Srad depends on

the type of radiation considered. In general, the radi-
ation four-force contains the coupling between different
radiation species at different frequencies group. By de-
fault, the radiation four-force Srad contains the emission
and absorption source term Sµ

E/A, and the elastic (iso-
energetic) scattering source term Sµ

ES:

Sµ
rad = Sµ

E/A + Sµ
ES, (7)

and neglecting the frequency/species coupling. Here,
the emission and absorption source term Sµ

E/A and the
elastic (iso-energetic) scattering source term Sµ

ES are de-
fined as

Sµ
E/A = [η − κaJ ]uµ − κaHµ, (8)

Sµ
ES = −κsHµ, (9)

where η, κa and κs are the radiation emissivity, absorp-
tion and scattering coefficients, respectively.

It is worth to point out that, Gmunu has been de-
signed to handle more sophisticated radiation four-forces
where the frequency/species coupling are allowed (see
section 3.6.3 below). Since those interactions are appli-
cation orientated, the discussion is not included in this
section. An example of such complicated radiation four-
force in the context of core-collapse supernovae can be
found at section 5.1 below.

2.1. General relativistic radiation hydrodynamics in
the reference-metric formalism

As in our previous work Cheong et al. (2021, 2022); Ng
et al. (2024), we adopt 3+ 1 reference-metric formalism
(Montero et al. 2014; Mewes et al. 2020; Baumgarte &
Shapiro 2020). In this formalism, the metric can be
written as

ds2 =gµνdx
µdxν

=− α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

) (10)
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where α is the lapse function, βi is the spacelike shift
vector and γij is the spatial metric. We adopt a con-
formal decomposition of the spatial metric γij with the
conformal factor ψ:

γij = ψ4γ̄ij , (11)

where γ̄ij is the conformally related metric. This con-
formally related metric can be expressed as the sum of
a background time-independent reference metric γ̂ij and
deviations hdevij . In our current implementation, the ref-
erence metric γ̂ij is the flat spacetime metric of the cho-
sen coordinate system (i.e. either Cartesian, cylindrical
or spherical coordinates). Note that, in conformally flat
approximations, the spacetime deviations are vanishing
and the reference metric is the conformally related met-
ric (i.e. γ̄ij = γ̂ij).

The evolution equations of the first two moments of
radiations for each species of radiation at each frequency
group (equation (6)) can be written as

∂

∂t

[√
γ/γ̂E

]
+ ∇̂i

[√
γ/γ̂

(
αF i − Eβi

)]

− α
√
γ/γ̂

1

ν2
∂

∂ν

[
−ν2nµUµνρ∇ρuν

]

=
√
γ/γ̂

[
−F j∂jα+ PijKij

]

− α
√
γ/γ̂Sµ

radnµ,

(12)

∂

∂t

[√
γ/γ̂Fi

]
+ ∇̂i

[√
γ/γ̂

(
αPi

j −Fjβ
i
)]

− α
√
γ/γ̂

1

ν2
∂

∂ν

[
ν2γiµUµνρ∇ρuν

]

=
√
γ/γ̂

[
−E∂iα+ Fk∇̂iβ

k +
1

2
αPjk∇̂iγjk

]

+ α
√
γ/γ̂Sµ

radγiµ,

(13)

where the ∇̂i here is the covariant derivatives associated
with the reference metric γ̂ij .

As in our previous work Cheong et al. (2021, 2022); Ng
et al. (2024), the evolution equations can be expressed
as:

∂tq+
1√
γ̂
∂j

[√
γ̂f j

]
+

1

ν2
∂ν

[
ν2fν

]

= sgrav + sgeom + srad,

(14)

where we denote

q =

[
qE

qFj

]
,f i =

[
(fE)

i

(
fFj

)i

]
,fν =

[
fνE
fνFj

]
s =

[
sE

sFj

]
.

(15)
Note that the subscript of the source terms in the equa-
tion (15) is omitted for a more compact expression.

Here, q are the conserved quantities:

qE =ψ6
√
γ̄/γ̂E (16)

qFj
=ψ6

√
γ̄/γ̂Fj (17)

The corresponding fluxes f i are given by:

(fE)
i
=ψ6

√
γ̄/γ̂

[
αF i − Eβi

]
, (18)

(
fFj

)i
=ψ6

√
γ̄/γ̂

[
αPi

j −Fjβ
i
]
. (19)

The fluxes in the frequency-space are:

fνE =αψ6
√
γ̄/γ̂ [nµUµνρ∇ρuν ]

=ψ6
√
γ̄/γ̂ν

{
W

[
(
Zvi − Yi

)
∂iα− Ykv

i∂iβ
k

− αX ki

(
1

2
vm∂mγki −Kki

)]

+

[
[
Z∂tW − Yk∂t

(
Wvk

)]
+

[
αYi −Zβi

]
∂iW

−
[
αX i

k − Ykβ
i
]
∂i

(
Wvk

)
]}

,

(20)

fνFj
=αψ6

√
γ̄/γ̂ [−γiµUµνρ∇ρuν ]

=ψ6
√
γ̄/γ̂ν

{
W

[
(
Yjv

i −X i
j

)
∂iα−Xjkv

i∂iβ
k

− αW ki
j

(
1

2
vm∂mγki −Kki

)]

+

[
[
Yj∂tW −Xjk∂t

(
Wvk

)]
+
[
αX i

j − Yjβ
i
]
∂iW

−
[
αW ki

j −Xjkβ
i
]
∂i

(
Wvk

)
]}

,

(21)

where vi is the fluid 3-velocity and W ≡ 1/
√
1− vivi is

the Lorentz factor. For the details of the derivation, we
refer readers to Cardall et al. (2013); Mezzacappa et al.
(2020).

The corresponding gravitational source terms sgrav are
given by:

sgravE =ψ6
√
γ̄/γ̂

{
−F j∇̂jα+ PijKij

}
, (22)

sgravFi
=ψ6

√
γ̄/γ̂

{
− E∇̂iα+ Fk∇̂iβ

k +
1

2
αPjk∇̂iγjk

}
,

(23)

where Kij is the extrinsic curvature. The only non-
vanishing geometrical source terms sgeom arise for the
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evolution equation of Fi is

sgeomE =0, (24)

sgeomFi
=Γ̂l

ik (fFl
)
k
, (25)

where the 3-Christoffel symbols Γ̂l
ik associated with the

reference metric γ̂ij . Finally, the radiation-matter cou-
pling source terms srad are given by

sradE =− α
√
γ/γ̂Sµ

radnµ, (26)

sradFi
=α

√
γ/γ̂Sµ

radγiµ. (27)

2.2. Coupling to the hydrodynamical and metric
equations

The radiation fields contribute to the total energy mo-
mentum tensor, which affects the hydrodynamical and
metric equations. The hydrodynamical evolution equa-
tions are essentially the same as in Cheong et al. (2021,
2022), except that the radiation four-force also arise in
the source terms of energy and momentum equations,
namely:

sτ → sτ −
∑

species

∫
sradE dVν , (28)

sSi → sSi −
∑

species

∫
sradFi

dVν . (29)

To consistently solve the metric equations, the contri-
bution of the radiations must be taken into account as
well. This can be done simply by including the 3 + 1

decomposed source terms for radiation into our metric
solver (Cheong et al. 2020, 2021). The 3+1 decomposed
source terms for radiation can be obtained by

Urad =
∑

species

{nµnνTµν
rad} , (30)

Si
rad =

∑

species

{
−nµγiνTµν

rad

}
, (31)

Srad =
∑

species

{
γiµγ

j
νT

µν
rad

}
, (32)

where Tµν
rad is the frequency-integrated energy-

momentum tensor (see equation (4)) of the correspond-
ing type of radiation.

3. NUMERICAL METHODS

3.1. Discretisation

The discretisation in the spatial and frequency-space
for all quantities is based on the finite-volume approach.

An orthogonal system of coordinates
(
x1, x2, x3

)
is

discretised as follows. The computational domain is di-
vided into N1 × N2 × N3 cells, where each cell can be

represented with a vector of integer numbers (i, j, k)
and 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ k ≤ N3. The cell
bounds are given by

(
x1i-1/2, x

1
i+1/2

)
,
(
x2j-1/2, x

2
j+1/2

)
and

(
x3k-1/2, x

3
k+1/2

)
, respectively. In other words, the mesh

spacings can be represented as

∆x1i =x1i+1/2 − x1i-1/2,

∆x2j =x2j+1/2 − x2j-1/2,

∆x3k =x3k+1/2 − x3k-1/2,

(33)

with the cell centre

x1i =
1

2

(
x1i+1/2 + x1i-1/2

)
,

x2j =
1

2

(
x2j+1/2 + x2j-1/2

)
,

x3k =
1

2

(
x3k+1/2 + x3k-1/2

)
,

(34)

The cell volume and the surface area, which are associ-
ated with the reference metric γ̂ij , are defined as

∆V ≡
∫

cell

√
γ̂ dx1 dx2 dx3 , (35)

∆Ai ≡
∫

surface

√
γ̂ dxj,j ̸=i . (36)

For the calculation of the cell volume ∆V , surface ∆A

and the 3-Christoffel symbols Γ̂l
ik, we refer readers to

the appendix section in Cheong et al. (2021).
Additionally, the frequency-space is discretised by Nν

frequency bins, where each bin can be represented with
an integer 1 ≤ f ≤ Nν and the corresponding bounds
are given by (νf-1/2, νf+1/2). The mesh spacing in the
frequency-space can be written as

∆νf = νf+1/2 − νf-1/2, (37)

with the cell centre

νf =
1

2
(νf+1/2 + νf-1/2) . (38)

In most of the cases, the frequency bins are logarithmi-
cally spaced. Given the upper and lower bounds of the
frequency bins νmax ≡ νNν+1/2 and νmin ≡ ν1/2, and
the number of frequency bins Nν , the frequency-space
can be discretised as the following. The ∆ν for the first
frequency bin (at f = 1) can be obtained by

∆ν1 = (νmax − νmin)

(
1− q

1− qNν

)
, (39)

where

q ≡
(
νmax

νmin

)1/Nν

(40)
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is the scale factor. The rest of the ∆ν can be obtained
by the recursion relation

∆νf = q∆νf-1. (41)

With the relation between the width of the frequency bin
∆ν and also the corresponding cell interface and centre
(see equations (37) and (38)), the grid of the frequency-
space can be generated. The cell volume and the sur-
face area in the one-dimensional (spherically symmetric)
frequency-space are

∆Vν ≡
∫

cell
4πν2 dν , ∆Aν ≡ 4πν2. (42)

In Gmunu, the radiation quantities are volume-
averaged in the spatial space and “frequency-integrated”
in the momentum space. In particular, the quantity
⟨q⟩ at the centroid (i,j,k,f) and the cell interface
(i+1/2,j,k,f) can be expressed as

⟨q⟩i,j,k,f ≡
1

∆Vi,j,k

∫

∆Vi,j,k

dV

∫

∆Vν f

dVν q, (43)

and

⟨q⟩i+1/2,j,k,f ≡
1

∆Ai+1/2,j,k

∫

∆Ai+1/2,j,k

dA

∫

∆Vν f

dVν q,

(44)
respectively.

