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Abstract

We present the implementation of a two-moment-based general-relativistic multigroup radiation transport module
in the General-relativistic multigrid numerical (Gmunu) code. On top of solving the general-relativistic
magnetohydrodynamics and the Einstein equations with conformally flat approximations, the code solves the
evolution equations of the zeroth- and first-order moments of the radiations in the Eulerian-frame. An analytic
closure relation is used to obtain the higher order moments and close the system. The finite-volume discretization
has been adopted for the radiation moments. The advection in spatial space and frequency-space are handled
explicitly. In addition, the radiation–matter interaction terms, which are very stiff in the optically thick region, are
solved implicitly. The implicit–explicit Runge–Kutta schemes are adopted for time integration. We test the
implementation with a number of numerical benchmarks from frequency-integrated to frequency-dependent cases.
Furthermore, we also illustrate the astrophysical applications in hot neutron star and core-collapse supernovae
modelings, and compare with other neutrino transport codes.

Unified Astronomy Thesaurus concepts: Relativistic fluid dynamics (1389); Neutron stars (1108); Supernova
neutrinos (1666); Hydrodynamical simulations (767); Astronomical simulations (1857); Magnetohydrodynamical
simulations (1966); Radiative transfer simulations (1967)

1. Introduction

Radiation transport plays a crucial role in many high energy
astrophysical events. For instance, radiation cooling and
transport can significantly affect the structure and behavior of
black hole accretion disks (see, e.g., Fragile et al. 2012;
Sądowski et al. 2013; Fragile et al. 2014; McKinney et al. 2014;
Takahashi et al. 2016; Fragile et al. 2018). On the other hand,
neutrinos are responsible for the transport of energy and lepton
number in dense and hot scenarios. For example, neutrinos
largely determine the properties of the matter ejected by neutron
star mergers. This matter is responsible for part of the
observational electromagnetic signatures powered by nuclear
reactions, as well as the contribution to astrophysical nucleo-
synthesis (see, e.g., Dessart et al. 2009; Metzger & Fernández
2014; Perego et al. 2014; Sekiguchi et al. 2015; Radice et al.
2015; Foucart et al. 2016a; Sekiguchi et al. 2016; Perego et al.
2017; Fujibayashi et al. 2017, 2018; Fernández et al. 2019;
Nedora et al. 2019; Miller et al. 2019; Fujibayashi et al.
2020a, 2020b; Estee et al. 2021; Just et al. 2022). Not only in the
context of neutron star mergers, neutrinos also significantly
affect the dynamics of the core collapse of massive stars, and are
responsible for powering the explosion as supernovae (see, e.g.,

Janka 2012; Burrows 2013; Foglizzo et al. 2015; Lentz et al.
2015; Melson et al. 2015; O’Connor & Couch 2018a; Burrows
et al. 2020; Bollig et al. 2021; Burrows & Vartanyan 2021). In
order to have a better understanding of such high energy
astrophysical systems, not only do we need general-relativistic
magnetohydrodynamics simulations, but a proper treatment for
radiation transport is essential.
The full Boltzmann transport equation needs to be solved for

the evolution of radiation fields. Although in principle this can be
solved exactly by using the short characteristic method (Davis
et al. 2012), the SN schemes (Sumiyoshi & Yamada 2012;
Nagakura et al. 2014, 2017; Chan & Müller 2020; White et al.
2023), the spherical harmonics schemes (McClarren &
Hauck 2010; Radice et al. 2013), the lattice Boltzmann methods
(Weih et al. 2020a), the method of characteristic moment closure
(Ryan & Dolence 2020), and the Monte Carlo method
(Abdikamalov et al. 2012; Miller et al. 2019; Foucart et al.
2021; Kawaguchi et al. 2023), solving the Boltzmann equation
exactly is usually not practical due to the high computational
cost. In practice, simplified versions of the Boltzmann transport
equation are solved approximately.
One widely adopted approach is to solve only the first few

moments of the radiation distribution function based on the
truncated moment formalism (Thorne 1981; Shibata et al. 2011;
Cardall et al. 2013). For example, the flux-limited diffusion
approximation scheme solves only the zeroth moment (Lever-
more & Pomraning 1981; Pomraning 1981). In this scheme, only
the information of radiation intensity is available, while the
propagation directions are not. The direction of radiation flow can
be retained in an averaged fashion by solving the first moment as
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well; this is known as the two-moment scheme (Levermore 1984;
Dubroca & Feugeas 1999). This approach has been applied in the
context of neutron star merger (Wanajo et al. 2014; Foucart et al.
2015; Foucart et al. 2016b; Foucart et al. 2016a; Sekiguchi et al.
2015; Radice et al. 2022; see also the review by Foucart 2023),
core-collapse supernovae (O’Connor 2015; Just et al. 2015;
Roberts et al. 2016; Kuroda et al. 2016; O’Connor &
Couch 2018a; Skinner et al. 2019; Laiu et al. 2021; Santos-Pérez
et al. 2023; see also the review Mezzacappa et al. 2020), black
hole accretions (Zanotti et al. 2011; Fragile et al. 2012; Sądowski
et al. 2013; Fragile et al. 2014; McKinney et al. 2014; Takahashi
et al. 2016; Fragile et al. 2018), and other purposes (González
et al. 2007; Commerçon et al. 2011; Skinner & Ostriker 2013;
Takahashi & Ohsuga 2013; Rivera-Paleo & Guzmán 2019;
Melon Fuksman & Mignone 2019; Weih et al. 2020b; Anninos
& Fragile 2020; López-Miralles et al. 2023) as well. Despite the
recent progress of radiation transport modeling, the implementa-
tion of general-relativistic multispecies multigroup radiation
magnetohydrodynamics codes, which include fully coupled
radiation–matter interactions, is still not very common (but see
a notable example Kuroda et al. 2016), but is essential for
astrophysics modeling.

In this work, we extend Gmunu (Cheong et al.
2020, 2021, 2022; H. H.-Y. Ng et al. 2024, in preparation)
by implementing the two-moment-based multifrequency multi-
species general-relativistic radiation transport module. In
particular, we evolve the zeroth- and first-order moments, and
adopt the maximum-entropy closure (Minerbo 1978) to close
the system. The advection in spatial space is handled by the
standard high-resolution shock-capturing method with a small
modification on the Harten–Lax–van Leer (HLL) flux (Harten
et al. 1983) in order to reduce the asymptotic diffusion limit in
the high opacity region. The advection in frequency-space is
evolved explicitly in a way that the energy-momentum is
conserved (Müller et al. 2010; Kuroda et al. 2016). As such,
our code is able to capture the Doppler and gravitational
redshift effects. The radiation–matter interaction terms are
solved implicitly since they are very stiff in the optically thick
region. As in our previous work (Cheong et al. 2022), we adopt
the implicit–explicit (IMEX) Runge–Kutta time integrators
(see, e.g., Ascher et al. 1997; Pareschi & Russo 2005) to
implicitly handle the stiff source terms while keeping the time
step reasonable. These schemes have been applied and tested in
several radiation hydrodynamics codes (e.g., Weih et al. 2020b;
Anninos & Fragile 2020; Laiu et al. 2021; Izquierdo et al.
2023). We test the implementation with a number of numerical
benchmarks, ranging from special-relativistic to general-
relativistic, from optically thick to optically thin and from
frequency-integrated to frequency-dependent cases. Moreover,
we also include core-collapse supernova and hot neutron star
modeling as astrophysical application examples. We then
compare the result with other neutrino (magneto)
hydrodynamics codes.

Accompanying this work, we have also developed a new
neutrino microphysics library Weakhub (H. H.-Y. Ng et al.
2024, in preparation). This library includes the state-of-the-art
neutrino microphysics, and provides advanced neutrino
opacities and kernels that are essential to neutron star mergers
and core-collapse supernovae modelings. Since the main focus
of this work is to present and test the implementation of our
new radiative transfer hydrodynamics module, the details of the
neutrino microphysics are not included in this paper. For a

formal discussion of neutrino microphysics, we refer readers to
H. H.-Y. Ng et al. (2024, in preparation).
The paper is organized as follows. In Section 2, we outline

the formalism we used in this work. The details of the
methodology and implementation of our radiation transport
module are presented in Section 3. The code tests and results
with idealized neutrino opacities are presented in Section 4.
The comparison of different neutrino transport code with a
conventional set of neutrino opacities in the context of core-
collapse supernovae and hot neutron star is presented in
Section 5. This paper ends with a discussion in Section 6.
Unless explicitly stated, the units of the speed of light c,

gravitational constant G, solar mass Me, and the Boltzmann
constant kB are all equal to 1 (c=G=Me= kB= 1). Greek
indices, running from 0 to 3, are used for 4-quantities while the
Roman indices, running from 1 to 3, are used for 3-quantities.

2. Formulations

The comoving-frame zeroth-, first-, second-, and third-order
moments are defined as (Cardall et al. 2013; Mezzacappa et al.
2020)
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where f is the distribution function, ℓα is the unit three-vector
tangent to the three-momentum in the comoving frame, and
namely, uμℓ

μ= 0. ν is the frequency of radiation observed in
the comoving frame while dΩ is the solid angle in the
comoving frame.
The monochromatic energy-momentum tensor  mn and the

corresponding third-rank momentum moment mnr can be
Lagrangian decomposed with respect to the comoving observer
with four-velocity uμ as follows:

    u u u u ; 2( )= + + +mn m n m n m n mn

    
   

u u u u u u u u u
u u u , 3

(
) ( )

n= + + +
+ + + +

mnr m n r m n r m n r m n r

mn r nr m rm n mnr

where  um m and  u u0= =mn
m

mn
n . The corresponding

frequency-integrated energy-momentum tensor of the radiation
can be obtained by

 T d dV4 ; 4rad
0

2

0
( )ò òpn n= =mn mn mn

n
¥ ¥

where we have defined dVν≡ 4πν2dν.
Alternatively, the monochromatic energy-momentum tensor

 mn and the third-rank momentum moment mnr can be
Eulerian decomposed with respect to the Eulerian observer
with four-velocity nμ as follows:

    
    

   

n n n n
n n n n n n n n n

n n n

;

, 5
(

) ( )
n

= + + +
= + + +

+ + + +

mn m n m n m n mn

mnr m n r m n r m n r m n r

mn r nr m rm n mnr

where  nm m and  n n0= =mn
m

mn
n .
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The evolution equations of the radiation can be obtained by

  u
1

, 6
2

2
rad( ) ( )

n n
n -

¶
¶

 =n
mn mnr

r n
m

where rad
m is the radiation four-force, which describes the

interaction between the radiation and the fluid.
The choice of the radiation four-force rad depends on the

type of radiation considered. In general, the radiation four-force
contains the coupling between different radiation species at
different frequencies group. By default, the radiation four-force
rad contains the emission and absorption source term E A

m ,
and the elastic (isoenergetic) scattering source term ES

m :

   , 7rad E A ES ( )= +m m m

and neglecting the frequency–species coupling. Here, the
emission and absorption source term E A

m and the elastic

(isoenergetic) scattering source term ES
m are defined as

  u ; 8a aE A [ ] ( )h k k= - -m m m

  , 9sES ( )k= -m m

where η, κa, and κs are the radiation emissivity, absorption, and
scattering coefficients, respectively.

