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A B S T R A C T   

Adaptive decision-making is governed by at least two types of memory processes. On the one hand, learned 
predictions through integrating multiple experiences, and on the other hand, one-shot episodic memories. These 
two processes interact, and predictions – particularly prediction errors – influence how episodic memories are 
encoded. However, studies using computational models disagree on the exact shape of this relationship, with 
some findings showing an effect of signed prediction errors and others showing an effect of unsigned prediction 
errors on episodic memory. We argue that the choice-confirmation bias, which reflects stronger learning from 
choice-confirming compared to disconfirming outcomes, could explain these seemingly diverging results. Our 
perspective implies that the influence of prediction errors on episodic encoding critically depends on whether 
people can freely choose between options (i.e., instrumental learning tasks) or not (Pavlovian learning tasks). 
The choice-confirmation bias on memory encoding might have evolved to prioritize memory representations that 
optimize reward-guided decision-making. We conclude by discussing open issues and implications for future 
studies.   

1. Introduction 

To flexibly adjust to the environment, humans have the ability to 
both incrementally learn from several past episodes (e.g., the average 
quality of a restaurant in the neighbourhood) and to encode temporally 
specific, detailed representations of single episodes (e.g., remembering a 
previous dinner with friends). These two elementary cognitive functions 
are thought to rely on partly dissociable brain circuits. Whereas incre
mental learning depends on dopaminergic activity originating in the 
midbrain and targeting the striatum (Daw, 2011; McClure et al., 2003; 
Schultz et al., 1997), episodic memory relies on the structures of the 
medial temporal lobe, especially the hippocampus (Eichenbaum et al., 
2007). Functional interactions and anatomical connections between 
these neural systems (e.g., Foerde and Shohamy, 2011; Lisman and 
Grace, 2005; Shohamy and Turk-Browne, 2013) could suggest that in
cremental learning modulates episodic memory encoding, potentially 
via dopaminergic signals (Jang et al., 2019). 

Consistent with this idea, the predictive processing framework sug
gests that new episodic memories should mainly be created when 

predictions formed through learning are violated (Henson and Gagne
pain, 2010). Accordingly, the brain tries to constantly predict incoming 
information and minimize surprise (Clark, 2013; Friston, 2010). This 
process is hierarchically organized such that higher-level areas attempt 
to predict lower-level activity. Information not in line with these pre
dictions constitutes a prediction error (PE), which is passed to the higher 
levels and used to update beliefs for optimizing future predictions. 
Creating a temporally specific, perceptually detailed episodic repre
sentation of our ongoing experiences is considered higher-level activity 
and should mainly occur in response to larger PEs, indicating that pre
vious predictions could not fully explain the ongoing experience (Hen
son and Gagnepain, 2010). Therefore, when events that are not in line 
with our expectations occur, the PE causes increased learning and better 
episodic encoding so that predictions will be more precise in the future. 
Consequently, one would expect that the likelihood of encoding episodic 
representations should increase as a function of PEs. 

The reinforcement learning (RL) framework (Sutton and Barto, 
2018) provides one way to formalize PE-driven learning. RL offers 
mechanistic computational models that describe how expectations are 
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updated in response to the PE (see Box 1). These models have frequently 
been used in the learning literature and show a marked correspondence 
with behavioural and neural data (Daw and Tobler, 2014). Moreover, RL 
algorithms have been used in the majority of studies on the relationship 
between PE and episodic memory (Calderon et al., 2021; Davidow et al., 
2016; De Loof et al., 2018; Pupillo et al., 2023; Rouhani and Niv, 2021; 
Rouhani et al., 2018; Wimmer et al., 2014), and we therefore also focus 
on an RL approach in this work. 