3.2. Higher moments

Since only first two moments (the zeroth- and first-
moment E and Fi) are evolved (see equation (12) and
(13)) while the higher moments such as Pµν and Uµνρ

in general cannot be expressed in terms of E and Fi, a
closure relation for determining the higher moments is
needed to close the whole system.

In this work, we adopt the (approximate) analytic
closure which combines the optically thin and optically
thick limits

Pµν = dthinPµν
thin + dthickPµν

thick, (45)

where Pµν
thin and Pµν

thick are the Eulerian frame radiation
pressure tensors in the optically thin and thick limit re-
spectively. Here, we have defined

dthin ≡ 1

2
(3χ− 1) ; dthick ≡ 3

2
(1− χ) , (46)

where χ ∈
[
1
3 , 1

]
is the Eddington factor. Similarly,

the third moment in the fluid frame, which is needed to
compute the energy advection term, can be expressed as

Lµνρ = dthinLµνρ
thin + dthickLµνρ

thick. (47)

In the optically thin limit, the radiation pressure ten-
sor Pµν in the Eulerian frame is chosen to be (see Shi-
bata et al. (2011))

Pµν
thin = E F

µFν

F iFi
. (48)

while the corresponding fluid frame third moment is

Lµνρ
thin = J HµHνHρ

(H2)
3/2

. (49)

On the other hand, in the optically thick limit, where
the fluid and radiation are in equilibrium, the radiation
field is isotropic in the comoving frame

Kµν
thick =

1

3
J hµν , (50)

where hµν = gµν+uµuν . Correspondingly, the radiation
pressure tensor Pµν in the Eulerian frame is

Pµν
thick =

4

3
J (Wvµ) (Wvν) +

1

3
J γµν

+ (γµαHα) (Wvν) +
(
γνβHβ

)
(Wvµ) ,

(51)

which can be expressed in the terms of the variables in
the Eulerian frame by

J
3

=
1

2W 2 + 1

[
E
(
2W 2 − 1

)
− 2W 2F ivi

]
, (52)

γαβHβ =
Fα

W
+

Wvα

2W 2 + 1

[(
4W 2 + 1

)
F ivi − 4W 2E

]

=
Fα

W
+Wvα

[
F ivi − E − J

3

]
.

(53)

The fluid frame third moment in the optically thick limit
is

Lµνρ
thick =

1

5
(Hµhνρ +Hνhρµ +Hρhµν) . (54)

Note that the equation (48) is derived by assuming
the radiation is symmetric around the direction paral-
lel to the flux (Murchikova et al. 2017). Although this
assumption is valid in spherical symmetry, this is not
guaranteed in general cases. For instance, while this re-
lation is asymptotically correct in the optically thick re-
gion, this is in general not the case in the free-streaming
region because the radiation in vacuum are not all prop-
agating in the same direction (Foucart 2022). As a re-
sult, this approach fails to describe crossing radiation
beams (see e.g. Sądowski et al. (2013); Foucart et al.
(2015); Weih et al. (2020b); Foucart (2022)).
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3.3. Closure relation

A closure relation is needed to compute the Edding-
ton factor χ. The choice of closure relation affects the
accuracy of the two-moment solution. For more formal
discussion and comparison of different analytic closure
relations, we refer readers to Murchikova et al. (2017);
Foucart (2018); Richers (2020). In this work, we adopt
the maximum-entropy closure (Minerbo 1978), which is
given by

χ (ζ) =
1

3
+ ζ2

2

15

(
3− ζ + 3ζ2

)
, (55)

where the flux factor ζ is defined as

ζ ≡
√
HµHµ/J 2. (56)

In the optically thin limit, ζ ≈ 1 and thus χ ≈ 1. Con-
versely, in the optically thick limit, ζ ≈ 0 and thus
χ ≈ 1/3.

Since the flux factor ζ is defined by the fluid frame mo-
ments J and Hµ instead of the observer frame moments
E and Fµ, the computation of ζ requires a root-finding
process. As in Foucart et al. (2015); Weih et al. (2020b),
we numerically find the root of

f (ζ) =
ζ2J 2 −HµHµ

E2
. (57)

Since f (ζ) is smooth and its derivative can be expressed
analytically, we numerically solve equation (57) with the
Newton-Raphson method, which is usually more effi-
cient than bracketing methods. In case the Newton-
Raphson method fails to converge, we use the Brent-
Dekker method to solve this equation in the range
ζ ∈ [0, 1].

3.4. Advection in space

The numerical method for computing the fluxes
for space advection is essentially the same as the
high-resolution shock-capturing method, except that a
slightly modified Harten, Lax and van Leer (HLL) Rie-
mann solver Harten et al. (1983) is used. As pointed
out by multiple authors (e.g. O’Connor (2015); Foucart
et al. (2015); Kuroda et al. (2016); Skinner et al. (2019);
Weih et al. (2020b); Radice et al. (2022)), the standard
HLL Riemann solver would work only for the optically
thin limit, while it fails to reduce the asymptotic diffu-
sion limit when the opacity (absorption plus scattering)
is large. To recover the asymptotic diffusion limit, in
this work, we adopt the modification proposed in Au-
dit et al. (2002), which has been applied in O’Connor &
Ott (2013); Kuroda et al. (2016). To keep the notation
compact, we discuss the approach in the x-direction for

simplicity. Specifically, the HLL fluxes for E and Fi are
modified as

fE
HLL
i+1/2 =

λ+F− − λ−F+ + δi+1/2λ+λ− (q+ − q−)

λ+ − λ−
,

(58)

fFj

HLL
i+1/2 =

δ2i+1/2

(
λ+F

j
− − λ−F

j
+

)
+ δ2i+1/2λ+λ−

(
qj+ − qj−

)

λ+ − λ−

+
(
1− δ2i+1/2

) F j
− + F j

+

2

,

(59)

where λ± are the characteristic speeds in the x-direction.
δi+1/2 is the newly introduced modification parameter,
which is defined as

δi+1/2 = tanh

(
1

(κas)i+1/2∆x

)
, (60)

where ∆x is the grid width and

(κas)i+1/2 =
√

(κa + κs)i (κa + κs)i+1 (61)

is the total opacity at cell interface of index i+1/2. In
the optically thin region, the modification parameter
δ ≈ 1 so that the modified flux (58) reduces to the stan-
dard HLL flux. Conversely, the numerical dissipation
term vanishes in the optically thick region as the modi-
fication parameter δ ≪ 1.

The characteristic speeds along the i direction are
given by the interpolation of the characteristic speeds
between the optically thin and thick limit (see Shibata
et al. (2011))

λi± = dthinλ
i
±,thin + dthickλ

i
±,thick, (62)

where the characteristic speeds in the optically thin and
thick limits are given by

λi±,thin =− βi ± α

∣∣F i
∣∣

√
F jFj

, (63)

λi±,thick =− βi +
2W 2pi ± r

2W 2 + 1
, (64)

with r ≡
√
α2γii (2W 2 + 1)− 2 (Wpi)

2 and pi ≡
αvi/W . Note that, to prevent superluminal characteris-
tic speed, Gmunu reconstructs (E ,Fi/E) instead of (E ,Fi)

(O’Connor & Couch 2018b; Weih et al. 2020b).

3.5. Advection in frequency-space

The computation of the fluxes in frequency-space fν

(equations (20) and (21)) require the Eulerian decom-
posed variables of the third-rank moment Uµνρ, which
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can be obtained by (see Cardall et al. (2013); Mezza-
cappa et al. (2020))

Wµνρ =γµσγ
ν
κγ

ρ
λUσκλ, (65)

X µν =
Sµν

W
+ vρWµνρ, (66)

Yµ =
Fµ

W
+ vνX µν , (67)

Z =
E
W

+ vµYµ = α3U ttt, (68)

where the third-rank moment Uµνρ can be ob-
tained by equation (3) with the fluid-frame moments
{J ,Hµ,Kµν ,Lµνρ}.

Note that fluid accelerations (i.e. time-derivatives of
the fluid velocities) involve in the fluxes in frequency-
space fν (equations (20) and (21)). The terms that
proportional to the fluid accelerations are effectively of
the order of O

(
v2/c2

)
in the radiation transport equa-

tions in the comoving frame (Buchler 1979; Kaneko et al.
1984; Munier & Weaver 1986; Just et al. 2015; Lowrie
et al. 2001; Rampp & Janka 2002). The radiation trans-
port equations in the comoving frame are correct up to
the order of O (v/c) if these terms are ignored (Just et al.
2015; O’Connor & Couch 2018b; Skinner et al. 2019).
In the current implementation, the time-derivatives of
the Lorentz factor ∂t (W ) and the velocities ∂t

(
Wvi

)

are calculated simply by first-order backward differenc-
ing with the values of the previous time step, similar to
O’Connor (2015). Adding these terms while preserving
numerical stabilities is non-trivial, the proper treatment
of these terms will be investigated in a future study.

Similar to the advection in space described in sec-
tion 3.4, the frequency advection term integrated with
a frequency cell dVν at the f-th frequency cell can be
calculated by

[∫

∆Vν

1

ν2
∂ν

[
ν2fν

]
dVν

]

f

=

[
(⟨fν⟩∆Aν)

∣∣∣
f+1/2

− (⟨fν⟩∆Aν)
∣∣∣
f-1/2

]
,

(69)

where the cell surface area is given by equation (42). As
stated in section 3.1, the advection term is integrated
with the corresponding frequency bin since Gmunu ma-
nipulates frequency-bin-integrated radiation quantities.
Currently, Gmunu handles this energy advection term ex-
plicitly.

Since the fluxes in frequency-space fν can be ex-
pressed in terms of linear combinations of the fluid-frame
radiation momenta {J ,Hµ,Kµν ,Lµνρ}, the energy and
momentum are conserved as long as the fluxes vanish at
the outer boundary in the frequency space. Similar to

Müller et al. (2010); Kuroda et al. (2016), we split the
flux as

⟨fν⟩f+1/2 ≡ ⟨fν⟩Lf + ⟨fν⟩Rf+1 , (70)

where we have defined

⟨fν⟩Lf ≡⟨fν⟩f wf, (71)

⟨fν⟩Rf ≡⟨fν⟩f (1− wf) , (72)

with the weighting function w

wf ≡
jσf+1/2

jσf-1/2 + jσf+1/2
. (73)

Here, jσf+1/2 is the weighted geometric mean of the distri-
bution function j at cell interface f+1/2, which is given
by

jσf+1/2 ≡
[(Jf

νf

)1−rf+1/2 (Jf+1

νf+1

)rf+1/2
]σ

, (74)

with rf+1/2 ≡ (νf+1/2 − ν̄f)/(ν̄f+1 − ν̄f), where ν̄f denotes
the centroid of the f-th cell. By default, we use “Har-
monic” interpolation by setting σ = 1.