It is worth pointing out that Gmunu has been designed to
handle more sophisticated radiation four-forces where the
frequency–species coupling is allowed (see Section 3.6.3
below). Since those interactions are application oriented, the
discussion is not included in this section. An example of such
complicated radiation four-force in the context of core-collapse
supernovae can be found at Section 5.1 below.

2.1. General-relativistic Radiation Hydrodynamics in the
Reference-metric Formalism

As in our previous work (Cheong et al. 2021, 2022; H. H.-Y.
Ng et al. 2024, in preparation), we adopt 3+ 1 reference-metric
formalism (Montero et al. 2014; Mewes et al. 2020; Baumgarte
& Shapiro 2020). In this formalism, the metric can be written as

ds g dx dx

dt dx dt dx dt , 10ij
i i j j

2

2 2 ( )( ) ( )a g b b

=

=- + + +
mn

m n

where α is the lapse function, β i is the space-like shift vector,
and γij is the spatial metric. We adopt a conformal decom-
position of the spatial metric γij with the conformal factor ψ:

, 11ij ij
4 ¯ ( )g y g=

where ijḡ is the conformally related metric. This conformally
related metric can be expressed as the sum of a background
time-independent reference metric ijĝ and deviations hij

dev. In
our current implementation, the reference metric ijĝ is the flat
spacetime metric of the chosen coordinate system (i.e., either
Cartesian, cylindrical, or spherical coordinates). Note that, in
conformally flat approximations, the spacetime deviations are
vanishing, and the reference metric is the conformally related
metric (i.e., ij ij¯ ˆg g= ).

The evolution equations of the first two moments of
radiations for each species of radiation at each frequency-group

(Equation (6)) can be written as
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where the î here is for the covariant derivatives associated
with the reference metric ijĝ .
As in our previous work (Cheong et al. 2021, 2022; H. H.-Y.

Ng et al. 2024, in preparation), the evolution equations can be
expressed as follows:
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Note that the subscript of the source terms in Equation (15) is
omitted for a more compact expression. Here, qs are the
conserved quantities:

q ; 166 ¯ ˆ ( )y g g=

q . 17j
6

j
¯ ˆ ( )y g g=

The corresponding fluxes fi are given by the following:

 f ; 18i i i6( ) ¯ ˆ [ ] ( )y g g a b= -

 f . 19i
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j
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The fluxes in the frequency-space are as follows:
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where v i is the fluid 3-velocity, and W v v1 1 i
iº - is the

Lorentz factor. For the details of the derivation, we refer
readers to Cardall et al. (2013), Mezzacappa et al. (2020).

The corresponding gravitational source terms for sgrav are
given by the following:

 s K ; 22j
j

ij
ijgrav

6 ¯ ˆ { ˆ } ( )y g g a= -  +

  s
1

2
,

23

i k i
k jk

i jkgrav
6

i { }¯ ˆ ˆ ˆ ˆ

( )

y g g a b a g= -  +  + 

where Kij is the extrinsic curvature. The only nonvanishing
geometrical source terms for sgeom arising for the evolution
equation of i are

s 0; 24geom ( )=

 s f , 25ik
l k

geom
i l

ˆ ( ) ( )= G

where the 3-Christoffel symbols ik
l

Ĝ associated with the
reference metric ijĝ . Finally, the radiation–matter coupling
source terms for srad are given by

s n ; 26rad radˆ ( )a g g= - m
m

s . 27irad radi ˆ ( )a g g g= m
m

2.2. Coupling to the Hydrodynamical and Metric Equations

The radiation fields contribute to the total energy-momentum
tensor, which affects the hydrodynamical and metric equations.
The hydrodynamical evolution equations are essentially the
same as those in Cheong et al. (2021, 2022), except that the
radiation four-force also arises in the source terms of energy
and momentum equations, namely as follows:

s s s dV ; 28
species

rad ( )òå -t t n

s s s dV . 29S S
species

radi i i ( )òå - n

To consistently solve the metric equations, the contribution
of the radiations must be taken into account as well. This can
be done simply by including the 3+ 1 decomposed source
terms for radiation into our metric solver (Cheong et al.
2020, 2021). The 3+ 1 decomposed source terms for radiation
can be obtained by

U n n T , 30rad
species

rad{ } ( )å= m n
mn

S n T , 31i i
rad

species
rad{ } ( )å g= - m n
mn

S Tand , 32i j
rad

species
rad{ } ( )å g g= m n
mn

where Trad
mn is the frequency-integrated energy-momentum

tensor (see Equation (4)) of the corresponding type of radiation.

3. Numerical Methods

3.1. Discretization

The discretization in the spatial and frequency-space for all
quantities is based on the finite-volume approach.
An orthogonal system of coordinates x x x, ,1 2 3( ) is dis-

cretized as follows. The computational domain is divided into
N1×N2×N3 cells, where each cell can be represented with a
vector of integer numbers (i, j, k) and 1� i� N1, 1� j� N2

and 1� k�N3. The cell bounds are given by x x,1 1( )- +i 1 2 i 1 2 ,
x x,2 2( )- +j 1 2 j 1 2 , and x x,3 3( )- +k 1 2 k 1 2 , respectively. In other
words, the mesh spacings can be represented as

x x x
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x x x
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The cell volume and the surface area, which are associated with
the reference metric ijĝ , are defined as

V dx dx dx ; 35
cell

1 2 3ˆ ( )ò gD º

A dx . 36i j j i

surface

,ˆ ( )ò gD º ¹

For the calculation of the cell volume ΔV, surface ΔA, and the

3-Christoffel symbols ik
l

Ĝ , we refer readers to the appendix
section in Cheong et al. (2021).
Additionally, the frequency-space is discretized by Nν

frequency-bins, where each bin can be represented with an
integer 1� f�Nν, and the corresponding bounds are given by

,( )n n- +f 1 2 f 1 2 . The mesh spacing in the frequency-space can
be written as

, 37( )n n nD = -+ -f f 1 2 f 1 2

and with the cell center

1

2
. 38( ) ( )n n n= ++ -f f 1 2 f 1 2

In most of the cases, the frequency-bins are logarithmically
spaced. Given the upper and lower bounds of the frequency-
bins, Nmax 1 2n nº +n , and min 1 2n nº , and the number of
frequency-bins Nν, the frequency-space can be discretized as
the following. The Δν for the first frequency-bin (at f=1) can
be obtained by

q

q

1

1
, 39

Nmax min ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )n n nD = -
-
- n
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º
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is the scale factor. The rest of the Δν can be obtained by the
recursion relation

q . 41( )n nD = D -f f 1

With the relation between the width of the frequency-bin Δν

and also the corresponding cell interface and center (see
Equations (37) and (38)), the grid of the frequency-space can
be generated. The cell volume and the surface area in the 1D
(spherically symmetric) frequency-space are as follows:

V d A4 ; 4 . 42
cell

2 2 ( )ò pn n pnD º D ºn n

In Gmunu, the radiation quantities are volume-averaged in
the spatial space and frequency-integrated in the momentum
space. In particular, the quantity qá ñ at the centroid , , ,( )i j k f
and the cell interface , , ,( )+i 1 2 j k f can be expressed as

q q
V

dV dV
1

, 43
V V

, , ,
, , , ,

( )ò òá ñ º
D

n
D D n

i j k f
i j k i j k f

and

q q
A

dA dV
1

,

44

A V
, , ,

, , , ,

( )

ò òá ñ º
D

n+
+ D D n+

i 1 2 j k f
i 1 2 j k i 1 2 j k f

respectively.

3.2. Higher Moments

Since only the first two moments (the zeroth- and first-
moment  and i) are evolved (see Equations (12) and (13))
while the higher moments such as mn and mnr in general
cannot be expressed in terms of  and i, a closure relation for
determining the higher moments is needed to close the whole
system.

In this work, we adopt the (approximate) analytic closure,
which combines the optically thin and optically thick limits

  d d , 45thin thin thick thick ( )= +mn mn mn

where  thin
mn and  thick

mn are the Eulerian-frame radiation pressure
tensors in the optically thin and thick limit respectively. Here,
we have defined

d d
1

2
3 1 ;

3

2
1 , 46thin thick( ) ( ) ( )c cº - º -

where , 11

3⎡⎣ ⎤⎦c Î is the Eddington factor. Similarly, the third

moment in the fluid-frame, which is needed to compute the
energy advection term, can be expressed as

  d d . 47thin thin thick thick ( )= +mnr mnr mnr

In the optically thin limit, the radiation pressure tensor mn in
the Eulerian-frame is chosen to be (see Shibata et al. 2011)

 
 
 

; 48
i

i
thin ( )=mn

m n

while the corresponding fluid-frame third moment is

 
  


. 49thin 2 3 2( )
( )=mnr

m n r

On the other hand, in the optically thick limit, where the fluid
and radiation are in equilibrium, the radiation field is isotropic
in the comoving frame

 h
1

3
; 50thick ( )=mn mn

where hμν= gμν+ uμuν. Correspondingly, the radiation pres-
sure tensor mn in the Eulerian-frame is

  

 

Wv Wv

Wv Wv
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3

1

3
; 51

thick ( )( )

( )( ) ( )( ) ( )

g

g g

= +

+ +

mn m n mn

a
m a n

b
n b m

which can be expressed in the terms of the variables in the
Eulerian-frame by


 

W
W W v
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1
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+
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i
i

i
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⎡
⎣

⎤
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[( ) ]
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+
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b
a b

a a

a
a

The fluid-frame third moment in the optically thick limit is

   h h h
1

5
. 54thick ( ) ( )= + +mnr m nr n rm r mn

Note that Equation (48) is derived by assuming the radiation
is symmetric around the direction parallel to the flux
(Murchikova et al. 2017). Although this assumption is valid
in spherical symmetry, this is not guaranteed in general cases.
For instance, while this relation is asymptotically correct in the
optically thick region, this is in general not the case in the free-
streaming region because the radiation in the vacuum is not all
propagating in the same direction (Foucart 2023). As a result,
this approach fails to describe crossing radiation beams (see,
e.g., Sądowski et al. 2013; Foucart et al. 2015; Weih et al.
2020b; Foucart 2023).