The studies linking incremental learning and episodic memory pro
duced contrasting findings regarding the relationship between PE and 
episodic encoding. A major critical open question concerns the sign of 
the effect of PEs (Ergo et al., 2020). While several studies showed a 
positive relationship between signed PEs (i.e., ranging from negative to 
positive) and episodic encoding (Calderon et al., 2021; Davidow et al., 
2016; De Loof et al., 2018; Jang et al., 2019; Pupillo et al., 2023), other 
studies reported a positive effect of unsigned PEs (i.e., absolute PEs; 
Rouhani and Niv, 2019, 2021; Rouhani et al., 2018). A positive rela
tionship between signed PEs and memory suggests that episodic 
encoding is better for better-than-expected outcomes compared to 
worse-than-expected outcomes. On the contrary, a positive effect of 
unsigned PEs implies that unexpected, surprising outcomes improve 
episodic encoding per se, regardless of valence. In this opinion paper, we 
focus on these apparently divergent findings and suggest that the effects 
of signed PEs on episodic memory observed when outcomes are deliv
ered are essentially driven by a choice-confirmation bias often arising in 
instrumental learning tasks (e.g., Palminteri and Lebreton, 2022). 

2. What we know: the effect of PE on memory 

The interaction between PEs and episodic memory is typically 
studied in experiments that feature a learning task in which PEs are 
experienced and events are encoded, followed by a recognition memory 
phase where participants are asked to recognize previously encoded 
items among new items. In particular, previous studies employed 
learning tasks in which participants learned the values of different 
stimuli and actions and were presented with outcomes that matched or 
violated their expectations, generating PEs of various degrees (Fig. 2). 
These studies have often derived PEs from RL algorithms and linked 
them to recognition-memory performance (Fig. 1). Therefore, this 
approach allows researchers to test whether the PE experienced while 
encoding an object facilitates or hinders subsequent object recognition 
in the memory test. 

Studies taking this approach generally found a positive relation be
tween PE and memory (Calderon et al., 2021; Davidow et al., 2016; De 
Loof et al., 2018; Jang et al., 2019; Pupillo et al., 2023; Rosenbaum et al., 
2022; Rouhani and Niv, 2019, 2021; Rouhani et al., 2018). This 
PE-driven enhancement of recognition memory does not depend on 
specific characteristics of the task, such as whether the values of the 
stimuli were learned before or during the encoding task, whether the 
outcome was monetary or not, and whether the recognition test was 
intentional or incidental. Also, the retention interval does not seem to 
affect the PE-memory relationship, as the effects were observed for both 
immediate and one-day delayed recognition tests. All in all, these find
ings suggest that the effects of PEs on memory are quite robust. 

One potential case in which PEs might be associated with worse 
recognition memory is when the timing between the presentation of 
objects and PEs is delayed. The study by Wimmer et al. (2014) found 
that PEs were detrimental to the encoding of objects (see Fig. 2h-i). 
Importantly, the major difference to the aforementioned studies was the 
timing of the presentation of the feedback. In fact, while in most of the 
studies, the to-be-remembered objects were presented together with the 
corresponding PEs, Wimmer and colleagues presented monetary feed
back reflecting PEs one second after the objects. This delay might have 
led to a working memory conflict between prioritizing episodic memory 
or incremental learning representations. In line with this idea, when 
participants encoded the objects better (higher episodic memory per
formance), reward had a decreased influence on the next choice (lower 
incremental learning performance). 

3. What we do not know: signed vs. unsigned PE 

Although there is mounting evidence that PEs positively affect 
episodic memory, the findings diverge when it comes to the sign of the 
PE. On the one hand, a series of studies found an effect of signed PEs on 
recognition memory (Calderon et al., 2021; Davidow et al., 2016; De 
Loof et al., 2018; Jang et al., 2019; Pupillo et al., 2023; Rouhani and Niv, 
2021). That is, these studies suggest that objects related to 
better-than-expected outcomes (positive PE) are remembered better 
than objects related to worse-than-expected outcomes (negative PE; 
Fig. 2b,g). On the other hand, other studies have found an effect of 
unsigned PEs on memory, indicating that objects presented together 
with surprising outcomes are remembered better, regardless of their 
valence (Fig. 2d,e; Rosenbaum et al., 2022; Rouhani and Niv, 2019, 
2021; Rouhani et al., 2018). 

Box 1 
- Reinforcement Learning Models. 