Note that, as discussed in Mezzacappa et al. (2020),
this frequency-space advection approach has been devel-
oped in the context of Lagrangian two-moment schemes
(Müller et al. 2010) to ensure neutrino number conser-
vation. However, despite the fact that the fluxes in
frequency-space fν can be expressed in terms of lin-
ear combinations of the fluid-frame radiation momenta
{J ,Hµ,Kµν ,Lµνρ} and the success in the frequency ad-
vection and application tests (see section 4.7 and 5.2 be-
low, also see O’Connor (2015); Kuroda et al. (2016)), it
is still unclear whether the neutrino number conserva-
tion is still preserved (up to machine precision) if the
same approach is applied directly to the Eulerian two-
moment scheme as in O’Connor (2015); Kuroda et al.
(2016). Further investigations and comparisons of dif-
ferent frequency/energy advection schemes are needed,
which will be left as future work.

3.6. Radiation-fluid interactions

The radiation-matter coupling source terms (7) can
be very large when the opacities are large. From the nu-
merical point of view, these interaction source terms can
become very stiff in the optically thick regime, applying
explicit time integration would be inefficient due to the
extremely strict constraints on the time steps. Implicit-
explicit Runge-Kutta schemes (e.g. Ascher et al. (1997);
Pareschi & Russo (2005)) offer an effective approach
to overcome this challenge. These schemes have been
applied and tested previously in Gmunu for resistive
magnetohydrodynamics (Cheong et al. 2022), and also
in several other radiation hydrodynamics codes (e.g.
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O’Connor (2015); Foucart et al. (2015); Kuroda et al.
(2016); Weih et al. (2020b); Anninos & Fragile (2020);
Radice et al. (2022); Izquierdo et al. (2022). For the de-
tails of the implementation of IMEX in Gmunu, we refer
readers to our previous work Cheong et al. (2022).

In general, most of the fluid conserved variables qhydro
have to be solved implicitly all together with the radia-
tion moments (see e.g. Kuroda et al. (2016)). However,
the computational cost is high because one will need to
update the primitive variables of fluid (such as pressure
and specific energy) during the iteration when tabulated
equations of state are being used. In this work, as in
O’Connor (2015); Foucart et al. (2015); Radice et al.
(2022), we implicitly solve radiation moments

{
qE , qFj

}

only, and the coupling to the fluid is treated explicitly
(see section 3.6.2). Investigations of more advance fully
implicit treatments such as Skinner et al. (2019); Laiu
et al. (2021) are left as future work.

An implicit step which updates the solution of the ra-
diation moments

{
qE , qFj

}
from the time-step n (which

is denoted as qn) to the next time-step n+1 (which is
denoted as qn+1) can be expressed as

qn+1 = qn +∆tsrad
(
qn+1

)
. (75)

To obtain the updated solution qn+1, we solve the non-
linear system f (q), which is defined as

f (q) ≡ −q + qn +∆tsrad (q) . (76)

Currently, we solve this non-linear system by using mul-
tidimensional Broyden method. The Jacobian ∂fi/∂qj
of fi(qj) is obtained numerically by forward differencing.
The implementation of Broyden solver and computation
of Jacobian follows Press et al. (1996).

3.6.1. Initial guess

A proper initial guess is needed for the implicit step.
In this work, we follow the approach introduced by
Radice et al. (2022). Although only monochromatic
source terms (i.e. equation (8) and (9)) are considered
in this approach, we find that this method usually pro-
vides good initial guess. For completeness, we describe
the procedure of obtain the initial guess at a given ra-
diation frequency ν. First, we transform the solution
qn into fluid frame, and denote it as

{
J̃ , H̃i

}
, and then

update the fluid-frame moments by (see the Lagrangian
two-moment model in Mezzacappa et al. (2020))

Ĵ =J̃ +∆t
α

W

(
η − κaĴ

)
, (77)

Ĥi =H̃i −∆t
α

W
(κa + κs) Ĥi, (78)

where Ĵ and Ĥi denote the updated fluid-frame mo-
ments. Second, we transform the updated Ĵ and Ĥi into
Eulerian frame Ê and F̂i by assuming optically thick

Ê =
Ĵ
3

(
4W 2 − 1

)
− 2W Ĥαn

α, (79)

F̂i =W Ĥi +

(
4

3
W 2Ĵ −W Ĥαn

α

)
vi, (80)

where Ĥ0 can be computed by the fact that Ĥαu
α = 0,

and thus Ĥαn
α = −Ĥiv

i. The resulting Eulerian-frame
moments Ê and F̂i are used as the initial guess of the
implicit step. Here, we assume the optically thick limit
since the initial guess becomes important only in the
optically thick regime.

Note that, as discussed in Radice et al. (2022), the up-
dated Ĵ and Ĥi are exact solutions only at leading order
in v/c where uµ∂µ ≈ W∂t and when only monochro-
matic source terms are considered. However, the cor-
responding Eulerian-frame moments Ê and F̂i are not
correct solutions even if the closure is taken into account
during the transformation.

3.6.2. Coupling to fluid

Once the radiation moments are solved, we explicitly
update the fluid’s energy and momentum by

qτ → qτ −∆t
∑

species

∫
sradE dVν , (81)

qSi → qSi −∆t
∑

species

∫
sradFi

dVν , (82)

where sradE and sradFi
are obtained by equation (26)

and (27) with the updated radiation moments.

3.6.3. Rank of non-linear system

In general, a non-linear system of dimensions (Ndim +

1)×Nν ×Nspecies must be solved. Here we assume the
fluid quantities are kept fixed during the implicit step
and consider Nν frequency-bins, Nspecies species of neu-
trino, in Ndim dimensional spatial space. Since the size
of the non-linear system could be very large, it is com-
putationally expensive if we fully solve this system. In
practice, depending on the nature of the problem, it is
not necessary to apply the full implicit solver. Avoid-
ing full implicit treatment would significantly reduce the
computational cost. Similar to Just et al. (2015), we list
different modes of the radiation-interaction source terms
treatment which are implemented in Gmunu:

(i) multi-species multi-group: All radiation moments{
qE , qFj

}
are solved fully implicitly. This is the

general mode discussed above, where the dimen-
sions of the non-linear system is (Ndim +1)×Nν ×
Nspecies.
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(ii) single-species multi-group: The radiation moments{
qE , qFj

}
are solved for each species separately.

The dimensions of the non-linear system now re-
duced to Nspecies non-linear systems of dimensions
(Ndim+1)×Nν . Since the source terms which con-
tain species coupling are treated explicitly in this
mode. This mode is less accurate when the species
coupling is strong.

(iii) single-species single-group: The radiation moments{
qE , qFj

}
are solved for each species and for each

frequency-groups separately. The dimensions of
the non-linear system now reduced to Nspecies×Nν

non-linear systems of dimensions (Ndim+1). Since
this mode is purely monochromatic, the coupling
of different frequency-group cannot be done implic-
itly. In this mode, only the emission/absorption
and elastic scattering source terms (Sµ

E/A and Sµ
ES,

see equations (8) and (9)) are solved implicitly,
while the source terms that contain species or fre-
quency couplings are treated explicitly. In this
case, we have included the analytic Jacobian for
implicit solver by following Radice et al. (2022).
The details of which can be found in appendix A.

In practice, to minimise the computational cost, we
switch to different mode in different stage of the sim-
ulations, where the criteria of which are highly problem
dependent.

3.7. Transformation from Eulerian-frame to
fluid-frame

As shown in the previous sections, although the ra-
diation fields are solved in the Eulerian-frame, the ra-
diation moments in the fluid-frame are often needed in
most of the calculations. The most straight forward way
to compute the fluid-frame moments {J ,Hµ} is to con-
tract the energy momentum tensor T µν with the comov-
ing four-velocities uµ. Alternatively, we found it is use-
ful to directly express the fluid-frame moments {J ,Hµ}
in terms of the Eulerian-frame moments {E ,Fµ}, espe-
cially when only part of the fluid-frame moments are
needed. We decompose {J ,Hµ,HµHµ} and express
them in terms of the Eulerian-frame moments {E ,Fµ}
by following Deppe et al. (2022); Radice et al. (2022).
The details of which can be found in appendix B.

3.8. Enforcing validity

Unphysical solutions occasionally arise during the evo-
lution due to the numerical round-off errors especially
when the radiation energy density E is very small. In
Gmunu, we include the following error handling policies
to enforce the validity of the numerical solution.

Similar to the standard “atmosphere” treatment for
rest mass density ρ in hydrodynamical simulation (e.g.
Cheong et al. (2020, 2021)), we enforce the non-
negativity of the energy density E . In particular, we de-
fine a minimum allowed distribution function fmin and
a threshold fthr, where fthr ≥ fmin ≥ 0. Whenever
the energy density drop below the threshold (i.e. when
E (ν) < νfthr), we set the energy to be the minimum al-
lowed energy density νfmin, and enforce a vanishing flux
by setting Fi (ν) = 0. In the grey transport cases, fmin

and fthr represent the minimum allowed energy density
and the threshold directly.

In addition to the negative energy density, unphysical
solutions could also arise when F iFi > E2. Similar to
Kuroda et al. (2016); Rivera-Paleo & Guzmán (2019),
we enforce

Fi → Fi ×min (ξmax, ξmax/ξ) , (83)

where we have defined the Eulerian flux factor

ξ ≡
√

F iFi/E2, (84)

and ξmax is the maximum allowed Eulerian flux factor.
Unless explicitly stated, we set fthr = 10−30, fmin = 0

and ξmax = 1.

4. NUMERICAL TESTS

In this section, we present a selection of representative
test problems with our code to assess the performance
and accuracy of our new two-moment-based module.
The tests range from special relativistic to general rela-
tivistic radiation transfer, from one to multiple dimen-
sions, and from frequency integrated (grey) to multifre-
quency group. Here, we consider only the monochro-
matic source terms (i.e. at a given radiation frequency
ν, the calculation of the radiation emissivity, absorption
and scattering coefficients η (ν), κa (ν) and κs (ν) do not
depend on other radiation frequencies ν′ ̸= ν, see equa-
tion (8) and (9)) with idealised opacities. Tests with
sophisticated realistic neutrino opacities are presented
in section 5.

For the frequency-integrated (grey) test, we denote
the frequency-integrated radiation energy and momen-
tum in the fluid-frame as

J =

∫ ∞

0

J dVν ; Hi =

∫ ∞

0

Hi dVν , (85)

and so as the case for the fluid-frame moments

E =

∫ ∞

0

E dVν ; Fi =

∫ ∞

0

Fi dVν . (86)
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In addition, we denote the frequency-integrated emissiv-
ity η, energy-averaged absorption and scattering coeffi-
cients as

η̄ =

∫ ∞

0

η dVν , (87)

κ̄a =

∫∞
0
κaνf dVν∫∞

0
νf dVν

, (88)

κ̄s =

∫∞
0
κsνf dVν∫∞

0
νf dVν

, (89)

where f is the distribution function. Unless otherwise
specified, all simulations reported in this paper were per-
formed with Harten, Lax and van Leer (HLL) Riemann
solver Harten et al. (1983), 2-nd order Minmod lim-
iter Roe (1986) with IMEX-SSP2(2,2,2) time integrator
Pareschi & Russo (2005).