3.3. Closure Relation

A closure relation is needed to compute the Eddington factor
χ. The choice of closure relation affects the accuracy of the
two-moment solution. For more formal discussion and
comparison of different analytic closure relations, we refer
readers to Murchikova et al. (2017), Foucart (2018), and
Richers (2020). In this work, we adopt the maximum-entropy
closure (Minerbo 1978), which is given by

1

3

2

15
3 3 ; 552 2( ) ( ) ( )c z z z z= + - +

where the flux factor ζ is defined as

   . 562 ( )z º m
m

In the optically thin limit, ζ≈ 1, and thus χ≈ 1. Conversely, in
the optically thick limit, ζ≈ 0, and thus χ≈ 1/3.
Since the flux factor ζ is defined by the fluid-frame moments

 andm instead of the observer-frame moments  and m, the
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computation of ζ requires a root-finding process. As in Foucart
et al. (2015), Weih et al. (2020b), we numerically find the root
of

  


f . 57
2 2

2
( ) ( )z

z
=

- m
m

Since f ( )z is smooth and its derivative can be expressed
analytically, we numerically solve Equation (57) with the
Newton–Raphson method, which is usually more efficient than
bracketing methods. In case the Newton–Raphson method fails
to converge, we use the Brent–Dekker method to solve this
equation in the range 0, 1[ ]z Î .

3.4. Advection in Space

The numerical method for computing the fluxes for space
advection is essentially the same as the high-resolution shock-
capturing method, except that a slightly modified HLL
Riemann solver from Harten et al. (1983) is used. As pointed
out by multiple authors (e.g., O’Connor 2015; Foucart et al.
2015; Kuroda et al. 2016; Skinner et al. 2019; Weih et al.
2020b; Radice et al. 2022), the standard HLL Riemann solver
would work only for the optically thin limit, while it fails to
reduce the asymptotic diffusion limit when the opacity
(absorption plus scattering) is large. To recover the asymptotic
diffusion limit, in this work, we adopt the modification
proposed in Audit et al. (2002), which has been applied in
O’Connor & Ott (2013), Kuroda et al. (2016). To keep the
notation compact, we discuss the approach in the x-direction
for simplicity. Specifically, the HLL fluxes for  and i are
modified as

f
F F q q

; 58HLL ( )
( )

l l d l l
l l

=
- + -

-+
+ - - + + + - + -

+ -
i 1 2

i 1 2
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f
F F q q

F F

,

1
2

j j j j

j j

HLL
2

2

j

( )

( ) ( )

( )

d l l d l l

l l

d

=
- + -

-

+ -
+

+

+ + - - + + + - + -

+ -

+
- +

i 1 2

i 1 2 i 1 2

i 1 2

where λ± is for the characteristic speeds in the x-direction.
δi+1/2 is the newly introduced modification parameter, which
is defined as

x
tanh

1
; 60

as
⎜ ⎟
⎛
⎝

⎞
⎠( )

( )d
k

=
D

+
+

i 1 2
i 1 2

where Δx is the grid width, and

61a s a sas( ) ( ) ( ) ( )k k k k k= + ++ +i 1 2 i i 1

is the total opacity at cell interface of index i+ 1/2. In the
optically thin region, the modification parameter δ≈ 1 so that
the modified flux (Equation (58)) reduces to the standard HLL
flux. Conversely, the numerical dissipation term vanishes in the
optically thick region as the modification parameter δ= 1.

The characteristic speeds along the i direction are given by
the interpolation of the characteristic speeds between the
optically thin and thick limit (see Shibata et al. 2011)

d d ; 62i i i
thin ,thin thick ,thick ( )l l l= +  

where the characteristic speeds in the optically thin and thick
limits are given by



 
; 63i i

i

j
j

,thin
∣ ∣ ( )l b a= - 

W p r

W

2

2 1
; 64i i

i

,thick

2

2
( )l b= - +


+

with r W Wp2 1 2ii i2 2 2( ) ( )a gº + - ; and p i≡ αv i/W. Note
that, to prevent superluminal characteristic speed, Gmunu
reconstructs   , i( ) instead of  , i( ) (O’Connor &
Couch 2018b; Weih et al. 2020b).

3.5. Advection in Frequency-space

The computation of the fluxes in frequency-space fν
(Equations (20) and (21)) requires the Eulerian decomposed
variables of the third-rank moment mnr, which can be obtained
by (see Cardall et al. 2013; Mezzacappa et al. 2020)

  ; 65( )g g g=mnr
s
m

k
n

l
r skl





W

v ; 66( )= +mn
mn

r
mnr





W

v ; 67( )= +m
m

n
mn




 
W

v ; 68ttt3 ( )a= + =m
m

where the third-rank moment mnr can be obtained by
Equation (3) with the fluid-frame moments    , , ,{ }m mn mnr .
Note that fluid accelerations (i.e., time-derivatives of the

fluid velocities) involve the fluxes in frequency-space fν
(Equations (20) and (21)). The terms that are proportional to
the fluid accelerations are effectively of the order of v c2 2( )
in the radiation transport equations in the comoving frame
(Buchler 1979; Kaneko et al. 1984; Munier & Weaver 1986;
Lowrie et al. 2001; Rampp & Janka 2002; Just et al. 2015). The
radiation transport equations in the comoving frame are correct
up to the order of v c( ) if these terms are ignored (Just et al.
2015; O’Connor & Couch 2018b; Skinner et al. 2019). In the
current implementation, the time-derivatives of the Lorentz
factor Wt( )¶ and the velocities Wvt

i( )¶ are calculated simply by
first-order backward differencing with the values of the
previous time step, similar to O’Connor (2015). Adding these
terms while preserving numerical stabilities is nontrivial; the
proper treatment of these terms will be investigated in a future
study.
Similar to the advection in space described in Section 3.4,

the frequency advection term integrated with a frequency cell
dVν at the fth frequency cell can be calculated by

f

f f

dV

A A

1

, 69

V 2
2⎡

⎣
⎤
⎦

[ ]

[( ) ∣ ( )∣ ] ( )

ò n
n¶

= á ñD - á ñD

n n n

n n n n

D

+ -

n f

f 1 2 f 1 2

where the cell surface area is given by Equation (42). As stated
in Section 3.1, the advection term is integrated with the
corresponding frequency-bin since Gmunu manipulates fre-
quency-bin-integrated radiation quantities. Currently, Gmunu
handles this energy advection term explicitly.
Since the fluxes in frequency-space fν can be expressed in

terms of linear combinations of the fluid-frame radiation
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momenta    , , ,{ }m mn mnr , the energy and momentum are
conserved as long as the fluxes vanish at the outer boundary in
the frequency-space. Similar to Müller et al. (2010), Kuroda
et al. (2016), we split the flux as

f f f ; 70L R ( )á ñ º á ñ + á ñn n n+ +f 1 2 f f 1

where we have defined

f f w ; 71L ( )á ñ º á ñn nf f f

f f w1 ; 72R ( ) ( )á ñ º á ñ -n nf f f

with the weighting function w

w
j

j j
. 73( )º

+

s

s s
+

- +
f

f 1 2

f 1 2 f 1 2

Here, js+f 1 2 is the weighted geometric mean of the distribution
function j at cell interface f+ 1/2, which is given by

 
j , 74

r r1

⎜ ⎟⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )

n n
ºs

s

+

-
+

+

+ +

f 1 2
f

f

f 1

f 1

f 1 2 f 1 2

with r ( ¯ ) ( ¯ ¯ )n n n nº - -+ + +f 1 2 f 1 2 f f 1 f , where n̄f denotes the
centroid of the f th cell. By default, we use a harmonic
interpolation by setting σ= 1.

Note that, as discussed in Mezzacappa et al. (2020), this
frequency-space advection approach has been developed in the
context of Lagrangian two-moment schemes (Müller et al.
2010) to ensure neutrino number conservation. However,
despite the fact that the fluxes in frequency-space fν can be
expressed in terms of linear combinations of the fluid-frame
radiation momenta    , , ,{ }m mn mnr and the success in the
frequency advection and application tests (see Sections 4.7 and
5.2 below; also see O’Connor 2015; Kuroda et al. 2016), it is
still unclear whether the neutrino number conservation is still
preserved (up to machine precision) if the same approach is
applied directly to the Eulerian two-moment scheme as in
O’Connor (2015), Kuroda et al. (2016). Further investigations
and comparisons of different frequency advection schemes are
needed, which will be left as future work.

3.6. Radiation–Fluid Interactions

The radiation–matter coupling source terms (Equation (7))
can be very large when the opacities are large. From the
numerical point of view, these interaction source terms can
become very stiff in the optically thick regime, and applying
explicit time integration would be inefficient due to the
extremely strict constraints on the time steps. IMEX Runge–
Kutta schemes (e.g., Ascher et al. 1997; Pareschi &
Russo 2005) offer an effective approach to overcome this
challenge. These schemes have been applied and tested
previously in Gmunu for resistive magnetohydrodynamics
(Cheong et al. 2022), and also in several other radiation
hydrodynamics codes (e.g., O’Connor 2015; Foucart et al.
2015; Kuroda et al. 2016; Weih et al. 2020b; Anninos &
Fragile 2020; Radice et al. 2022; Izquierdo et al. 2023). For the
details of the implementation of IMEX in Gmunu, we refer
readers to our previous work (Cheong et al. 2022).

In general, most of the fluid conserved variables qhydro have
to be solved implicitly all together with the radiation moments
(see, e.g., Kuroda et al. 2016). However, the computational cost
is high because one will need to update the primitive variables

of fluid (such as pressure and specific energy) during the
iteration when tabulated equations of state are being used. In
this work, as in O’Connor (2015), Foucart et al. (2015), and
Radice et al. (2022), we implicitly solve radiation moments
 q q,

j
{ } only, and the coupling to the fluid is treated explicitly
(see Section 3.6.2). Investigations of more-advanced fully
implicit treatments such as Skinner et al. (2019), Laiu et al.
(2021) are left as future work.
An implicit step that updates the solution of the radiation

moments  q q,
j

{ } from the time step n (which is denoted as
qn) to the next time step n+ 1 (which is denoted as qn+1) can
be expressed as

q q s qt . 75rad ( ) ( )= + D+ +n 1 n n 1

To obtain the updated solution qn+1, we solve the nonlinear
system f q( ), which is defined as

f q q q s qt . 76rad( ) ( ) ( )º - + + Dn

Currently, we solve this nonlinear system by using a
multidimensional Broyden method. The Jacobian ∂fi/∂qj of
fi(qj) is obtained numerically by forward differencing. The
implementation of Broyden solver and computation of the
Jacobian follows Press et al. (1996).

3.6.1. Initial Guess

A proper initial guess is needed for the implicit step. In this
work, we follow the approach introduced by Radice et al.
(2022). Although only monochromatic source terms (i.e.,
Equations (8) and (9)) are considered in this approach, we
find that this method usually provides a good initial guess. For
completeness, we describe the procedure of obtaining the initial
guess at a given radiation frequency ν. First, we transform the
solution qn into fluid-frame, and denote it as  , i{ ˜ ˜ }, and then
update the fluid-frame moments by (see the Lagrangian two-
moment model in Mezzacappa et al. 2020)

  t
W

; 77a
ˆ ˜ ( ˆ ) ( )a

h k= + D -

  t
W

; 78i i a s i
ˆ ˜ ( ) ˆ ( )a

k k= - D +

where ̂ and i
ˆ denote the updated fluid-frame moments.