RL models can be used to formalize how expectations gradually change in response to feedback. For example, when visiting a new restaurant for 
dinner and you adjust your expectation about the quality of the food across multiple visits. In the canonical RL model, an expectation is 
quantified by the expected value Vs

t for a stimulus s on a given trial t, which is updated as follows after a reward has been received: 
Vs

t+1 = Vs
t +αδs

t , (1) 

where the learning rate α is a parameter ranging between zero and one and indicates the extent to which the PE δs
t is taken into account to 

update the expected value Vs
t+1. A larger α assigns a higher weight to the most recent PE when updating the expected value. The PE δs

t is 
computed as: 
δs

t = rt − Vs
t , (2) 

where rt represents the reward on trial t (e.g., quality of a dish). The PE δ has a positive sign if the reward rt is larger than Vs
t (e.g., the food is 

more delicious than expected), and vice versa if the reward is lower than expected. By contrast, taking the unsigned PE, i.e., its absolute value, 
has traditionally been interpreted as to how surprising an experienced outcome is, regardless of whether it is positive or negative (e.g., Pearce 
and Hall, 1980). The learning rate α is a free parameter, obtained by fitting the RL model to participants’ data (e.g., value estimations or BOLD 
activity, Wilson and Collins, 2019). 

To examine the relation between PE and memory, the PE elicited during the encoding of an object can then be linked to the likelihood of 
recognizing that object in a subsequent recognition test (Fig. 1).  
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Findings by Rouhani and Niv (2021) suggest that the effect of the PE 
could depend on the task stage in which the PE is elicited. The authors 
manipulated the PE at two different stages: (1) when a cue was pre
sented that signalled the average reward that could be expected on a 
trial and (2) when the reward itself was delivered (see Fig. 2d). This 
design yielded a signed PE effect on memory for the objects presented 
together with the cue and an unsigned PE effect on memory for the 
objects presented when reward was delivered. These findings are in line 
with the study by Jang et al. (2019), also showing positive, signed PE 
effects for images presented together with a reward-predictive cue 
(Fig. 2f,g). These studies provide consistent evidence in favour of posi
tive, signed PE effects on memory encoding regarding reward-predictive 
cues. However, regarding PE effects at outcome, the findings diverge 
(Ergo et al., 2020). In fact, while some studies have found unsigned PEs 
effects at outcome (Rouhani and Niv, 2021; Rouhani et al., 2018), others 
have reported outcome-related signed PEs effects (Calderon et al., 2021; 
De Loof et al., 2018; Pupillo et al., 2023). 

We propose that this discrepancy between signed and unsigned PEs 
on memory with respect to outcomes might be driven by a choice- 
confirmation bias that underlies participants’ RL behaviour in instru
mental but not Pavlovian tasks. In the next paragraphs, we will describe 
recent results supporting the presence of a choice-confirmation bias in 
RL and suggest how these findings could reconcile the seemingly con
tradictory effects of signed and unsigned PEs elicited during outcome 
delivery on episodic memory. 

3.1. The choice-confirmation bias 

The observed effect of signed PEs on memory suggests that episodic 
encoding is stronger when outcomes are better than expected compared 
to worse-than-expected outcomes. A similar effect of positive PEs has 
been shown to affect learning (see Box 2). This "positivity" bias yields 
stronger belief updating in response to positive than negative outcomes. 
As a consequence, individuals tend to overestimate the likelihood of 
positive events and underestimate the likelihood of negative events 
(Sharot and Garrett, 2016). Examples include high-level beliefs, such as 
the likelihood of getting cancer or becoming divorced (which would be 
underestimated), but also updating more low-level expectations like 
choice preferences in an RL task (Lefebvre et al., 2017). 

The potential computational origin of the positivity bias is an 
asymmetry in learning rates for positive and negative PEs, where the 
"positive" learning rate (after experiencing a positive PE) tends to be 
larger than the "negative" learning rate (Lefebvre et al., 2017). Inter
estingly, in the study by Lefebvre et al. (2017), individual differences in 
asymmetric learning were predicted by the activation of the striatum in 
response to the PE during the presentation of the outcome. Participants 
who learned more from positive outcomes showed a stronger activation 
than participants who learned equally from positive and negative out
comes. These findings suggest that preferentially learning from positive 
outcomes is rooted in the brain’s reward circuits. 