4.1. Transparent fluid with a velocity jump

In this section, we consider the propagation of radi-
ation in a moving optically thin medium as in Radice
et al. (2022). In particular, we consider a one-
dimensional mildly relativistic fluid moving with Lorentz
factor W = 2 in an opposite direction in a flat space-
time. The background fluid velocity profile is chosen to
be

Wvx =





√
W 2 − 1, if x > 0

−
√
W 2 − 1, otherwise

. (90)

The initial profile of the radiation is set to be

E =




1, if x < −0.5

0, otherwise
, (91)

and Fx = E. To consider the case in optically thin limit,
we consider zero opacities, i.e. η̄ = κ̄s = κ̄a = 0. In
this test, the hydrodynamical profiles are kept fixed, and
disable the interaction between the fluid and radiation
during the evolution. We assume slab geometry, and the
computational domain covers the region [−1, 1] with 200
grid points.

Figure 1 shows the energy density profile of the radi-
ation E at t = 1, where the radiation has propagated
through the velocity jump at x = 0. Despite the dis-
continuity of the velocity profile, the numerical solution
obtained by Gmunu has artificial oscillations neither at
the velocity jump interface x = 0 nor at the radiation
front x = 0.5. This test demonstrates that Gmunu is able
to handle the radiation transport in a mildly relativistic
moving fluid.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

E

analytic

Gmunu

Figure 1. The energy density profile of the radiation E
at t = 1, where the radiation has propagated through the
velocity jump at x = 0. Despite the discontinuity of the ve-
locity profile, the numerical solution obtained by Gmunu does
not have artificial oscillations at the velocity jump interface
x = 0 or at the radiation front x = 0.5.

4.2. Homogeneous radiating sphere

The homogeneous radiating sphere test is a toy
model of a hot neutron star which emits neutrinos.
As discussed in Smit et al. (1997); O’Connor (2015);
Murchikova et al. (2017); Anninos & Fragile (2020), this
test is sensitive to the chosen closure relation. In this
test, we consider a homogeneous sphere with a radius R
with constant emission and absorption rate η̄ = κ̄a and
simply ignore scatterings (κ̄s = 0). As discussed in Smit
et al. (1997), this problem has an analytic solution

I(r, µ) = B {1− exp [−κ̄s (r, µ)]} , (92)

where B is the strength of the initial energy density of
the radiation,

s (r, µ) =





rµ+Rg (r, µ) if r < R and − 1 ≤ µ ≤ 1,

2Rg (r, µ) if r ≥ R and
√
1−

(
R
r

)2 ≤ µ ≤ 1,

0 otherwise ,
(93)

and

g (r, µ) =

√
1−

( r
R

)2

(1− µ2), (94)

in which µ ≡ cos θ is the directional cosine. The analytic
solution for J and H are

{J,H} =
1

2

∫ 1

−1

dµµ{0,1}I. (95)

Note that when the background velocities are zero, the
radiation moments in the fluid frame are the same as in
Eulerian frame.
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We simulate this problem by setting the radius of the
sphere R and the strength of the initial energy density
of the radiation B to be unity (i.e. R = 1 = B). The
initial profile of the radiation is set to be

(E,Fr/E) =




(B, 0) if r < R,(
B
(

R2

r2

)
, 0.1

)
otherwise .

(96)

The hydrodynamical profiles are kept fixed, and disable
the interaction between the fluid and radiation during
the evolution. To see how our code behaves with dif-
ferent opacities in this test, we perform the test with
three different absorption opacities: κ̄a = 106, 10, 1, re-
spectively. Although this is a spherically symmetric test
problem which can be run in one-dimensional spheri-
cal coordinates (e.g. O’Connor (2015)), we simulated
this problem in three-dimensional Cartesian coordinates
(x, y, z) to minimise the symmetry imposed in the sim-
ulation. In particular, the computational domain covers
the region [−5, 5]× [−5, 5]× [−5, 5] with the resolution
2563.

Figure 2 compares the energy density E and the radial
flux ratios Fr/E along x-axis at t = 10 with the analytic
solutions. For the high-opacity cases (i.e. κ̄a ≥ 10, the
red and green dots), Gmunu resolves the optically thick
and thin region well despite the discontinuities at the
surface of the sphere. While the analytic closure gives
the correct second moment in the high-opacity regime
and the free-streaming regime, this is not the case for the
intermediate regime (e.g. for the region where the opac-
ity κ ≲ 1) (Murchikova et al. 2017; Weih et al. 2020b).
As a result, for the low opacity (κ̄a = 1, blue dots) case,
the numerical results of the energy density E inside the
sphere is less accurate while the exterior energy density
tail still matches the analytic results. Similar feature
has also been seen in Weih et al. (2020b).

4.3. Diffusive limit in a scattering medium

In this test, we consider the diffusion of radiation when
scattering opacity is high and the mean free path is small
compare to the grid size ∆x (e.g. Radice et al. (2022);
Izquierdo et al. (2022)). The initial profile of the radia-
tion is set to be

E = θ

(
x+

1

2

)
− θ

(
x− 1

2

)
, (97)

where θ (x) is the Heaviside step function, and F i = 0.
We consider this diffusion in a purely scattering medium,
we set η̄ = 0 = κ̄a and κ̄s = 103. Here, we again consider
static background hydrodynamical profiles, and assume
slab geometry. The computational domain covers the
region [−2, 2] with 256 grid points.
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Figure 2. Energy density E (upper panel) and the radial
flux ratios Fr/E (lower panel) along x-axis at time t = 10
of the homogeneous radiation sphere test. Since the profiles
are extracted along the x-axis, the x coordinate has the same
value of radius r. The dots show the numerical results ob-
tained by Gmunu while the solid lines show the corresponding
analytic solution. For the high opacity cases (i.e. κ̄a ≥ 10,
the red and green dots), the numerical results are mostly
indistinguishable from the reference solution except the re-
gion nearby the discontinuity at the surface of the sphere.
However, for the low opacity case (κ̄a = 1, the blue dots),
the numerical results of the energy density E are less accu-
rate inside the sphere. This is because the analytic closure
does not give the correct second moment in the intermediate
opacities regime (i.e. κ ≲ 1).

The evolution of the energy density E can be ap-
proximated by the diffusion equation ∂tE =

(
∂2xE

)
/3κs

when the timescales are longer than the equilibrium time
(Radice et al. 2022; Izquierdo et al. 2022). The exact so-
lution of which is given by

E (t, x) =
1

2

[
erf

(
x+ 1

2√
4τt

)
− erf

(
x− 1

2√
4τt

)]
, (98)

where τ = 1/ (3κs) is the diffusion timescale.
Figure 3 shows the energy density profile of the ra-

diation E at time t = 10. As shown in the figure, the
numerical solution obtained by Gmunu (red dots) agrees
with the reference analytic solution (98) in the diffusive
limit (black solid line). This demonstrates that Gmunu
is able to capture correct diffusion rate even when the
scattering opacity is high.

To quantify the convergence rate at t = T ≡ 10, we
perform the simulation with different resolutions, and
compute the L1-norm of the difference between the exact
and final (t = 10) values of the energy density of the
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Figure 3. The energy density profile of the radiation E at
t = 10 in a purely scattering medium with high scattering
opacity κ̄s = 103. The red dots show the numerical solu-
tion obtained by Gmunu while the black solid line shows the
reference analytic solution (98) in the diffusive limit. This
indicates that Gmunu captures correct diffusion rate even in
diffusive limit.

103

N

10−5

10−4

10−3

||E
(T

)
−
E

ex
ac

t(
T

)||
1

∝ N−2

Figure 4. The L1-norm of the difference between the
exact and final (t = 10) values of the energy density of the
radiation E at different resolution N . The second-order ideal
scaling is given by the black dashed line. In this test, second
order accurate strong-stability preserving IMEX-SSP2(2,2,2)
time integrator Pareschi & Russo (2005), Harten, Lax and
van Leer (HLL) Riemann solver Harten et al. (1983) with
2-nd order Minmod limiter Roe (1986) are used. The code
achieves roughly 1.86 order of convergence in this test.

radiation E as

||E (T )− Eexact (T )||1 ≡

∑
i

|E(T )− Eexact(T )|∆Vi
∑
i

∆Vi
,

(99)
Figure 4 shows the L1-norm of the difference between
the exact and final (t = 10) values of the energy density
of the radiation E. The order of convergence of this test
is roughly 1.86.
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Figure 5. The energy density profile of the radiation E
at t = 4 in a purely scattering medium with high scatter-
ing opacity κ̄s = 103 which moves with a relativistic velocity
vx = 0.5. The red dots show the numerical solution obtained
by Gmunu while the black solid line shows the corresponding
semi-analytic solution. Note that this is known to be a de-
manding test, in the sense that the result is highly sensitive
to the treatment of the optically thick limit Radice et al.
(2022). This figure shows that the results returned by Gmunu
agree with the semi-analytic solution.

4.4. Diffusive limit in a moving medium

In this test, we consider a propagation of a radiation in
a moving purely scattering medium as in Radice et al.
(2022); Izquierdo et al. (2022). This is known to be
a demanding test that the result is highly sensitive to
the implicit treatment Radice et al. (2022). Consider a
Gaussian pulse of radiation

E = exp
(
−9x2

)
(100)

which is fully trapped (Hµ = 0) in the medium. The
radiation flux in Euler frame can be written as

Fi =
4

3
JW 2vi, (101)

where J = 3E/
(
4W 2 − 1

)
in this case. The medium

is set to be purely scattering (i.e. η̄ = 0 = κ̄a) with
high scattering opacity κ̄s = 103, which moves with a
relativistic velocity vx = 0.5. Here, we assume slab ge-
ometry, and the computational domain covers the region
[−5, 5] with 1024 grid points.

Figure 5 shows the radiation energy density profile at
time t = 4. As shown in the figure, the results obtained
by using Gmunu agree with the semi-analytic reference
solution.

4.5. Diffusive point source

Here, we present a test which also focuses on the scat-
tering regime, i.e. the diffusive point source test pro-
posed by Pons et al. (2000). This test describes the
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Figure 6. Comparison of the energy density profile E at
time t = 1, 2, 3, 4 to the analytic solution (grey solid lines).
Since the simulation starts from t = 1, the result is identical
to the analytic solution. As shown in the figure, results pro-
duced by utilising Gmunu agrees with the analytic solution.

evolution of a single point source in the diffusive limit.
The initial condition, and also the analytic solution, is
given by

E (r, t) =
( κ̄s
t

)Ndim/2

exp

(−3κ̄sr
2

4ct

)
, (102)

F r (r, t) =
r

2t
E (r, t) , (103)

where Ndim is the number of dimensions, which is set
to be 2. In this test, we consider a purely scattering
medium with a scattering opacity κ̄s = 100. The simu-
lation starts from t = 1 to t = 4. We assume cylindrical
geometry in one dimensional, and the computational do-
main covers the region [0, 1] with 128 grid points.

Figure 6 compares the energy density E at different
time t to the analytic solution. Since the simulation
starts from t = 1, the Gmunu result is identical to the
analytic solution. As shown in the figure, the Gmunu
result agrees with the analytic solution.

4.6. Shadow casting problems

Here we present multidimensional tests which describe
the interaction between radiation and a cylinder with
high absorption opacity.