Second, we transform the updated ̂ and i
ˆ into the Eulerian-

frame ̂ and i
ˆ by assuming optically thick




W W n
3

4 1 2 ; 792ˆ ˆ
( ) ˆ ( )= - - a

a

   W W W n v
4

3
; 80i i i

2⎛
⎝

⎞
⎠

ˆ ˆ ˆ ˆ ( )= + - a
a

where0
ˆ can be computed by the fact that u 0ˆ =a

a , and thus
 n vi iˆ ˆ= -a

a . The resulting Eulerian-frame moments ̂ and
i
ˆ are used as the initial guess of the implicit step. Here, we
assume the optically thick limit since the initial guess becomes
important only in the optically thick regime.
Note that, as discussed in Radice et al. (2022), the updated ̂

and i
ˆ are exact solutions only at the leading order in v/c

where uμ∂μ≈W∂t and when only monochromatic source
terms are considered. However, the corresponding Eulerian-
frame moments ̂ and i

ˆ are not correct solutions even if the
closure is taken into account during the transformation.
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3.6.2. Coupling to Fluid

Once the radiation moments are solved, we explicitly update
the fluid’s energy and momentum by

q q t s dV , 81
species

rad ( )òå - Dt t n

q q t s dV , 82S S
species

radi i i ( )òå - D n

where srad and srad i are obtained by Equations (26) and (27)
with the updated radiation moments.

3.6.3. Rank of Nonlinear System

In general, a nonlinear system of dimensions N 1dim( )+ ´
N Nspecies´n must be solved. Here we assume the fluid
quantities are kept fixed during the implicit step and consider
Nν frequency-bins, Nspecies species of neutrino, in Ndim
dimensional spatial space. Since the size of the nonlinear
system could be very large, it is computationally expensive if
we fully solve this system. In practice, depending on the nature
of the problem, it is not necessary to apply the full implicit
solver. Avoiding full implicit treatment would significantly
reduce the computational cost. Similar to Just et al. (2015), we
list different modes of the radiation-interaction source terms’
treatment, which are implemented in Gmunu:

1. Multispecies multigroup. All radiation moments  q q,
j

{ }
are solved fully implicitly. This is the general mode
discussed above, where the dimensions of the nonlinear
system is N N N1dim species( )+ ´ ´n .

2. Single-species multigroup. The radiation moments
 q q,

j
{ } are solved for each species separately. The
dimensions of the nonlinear system now reduced to
Nspecies nonlinear systems of dimensions
N N1dim( )+ ´ n . Since the source terms that contain
species coupling are treated explicitly in this mode, this
mode is less accurate when the species coupling is strong.

3. Single-species single-group. The radiation moments
 q q,

j
{ } are solved for each species and for each
frequency-group separately. The dimensions of the
nonlinear system now reduced to Nspecies× Nν nonlinear
systems of dimensions N 1dim( )+ . Since this mode is
purely monochromatic, the coupling of a different
frequency-group cannot be done implicitly. In this mode,
only the emission and/or absorption and elastic scattering
source terms (E A

m and ES
m , see Equations (8) and (9))

are solved implicitly, while the source terms that contain
species or frequency couplings are treated explicitly. In
this case, we have included the analytic Jacobian for
implicit solver by following Radice et al. (2022). The
details of which can be found in Appendix A.

In practice, to minimize the computational cost, we switch to
different modes in different stages of the simulations, where the
criteria of which are highly problem dependent.

3.7. Transformation from Eulerian-frame to Fluid-frame

As shown in the previous sections, although the radiation
fields are solved in the Eulerian-frame, the radiation moments
in the fluid-frame are often needed in most of the calculations.
The most straightforward way to compute the fluid-frame
moments  ,{ }m is to contract the energy-momentum tensor

 mn with the comoving four-velocities uμ. Alternatively, we
found it is useful to directly express the fluid-frame moments
 ,{ }m in terms of the Eulerian-frame moments  ,{ }m ,
especially when only part of the fluid-frame moments is
needed. We decompose    , ,{ }m m

m and express them in
terms of the Eulerian-frame moments  ,{ }m by following
Deppe et al. (2022), Radice et al. (2022). The details of which
can be found in Appendix B.

3.8. Enforcing Validity

Unphysical solutions occasionally arise during the evolution
due to the numerical round-off errors especially when the
radiation energy density  is very small. In Gmunu, we include
the following error handling policies to enforce the validity of
the numerical solution.
Similar to the standard “atmosphere” treatment for rest-mass

density ρ in hydrodynamical simulation (e.g., Cheong et al.
2020, 2021), we enforce the nonnegativity of the energy
density  . In particular, we define a minimum allowed
distribution function fmin and a threshold fthr, where

 f f 0thr min . Whenever the energy density drops below the
threshold (i.e., when  fthr( )n n< ), we set the energy to be the
minimum allowed energy density fminn , and enforce a vanishing
flux by setting  0i( )n = . In the gray transport cases, fmin and
fthr represent the minimum allowed energy density and the
threshold directly.
In addition to the negative energy density, unphysical

solutions could also arise when   i
i

2> . Similar to Kuroda
et al. (2016), Rivera-Paleo & Guzmán (2019), we enforce

  min , , 83i i max max( ) ( )x x x ´

where we have defined the Eulerian flux factor

   , 84i
i

2 ( )x º

and maxx is the maximum allowed Eulerian flux factor. Unless
explicitly stated, we set fthr= 10−30, f 0min= , and 1maxx = .

4. Numerical Tests

In this section, we present a selection of representative test
problems with our code to assess the performance and accuracy
of our new two-moment-based module. The tests range from
special-relativistic to general-relativistic radiation transfer, from
one to multiple dimensions, and from frequency-integrated
(gray) to multifrequency group. Here, we consider only the
monochromatic source terms (i.e., at a given radiation
frequency ν, the calculation of the radiation emissivity,
absorption, and scattering coefficients ( )h n , a ( )k n , and s ( )k n
do not depend on other radiation frequencies n n¢ ¹ ; see
Equations (8) and (9)) with idealized opacities. Tests with
sophisticated realistic neutrino opacities are presented in
Section 5.
For the frequency-integrated (gray) test, we denote the

frequency-integrated radiation energy and momentum in the
fluid-frame as

 J dV H dV; , 85i i
0 0

( )ò ò= =n n
¥ ¥

and so as the case for the fluid-frame moments

 E dV F dV; . 86i i
0 0

( )ò ò= =n n
¥ ¥
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In addition, we denote the frequency-integrated emissivity η,
energy-averaged absorption and scattering coefficients as

dV , 87
0

¯ ( )òh h= n
¥

fdV

fdV
, 88a

a0

0

¯ ( )
ò

ò
k

k n

n
=

n

n

¥

¥

fdV

fdV
, 89s

s0

0

¯ ( )
ò

ò
k

k n

n
=

n

n

¥

¥

where f is the distribution function. Unless otherwise specified,
all simulations reported in this paper were performed with HLL
Riemann solver Harten et al. (1983), second-order Minmod
limiter Roe (1986) with IMEX-SSP2(2,2,2) time integrator
Pareschi & Russo (2005).

4.1. Transparent Fluid with a Velocity Jump

In this section, we consider the propagation of radiation in a
moving optically thin medium as in Radice et al. (2022). In
particular, we consider a 1D mildly relativistic fluid moving
with Lorentz factor W= 2 in an opposite direction in a flat
spacetime. The background fluid velocity profile is chosen to
be

Wv
W x

W

1 , if 0

1 , otherwise
. 90x

2

2

⎧
⎨⎩

( )=
- >

- -

The initial profile of the radiation is set to be

E
x1, if 0.5

0, otherwise
, 91⎧

⎨⎩
( )=

< -

and Fx= E. To consider the case in an optically thin limit, we
consider zero opacities, i.e., 0s a¯ ¯ ¯h k k= = = . In this test, the
hydrodynamical profiles are kept fixed, and disable the
interaction between the fluid and radiation during the evolution.
We assume slab geometry, and the computational domain
covers the region 1, 1[ ]- with 200 grid points.

Figure 1 shows the energy density profile of the radiation E
at t= 1, where the radiation has propagated through the
velocity jump at x= 0. Despite the discontinuity of the velocity

profile, the numerical solution obtained by Gmunu has artificial
oscillations neither at the velocity jump interface x= 0; nor at
the radiation front x= 0.5. This test demonstrates that Gmunu
is able to handle the radiation transport in a mildly relativistic
moving fluid.

4.2. Homogeneous Radiating Sphere

The homogeneous radiating sphere test is a toy model of a
hot neutron star, which emits neutrinos. As discussed in Smit
et al. (1997), O’Connor (2015), Murchikova et al. (2017), and
Anninos & Fragile (2020), this test is sensitive to the chosen
closure relation. In this test, we consider a homogeneous sphere
with a radius R with constant emission, and absorption rate

a¯ ¯h k= , and simply ignore scatterings ( 0sk̄ = ). As discussed in
Smit et al. (1997), this problem has an analytic solution

I r B s r, 1 exp , , 92( ) { [ ¯ ( )]} ( )m k m= - -

where B is the strength of the initial energy density of the
radiation,

 

  s r

r Rg r r R

Rg r r R
R

r
,

, if   and 1 1,

2 , if   and 1 1,

0 otherwise,

93

2
⎧

⎨
⎪

⎩
⎪

⎛
⎝

⎞
⎠

( )

( )

( )

( )

m

m m m

m m=

+ < -

-

and

g r
r

R
, 1 1 , 94

2
2⎛

⎝
⎞
⎠

( ) ( ) ( )m m= - -

in which cosm qº is the directional cosine. The analytic
solutions for J and H are

J H d I,
1

2
. 95

1

1
0,1{ } ( ){ }ò mm=

-

Note that when the background velocities are zero, the
radiation moments in the fluid-frame are the same as in
Eulerian-frame.
We simulate this problem by setting the radius of the sphere

R and the strength of the initial energy density of the radiation
B to be unity (i.e., R= 1= B). The initial profile of the
radiation is set to be

E F E
B r R

B
,

, 0 if  ,

, 0.1 otherwise.
96r R

r

2

2

⎧
⎨
⎩( )( )( )

( )
( )=

<

The hydrodynamical profiles are kept fixed, and disable the
interaction between the fluid and radiation during the evolution.
To see how our code behaves with different opacities in this test,
we perform the test with three different absorption opacities:

10 , 10, 1a
6k̄ = , respectively. Although this is a spherically

symmetric test problem, which can be run in 1D spherical
coordinates (e.g., O’Connor 2015), we simulated this problem in
1D Cartesian coordinates (x, y, z) to minimize the symmetry
imposed in the simulation. In particular, the computational domain
covers the region 5, 5 5, 5 5, 5[ ] [ ] [ ]- ´ - ´ - with the
resolution 2563.
Figure 2 compares the energy density E and the radial flux

ratios Fr/E along x-axis at t= 10 with the analytic solutions.