Crucially, the positivity bias might ultimately be driven by outcomes 
that confirm choices, which are in the vast majority of choices positive 
(see Box 2). This so-called choice-confirmation bias was more closely 
examined in tasks in which participants could learn from both chosen 
and unchosen options. Palminteri et al. (2017) argued that if learning 
was only biased by the valence of the PE, the learning rate for positive 
outcomes of both chosen and unchosen options should be larger 
compared to "negative" learning rates. By contrast, if the bias depended 
on whether the outcomes confirmed or disconfirmed choices, "positive" 
learning rates in response to chosen options and "negative" learning rates 
of unchosen options should be larger (see Fig. 3a). Indeed, several recent 
findings show that participants tend to preferentially learn from PEs that 
confirm their choices, supporting the presence of a choice-confirmation 
bias (Palminteri and Lebreton, 2022; Palminteri et al., 2017; Schüller 
et al., 2020). Therefore, the choice-confirmation bias could be a gener
alization of the positivity bias, suggesting that the observed positivity 
effect is a byproduct of a preference for "being right". 

Accordingly, the positivity bias would not be present in conditions 
where individuals cannot choose. A recent study supported this idea, 
showing that when participants do not have the opportunity to choose, 
the positivity bias disappears, and participants similarly learn from both 
positive and negative outcomes (Chambon et al., 2020, Fig. 3b). These 
findings suggest the intriguing possibility that a bias for positive vs. 
negative information occurs only in learning conditions where the out
comes inform participants’ choices. 

Fig. 2. PE and episodic encoding: Different paradigms and results. a) A typical instrumental learning task (top-left). Participants are asked to predict the object 
category associated with a particular scene (e.g., savanna - household objects, beach - musical instruments). A trial-unique image belonging to one specific object 
category is then presented (e.g., glass, accordion). In a subsequent memory test (top-right), participants are then asked to recognize the previously encoded objects 
among distractors. Bottom: The calculation of PE in the encoding task. b) Effect of positive PEs on recognition memory. c) Interaction between prediction outcome 
and PE. d) Pavlovian learning task. Participants are presented with a reward-predicting cue and instructed to estimate the reward that they expect to receive for a 
specific cue. PE and learning rate are then calculated based on an RL model. f) Play/pass paradigm. Participants are presented with a number showing them the 
reward that they would receive if they win. A trial-unique object related to one object category (e.g., animate/inanimate) is then presented and serves as a cue 
indicating the probability of the reward. Participants can decide whether to play or pass. After the decision, the object is presented together with the amount of 
reward or loss. h) Paradigm from (Wimmer et al., 2014). Participants are presented with two trial-unique objects, each one having a different colour frame. They have 
to decide between the two colours. After the decision is made, participants are presented with the amount of monetary reward received. i) Findings from (Wimmer 
et al., 2014) showing that higher reward PE was related to a higher number of forgotten items. 
(a) Reproduced from (Pupillo et al., 2023). (b) Reproduced from (Pupillo et al., 2023). (c) Reproduced from (Rouhani et al., 2018) e) Unsigned PE effects, reproduced 
from (Rouhani et al., 2018). (d) Reproduced from (Jang et al., 2019) g) Results related to the play/pass paradigm, reproduced from (Jang et al., 2019), showing an 
effect of signed reward PEs for "play" trials, and an unsigned effect of signed reward PEs for "pass" trials. 

Fig. 1. PE and Memory. Logistic regression model used to link the 
computationally-derived PE at encoding to the likelihood of recognizing an old 
item (p(Hit)). 
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The choice-confirmation bias seems to be quite robust and might be 
an adaptive heuristic in some learning conditions. In fact, it generalizes 
even to tasks that do not show counterfactual outcomes to participants 
(Lebreton et al., 2019). Moreover, it has been suggested to represent the 
optimal strategy in specific learning contexts in which individuals need 

to maximize rewards and minimize losses. Simulation studies showed 
that RL agents with choice-confirmation bias outperformed unbiased 
agents in typical RL tasks (Lefebvre et al., 2022). This effect might be 
because the choice-confirmation bias helps learners better deal with 
negative PEs due to random outcome variability. In particular, when 

Box 2 
- Positivity and Choice-Confirmation Biases. 