Firstly, we consider a radiation beam propagating
from left to right. The initial condition is given as

E =




1, if x ≤ −0.4 and y ∈ [−0.12, 0.12] ;

10−16, otherwise,
(104)

and we set (Fx/E, Fy/E, Fz/E) = (0.999999, 0, 0) ev-
erywhere in the computational domain. In this test, we
consider a cylinder of radius R = 0.07 and located at
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Figure 7. The radiation energy density profile at t = 1,
where the initial conditions are kept fixed for x ≤ −0.4 dur-
ing the entire evolution. The radiation beam propagates
from left to right, and is blocked by the optically thick
cylinder (white dashed line) with high absorption opacity
κ̄a = 106. As a result, this cylinder split the beam into two.
The two beams keep propagating to the right, and a shadow
is cast behind the cylinder.

(−0.2, 0) with a extremely high absorption coefficient
κ̄a = 106. This initial condition is kept fixed during
the entire evolution for x ≤ −0.4. Note that this high
absorption opacity κ̄a is around six orders of magni-
tude larger than the radiation moments, resulting in sig-
nificantly stiff interaction source terms in the evolution
equations. We choose this stiff situation on purpose to
challenge the non-linear implicit solver and the IMEX
time integrator implemented in Gmunu. This test is run
with a uniform grid 256 × 128 which covers the region
[−0.5, 0.5] for x and [−0.25, 0.25] for y.

Figure 7 shows the radiation energy density profile
at t = 1. As shown in the figure, the radiation beam
propagates from left to right, and is obstructed by the
optically thick cylinder. This results in a shadow behind
the cylinder, and split the beam into two which keep
propagating to the right.

Shadow casting tests have been carried out in more
non-trivial geometries by considering a point source Just
et al. (2015); Kuroda et al. (2016); O’Connor & Couch
(2018b). Similar to Just et al. (2015); Kuroda et al.
(2016); O’Connor & Couch (2018b), here we consider a
point source which located at the origin r = 0 with the
radius rsrc = 1.5. The source has the absorption opacity

κa = 10 exp
[
− (4r/rsrc)

2
]

(105)

and emissivity η = κaJeq, where we choose Jeq = 1.
In addition, we also consider a purely absorbing sphere
(η̄ = 0 = κ̄s), with radius rshadow = 2, located at a
distance of d = 8 from the centre of the source. Un-
like Just et al. (2015); Kuroda et al. (2016); O’Connor
& Couch (2018b), here we consider a high absorption
opacity κa = 106 for the sphere. To make the setup
slightly asymmetric along the x − y plane, instead of
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placing the absorbing sphere at the equatorial plane, we
place it at the polar angle θ = 11π/24 (i.e. the z coor-
dinate of the centre of the absorbing sphere is d cos(θ)).
This test is run in cylindrical coordinate (R, z) with a
uniform grid 128×128 which covers the region [0, 12] for
R and [−6, 6] for z.

Figure 8 shows the radiation energy density profile
scaled with r2 at t = 5, 10, 15, respectively. The scaling
of r2 is to achieve a mostly constant value in the free-
streaming regime (O’Connor & Couch (2018b)). Similar
to the single beam case discussed above (see figure 7),
this sphere absorbs radiation and produces a shadow.
This indicates that our code behaves well in this test de-
spite in 2D cylindrical coordinate with a off-angle setup.

4.7. Gravitational redshift and Doppler shift

The tests presented above are all frequency-integrated
tests. To test if the code handles the energy-coupling
terms for gravitational redshift and Doppler shift (see
section 3.5) correctly, we perform the test introduced by
Müller et al. (2010), which has been used as a branch
mark test by several authors, e.g. O’Connor (2015);
Kuroda et al. (2016); Anninos & Fragile (2020); Chan
& Müller (2020).

To separately assess the handling of Doppler shift
(with non-zero velocity profile), gravitational redshift
(with curved spacetime) and the combination of these
two, we mainly follow the setup in Müller et al. (2010).
In particular, we consider a sphere with radius R =

10 km with a uniform density ρ = 9×1014 g/cm3. In ad-
dition, we consider a sharp velocity profile which mimics
the accretion phase of core-collapse supernovae

vr =





0, if r ≤ 135 km;

−0.2c
(

r−135 km
150 km−135 km

)
, if 135 km < r ≤ 150 km;

−0.2c
(
150 km

r

)2
, if r > 150 km.

(106)

Given the rest-mass density and velocity profiles, the
metric quantities such as the conformal factor ψ, the
lapse function α and the shift vector βi are calculated by
utilising the metric solver in Gmunu Cheong et al. (2020,
2021). The initial neutrino profile is set as follows:

(E ,Fr/E) =





(
B, 10−2

)
if r ≤ R;(

B
(
R
r

)2
, 1− 10−3

)
if r > R,

(107)

where B is the black body function, which is a function
of frequency ν, chemical potential µ and temperature
T . Specifically, under the chosen convention, the black
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Figure 8. The radiation energy density profile scaled with
r2 at different time slides. The radiation propagates spheri-
cally from the source to outside, and is blocked by the opti-
cally thick sphere (white dashed line) with high absorption
opacity κ̄a = 106. As in the single beam case (see figure 7),
this sphere absorbs radiations and causes a shadow behind
it.

body function is given by

B (ν, µ, T ) =
ν

exp [(hν − µ) /kBT ] + 1
, (108)

where h is Planck constant and kB is Boltzmann con-
stant. In this test, the chemical potential is chosen to
be µ = 0 and the temperature is set to be T = 5 MeV.
The absorption coefficient κa is set to be 60 cm−1 in the
sphere (r ≤ R) while vanishing elsewhere. The emissiv-
ity is simply η = κaB. In this test, we consider spheri-
cal coordinate in 1D. The computational domain covers
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[0, 104] km for r, with the resolution Nr = 128 and al-
lowing 6 mesh levels (an effective resolution of 4096).
The refinement level is decided by a ratio ∆r/r. In par-
ticular, we refine the block if ∆r/r > 0.01 in any of the
grid in the block. The frequency space is discretised into
18 groups logarithmically from 1 MeV/h to 280 MeV/h.
The simulation is performed until the system reaches a
stationary state; the results are extracted at tmax = 1 s.

As discussed in Müller et al. (2010), stationary solu-
tion is available for this test. In particular, the average
neutrino energy ⟨ε⟩ and the redshift-corrected luminos-
ity Lrs obey the following relations:

Wα (1 + vr) ⟨ε⟩ =constant, (109)
1 + vr
1− vr

Lrs =constant, (110)

where W is the Lorentz factor. The average neutrino
energy and the redshift-corrected luminosity are defined
as

⟨ε⟩ =
∫∞
0

J dVν∫∞
0

J /ν dVν
, and (111)

Lrs = 4πr2α2ψ4

∫ ∞

0

H dVν , (112)

respectively. In the following, the analytic solution are
computed based on the value at the surface of the sphere,
i.e. ⟨ε⟩ (r = R) and Lrs (r = R). In addition, the nu-
merical results are scaled by their corresponding value
at the outer boundary of the computational domain, i.e.
⟨ε⟩∞ ≡ ⟨ε⟩

(
r = 104 km

)
and Lrs,∞ ≡ Lrs

(
r = 104 km

)
.

Figure 9 compares the rescaled average neutrino en-
ergy ⟨ε⟩/⟨ε⟩∞ and the redshift-corrected luminosity
Lrs/Lrs,∞ obtained by utilising Gmunu (red dots) and the
analytic solutions (black solid lines). As in Müller et al.
(2010), we consider three cases, namely, (i) the shape ve-

locity profile in flat spacetime (left column); (ii) vanish-
ing velocities in curved spacetime (middle column), and
(iii) the shape velocity profile in curved spacetime (right
column). The numerical results obtained by Gmunu agree
with analytic results well in all three cases. This test
demonstrates that Gmunu is able to handle the advec-
tion terms in the frequency space, which corresponds
to gravitational redshift and Doppler shift affects of the
radiation with different frequencies.

5. APPLICATION EXAMPLES

The tests presented in the previous section consid-
ered only the monochromatic radiation source terms (i.e.
there is no species or frequency couplings) and with ide-
alised opacities. To test if our code is able to handle
the radiation where different species and frequencies are
strongly coupled, in this section, we consider the neu-
trino transport in the context of core-collapse super-
novae and hot neutron star as examples.

5.1. Neutrino source terms and couplings

In addition to the source terms of emission, absorp-
tion, and elastic scattering, our application examples
also incorporate the source terms of neutrino-lepton
inelastic scattering, denoted as Sµ

IS, and neutrino-pair
processes, denoted as Sµ

Pair. These terms describe
the neutrino-electron inelastic scattering and electron-
positron pair annihilation. In this case, the radiation
four-force for neutrinos can be written as (Shibata et al.
2011; O’Connor 2015)

Sµ
rad = Sµ

E/A + Sµ
ES + Sµ

IS + Sµ
Pair, (113)

where, for each species, the inelastic scattering Sµ
IS and

the neutrino-pair processes Sµ
Pair terms are defined as

Sµ
IS (ν) =

∫
dVν′

ν′

{
{[ν − J (ν)]uµ −Hµ (ν)}J ′ (ν′)Rin

0 (ν, ν′)

+
Hµ (ν′)

3

{
[ν − J (ν)]Rin

1 (ν, ν′) + J (ν)Rout
1 (ν, ν′)

}

−
{
hαβHα (ν)Hβ (ν′)uµ + K̃µα (ν)Hα (ν′)

} [
Rin

1 (ν, ν′)−Rout
1 (ν, ν′)

]

− [J (ν)uµ +Hµ (ν)] [ν′ − J (ν′)]Rout
0 (ν, ν′)

}

, (114)

Sµ
Pair (ν) =

∫
dVν′

ν′

{
{[ν − J (ν)]uµ −Hµ (ν)}

[
ν′ − J̄ (ν′)

]
Rpro

0 (ν, ν′)

− H̄µ (ν′)

3
{[ν − J (ν)]Rpro

1 (ν, ν′) + J (ν)Rann
1 (ν, ν′)}

+
{
hαβHα (ν) H̄β (ν′)uµ + K̃ (ν)

µα H̄α (ν′)
}
[Rpro

1 (ν, ν′)−Rann
1 (ν, ν′)]

− [J (ν)uµ +Hµ (ν)] J̄ (ν′)Rann
0 (ν, ν′)

}

. (115)
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Figure 9. Comparison of the numerical solutions obtained by utilising Gmunu (red dots) and the analytic solutions (black
solid lines) of the energy advection test introduced by Müller et al. (2010). Three cases are considered in this test, namely, we
consider (i) just the shape velocity profile without gravitational fields (left column); (ii) just the gravitational fields without
velocity profile (middle column), and (iii) both the shape velocity profile and gravitational fields (right column). The upper
panels show the shifted velocity profile vr + 1 (blue solid lines), conformal factor ψ (orange solid lines) and lapse function
α (green solid lines) in different cases. The middle and lower panel compare of the simulated results of the rescaled average
neutrino energy ⟨ε⟩/⟨ε⟩∞ and the redshift-corrected luminosity Lrs/Lrs,∞ obtained by utilising Gmunu (red dots) and the analytic
solutions (black solid lines). In all cases, results returned by Gmunu are in agreement with the analytic expressions. This test
demonstrates that Gmunu is able to handle the frequency advection terms in the evolution of radiations, which corresponds to
gravitational redshift and Doppler shift affects of the radiation with different frequencies.