Figure 1. The energy density profile of the radiation E at t = 1, where the
radiation has propagated through the velocity jump at x = 0. Despite the
discontinuity of the velocity profile, the numerical solution obtained by Gmunu
does not have artificial oscillations at the velocity jump interface x = 0, or at
the radiation front x = 0.5.
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For the high-opacity cases (i.e.,  10ak̄ , the red and green
dots), Gmunu resolves the optically thick and thin region well
despite the discontinuities at the surface of the sphere. While
the analytic closure gives the correct second moment in the
high-opacity regime and the free-streaming regime, this is not
the case for the intermediate regime (e.g., for the region where
the opacity κ 1) (Murchikova et al. 2017; Weih et al. 2020b).
As a result, for the low-opacity ( 1ak̄ = , blue dots) case, the
numerical results of the energy density E inside the sphere are
less accurate while the exterior energy density tail still matches
the analytic results. A similar feature has also been seen in
Weih et al. (2020b).

4.3. Diffusive Limit in a Scattering Medium

In this test, we consider the diffusion of radiation when the
scattering opacity is high, and the mean free path is small
compare to the grid size Δx (e.g., Radice et al. 2022; Izquierdo
et al. 2023). The initial profile of the radiation is set to be

E x x
1

2

1

2
, 97⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( )q q= + - -

where x( )q is the Heaviside step function, and F i= 0. We
consider this diffusion in a purely scattering medium; we set

0 a¯ ¯h k= = , and 10s
3k̄ = . Here, we again consider static

background hydrodynamical profiles, and assume slab geome-
try. The computational domain covers the region 2, 2[ ]- with
256 grid points.

The evolution of the energy density E can be approximated
by the diffusion equation E E 3t x s

2( ) k¶ = ¶ when the time-
scales are longer than the equilibrium time (Radice et al. 2022;

Izquierdo et al. 2023). The exact solution of which is given by

E t x
x

t

x

t
,

1

2
erf

4
erf

4
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where 1 3 s( )t k= is the diffusion timescale.
Figure 3 shows the energy density profile of the radiation E

at time t= 10. As shown in the figure, the numerical solution
obtained by Gmunu (red dots) agrees with the reference
analytic solution from Equation (98) in the diffusive limit
(black solid line). This demonstrates that Gmunu is able to
capture a correct diffusion rate even when the scattering
opacity is high.
To quantify the convergence rate at t= T≡ 10, we perform

the simulation with different resolutions, and compute the
L1-norm of the difference between the exact and final (t= 10)
values of the energy density of the radiation E as

E T E T

E T E T V

V
; 99i

i

i
i

exact 1

exact

∣∣ ( ) ( )∣∣
∣ ( ) ( )∣

( )
å

å
- º

- D

D

Figure 4 shows the L1-norm of the difference between the exact
and final (t= 10) values of the energy density of the radiation
E. The order of convergence of this test is roughly 1.86.

4.4. Diffusive Limit in a Moving Medium

In this test, we consider a propagation of a radiation in a
moving purely scattering medium as in Radice et al. (2022),
Izquierdo et al. (2023). This is known to be a demanding test so
that the result is highly sensitive to the implicit treatment
(Radice et al. 2022). Consider a Gaussian pulse of radiation

E xexp 9 , 1002( ) ( )= -

which is fully trapped (Hμ= 0) in the medium. The radiation
flux in Euler frame can be written as

F JW v
4

3
, 101i i

2 ( )=

where J E W3 4 12( )= - in this case. The medium is set to be
purely scattering (i.e., 0 a¯ ¯h k= = ) with high scattering opacity

10s
3k̄ = , which moves with a relativistic velocity v x= 0.5.

Figure 2. Energy density E (upper panel) and the radial flux ratios Fr/E (lower
panel) along x-axis at time t = 10 of the homogeneous radiation sphere test.
Since the profiles are extracted along the x-axis, the x coordinate has the same
value of radius r. The dots show the numerical results obtained by Gmunu
while the solid lines show the corresponding analytic solution. For the high
opacity cases (i.e.,  10ak̄ , the red and green dots), the numerical results are
mostly indistinguishable from the reference solution except the region nearby
the discontinuity at the surface of the sphere. However, for the low-opacity case
( 1ak̄ = , the blue dots), the numerical results of the energy density E are less
accurate inside the sphere. This is because the analytic closure does not give the
correct second moment in the intermediate opacities regime (i.e., κ  1).

Figure 3. The energy density profile of the radiation E at t = 10 in a purely
scattering medium, with high scattering opacity 10s

3k̄ = . The red dots show
the numerical solution obtained by Gmunu while the black solid line shows the
reference analytic solution from Equation (98) in the diffusive limit. This
indicates that Gmunu captures correct diffusion rate even in diffusive limit.

10

The Astrophysical Journal Supplement Series, 267:38 (22pp), 2023 August Cheong et al.



Here, we assume slab geometry, and the computational domain
covers the region 5, 5[ ]- with 1024 grid points.

Figure 5 shows the radiation energy density profile at time
t= 4. As shown in the figure, the results obtained by using
Gmunu agree with the semianalytic reference solution.

4.5. Diffusive Point Source

Here, we present a test, which also focuses on the scattering
regime, i.e., the diffusive point-source test proposed by Pons
et al. (2000). This test describes the evolution of a single point
source in the diffusive limit. The initial condition, and also the
analytic solution, is given by

E r t
t

r

ct
, exp

3

4
, 102s

N
s

2 2dim

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ¯ ¯ ( )k k
=

-

F r t
r

t
E r t,

2
, , 103r ( ) ( ) ( )=

where Ndim is the number of dimensions, which is set to be 2. In
this test, we consider a purely scattering medium with a
scattering opacity 100sk̄ = . The simulation starts from t= 1,
to t= 4. We assume cylindrical geometry in 1D, and the
computational domain covers the region 0, 1[ ] with 128 grid
points.

Figure 6 compares the energy density E at different time t to
the analytic solution. Because the simulation starts from t= 1,
the Gmunu result is identical to the analytic solution. As shown
in the figure, the Gmunu result agrees with the analytic
solution.

4.6. Shadow Casting Problems

Here we present multidimensional tests, which describe the
interaction between radiation and a cylinder with high
absorption opacity.

First, we consider a radiation beam propagating from left to
right. The initial condition is given as


E

x y1, if  0.4 and  0.12, 0.12 ;

10 , otherwise,
104

16
⎧
⎨⎩

[ ]
( )=

- Î -
-

and we set F E F E F E, , 0.999999, 0, 0x y z( ) ( )= everywhere
in the computational domain. In this test, we consider a
cylinder of radius R= 0.07, and located at 0.2, 0( )- with a
extremely high absorption coefficient, 10a

6k̄ = . This initial
condition is kept fixed during the entire evolution for
x�− 0.4. Note that this high absorption opacity ak̄ is around
6 orders of magnitude larger than the radiation moments,
resulting in significantly stiff interaction source terms in the
evolution equations. We choose this stiff situation on purpose
to challenge the nonlinear implicit solver and the IMEX time
integrator implemented in Gmunu. This test is run with a
uniform grid 256× 128, which covers the region 0.5, 0.5[ ]-
for x and 0.25, 0.25[ ]- for y.
Figure 7 shows the radiation energy density profile at t= 1.

As shown in the figure, the radiation beam propagates from left
to right, and is obstructed by the optically thick cylinder. This
results in a shadow behind the cylinder, and a split for the beam
into two parts, which keep propagating to the right.
Shadow casting tests have been carried out in more

nontrivial geometries by considering a point source (Just
et al. 2015; Kuroda et al. 2016; O’Connor & Couch 2018b).
Similar to Just et al. (2015), Kuroda et al. (2016), and

Figure 4. The L1-norm of the difference between the exact and final (t = 10)
values of the energy density of the radiation E at different resolution N. The
second-order ideal scaling is given by the black dashed line. In this test,
second-order, accurate strong-stability-preserving IMEX-SSP2(2,2,2) time
integrator from Pareschi & Russo (2005), the Harten, Lax, and van Leer
Riemann solver from Harten et al. (1983), and a second-order solver from
Minmod limiter Roe (1986) are used. The code achieves roughly 1.86 order of
convergence in this test.

Figure 5. The energy density profile of the radiation E at t = 4 in a purely
scattering medium, with high scattering opacity 10s

3k̄ = , which moves with a
relativistic velocity v x = 0.5. The red dots show the numerical solution
obtained by Gmunu while the black solid line shows the corresponding
semianalytic solution. Note that this is known to be a demanding test, in the
sense that the result is highly sensitive to the treatment of the optically thick
limit (Radice et al. 2022). This figure shows that the results returned by Gmunu
agree with the semianalytic solution.

Figure 6. Comparison of the energy density profile E at time t = 1, 2, 3, 4 to
the analytic solution (gray solid lines). Since the simulation starts from t = 1,
the result is identical to the analytic solution. As shown in the figure, results
produced by utilizing Gmunu agree with the analytic solution.
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O’Connor & Couch (2018b), here we consider a point source,
which is located at the origin r= 0, with the radius rsrc= 1.5.
The source has the absorption opacity

r r10 exp 4 , 105a src
2[ ( ) ] ( )k = -

and emissivity η= κaJeq, where we choose Jeq= 1. In addition,
we also consider a purely absorbing sphere 0 s( ¯ ¯ )h k= = , with
radius rshadow= 2, located at a distance of d= 8 from the center
of the source. Unlike Just et al. (2015), Kuroda et al. (2016),
and O’Connor & Couch (2018b), here we consider a high
absorption opacity κa= 106 for the sphere. To make the setup
slightly asymmetric along the x− y plane, instead of placing
the absorbing sphere at the equatorial plane, we place it at the
polar angle θ= 11π/24 (i.e., the z coordinate of the center of
the absorbing sphere is d cos( )q ). This test is run in the
cylindrical coordinate (R,z) with a uniform grid 128× 128,
which covers the region 0, 12[ ] for R and 6, 6[ ]- for z.

Figure 8 shows the radiation energy density profile scaled
with r2 at t= 5, 10, 15, respectively. The scaling of r2 is to
achieve a mostly constant value in the free-streaming regime
(O’Connor & Couch 2018b). Similar to the single beam case
discussed above (see Figure 7), this sphere absorbs radiation
and produces a shadow. This indicates that our code behaves
well in this test despite that in the 2D cylindrical coordinate
with an off-angle setup.

4.7. Gravitational Redshift and Doppler Shift

The tests presented above are all frequency-integrated tests.
To test if the code handles the energy-coupling terms for
gravitational redshift and Doppler shift (see Section 3.5)
correctly, we perform the test introduced by Müller et al.
(2010), which has been used as a branch mark test by several
authors, e.g., O’Connor (2015), Kuroda et al. (2016), Anninos
& Fragile (2020), and Chan & Müller (2020).