To model choice behaviour, RL models can be turned into "agents" that make decisions on the basis of expectations by implementing a specific 
action selection rule (see Wilson and Collins, 2019). In this case, the expected value Qa

t learned by the agent corresponds to the reward expected 
if option a is chosen. Qa

t is then updated similarly to the V in equation: 

Qa
t+1 = Qa

t + α
(
rt − Qa

t

)

δt
a = rt − Qa

t .
(3) 

To test whether participants’ choices are differently influenced by positive outcomes compared to negative ones, researchers typically es
timate two different learning rates depending on the sign of the PE: 

Qa
t+1 = Qa

t +

{
α+δa

t , δ
a
t > 0

α− δa
t , δ

a
t < 0

(4)  

where α+ represents a freely estimated learning rate for updating the expected values for better-than-expected outcomes, and α− for updating 
the expected value in response to worse-than-expected outcomes. Higher values of α+ compared to α− suggest a positivity bias. 

Moreover, the agents can not only learn from the outcomes related to the chosen option but also from the outcomes of the unchosen options. For 
example, when having dinner at a restaurant, we might update our expectations about the quality of the food not only based on our dish but also 
the dishes of our friends. To model this sort of counterfactual learning, the RL model needs to differentiate between chosen and unchosen 
options. Therefore, the chosen values are updated as follows: 

Qc
t+1 = Qc

t +

{
αc+δc

t , δc
t > 0

αc− δc
t , δc

t < 0

Qu
t+1 = Qu

t +

{
αu+δu

t , δ
u
t > 0

αu− δu
t , δ

u
t < 0,

(5)  

where c represents the chosen option and u the counterfactual, unchosen option. 

Higher values of αc+ and αu− compared to αc− and αu+ suggest the presence of a confirmation bias (see Fig. 3a). 

A reduced version of the aforementioned four-learning rate model that accounts for both factual and counterfactual learning has also been 
proposed (Palminteri, 2022). In this model, only two learning rates account for the presence of confirmatory and disconfirmatory learning: 

αCON = αc+ = αu−

αDIS = αc− = αu+ (6)    

Fig. 3. Positivity and Confirmation Bias. a) Different predicted learning rate asymmetries for positivity and confirmation bias. b) Differences in estimated learning 
rates for free-choice and forced-choice tasks. 
(a) Reproduced from (Palminteri et al., 2017). (b) Reproduced from (Chambon et al., 2020). 
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these negative PEs occur only occasionally and when they should be 
discarded as uninformative outliers. That way, the choice-confirmation 
bias yields an overestimation of expected values of favourable options 
and an underestimation of the value of sub-optimal options, thereby 
emphasizing value differences that are more robust against random 
outcome variability (Palminteri and Lebreton, 2022). 

In addition, the choice-confirmation bias affects metacognitive 
confidence judgements. In the study by Salem-Garcia et al. (2023), 
overestimated expected values due to the choice-confirmation bias led 
to higher confidence ratings. This effect could be explained by the 
increased value difference between the choice options (due to the 
overestimated value of the favourable option), which decreases the 
subjectively perceived choice difficulty, thereby increasing confidence. 

4. PE-memory effects: the role of choice 

The findings on the choice-confirmation bias highlight an essential 
learning mechanism that shares similarities with some of the described 
effects of PEs on memory. The preferential updating for positive infor
mation, especially when it confirms one’s predictions, means that the 
updating of expectations is stronger when an outcome is better-than- 
expected compared to when it is worse than expected. This effect is 
reminiscent of the effects of signed PEs on episodic memory, showing 
better memory for objects presented together with better-than-expected 
outcomes, suggesting that these two effects might share a common un
derlying mechanism. 