Here, K̃µα (ν) ≡ Kµα (ν) − hµαJ (ν) /3 is the traceless
part of Kµα (ν). Quantities with bar such as J̄ and H̄µ

denote the radiation moments for anti-neutrinos. Rin

and Rout are the kernels of inelastic scattering while
Rpro and Rann are the production and annihilation ker-
nels of neutrino-pair processes. As shown in equa-
tion (114) and (115), the radiation source term for each
species and frequency involves not only the radiation at
other frequency-bins, but also different species (its anti-
particle).

Note that the computation of neutrino opacities and
the kernels are non-trivial. However, the discussion of
which is beyond the scope of this work. Currently, the
neutrino opacities and kernels are provided by either

tabulating NuLib1 (O’Connor 2015) tables, or coupling
to our newly developed neutrino microphysics library
Weakhub (Ng et al. 2023). To maintain consistent com-
parisons to the work in the literature, we consider the
conventional set of interactions as in Liebendörfer et al.
(2005); Müller et al. (2010); O’Connor (2015); O’Connor
et al. (2018) and ignoring the weak-magnetism and re-
coil corrections (O’Connor 2015). This set of interac-
tions are summarised in table 1. Note that, by follow-
ing O’Connor (2015), we approximate the treatment for
neutrino-pair processes such as electron-positron anni-
hilation and nucleon-nucleon Bremsstrahlung. Specifi-

1 NuLib is an open-source library, available at http://www.nulib.
org.

http://www.nulib.org
http://www.nulib.org
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Beta processes Neutrino-pair processes
νe + n↔ p+ e− e− + e+ ↔ ν + ν̄

ν̄e + p↔ n+ e+ N +N ↔ N +N + ν + ν̄

νe + (A,Z − 1) ↔ (A,Z) + e−

Elastic scattering Inelastic scattering
ν +N ↔ ν +N ν + e− ↔ ν + e−

ν + (A,Z) ↔ ν + (A,Z)

ν + α↔ ν + α

Table 1. Conventional set of neutrino interactions consid-
ered in this work. Here we denote the electron, anti-electron
and heavy-lepton neutrino as νe, ν̄e and νx, respectively. ν
represents all three species of neutrino. Interactions that
involve a specific type of neutrino are expressed explicitly.
(A,Z) represents a heavy nucleus with a mass number of
A and a proton number of Z, without including α particle.
The neutrino-pair processes could be either approximately
treated as effective emissivity/absorption opacity or handled
by using the full production/annihilation kernels.

cally, the thermal processes for electron type neutrinos
and anti-neutrinos are not included. In addition, the
full neutrino-matter interaction terms for heavy-lepton
neutrinos are approximately represented with effective
emissivity and absorption opacities. As a result, there is
no neutrino species coupling with this set of neutrino in-
teraction. Therefore, multi-species multi-group implicit
solver is not necessary with these neutrino interactions.

The evolution of the electron fraction Ye, which is
defined as the number of electrons per baryon, has to
be included in order to describe matter in nuclear sta-
tistical equilibrium and compute the neutrino emissiv-
ity/opacities. Since the β-processes of νe and ν̄e change
the electron fraction Ye, the source term of the evolu-
tion equation of the electron fraction Ye (see Ng et al.
(2024)) is expressed as

sDYe
= mu

∫
dVν′

ν′

[
sµrad,νe

(ν′)− sµrad,ν̄e
(ν′)

]
uµ,

(116)
where mu is the atomic mass unit. This coupling is
treated explicitly as discussed in section 3.6.2. Specifi-
cally, the conserved quantity for electron fraction qDYe

is updated by

qDYe
→ qDYe

+∆t

{
mu

∫
dVν′

ν′

[
sµrad,νe

(ν′)− sµrad,ν̄e
(ν′)

]
uµ

}

(117)
once the radiation moments are solved implicitly.

5.2. Core collapse of a 15 M⊙ star in one dimension

The collapse, bounce and early post-bounce evolu-
tion of the 15 M⊙ progenitor star s15s7b2 of Woosley

& Weaver (1995) has become a standard test for core-
collapse supernovae simulation code (e.g. Liebendör-
fer et al. (2005); Müller et al. (2010); O’Connor (2015);
Kuroda et al. (2016)). In these work, the equation of
state of Lattimer & Swesty (1991) with an incompress-
ibility parameter of K = 180 MeV is used. Note that
this equation of state, which has a maximum cold neu-
tron star gravitational mass of 1.84 M⊙, has been ruled
out already. For the purposes of this comparison, we use
the same equation of state.

In this section, we present the core-collapse super-
novae simulation with the same progenitor, and compare
our result with the one of AGILE-BOLTZTRAN, VERTEX
and GR1D (O’Connor & Ott 2010; O’Connor 2015). The
data of AGILE-BOLTZTRAN and VERTEX are obtained from
the online material provided in the electronic version of
Liebendörfer et al. (2005) while the data of GR1D is re-
produced by using the code with the settings for the
section 5.1 in O’Connor (2015)2. In this subsection, we
use the identical NuLib table.

5.2.1. Treatments in different phases

As mentioned in section 3.6.3, avoiding full implicit
treatment would significantly reduce the computational
cost. In fact, in the context of core-collapse supernovae,
given that the timestep is properly chosen, a full implicit
treatment which includes fluid variables is barely neces-
sary even when the system is stiff (O’Connor 2015; Just
et al. 2015; Mezzacappa et al. 2020). For instance, in
optically thick region, neutrinos are trapped in the fluid
and are very close to weak equilibrium. The net change
(absorption minus emission) of the frequency-integrated
neutrinos source terms are effectively small. As a re-
sult, the change on fluid quantities due to neutrinos are
negligible compared with hydrodynamical effects. In ad-
dition to the fluid quantities, depending on the stage of
the collapse, it is also valid to treat part of the neutrino
source terms explicitly, which could significantly reduce
the size of the non-linear system.

In practice, we split the simulation into three phases.
In phase 1, the collapse begins but not extremely dy-
namical. We update the metric at every 0.1 ms, set
the Courant–Friedrichs–Lewy (CFL) factor to be 0.8,
and check the refinement criteria at every 10 iterations.

2 GR1D is an open-source neutrino radiation transport code for core-
collapse supernovae (O’Connor & Ott 2010; O’Connor 2015).
The GR1D code, and also the parameter files, equation of state
and the NuLib tables used in O’Connor (2015), are available at
http://www.GR1Dcode.org. Note that, since the conformally
flat metric equations are equivalent to the Einstein equations in
spherical symmetry, our results here are fully general relativistic
as in GR1D and AGILE-BOLTZTRAN.

http://www.GR1Dcode.org
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In this phase, we use mode 3 (single-species single-
group) radiation-interaction terms treatment (see sec-
tion 3.6.3). Once the maximum rest mass density ρ is
larger than 1012 g/cm3, we switch to phase 2, where
we update the metric at every 0.01 ms, set the CFL
factor to be 0.4, and check the refinement criteria at
every iteration. In this phase, we use mode 2 (single-
species multi-group) radiation-interaction terms treat-
ment. Core bounce is expected in this phase, which is
defined as when the matter entropy per baryon is larger
or equals to 3 (i.e. s ≥ 3 kB/baryon) in the core region.
We monitor this core-bounce criteria in the core region
(i.e. r ≲ 30 km) at each timestep in this phase. Finally,
we switch to phase 3 (post-bounce phase) 20 ms after
core bounce. In this phase, the treatment for radiation-
interaction terms is unchanged. We update the metric
at every 0.05 ms, set the CFL factor to be 0.6, and check
the refinement criteria at every 5 iterations.

Since the electron fraction Ye is not solved consistently
in the implicit step, it is possible that the change of the
electron fraction is too large, resulting non-physical re-
sult and eventually crash the code. Similar in O’Connor
(2015); Foucart et al. (2015), we monitor the change of
the electron fraction Ye at each time step. When the rel-
ative difference of the electron fraction Ye is larger than
10−3, we scale down the CFL factor by multiplying by
0.9 and continue the simulation. Otherwise, we scale up
the Courant–Friedrichs–Lewy factor by dividing by 0.9

until it goes back to the corresponding setting in the
particular phase of the simulation.

5.2.2. Numerical setup

The computational domain covers [0, 104] km for r,
with the resolution Nr = 128 and allowing lmax = 12

mesh levels. For the refinement criteria, we apply the
Löhner’s error estimator (Löhner 1987; Cheong et al.
2021) on the logarithmic rest mass density log10 (ρ).
This can effectively capture the sudden change of rest
mass density (usually arise at shock) while keeping the
refinement low elsewhere. On top of the error estima-
tor, to better resolve the high density region of the star,
we require the block to the finest level lmax when any
of the rest mass density ρ in this block is larger than
ρthr ≡ 5 × 1012 g/cm3. Since we are mainly interested
in the inner part of the massive star in this work, we
further impose a maximum allowed refinement level at
different location. For instance, when the smallest ra-
dius rmin in a block is smaller than 100 km (i.e. when
rmin ≤ 100 km), the highest allowed refinement level is
lmax. Also, when rmin ≤ 2×100 km, the highest allowed
refinement level is lmax − 1, so on and so forth. We also

enforce the refinement level to be lowest when the block
contains outer boundaries.

The frequency space is discretised into 18 groups log-
arithmically from 1 MeV/h to 280 MeV/h. We evolve
3 species of neutrinos, namely, the electron neutrino νe,
anti-electron neutrino ν̄e and heavy-lepton neutrino νx,
where the muon and tauon neutrinos (i.e. νµ, ν̄µ, ντ and
ν̄τ ) are grouped into νx.

5.2.3. Results

Figure 10 shows the evolution of central matter en-
tropy per baryon s, central electron fraction Ye and
lepton number fraction Ylep ≡ Ye + Yν as functions of
central density ρc of the collapsing 15 M⊙ star before
core-bounce. During the deleptonization phase, the en-
tropy per baryon increase due to neutrino interaction.
The core deleptonization ends when the central density
reaches approximately 2 × 1012 g/cm3. Since then, the
neutrinos are mostly trapped, where the lepton num-
ber fraction remain almost unchanged. In this stage,
the inner core collapses adiabatically, and the entropy
per baryon remains nearly constant. It is worthwhile to
point out that the evolution of lepton numbers is highly
sensitive to the implementations of the multi-group cou-
pling, radiation space advection in optically thick re-
gions and advection in frequency space for lepton num-
ber conservation, even when the exact same neutrino mi-
crophysics is used (O’Connor 2015; Kuroda et al. 2016).