To separately assess the handling of Doppler shift (with
nonzero velocity profile), gravitational redshift (with curved
spacetime), and the combination of these two, we mainly
follow the setup in Müller et al. (2010). In particular, we
consider a sphere with radius R= 10 km, with a uniform
density ρ= 9× 1014g cm−3. In addition, we consider a sharp
velocity profile, which mimics the accretion phase of core-

collapse supernovae


v
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c r

c r
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Given the rest-mass density and velocity profiles, the metric
quantities such as the conformal factor ψ, the lapse function α,
and the shift vector β i are calculated by utilizing the metric
solver in Gmunu (Cheong et al. 2020, 2021). The initial
neutrino profile is set as follows:

  




r R

r R
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, 10 if  ;

, 1 10 if  ,
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Figure 7. The radiation energy density profile at t = 1, where the initial
conditions are kept fixed for x � − 0.4 during the entire evolution. The
radiation beam propagates from left to right, and is blocked by the optically
thick cylinder (white dashed line) with high absorption opacity 10a

6k̄ = . As a
result, this cylinder split the beam into two. The two beams keep propagating to
the right, and a shadow is cast behind the cylinder.

Figure 8. The radiation energy density profile scaled with r2 at different time
slides. The radiation propagates spherically from the source to outside, and is
blocked by the optically thick sphere (white dashed line) with high absorption
opacity 10a

6k̄ = . As in the single beam case (see Figure 7), this sphere
absorbs radiations and causes a shadow behind it.
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where  is the blackbody function, which is a function of
frequency ν, chemical potential μ, and temperature T.
Specifically, under the chosen convention, the blackbody
function is given by

 T
h k T

, ,
exp 1

, 108
B

( )
[( ) ]

( )n m
n

n m
=

- +

where h is Planck’s constant, and kB is Boltzmann’s constant.
In this test, the chemical potential is chosen to be μ= 0, and the
temperature is set to be T= 5 MeV. The absorption coefficient
κa is set to be 60 cm−1 in the sphere (r� R) while vanishing
elsewhere. The emissivity is simply ah k= . In this test, we
consider spherical coordinate in 1D. The computational domain
covers [0, 104] km for r, with the resolution Nr= 128 and
allowing 6 mesh levels (an effective resolution of 4096). The
refinement level is decided by a ratio Δr/r. In particular, we
refine the block if Δr/r> 0.01 in any of the grid in the block.
The frequency-space is discretized into 18 groups logarith-
mically from 1 to 280 MeV/h. The simulation is performed
until the system reaches a stationary state; the results are
extracted at t 1smax = .

As discussed in Müller et al. (2010), a stationary solution is
available for this test. In particular, the average neutrino energy
〈ε〉 and the redshift-corrected luminosity Lrs obey the following
relations:

W v1 constant; 109r( ) ( )a e+ á ñ =

v

v
L

1

1
constant; 110r

r
rs ( )+

-
=

where W is the Lorentz factor. The average neutrino energy and
the redshift-corrected luminosity are defined as
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L r dV4 , 112rs
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¥

respectively. In the following, the analytic solution is computed
based on the value at the surface of the sphere, i.e., r R( )eá ñ = ,
and L r Rrs( )= . In addition, the numerical results are scaled by
their corresponding value at the outer boundary of the
computational domain, i.e., r 10 km4( )e eá ñ º á ñ =¥ , and
L L r 10 kmrs, rs

4( )º =¥ .
Figure 9 compares the rescaled average neutrino energy

〈ε〉/〈ε〉∞ and the redshift-corrected luminosity Lrs/Lrs,∞
obtained by utilizing Gmunu (red dots) and the analytic
solutions (black solid lines). As in Müller et al. (2010), we
consider three cases: namely, (i) the shape velocity profile in
flat spacetime (left column); (ii) vanishing velocities in curved
spacetime (middle column); and (iii) the shape velocity profile
in curved spacetime (right column). The numerical results
obtained by Gmunu agree with the analytic results well in all
three cases. This test demonstrates that Gmunu is able to handle
the advection terms in the frequency-space, which corresponds
to gravitational redshift and Doppler shift affects of the
radiation with different frequencies.

5. Application Examples

The tests presented in the previous section considered only
the monochromatic radiation source terms (i.e., there are no
species or frequency couplings) and with idealized opacities.
To test if our code is able to handle the radiation where
different species and frequencies are strongly coupled, in this
section, we consider the neutrino transport in the context of
core-collapse supernovae and hot neutron star as examples.

5.1. Neutrino Source Terms and Couplings

In addition to the source terms of emission, absorption, and
elastic scattering, our application examples also incorporate the
source terms of neutrino–lepton inelastic scattering, denoted as
IS
m , and neutrino-pair processes, denoted as Pair

m . These terms
describe the neutrino–electron inelastic scattering and electron–
positron pair annihilation. In this case, the radiation four-force
for neutrinos can be written as (Shibata et al. 2011;
O’Connor 2015)

     ; 113rad E A ES IS Pair ( )= + + +m m m m m

where, for each species, the inelastic scattering IS
m and the

neutrino-pair processes Pair
m terms are defined as
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Here,   h 3˜ ( ) ( ) ( )n n nº -ma ma ma is the traceless part of
 ( )nma . Quantities with a bar such as ̄ and ̄m denote the
radiation moments for antineutrinos. Rin and Rout are the kernels of
inelastic scattering while Rpro and Rann are the production and
annihilation kernels of neutrino-pair processes. As shown in
Equations (114) and (115), the radiation source term for each
species and frequency involves not only the radiation at other
frequency-bins but also different species (its antiparticle).
Note that the computation of neutrino opacities and the kernels

are nontrivial. However, the discussion of which is beyond the
scope of this work. Currently, the neutrino opacities and kernels are
provided by either tabulating NuLib9 (O’Connor 2015) tables or
coupling to our newly developed neutrino microphysics library
Weakhub (H. H.-Y. Ng et al. 2024, in preparation). To
maintain consistent comparisons to the work in the literature,
we consider the conventional set of interactions as in
Liebendörfer et al. (2005), Müller et al. (2010), O’Connor

9 NuLib is an open-source library, available at http://www.nulib.org.
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(2015), and O’Connor et al. (2018) and ignoring the weak-
magnetism and recoil corrections (O’Connor 2015). This set of
interactions is summarized in Table 1. Note that, by following
O’Connor (2015), we approximate the treatment for neutrino-
pair processes such as electron–positron annihilation and
nucleon–nucleon Bremsstrahlung. Specifically, the thermal
processes for electron-type neutrinos and antineutrinos are
not included. In addition, the full neutrino–matter interaction
terms for heavy-lepton neutrinos are approximately represented
with effective emissivity and absorption opacities. As a result,
there is no neutrino species coupling with this set of neutrino
interaction. Therefore, a multispecies multigroup implicit
solver is not necessary with these neutrino interactions.

The evolution of the electron fraction Ye, which is defined as
the number of electrons per baryon, has to be included in order
to describe matter in nuclear statistical equilibrium and
compute the neutrino emissivity and/or opacities. Since the
β-processes of νe and ēn change the electron fraction Ye, the
source term of the evolution equation of the electron fraction Ye
(see H. H.-Y. Ng et al. 2024, in preparation) is expressed as

s m
dV

s s u , 116DY u rad, rad,e e e
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n n=
¢
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n

m
n

m
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¢

where mu is the atomic mass unit. This coupling is treated
explicitly as discussed in Section 3.6.2. Specifically, the

conserved quantity for electron fraction qDYe
is updated by

q q
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once the radiation moments are solved implicitly.

Figure 9. Comparison of the numerical solutions obtained by utilizing Gmunu (red dots) and the analytic solutions (black solid lines) of the energy advection test
introduced by Müller et al. (2010). Three cases are considered in this test: namely, we consider (i) just the shape velocity profile without gravitational fields (left
column); (ii) just the gravitational fields without velocity profile (middle column); and (iii) both the shape velocity profile and gravitational fields (right column). The
upper panels show the shifted velocity profile vr + 1 (blue solid lines), conformal factor ψ (orange solid lines), and lapse function α (green solid lines) in different
cases. The middle and lower panels compare of the simulated results of the rescaled average neutrino energy 〈ε〉/〈ε〉∞ and the redshift-corrected luminosity Lrs/Lrs,∞
obtained by utilizing Gmunu (red dots) and the analytic solutions (black solid lines). In all cases, results returned by Gmunu are in agreement with the analytic
expressions. This test demonstrates that Gmunu is able to handle the frequency advection terms in the evolution of radiations, which corresponds to gravitational
redshift and Doppler shift affects of the radiation with different frequencies.

Table 1
Conventional Set of Neutrino Interactions Considered in This Work

Beta Processes Neutrino-pair Processes

νe + n ↔ p + e− e e ¯n n+ « +- +

p n eēn + « + + N N N N ¯n n+ « + + +
νe + (A, Z − 1) ↔ (A, Z) + e−

Elastic scattering Inelastic scattering

ν + N ↔ ν + N ν + e− ↔ ν + e−

ν + (A, Z) ↔ ν + (A, Z)
ν + α ↔ ν + α

Note. Here we denote the electron, antielectron, and heavy-lepton neutrino as
νe, ēn , and νx, respectively. ν represents all three species of neutrino.
Interactions that involve a specific type of neutrino are expressed explicitly. (A,
Z) represents a heavy nucleus with a mass number of A and a proton number of
Z, without including α particle. The neutrino-pair processes could be either
approximately treated as effective emissivity and/or absorption opacity or
handled by using the full production and/or annihilation kernels.
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5.2. Core Collapse of a 15 Me Star in 1D

The collapse, bounce, and early post-bounce evolution of the
15 Me progenitor star s15s7b2 of Woosley & Weaver (1995)
has become a standard test for core-collapse supernovae
simulation code (e.g., Liebendörfer et al. 2005; Müller et al.
2010; O’Connor 2015; Kuroda et al. 2016). In these works, the
equation of state of Lattimer & Swesty (1991) with an
incompressibility parameter of K= 180MeV is used. Note that
this equation of state, which has a maximum cold neutron star
gravitational mass of 1.84Me, has been ruled out already. For
the purposes of this comparison, we use the same equation of
state.

In this section, we present the core-collapse supernovae
simulation with the same progenitor, and compare our result
with the ones from AGILE-BOLTZTRAN, VERTEX, and GR1D
(O’Connor & Ott 2010; O’Connor 2015). The data of AGILE-
BOLTZTRAN and VERTEX are obtained from the online
material provided in the electronic version of Liebendörfer
et al. (2005) while the data of GR1D are reproduced by using
the code with the settings for Section 5.1 in O’Connor (2015).10

In this subsection, we use the identical NuLib table.