Our own recent work showed that choice confirmation was sufficient 
to modulate the effect of PEs on episodic memory (Pupillo et al., 2023). 
Using a task without explicit reward, we manipulated participants’ ex
pectations leading to PEs of varying degrees. We then fitted an RL model 
to participants’ choice data to compute a PE that depended on the ex
pectancy of the appearance of an object category (see Fig. 2 a-c). Results 
revealed that stronger (positive) PEs elicited when participants had 
weak outcome expectations and chose the correct option (i.e., choice 
was confirmed) led to increased episodic encoding. In contrast, stronger 
(negative) PEs in response to outcomes disconfirming strong expecta
tions led to decreased encoding. These findings are consistent with the 
choice-confirmation bias on learning and suggest that we do not only 
favor choice-confirming PEs when incrementally learning from out
comes but also when selecting what episodes to encode preferentially. 

We argue that one crucial factor governing whether signed or un
signed PEs in response to outcomes drive episodic memory encoding is 
the distinction between instrumental and Pavlovian tasks. At first sight, 
findings on the role of the choice-confirmation bias in episodic memory 
encoding discussed thus far may appear at odds with reported effects of 
unsigned PEs on episodic encoding (Rouhani and Niv, 2019, 2021; 
Rouhani et al., 2018) according to which the magnitude and not the sign 
of the PE affects episodic encoding. However, the studies showing un
signed PE effects used Pavlovian tasks in which participants had to 
predict the reward that they would receive conditional on different 
stimuli. Each stimulus was associated with a specific reward probability 
that participants could learn throughout the task, but this learning did 
not translate into choices (see Fig. 2d). In contrast, the studies finding 
effects of signed PEs on episodic encoding had in common that they 
employed instrumental tasks in which the PE was related to participants’ 
choices (see Fig. 2a). 

Supporting the idea that the freedom of choosing between options is 
necessary for the emergence of the choice-confirmation bias, Chambon 
et al. (2020) showed the presence of the choice-confirmation bias in 
conditions in which participants could freely choose between options 
but not in forced-choice conditions (see Fig. 3b). Therefore, also in the 
above-mentioned studies on the interaction between PEs and episodic 
memory, it is likely that the effect of unsigned PEs reflected the reduced 
choice-confirmation bias due to the lack of free choice. Crucially, in 
instrumental tasks, the effects of positive PEs seem to affect both the 
learning rate (Lefebvre et al., 2017; Palminteri and Lebreton, 2022) and 

episodic encoding (Calderon et al., 2021; De Loof et al., 2018; Pupillo 
et al., 2023), thereby suggesting a shared underlying mechanism. By 
contrast, in Pavlovian tasks, positive and negative PEs might not lead to 
different learning rates and seem to have similar effects on episodic 
encoding. 

Findings from Rosenbaum et al. (2022) support the idea that asym
metries in learning rates mirror asymmetries in the effect of PEs on 
episodic encoding. Using an instrumental task, the authors showed that 
participants who learned more from positive feedback also remembered 
images associated with positive PEs better than images with negative 
PEs. In a separate study that was based on the Pavlovian task from 
Rouhani et al. (2018), the authors fitted a dual learning rate model (see 
Box 2, Eq. 4) and showed that participants tended to have similar 
learning rates for positive and negative outcomes. Participants who 
presented unbiased learning (no systematic difference between the two 
learning rates) also had improved memory for images related to both 
positive and negative PEs at the outcome, and thus an unsigned PE 
effect. 

5. Discussion 

A considerable body of literature shows that PEs affect episodic 
memory processes. However, previous studies disagree on the nature of 
the relationship between PEs and episodic encoding, with some results 
showing a positive relationship between signed PEs and memory and 
others showing a positive relationship between unsigned PEs and 
memory. We propose that this discrepancy regarding the sign of the 
effect of PEs elicited when outcomes are delivered can be explained by 
the choice-confirmation bias. The choice-confirmation bias might lead 
to episodic memory encoding asymmetries between outcomes from 
chosen and unchosen options, particularly stronger memory encoding 
after choice-confirming, positive PEs. These asymmetries are not pre
sent, or at least considerably weaker, in tasks without explicit choices, 
such as in Pavlovian learning. 