Strong repulsive forces of nuclear matter arise when
the rest mass density exceeds nuclear saturation den-
sities. This results in core bounce, and forms the
bounce shock. In our simulation, the core bounces at
tbounce ≈ 178.21 ms. In figure 11, we compare the radial
profiles of several quantities among different codes at
the moment of core bounce. In particular, we compare
rest mass density ρ, radial velocity vr/c, matter tem-
perature T , matter entropy per baryon s, neutrino root
mean squared energy

√
⟨ϵ2νi

⟩ and electron fraction Ye.
Here, the neutrino root mean squared energy is defined
by

√
⟨ϵ2⟩ ≡

∫∞
0
νJ dVν∫∞

0
J /ν dVν

. (118)

As shown in the figure, a shock is formed at ∼ 10 km,
and the matter entropy reaches 3 kB/baryon at the
shock. Since the gauge adopted in Gmunu is different
from the one in AGILE-BOLTZTRAN, VERTEX and GR1D,
transformation is needed in order to compare the results
directly. The areal circumferential radius rcirc used in
Liebendörfer et al. (2005) can be expressed in terms of
the isotropic radial coordinate riso and the conformal
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Figure 10. Evolution of central matter entropy per baryon
(s, upper panel), electron and total lepton number fractions
(Ye and Ylep ≡ Ye + Yν , lower panel) as functions of central
density ρc of a collapsing 15 M⊙ star before core-bounce.
The solid lines show the numerical results obtained by Gmunu.
Note that the evolution of lepton numbers is highly sensi-
tive to the implementations of the multi-group coupling and
radiation advection in optically thick regions. Our results
agree very well with the results of AGILE-BOLTZTRAN (dashed-
dotted lines), VERTEX (dotted lines) and GR1D (dashed lines).

factor ψ by (Marek et al. 2006; Müller et al. 2010):

rcirc = ψ2riso. (119)

Below, we simply use r to denote the areal circumferen-
tial radius rcirc.

Although the results produced by utilising Gmunu
are quantitatively in good agreement with the refer-
ence models by using AGILE-BOLTZTRAN, VERTEX and
GR1D, there are some deviations in the inner part of
the star. In particular, the hydrodynamical quantities
such as entropy s, electron fraction Ye and tempera-
ture T are slightly deviated from the reference solu-
tions when the central rest mass density ρc goes be-
yond ∼ 2×1012 g/cm3 (see figure 10) and for the region
where r ≲ 10 km (see figure 11). These deviations could
be due to the following three reasons. Firstly, differ-
ent implementations of nuclear equation of state (see
also the discussion in O’Connor (2015)) and the primi-
tive recovery are very likely to cause the differences of
the entropy and so as other hydrodynamical quantities.
Secondly, although both our code and GR1D couple the
hydrodynamical quantities directly in the implicit ra-
diation moment solver, such coupling will be applied
twice for each timestep when IMEX-SSP2(2,2,2) is used.
The discrepancy caused by the direct coupling might be
accumulated faster then in first-order implicit-explicit
method. Solving the entire evolution system includ-

ing the hydrodynamical quantities implicitly will lead
to more accurate and consistent results, which is left as
future work. Thirdly, since adaptive mesh refinement is
used in our simulations, the resolution at the centre part
is not fixed during the simulation, and depends on the
rest mass density ρ which changes rapidly right before
core bounce. The numerical errors due to such rapid re-
finements is one of the source of the error. Refinement
strategies that have better balance between the accuracy
and computational cost will be explored in the future.

The far-field neutrino root mean squared energies and
luminosities are important to the predictions of observa-
tion, which are highly sensitive to the microphysics con-
sidered and the implementation. Therefore, it is neces-
sary to show and compare these key neutrino quantities
among codes. In figure 12 we show the time evolution
of far-field neutrino root mean squared energies

√
⟨ϵν2⟩

and luminosities Lν measured by an observer comov-
ing with fluid at 500 km. As shown in the figure, the
agreement between Gmunu, AGILE-BOLTZTRAN and GR1D
is exceptional. This is expected since both of two sim-
ulations adopt two-moment schemes and use identical
neutrino opacities and kernels table.

The shock radius evolution is also important in the
core-collapse supernovae context. Figure 13 shows the
time evolution of the shock radius. Our results agree
very well with GR1D for t− tbounce ≲ 40 ms. After that,
the shock radius predicted by Gmunu is roughly 10 km
larger then GR1D’s, which lies between AGILE-BOLTZTRAN
and GR1D.

The results presented above, especially the neutrino
signals, are relatively closer to GR1D’s among the codes
we have compared. Despite the neutrino interactions
considered are mostly the same in these runs, the way
of how the neutrino opacities and kernels are com-
puted could be different (e.g. the resolutions in energy
space, number of species evolved are different). More-
over, as mentioned above, approximated treatments for
neutrino-pair processes are adopted in the NuLib table
in this test. Due to the fact that the same NuLib table
with the same resolution in energy (frequency) space is
used in both GR1D and Gmunu, the corresponding results
are expected to be very similar.

5.3. Hot neutron star

For the second application example, we study the ra-
dial oscillation and neutrino emissions of a hot neu-
tron star by following Galeazzi et al. (2013); Neilsen
et al. (2014). In particular, we consider a non-rotating
equilibrium model with SHT equation of state Shen
et al. (2011) with central rest-mass density ρc = 9.3 ×
1014 g/cm3. The star has a constant entropy per baryon
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Figure 11. Comparison of the radial profiles of several quantities between our code Gmunu and the reference codes
(AGILE-BOLTZTRAN, VERTEX and GR1D) at the moment of core bounce. For instance, we compare rest mass density ρ, radial
velocity vr/c, matter temperature T , matter entropy per baryon s, neutrino root mean squared energy

√
⟨ϵ2νi⟩ and electron

fraction Ye. The solid lines show the numerical results obtained by Gmunu. A shock is formed at ∼ 10 km, and the matter en-
tropy reaches 3 kB/baryon at the shock. Our results generated by Gmunu are quantitatively agreeing with the reference solution
produced by AGILE-BOLTZTRAN (dashed-dotted lines), VERTEX (dotted lines) and GR1D (dashed lines).

s = 1 kB/baryon and in β equilibrium. The temperature
of which is roughly 30 MeV at the centre of the star. The
gravitational mass and the circumferential radius of this
neutron star are Mgrav = 2.741 M⊙ and Rcirc = 14 km,
respectively. As discussed in Galeazzi et al. (2013),
this neutron star is mostly opaque to neutrinos, and the
neutrino diffusion timescale (O(s)) is much longer than
its dynamical timescale (O(ms)). The neutron star is
expected to be cooling slowly. In addition, since the
emitted neutrino will mostly be reabsorbed in the hot
and dense region, the neutrino emission from the sys-
tem are mostly come from the outer layer of the neu-

tron star. Therefore, this test problem, especially the
neutrino emissions, is highly sensitive to the low den-
sity/atmosphere treatment.

The initial neutron star models are generated with
the modified version of the open-source code XNS3 Buc-
ciantini & Del Zanna (2011); Pili et al. (2014, 2015,
2017). We simulate this initial model in one-dimensional
spherical coordinates, where the computational domain

3 available at https://www.arcetri.inaf.it/science/ahead/XNS/
index.html.

https://www.arcetri.inaf.it/science/ahead/XNS/index.html
https://www.arcetri.inaf.it/science/ahead/XNS/index.html
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√
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panel) measured by an observer comoving with fluid at 500 km of a collapsing 15 M⊙ star. The solid lines show the numerical
results obtained by Gmunu. To compare the deleptonization burst and the early post-bounce evolution of the luminosity of
electron type neutrino more in detail, we changed the scale after t > 30 ms (upper right panel). The evolution of these neutrino
quantities are again highly sensitive to the implementation and essential to the predictions of observational signatures. Our
results agree very well with the reference results produced by AGILE-BOLTZTRAN (dashed-dotted lines), VERTEX (dotted lines) and
GR1D (dashed lines).
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Figure 13. Time evolution of the shock radius. The solid
lines show the numerical results obtained by Gmunu. The ref-
erence results produced by AGILE-BOLTZTRAN, VERTEX and
GR1D are shown with dashed-dotted line, dotted line and
dashed line, respectively. The shock radius predicted by
Gmunu is mostly agreeing with GR1D for t − tbounce ≲ 40 ms
while it is approximately 10 km larger since then. Since then,
it goes between the result of AGILE-BOLTZTRAN and GR1D.

covers 0 ≤ r ≤ 400 (≈ 591km) with the resolution
Nr = 256 and allowing 4 refinement levels (i.e., an ef-
fective resolution of Nr = 2048). For the simulations
of neutron stars, we used the same refinement setting
as in our previous work Cheong et al. (2021). In par-
ticular, we defined a relativistic gravitational potential
Φ ≡ 1− α. For any Φ larger than the maximum poten-
tial Φmax (which is set as 0.2 in this work), the block
is set to be finest. While for the second-finest level, the
same check is performed with a new maximum potential
which is half of the previous one, so on and so forth. The
grid is fixed after the initialisation. In this test, 2-nd or-
der Montonized central (MC) limiter van Leer (1974) is
used. The rest mass density of the atmosphere ρatmo

is set to be 103 g/cm3. The spacetime is kept fixed
during the entire simulation (i.e. we evolve this system
with Cowling approximation).

While different neutrino microphysics inputs are ex-
pected to affect the neutrino signals, the neutrino in-
teractions we can include are so far limited by NuLib.
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Instead of considering the same set of neutrino interac-
tions as in Galeazzi et al. (2013); Neilsen et al. (2014),
we adopt essentially the same set of interactions as de-
scribed in section 5.1, except that the thermal pro-
cesses for electron type neutrinos and anti-neutrinos (i.e.
e− + e+ → νe + ν̄e) are also included. The inclusion of
this interaction is to additionally test our multi-species
multi-group implicit solver, since the coupling of elec-
tron type neutrinos νe and anti-neutrinos ν̄e has to be
taken into account. Although this test problem is ex-
pected to be sensitive to the low density/atmosphere
treatment, to achieve a stable evolution, the neutrino
opacities and kernels are used only when the rest mass
density ρ is larger than 1011 g/cm3, which is eight orders
of magnitude larger than the atmosphere density ρatmo.
The neutrino moments are initialised by evolving the
radiation sector while keeping the hydrodynamical pro-
file fixed until the system reach to equilibrium. In this
test, we evolve the neutrinos while keeping the hydro-
dynamical profile fixed for 5 ms before the dynamical
simulation.

The neutron star relaxes to its new equilibrium con-
figurations during the first few milliseconds in our sim-
ulation, where the surface of the star is neutron-rich
(Ye ∼ 0.1) with high temperature (T ∼ 10 MeV), which
is similar to the case reported in Neilsen et al. (2014).
The upper panel of figure 14 shows the relative varia-
tion of the central rest mass density ρc in time while
the middle panel shows the time evolution of far-field
neutrino luminosities Lν measured by an observer with
fluid at 100 km. Since the neutrino signals take around
3 ms to reach the extraction point, the luminosities of
all neutrinos are zeros before 3 ms. The luminosities we
obtained at the stationary state are at the order of 1051

erg/s, which are slightly larger than the one reported
in Neilsen et al. (2014) (of the order of 1050−51 erg/s)
while much lower than the one reported in Galeazzi et al.
(2013) (of the order of 1052−53 erg/s). In addition, the
luminosity of heavy-lepton neutrino Lνx

is found to be
highly oscillating. This is mainly because the opacities
and kernels for low density region (ρ ≤ 1011 g/cm3) are
ignored while the interactions of heavy-lepton neutron
is sensitive in this region.