5.2.1. Treatments in Different Phases

As mentioned in Section 3.6.3, avoiding full implicit
treatment would significantly reduce the computational cost.
In fact, in the context of core-collapse supernovae, given that
the time step is properly chosen, a full implicit treatment that
includes fluid variables is barely necessary even when the
system is stiff (O’Connor 2015; Just et al. 2015; Mezzacappa
et al. 2020). For instance, in the optically thick region,
neutrinos are trapped in the fluid and are very close to weak
equilibrium. The net change (absorption minus emission) of the
frequency-integrated neutrinos source terms are effectively
small. As a result, the change on fluid quantities due to
neutrinos is negligible compared with hydrodynamical effects.
In addition to the fluid quantities, depending on the stage of the
collapse, it is also valid to treat part of the neutrino source
terms explicitly, which could significantly reduce the size of
the nonlinear system.

In practice, we split the simulation into three phases. In
phase (1), the collapse begins but not extremely dynamical. We
update the metric at every 0.1 ms, set the Courant–Friedrichs–
Lewy (CFL) factor to be 0.8, and check the refinement criteria
at every 10 iterations. In this phase, we use mode (3) (single-
species single-group) radiation-interaction terms’ treatment
(see Section 3.6.3). Once the maximum rest-mass density ρ is
larger than 1012 g cm−3, we switch to phase (2), where we
update the metric at every 0.01 ms, set the CFL factor to be 0.4,
and check the refinement criteria at every iteration. In this
phase, we use mode (2) (single-species multi-group) radiation-
interaction terms’ treatment. Core bounce is expected in this
phase, which is defined as when the matter entropy per baryon
is larger or equals to 3 (i.e., s� 3 kB/baryon) in the core region.
We monitor this core-bounce criteria in the core region (i.e.,
r 30 km) at each time step in this phase. Finally, we switch to

phase (3) (post-bounce phase) 20 ms after core bounce. In this
phase, the treatment for radiation-interaction terms is
unchanged. We update the metric at every 0.05 ms, set the
CFL factor to be 0.6, and check the refinement criteria at every
5 iterations.
Since the electron fraction Ye is not solved consistently in the

implicit step, it is possible that the change of the electron
fraction is too large, resulting in a nonphysical result and
eventually crashes the code. Similar to that in O’Connor
(2015), Foucart et al. (2015), we monitor the change of the
electron fraction Ye at each time step. When the relative
difference of the electron fraction Ye is larger than 10−3, we
scale down the CFL factor by multiplying by 0.9 and continue
the simulation. Otherwise, we scale up the CFL factor by
dividing by 0.9 until it goes back to the corresponding setting
in the particular phase of the simulation.

5.2.2. Numerical Setup

The computational domain covers [0, 104] km for r, with the
resolution Nr= 128, and allowing l 12max = mesh levels. For
the refinement criteria, we apply the Löhner’s error estimator
(Löhner 1987; Cheong et al. 2021) on the logarithmic rest-mass
density log10( )r . This can effectively capture the sudden
change of rest-mass density (usually arise at shock) while
keeping the refinement low elsewhere. On top of the error
estimator, to better resolve the high density region of the star,
we require the block to the finest level lmax when any of the
rest-mass density ρ in this block is larger than
ρthr≡ 5× 1012 g cm−3. Since we are mainly interested in the
inner part of the massive star in this work, we further impose a
maximum allowed refinement level at a different location. For
instance, when the smallest radius rmin in a block is smaller
than 100 km (i.e., when r 100 kmmin ), the highest allowed
refinement level is lmax. Also, when r 2 100 kmmin ´ , the
highest allowed refinement level is l 1max - , and so on and so
forth. We also enforce the refinement level to be lowest when
the block contains outer boundaries.
The frequency-space is discretized into 18 groups logarith-

mically from 1 to 280MeV h−1. We evolve three species of
neutrinos, namely, the electron neutrino νe, antielectron
neutrino ēn and heavy-lepton neutrino νx, where the muon
and tauon neutrinos (i.e., , ,¯n n nm m t and n̄t) are grouped into νx.

5.2.3. Results

Figure 10 shows the evolution of central matter entropy per
baryon s, central electron fraction Ye, and lepton number
fraction Ylep≡ Ye+ Yν as functions of central density ρc of the
collapsing 15 Me star before core-bounce. During the
deleptonization phase, the entropy per baryon increases due
to neutrino interaction. The core deleptonization ends when the
central density reaches approximately 2× 1012 g cm−3. Since
then, the neutrinos are mostly trapped, where the lepton
number fraction remains almost unchanged. In this stage, the
inner core collapses adiabatically, and the entropy per baryon
remains nearly constant. It is worthwhile to point out that the
evolution of lepton numbers is highly sensitive to the
implementations of the multigroup coupling, radiation space
advection in optically thick regions, and advection in
frequency-space for lepton number conservation, even when
the exact same neutrino microphysics is used (O’Connor 2015;
Kuroda et al. 2016).

10 GR1D is an open-source neutrino radiation transport code for core-collapse
supernovae (O’Connor & Ott 2010; O’Connor 2015). The GR1D code, and also
the parameter files, equation of state, and the NuLib tables used in O’Connor
(2015) are available at http://www.GR1Dcode.org. Note that, since the
conformally flat metric equations are equivalent to the Einstein equations in
spherical symmetry, our results here are fully general-relativistic as in GR1D
and AGILE-BOLTZTRAN.
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Strong repulsive forces of nuclear matter arise when the rest-
mass density exceeds the nuclear saturation densities. This
results in core bounce, and forms the bounce shock. In our
simulation, the core bounces at tbounce≈ 178.21 ms. In
Figure 11, we compare the radial profiles of several quantities
among different codes at the moment of core bounce. In
particular, we compare rest-mass density ρ, radial velocity
v r/c, matter temperature T, matter entropy per baryon s,

neutrino root mean squared energy  2
i

á ñn , and electron
fraction Ye. Here, the neutrino root mean squared energy is
defined by
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As shown in the figure, a shock is formed at ∼10 km, and the
matter entropy reaches 3 kB/baryon at the shock. Since the
gauge adopted in Gmunu is different from the one in AGILE-
BOLTZTRAN, VERTEX, and GR1D, a transformation is needed
in order to compare the results directly. The areal circumfer-
ential radius rcirc used in Liebendörfer et al. (2005) can be
expressed in terms of the isotropic radial coordinate riso and the
conformal factor ψ by Marek et al. (2006), Müller et al. (2010):

r r . 119circ
2

iso ( )y=

Below, we simply use r to denote the areal circumferential
radius rcirc.

Although the results produced by utilizing Gmunu are
quantitatively in good agreement with the reference models by
using AGILE-BOLTZTRAN, VERTEX, and GR1D, there are
some deviations in the inner part of the star. In particular, the
hydrodynamical quantities such as entropy s, electron fraction
Ye, and temperature T are slightly deviated from the reference
solutions when the central rest-mass density ρc goes beyond
∼2× 1012 g cm−3 (see Figure 10) and for the region where
r 10 km (see Figure 11). These deviations could be due to the

following three reasons. First, different implementations of
nuclear equation of state (see also the discussion in
O’Connor 2015) and the primitive recovery are very likely to
cause the differences of the entropy and so as other
hydrodynamical quantities. Second, although both our code
and GR1D couple the hydrodynamical quantities directly in the
implicit radiation moment solver, such a coupling will be
applied twice for each time step when IMEX-SSP2(2,2,2) is
used. The discrepancy caused by the direct coupling might be
accumulated faster then in the first-order IMEX method.
Solving the entire evolution system including the hydrodyna-
mical quantities implicitly will lead to more accurate and
consistent results, which is left as future work. Third, since
adaptive mesh refinement is used in our simulations, the
resolution at the center part is not fixed during the simulation,
and depends on the rest-mass density ρ, which changes rapidly
right before the core bounce. The numerical errors due to such
rapid refinements are some of the sources of the error.
Refinement strategies that have better balance between the
accuracy and computational cost will be explored in the future.
The far-field neutrino root mean squared energies and

luminosities are important to the predictions of observation,
which are highly sensitive to the microphysics considered and
the implementation. Therefore, it is necessary to show and
compare these key neutrino quantities among the codes. In
Figure 12, we show the time evolution of far-field neutrino root
mean squared energies  2á ñn and luminosities Lν measured by
an observer comoving with fluid at 500 km. As shown in the
figure, the agreement between Gmunu, AGILE-BOLTZTRAN,
and GR1D is exceptional. This is expected since both of the two
simulations adopt two-moment schemes and use identical
neutrino opacities and kernels table.
The shock radius evolution is also important in the core-

collapse supernovae context. Figure 13 shows the time
evolution of the shock radius. Our results agree very well with
GR1D for t− tbounce 40 ms. After that, the shock radius
predicted by Gmunu is roughly 10 km larger then GR1Dʼs,
which lies between AGILE-BOLTZTRAN and GR1D.
The results presented above, especially the neutrino signals,

are relatively closer to GR1Dʼs among the codes we have
compared. Despite the neutrino interactions considered being
mostly the same in these runs, the way of how the neutrino
opacities and kernels are computed could be different (e.g., the
resolutions in energy space, number of species evolved are
different). Moreover, as mentioned above, approximated
treatments for neutrino-pair processes are adopted in the
NuLib table in this test. Due to the fact that the same NuLib
table with the same resolution in energy (frequency) space is
used in both GR1D and Gmunu, the corresponding results are
expected to be very similar.

5.3. Hot Neutron Star

For the second application example, we study the radial
oscillation and neutrino emissions of a hot neutron star by
following Galeazzi et al. (2013), Neilsen et al. (2014). In
particular, we consider a nonrotating equilibrium model with
theShen–Horowitz–Teige equation of state from Shen et al.
(2011) with central rest-mass density ρc= 9.3× 1014 g cm−3.
The star has a constant entropy per baryon s= 1 kB/baryon and
in β equilibrium. The temperature of which is roughly 30MeV
at the center of the star. The gravitational mass and the
circumferential radius of this neutron star areMgrav= 2.741Me,

Figure 10. Evolution of central matter entropy per baryon (s, upper panel),
electron, and total lepton number fractions (Ye and Ylep ≡ Ye + Yν, lower panel)
as functions of central density ρc of a collapsing 15 Me star before core-
bounce. The solid lines show the numerical results obtained by Gmunu. Note
that the evolution of lepton numbers is highly sensitive to the implementations
of the multigroup coupling and radiation advection in optically thick regions.
Our results agree very well with the results of AGILE-BOLTZTRAN (dashed–
dotted lines), VERTEX (dotted lines), and GR1D (dashed lines).

16

The Astrophysical Journal Supplement Series, 267:38 (22pp), 2023 August Cheong et al.



and Rcirc= 14 km, respectively. As discussed in Galeazzi et al.
(2013), this neutron star is mostly opaque to neutrinos, and the
neutrino diffusion timescale ( s( )) is much longer than its
dynamical timescale ( ms( )). The neutron star is expected to
be cooling slowly. In addition, since the emitted neutrino will
mostly be reabsorbed in the hot and dense region, the neutrino
emission from the system mostly comes from the outer layer of
the neutron star. Therefore, this test problem, especially the
neutrino emissions, is highly sensitive to the low density and/
or atmosphere treatment.