The choice-confirmation bias yields stronger learning from outcomes 
that confirm a choice but less learning from stochastic, negative PEs. In 
instrumental tasks, this heuristic strategy could help maximize rewards 
compared to an unbiased RL strategy, particularly because it might 
make expected value representations more robust in the face of uncer
tainty (Lefebvre et al., 2022). Choice-confirmation biases on episodic 
memory might serve a similar purpose and lead to memory represen
tations that optimize reward-guided decision-making. That is, when a 
vast amount of potential episodes could be encoded in memory, the 
choice-confirmation bias might ensure that episodes associated with 
successful decision-making are preferentially encoded. Therefore, the 
decision-maker is more likely to recall and utilize such memory repre
sentations for future choices. 

One potential neural underpinning of the choice-confirmation bias is 
dopaminergic signalling. It has been suggested that free choices amplify 
reward-PE signals compared to no-choice trials. Therefore, free choices 
might be associated with stronger dopaminergic bursts in the striatum in 
the service of learning (Cockburn et al., 2014). Accordingly, the study 
from Calderon et al. (2021) showed that the effects of signed PEs on 
episodic memory are also supported by a PE-related activation of the 
striatum. This result indicates that some areas that play a role in 
updating expected values during value-based learning in instrumental 
tasks (Lefebvre et al., 2017) are also involved in PE-related effects on 
episodic encoding. Similarly, it is well known that the hippocampus 
receives dopaminergic input from the striatum that modulates its plas
ticity (Lemon and Manahan-Vaughan, 2006). Therefore, the connectiv
ity between the striatum and the hippocampus might be responsible for 
the delivery of PE-related dopaminergic signals to the hippocampus that 
may result in the prioritization of information that is associated with 
positive PEs. Moreover, a potential mechanism that may be responsible 
for reduced episodic encoding in response to negative PEs is hippo
campal inhibition through reduced tonic firing (Rosen et al., 2015). 
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The neural origins of the effects of unsigned PEs on episodic 
encoding have been linked to arousal-related enhancements of attention 
to stimuli, leading to improved encoding (Rouhani and Niv, 2021). A 
promising technique for testing the suggested arousal-unsigned-PE 
relationship in humans is pupillometry. Pupil dilation is a proxy for 
central arousal state (McGinley et al., 2015) and has been linked to the 
activation of the locus coeruleus-norepinephrine system (and other 
neurotransmitters; Aston-Jones and Cohen, 2005; Cazettes et al., 2021; 
Joshi et al., 2016). Future studies could test this hypothesis by investi
gating whether pupil-linked arousal is related to unsigned PE effects on 
memory encoding in Pavlovian tasks. 

While the effect of PEs related to the delivery of outcomes may be 
influenced by the task type (instrumental vs. Pavlovian), the reported 
effects of the PE elicited in response to reward-predictive cues seem to be 
independent of it. In fact, a signed PE effect related to cues has been 
observed in both instrumental (Jang et al., 2019) and Pavlovian (Rou
hani and Niv, 2021) tasks. Because this signed PE occurs before an 
outcome is presented, it is linked to anticipated and not experienced 
rewards. In both Jang et al. (2019) and Rouhani and Niv (2021), par
ticipants saw different object categories associated with different 
probabilities of receiving an outcome, where one category was associ
ated with a higher probability of receiving positive outcomes. Results 
showed that cues associated with positive PEs were linked to better 
encoding compared to cues associated with negative PEs. Therefore, 
signed PE effects at cue could be related to the anticipation of the 
reward, which has also been linked to the strength of episodic encoding 
(Stanek et al., 2019). 

Nevertheless, a direct empirical examination of the hypothesis that 
the choice-confirmation bias observed in reward-based learning also 
affects episodic encoding is required. Future investigations should 
directly compare the effects of PEs on episodic memory across instru
mental and Pavlovian tasks. Moreover, they should link the effects of the 
PE on memory to the behavioural and computational signatures of the 
choice-confirmation bias. In order to demonstrate that a choice- 
confirmation bias affects episodic encoding, the following three 
criteria could be examined (Palminteri and Lebreton, 2022): (1) using 
model comparison, a model with asymmetric learning rates should have 
a better fit than a single-learning-rate model; (2) the learning rate for 
chosen options should be larger for positive compared to negative PEs, 
while the learning rate for unchosen options should be larger for nega
tive compared to positive PEs (see Fig. 3b); (3) descriptive, model-free 
behavioural results should show a qualitatively similar pattern to the 
model-based results related to asymmetric learning rates, like the 
development of a preference for an option in situations in which par
ticipants’ choices are confirmed. Once the choice-confirmation bias has 
been demonstrated and quantified on choice data, it can be tested 
whether it selectively affects episodic memory in instrumental but not 
Pavlovian tasks. 