The lower panel of figure 14 shows the fast Fourier
transform of the central rest mass density, and the lu-
minosities of electron and anti-electron neutrinos with
the time window t ∈ [5, 20] ms. The fast Fourier trans-
form of the luminosity of heavy-lepton neutrino is not
included due to its highly oscillatory nature and the fre-
quency does not correspond to any of the known normal
mode oscillations of the neutron star. To better visualise
the result, the amplitude of the fast Fourier transform
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Figure 14. Upper panel : The relative variation of the
central rest mass density ρc of the hot neutron star in time.
Middle panel : Time evolution of far-field neutrino luminosi-
ties measured by an observer comoving with fluid at 100 km
of a hot neutron star. The luminosities are zero for t ≲ 3 ms
as the neutrino signals are not yet arrived at the extraction
point. Lower panel : The fast Fourier transform of the cen-
tral rest mass density , and the luminosities of electron and
anti-electron neutrinos. The amplitude of the fast Fourier
transform of the central rest mass density (navy solid line)
has been rescaled for a better visualisation. The verti-
cal dashed lines represent the known eigenmode frequencies
(Galeazzi et al. 2013). The eigenmode frequencies we ob-
tained are in good agreement with the one in Galeazzi et al.
(2013); Neilsen et al. (2014).

of the central rest mass density has been rescaled by a
factor of a thousand. The eigenmode frequencies ob-
tained from our simulations agree the one in Galeazzi
et al. (2013); Neilsen et al. (2014).

Despite the same model, the neutrino luminosities are
expected to be different from Galeazzi et al. (2013);
Neilsen et al. (2014) for two reasons: (i) the neutrino
luminosities are highly sensitive to the neutrino and/or
atmosphere treatment adopted in the simulation code
(Neilsen et al. 2014), and (ii) the neutrino interactions
considered here is not identical to the one in Galeazzi
et al. (2013); Neilsen et al. (2014), which could signif-
icantly alter the outcome of the neutrino signals. The
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test here is to qualitatively compare the results reported
in the literature, detailed investigations on a better low
density treatment and how the neutrino treatment af-
fect the hot neutron star modelling will be left as future
work.

6. CONCLUSIONS

We present the new implementation of two-moment
based multi-frequency multi-species general-relativistic
radiation hydrodynamics module in our code Gmunu.

Our implementation has been tested with sev-
eral benchmarking tests, which range from special-
relativistic to general-relativistic, from optically thick
to optically thin and from frequency-integrated to
frequency-dependent cases. These test results demon-
strate that our code Gmunu is able to capture the evo-
lution of radiation fields even in the mildly relativistic
cases in either optically thin or thick regime.

In addition, we demonstrate that our implicit solvers
can robustly solve the largely coupled system, where
all the neutrino species at different frequency-bins are
coupled altogether, by preforming simulations of a col-
lapsing massive star and a hot neutron star. In the
core-collapse supernova test, we present the pre-bounce,
core-bounce and early post-bounce evolution of a 15 M⊙
progenitor star. Also, we show the simulated fair-field
neutrino root mean squared energies and luminosities,
which are essential to observational astrophysics. De-
spite these neutrino quantities are highly sensitive to the
implementation of the radiation transport and implicit
treatment for neutrino-matter interaction, Gmunu pro-
duces consistent result which agrees with other neutrino
transport codes. On the other hand, in the hot neutron
star test, our normal mode frequencies are agree with
the one reported in the literature. Moreover, the order
of magnitude of the neutrino luminosities extracted from
our simulation lie between the one presented in Galeazzi
et al. (2013); Neilsen et al. (2014) for the same model.
Despite the neutrino treatment and interaction consid-
ered are different, our results are qualitatively agree with
the literature.

Although our current implementation works properly
for the test problems presented, further investigations
are needed to improve the module. In particular, the
fluid acceleration terms are not properly included in this
work. Including these terms and assessing their impacts
on mildly/highly relativistic are essential to neutron star

merger simulations. Besides, solving the entire evolu-
tion system including the fluid quantities consistently
would lead to more stable and accurate simulations. Im-
plementing more advance full implicit treatments which
allow us to fully solve the system with reasonable com-
putational cost (e.g. Skinner et al. (2019); Laiu et al.
(2021)) is also important for astrophysical applications.
These aspects will be investigated in future work.
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Software: The results of this work were pro-
duced by utilising Gmunu (Cheong et al. 2020, 2021, 2022;
Ng et al. 2024), where the tabulated neutrino interac-
tion were provided with Nulib (O’Connor 2015). GR1D
(O’Connor & Ott 2010; O’Connor 2015) was also used
to generate one of the reference solutions. We also modi-
fied XNS (Bucciantini & Del Zanna 2011; Pili et al. 2014,
2015, 2017) to generate the initial data of a hot neutron
star. The data of the simulations were post-processed
and visualised with yt (Turk et al. 2011), NumPy (Harris
et al. 2020), pandas (pandas development team 2020;
Wes McKinney 2010), SciPy (Virtanen et al. 2020) and
Matplotlib (Hunter 2007; Caswell et al. 2023).

APPENDIX

A. JACOBIAN OF THE MONOCHROMATIC
SOURCE TERMS

Note that the emission/absorption and elastic scat-
tering source terms Sµ

E/A and Sµ
ES are monochromatic,

i.e. at a given radiation frequency ν, the calculation of
the radiation emissivity, absorption and scattering coef-
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ficients η (ν), κa (ν) and κs (ν) do not depend on other
radiation frequencies ν′ ̸= ν, as shown in equations (8)
and (9). The interaction source terms can be largely
simplified when only these two source terms are consid-
ered. In this case, the radiation four-force Sµ

rad can be
reduced to

Sµ
rad =Sµ

E/A + Sµ
ES

=(η − κaJ )uµ − (κa + κs)Hµ,
(A1)

The corresponding 3 + 1 radiation-fluid interaction
source terms srad now becomes

sradE = αψ6
√
γ̄/γ̂W

{
η + κsJ − κas

(
E − Fiv

i
)}
,

(A2)

sradFi
= αψ6

√
γ̄/γ̂

{
(η − κaJ )Wvi − κasHi

}
, (A3)

where κas ≡ κa + κs is the opacity (absorption plus
scattering coefficients). These are the source terms
adopted in most of the grey moment codes (e.g. Radice
et al. (2022)). The corresponding Jacobian ∂ [srad]i/∂qj ,
which is needed to calculate the Jacobian in the implicit
step discussed in section 3.6, can be evaluated analyt-
ically as in Radice et al. (2022). For completeness, we
include the detailed expression of ∂ [sstiff]i/∂qj , where

sstiff ≡ srad

ψ6
√
γ̄/γ̂

(A4)

is the undentised source terms. Below, we denote

Ĵab ≡
∂ [sstiff]a
∂qb

(A5)

where a, b = 0, 1, 2, 3. Specifically, Ĵab are

Ĵ00 =−W

(
κas − κs

∂J
∂E

)
, (A6)

Ĵ0j =W

(
κasv

j + κs
∂J
∂Fj

)
, (A7)

Ĵi0 =−
(
κas

∂Hi

∂E +Wκa
∂J
∂E vi

)
, (A8)

Ĵij =−
(
κas

∂Hi

∂Fj
+Wκa

∂J
∂Fj

vi

)
. (A9)

The corresponding derivatives are

∂J
∂E =W 2 + dthin

(
v · f̂

)2

W 2

+ dthick

(
3− 2W 2

) (
W 2 − 1

)

1 + 2W 2

, (A10)

∂J
∂Fj

= J v
Fv

j + J f
F f̂

j , (A11)

∂Hi

∂E = Hv
Evi +Hf

E f̂i, (A12)

∂Hi

∂Fj
=Hδ

Fδ
j
i +Hvv

F viv
j +Hff

F f̂if̂j

+Hvf
F vif̂j +Hfv

F f̂ivj

, (A13)

where we have defined f̂i ≡ Fi/
√
F2, and

J v
F =2W 2

[
−1 + dthinE

v · f̂
F + 2dthick

W 2 − 1

1 + 2W 2

]
,

(A14)

J f
F =− 2dthinW

2E

(
v · f̂

)2

F , (A15)

Hv
E =W 3

[
−1− dthin

(
v · f̂

)2

+ dthick
2W 2 − 3

1 + 2W 2

]
,

(A16)

Hf
E =− dthinW

(
v · f̂

)
(A17)

Hδ
F =W


1− dthinE

(
v · f̂

)

F − dthickv
2


 , (A18)

Hvv
F =2W 3


1− dthinE

(
v · f̂

)

F − dthick

(
1− 4W 2 + 1

2W 2 (2W 2 + 1)

)
 ,

(A19)

Hff
F =2dthinWE

(
v · f̂

)

F , (A20)

Hvf
F =−WJ f

F , (A21)

Hfv
F =− dthinW

E
F . (A22)

Moreover, the source terms in the evolution equation
of electron fraction Ye is also simplified in this case. In
particular, the contraction of the interaction source and
four-velocity term sµraduµ in the right-hand-side of equa-
tion 116 can now be written as:

sµraduµ = η − κaJ . (A23)

B. DECOMPOSITION OF FLUID-FRAME
MOMENTS

Although the fluid-frame moments {J ,Hµ} can be
computed by contracting the energy momentum ten-
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sor T µν with the comoving velocities uµ, it is useful to
work out the contraction further, and directly express
the fluid-frame moments {J ,Hµ} in terms of observer-
frame moments {E ,Fµ}. As in Deppe et al. (2022);
Radice et al. (2022), we decompose {J ,Hµ,HµHµ} as

J = J(1) + dthinJ(2) + dthickJ(3), (B24)

Hµ =−
(
H(1) + dthinH(2) + dthickH(3)

)
nµ

−
(
H(4) + dthinH(5) + dthickH(6)

)
vµ

−
(
H(7) + dthinH(8) + dthickH(9)

)
Fµ

(B25)

H2 =
[
H2

]
(1)

+ dthin
[
H2

]
(2)

+ dthick
[
H2

]
(3)

+ d2thin
[
H2

]
(6)

+ d2thick
[
H2

]
(5)

+ dthindthick
[
H2

]
(4)
,

(B26)

where

J(1) =W 2
(
E − 2viFi

)
(B27)

J(2) =W 2E
(
viFi

)2

F jFj
(B28)

J(3) =
W 2 − 1

2W 2 + 1

[(
3− 2W 2

)
E + 4W 2viFi

]
(B29)

H(1) =W
(
J(1) + viFi − E

)
(B30)

H(2) =WJ(2) (B31)
H(3) =WJ(3) (B32)
H(4) =WJ(1) (B33)
H(5) = H(2) (B34)

H(6) =H(3) +
W

2W 2 + 1

[(
3− 2W 2

)
E −

(
1− 2W 2

)
viFi

]

(B35)

H(7) = −W (B36)
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(
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)

F iFi
(B37)
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(B39)

[
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+H(4)H(8)v
iFi +H(7)H(5)v
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(B40)

[
H2

]
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(
H(4)H(6)v

2 +H(7)H(9)F2

+H(4)H(9)v
iFi +H(7)H(6)v

iFi

−H(1)H(3)

)
(B41)
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H2
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H(5)H(6)v

2 +H(8)H(9)F2
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[
H2

]
(5)

=−H2
(3) +H2

(6)v
2 +H2

(9)F2

+ 2H(6)H(9)v
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[
H2

]
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