The initial neutron star models are generated with the
modified version of the open-source code XNS11 (Bucciantini
& Del Zanna 2011; Pili et al. 2014, 2015, 2017). We simulate
this initial model in 1D spherical coordinates, where the
computational domain covers 0� r� 400(≈ 591 km), with the
resolution Nr= 256 and allowing 4 refinement levels (i.e., an

effective resolution of Nr= 2048). For the simulations of
neutron stars, we used the same refinement setting as in our
previous work (Cheong et al. 2021). In particular, we defined a
relativistic gravitational potential Φ≡ 1− α. For any Φ larger
than the maximum potential maxF (which is set as 0.2 in this
work), the block is set to be the finest. While for the second-
finest level, the same check is performed with a new maximum
potential, which is half of the previous one, and so on and so
forth. The grid is fixed after the initialization. In this test, the
second-order montonized central limiter (van Leer 1974) is
used. The rest-mass density of the atmosphere ρatmo is set to be
103 g cm−3. The spacetime is kept fixed during the entire
simulation (i.e., we evolve this system with Cowling
approximation).
While different neutrino microphysics inputs are expected to

affect the neutrino signals, the neutrino interactions we can
include are so far limited by NuLib. Instead of considering the
same set of neutrino interactions as in Galeazzi et al. (2013),

Figure 11. Comparison of the radial profiles of several quantities between our code Gmunu and the reference codes (AGILE-BOLTZTRAN, VERTEX, and GR1D) at
the moment of core bounce. For instance, we compare rest-mass density ρ, radial velocity v r/c, matter temperature T, matter entropy per baryon s, neutrino root mean

squared energy  2
iá ñn , and electron fraction Ye. The solid lines show the numerical results obtained by Gmunu. A shock is formed at ∼10 km, and the matter entropy

reaches 3 kB/baryon at the shock. Our results generated by Gmunu are quantitatively agreeing with the reference solution produced by AGILE-BOLTZTRAN
(dashed–dotted lines), VERTEX (dotted lines), and GR1D (dashed lines).

11 Available at https://www.arcetri.inaf.it/science/ahead/XNS/index.html.
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Neilsen et al. (2014), we adopt essentially the same set of
interactions as described in Section 5.1, except that the thermal
processes for electron-type neutrinos and antineutrinos (i.e.,
e e e ēn n+  +- + ) are also included. The inclusion of this
interaction is to additionally test our multispecies multigroup
implicit solver, since the coupling of electron-type neutrinos νe
and antineutrinos ēn has to be taken into account. Although this
test problem is expected to be sensitive to the low density and/
or atmosphere treatment, to achieve a stable evolution, the

neutrino opacities and kernels are used only when the rest-mass
density ρ is larger than 1011 g cm−3, which is 8 orders of
magnitude larger than the atmosphere density ρatmo. The
neutrino moments are initialized by evolving the radiation
sector while keeping the hydrodynamical profile fixed until the
system reaches equilibrium. In this test, we evolve the
neutrinos while keeping the hydrodynamical profile fixed for
5 ms before the dynamical simulation.
The neutron star relaxes to its new equilibrium configura-

tions during the first few milliseconds in our simulation, where
the surface of the star is neutron-rich (Ye∼ 0.1) with high
temperature (T∼ 10MeV), which is similar to the case
reported in Neilsen et al. (2014). The upper panel of
Figure 14 shows the relative variation of the central rest-mass
density ρc in time while the middle panel shows the time
evolution of far-field neutrino luminosities Lν measured by an
observer with fluid at 100 km. Since the neutrino signals take
around 3 ms to reach the extraction point, the luminosities of all
neutrinos are zeros before 3 ms. The luminosities we obtained
at the stationary state are at the order of 1051 erg s−1, which are
slightly larger than the one reported in Neilsen et al. (2014) (of
the order of 1050-51 erg s−1) while much lower than the one
reported in Galeazzi et al. (2013) (of the order of 1052-53

erg s−1). In addition, the luminosity of heavy-lepton neutrino
L xn is found to be highly oscillating. This is mainly because the
opacities and kernels for low density region (ρ� 1011 g cm−3)
are ignored while the interactions of heavy-lepton neutron are
sensitive in this region.

Figure 12. Time evolution of far-field neutrino root mean squared energies (  2á ñn , left panel) and luminosities (Lν, right panel) measured by an observer comoving
with fluid at 500 km of a collapsing 15 Me star. The solid lines show the numerical results obtained by Gmunu. To compare the deleptonization burst and the early
post-bounce evolution of the luminosity of electron-type neutrino more in detail, we changed the scale after t > 30 ms (upper right panel). The evolution of these
neutrino quantities is again highly sensitive to the implementation and essential to the predictions of observational signatures. Our results agree very well with the
reference results produced by AGILE-BOLTZTRAN (dashed–dotted lines), VERTEX (dotted lines), and GR1D (dashed lines).

Figure 13. Time evolution of the shock radius. The solid lines show the
numerical results obtained by Gmunu. The reference results produced by
AGILE-BOLTZTRAN, VERTEX, and GR1D are shown with dashed–dotted
line, dotted line, and dashed line, respectively. The shock radius predicted by
Gmunu is mostly agreeing with GR1D for t − tbounce  40 ms while it is
approximately 10 km larger since then. Since then, it goes between the result of
AGILE-BOLTZTRAN and GR1D.
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The lower panel of Figure 14 shows the fast Fourier
transform of the central rest-mass density, and the luminosities
of electron and antielectron neutrinos with the time window
t 5, 20[ ]Î ms. The fast Fourier transform of the luminosity of
heavy-lepton neutrino is not included due to its highly
oscillatory nature, and the frequency does not correspond to
any of the known normal mode oscillations of the neutron star.
To better visualize the result, the amplitude of the fast Fourier
transform of the central rest-mass density has been rescaled by
a factor of 1000. The eigenmode frequencies obtained from our
simulations agree with the one in Galeazzi et al. (2013),
Neilsen et al. (2014).

Despite the same model, the neutrino luminosities are
expected to be different from those in Galeazzi et al. (2013),
Neilsen et al. (2014) for two reasons: (i) the neutrino
luminosities are highly sensitive to the neutrino and/or
atmosphere treatment adopted in the simulation code (Neilsen
et al. 2014), and (ii) the neutrino interactions considered here
are not identical to the one in Galeazzi et al. (2013), Neilsen
et al. (2014), which could significantly alter the outcome of the
neutrino signals. The test here is to qualitatively compare the
results reported in the literature, detailed investigations on a
better low density treatment; and how the neutrino treatment
affects the hot neutron star modeling will be left as future work.

6. Conclusions

We present the new implementation of the two-moment-
based multifrequency multispecies general-relativistic radiation
hydrodynamics module in our code Gmunu.
Our implementation has been tested with several bench-

marking tests, which range from special-relativistic to general-
relativistic, from optically thick to optically thin, and from
frequency-integrated to frequency-dependent cases. These test
results demonstrate that our code Gmunu is able to capture the
evolution of radiation fields even in the mildly relativistic cases
in either optically thin or thick regime.
In addition, we demonstrate that our implicit solvers can

robustly solve the largely coupled system, where all the
neutrino species at different frequency-bins are coupled
altogether, by performing simulations of a collapsing massive
star and a hot neutron star. In the core-collapse supernova test,
we present the pre-bounce, core-bounce, and early post-bounce
evolution of a 15 Me progenitor star. Also, we show the
simulated fair-field neutrino root mean squared energies and
luminosities, which are essential to observational astrophysics.
Despite these neutrino quantities that are highly sensitive to the
implementation of the radiation transport and implicit treatment
for neutrino–matter interaction, Gmunu produces a consistent
result, which agrees with other neutrino transport codes. On the
other hand, in the hot neutron star test, our normal mode
frequencies are in agreement with the one reported in the
literature. Moreover, the order of magnitude of the neutrino
luminosities extracted from our simulation lie between the one
presented in Galeazzi et al. (2013), Neilsen et al. (2014) for the
same model. Despite the neutrino treatment and interaction
considered being different, our results qualitatively agree with
those from the literature.
Although our current implementation works properly for the

test problems presented, further investigations are needed to
improve the module. In particular, the fluid acceleration terms
are not properly included in this work. Including these terms
and assessing their impacts on mildly and/or highly relativistic
terms are essential to neutron star merger simulations. Besides,
solving the entire evolution system including the fluid
quantities consistently would lead to more stable and accurate
simulations. Implementing more-advanced full implicit treat-
ments that allow us to fully solve the system with reasonable
computational cost (e.g., Skinner et al. 2019; Laiu et al. 2021)
is also important for astrophysical applications. These aspects
will be investigated in future work.
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Appendix A
Jacobian of the Monochromatic Source Terms

Note that the emission and/or absorption and elastic
scattering source terms E A

m and ES
m are monochromatic,

i.e., at a given radiation frequency ν, the calculation of the
radiation emissivity, absorption, and scattering coefficients

( )h n , a ( )k n , and s ( )k n does not depend on other radiation
frequencies n n¢ ¹ , as shown in Equations (8) and (9). The
interaction source terms can be largely simplified when only
these two source terms are considered. In this case, the
radiation four-force rad

m can be reduced to

  
 u . A1a a s

rad E A ES

( ) ( ) ( )h k k k
= +

= - - +

m m m

m m

The corresponding 3+ 1 radiation–fluid interaction source
terms for srad now become

  s W v ; A2s as i
i
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where κas≡ κa+ κs is the opacity (absorption plus scattering
coefficients). These are the source terms adopted in most of the
gray moment codes (e.g., Radice et al. 2022). The corresp-
onding Jacobian s qi jrad[ ]¶ ¶ , which is needed to calculate the
Jacobian in the implicit step discussed in Section 3.6, can be
evaluated analytically as in Radice et al. (2022). For
completeness, we include the detailed expression of

s qi jstiff[ ]¶ ¶ , where
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where a, b= 0, 1, 2, 3. Specifically, the equations for Jab
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Moreover, the source terms in the evolution equation of
electron fraction Ye are also simplified in this case. In particular,
the contraction of the interaction source and four-velocity term
s urad
m

m in the right-hand side of Equation (116) can now be
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written as follows:

s u . A23arad ( )h k= -m
m

Appendix B
Decomposition of Fluid-frame Moments

Although the fluid-frame moments  ,{ }m can be com-
puted by contracting the energy-momentum tensor  mn with
the comoving velocities uμ, it is useful to work out the
contraction further, and directly express the fluid-frame
moments  ,{ }m in terms of observer-frame moments
 ,{ }m . As in Deppe et al. (2022), Radice et al. (2022), we
decompose    , ,{ }m m

m as
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