Moreover, it has been suggested that the choice-confirmation bias 
depends on beliefs about the controllability of the environment 
(Chambon et al., 2020; Dorfman et al., 2019). Studies have shown that 
having the opportunity to choose enhances episodic encoding (Murty 
et al., 2015; Yebra et al., 2019), suggesting that the perceived control 
over the environment influences the prioritization of information in 
memory. Therefore, perceived controllability over the environment, 
which should be higher for free choices, could also modulate the effect of 
the PE on learning and episodic encoding. When perceived controlla
bility is high, negative outcomes may not be perceived as a consequence 
of one’s own choices but of the unpredictability of the environment. Due 
to a larger choice-(dis)confirmation bias, these negative outcomes could 
then be under-weighed during episodic encoding. Conversely, when 
perceived controllability is low, both positive and negative outcomes 
might be similarly weighed, as both types of outcomes are perceived as 
independent of one’s own choices. Controllability is likely to be 

generally higher on instrumental tasks, in which participants have some 
degree of control over the outcomes, compared to Pavlovian tasks where 
the outcomes are merely observed. 

Finally, a better understanding of PE-memory interactions might be 
relevant for progress in computational psychiatry. Computational ap
proaches to studying learning and decision-making in depression sug
gest that depressive symptoms are related to a reduced reward 
sensitivity and signed PE signals in the striatum (Chen et al., 2015). 
Moreover, depression and particularly anhedonic symptoms have been 
linked to a reduced positivity bias in learning (Gradin et al., 2011; 
Kumar et al., 2018), suggesting that interactions between episodic 
memory and PEs might also be affected by depressive symptoms. A 
recent study using a Pavlovian learning paradigm examining PE effects 
on memory and depressive symptoms found reinforcement learning 
impairments in individuals with more severe depressive symptoms 
(Rouhani and Niv, 2019). Concerning the interplay of PEs, episodic 
memory, and depression, the study showed that depression modulated 
the interaction effect of unsigned and signed PEs on memory. On 
average, participants’ memory was positively affected by unsigned PEs, 
consistent with related work based on Pavlovian tasks that found better 
episodic encoding after unsigned PEs (Rouhani and Niv, 2021; Rouhani 
et al., 2018). However, the study also identified a bias in the unsigned PE 
modulation of memory. In individuals with self-reported depressive 
symptoms, unsigned PEs improved memory more strongly when they 
originated from negative PEs than from positive PEs. In contrast, in
dividuals without depressive symptoms showed the opposite effect, 
where positive PEs modulated the effect of unsigned PEs on memory 
more strongly than negative PEs. 

To our knowledge, it is currently unclear how the proposed choice- 
confirmation bias on episodic memory is related to depressive symp
toms. It has been shown that individuals with depression have lower 
perceived controllability and a reduced agency bias compared to healthy 
controls (Alloy and Abramson, 1979), suggesting that they are less likely 
to consider outcomes contingent on their actions. Therefore, future 
studies should further investigate the relationship between perceived 
controllability, choice-confirmation biases on learning and memory, and 
depressive symptoms. 

6. Conclusion 

In this review, we have argued that the choice-confirmation bias 
provides an explanation for the seemingly inconsistent effects of signed 
and unsigned PEs on episodic encoding. Effects of signed PEs on episodic 
encoding have been found in instrumental tasks in which participants’ 
choices were either confirmed and associated with stronger episodic 
encoding or disconfirmed, which was linked to weaker encoding. In 
contrast, effects of unsigned PEs have been found in Pavlovian tasks in 
which feedback was delivered regardless of choices. A choice- 
confirmation bias in episodic memory might have evolved to prioritize 
memory representations that optimize reward-guided decision-making. 
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