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Abstract 

Everyday decisions require us to predict how valuable different choice options will be in the 

future. Prior studies have identified a cognitive map in the hippocampal-entorhinal system that 

encodes relationships between states and enables prediction of future states, but does not 

inherently convey value during prospective decision making. Here, we investigated whether 

the entorhinal cortex integrates relational information about changing values by representing 

an abstract value space. To this end, we combined fMRI with a prospective decision making 

task that required participants to track and predict changing values of two choice options in a 

sequence. Such a sequence formed a trajectory through an underlying two-dimensional value 

space. Our results show that participants successfully integrated and extrapolated changes 

along the two value dimensions. Participants’ choice behavior was explained by a prospective 

reinforcement learning model and the degree to which they updated values over time 

correlated with self-reported navigational abilities and preferences. Crucially, while 

participants traversed the abstract value space, the entorhinal cortex exhibited a grid-like 

representation, with the phase of the hexadirectional fMRI signal (i.e., the orientation of the 

estimated grid) being aligned to the most informative axis through the value space. A network 

of brain regions, including the ventromedial prefrontal cortex (vmPFC), tracked the prospective 

value difference between options and the occipital-temporal cortex represented the more 

valuable option. These findings suggest that the entorhinal grid system might support the 
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prediction of future values by representing a cognitive map, which might be used to generate 

lower-dimensional signals of the value difference between options and their identities for 

choices. Thus, these findings provide novel insight for our understanding of cognitive maps as 

a mechanism to guide prospective decision making in humans. 
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Introduction 

Optimal decision making relies on predictions of future values associated with choice options. 

For example, if you were to invest in stocks, you would want to choose those stocks which are 

likely to be more valuable than others in the future. In particular, this implies that you should 

be able to predict if and when one stock becomes more valuable than another and choose 

accordingly to maximize long-term reward. Crucially, such prospective decision making 

requires an appropriate neural representation of the relation between changing and future 

values of choice options.  

Prior studies established a role for parts of the ventromedial prefrontal cortex (vmPFC) and 

orbitofrontal cortex (OFC) as well as the ventral striatum in tracking the value difference 

between the chosen and the unchosen option during decision making (Bartra et al., 2013; 

Boorman et al., 2009; De Martino et al., 2013; FitzGerald et al., 2009; Hunt et al., 2012; 

Knutson et al., 2005; Levy & Glimcher, 2012; O’Doherty et al., 2001; Padoa-Schioppa & 

Assad, 2006; Pelletier & Fellows, 2019; Plassmann et al., 2007). Correct decisions in many 

previously used tasks depended primarily on updating values based on experience (Rescorla 

& Wagner, 1972). However, many decisions, such as in the introductory example of the stock 

market, require recognizing trends and extrapolating values into the future. In such scenarios, 

dorsal anterior cingulate cortex (dACC) has been implicated in comparing recent and past 

reward rates, allowing for trend-guided choices based on expected future rewards (Kolling et 

al., 2016; Wittmann et al., 2016). 

Prediction of future values is enabled by an internal model, which represents transitions 

between states and reward contingencies in an environment or task. Reliance on an internal 

model has been referred to as model-based decision making, and can lead to distinct value 

computations found in the dorsomedial prefrontal cortex (dmPFC) (Daw et al., 2005, 2011; 

Doll et al., 2015). Moreover, the hippocampus has been implicated in model-based and value-

based decision making (Bornstein & Daw, 2013; Gershman & Daw, 2017; Palombo et al., 

2019; Schuck & Niv, 2019; Vikbladh et al., 2019; Wikenheiser & Schoenbaum, 2016; Wimmer 

& Shohamy, 2012). Interestingly, Vikbladh et al. (2019) found that the hippocampus serves as 

a common neural substrate for both model-based decision making and place memory in 

spatial navigation. A possible mechanism by which the hippocampus could support both 

model-based decision-making and spatial navigation is via the formation of cognitive maps. 

Cognitive maps encode relationships between states in the world in a map-like format 

(Behrens et al., 2018; Bellmund et al., 2018; Epstein et al., 2017; O’Keefe & Nadel, 1978; 

Schuck et al., 2016; Stachenfeld et al., 2017; Tolman, 1948; Wilson et al., 2014). Neurally, 

cognitive maps are assumed to rely on the activity of spatially tuned cells in the hippocampal-
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entorhinal system. For example, during spatial navigation, place cells in the hippocampus 

exhibit increased firing at a particular location within an environment (O’Keefe & Dostrovsky, 

1971). Grid cells in the adjacent entorhinal cortex fire at multiple locations within an 

environment and these locations form a hexagonal grid (Hafting et al., 2005). Together, these 

cells enable self-localization and geometric computations supporting spatial navigation, e.g., 

the computation of distances and directions (Bush et al., 2015; Moser et al., 2017). Beyond 

spatial navigation, recent studies have shown hippocampal-entorhinal map-like and grid-like 

representations of more abstract information, e.g., in graph-like structures (Garvert et al., 

2017) as well as in feature and concept spaces (Bao et al., 2019; Constantinescu et al., 2016; 

Tavares et al., 2015; Theves et al., 2019, 2020; Viganò et al., 2021). Therefore, hippocampal-

entorhinal cognitive maps have been suggested to provide a more general mechanism for 

organizing information, allowing for adaptive decision making (Behrens et al., 2018; Bellmund 

et al., 2018; Garvert et al., 2023; Kaplan et al., 2017; Schiller et al., 2015). For example, two 

recent studies showed distance- and grid-like representations for novel inferences during 

decision making in a two-dimensional map of social hierarchies (Park et al., 2020, 2021). 

In decision making, states in the world and values are usually considered different entities, 

i.e., values (rewards) are received after performing an action in a given state. However, it is 

conceivable that values constitute states themselves, which can be represented in a cognitive 

map. In line with this notion, Bongioanni et al. (2021) demonstrated first evidence for a grid-

like representation of an abstract value space defined by reward magnitude and probability in 

macaques. While choice options in previous studies (Bongioanni et al., 2021; Park et al., 2020, 

2021) were static with regard to their locations in the abstract space, an interesting question 

is whether the same map-like representation would code for values of options changing over 

time. By facilitating computations of directions of and distances between value changes over 

time, such a cognitive map could enable efficient prediction of future values for prospective 

decision making. This map could then be used to read out resulting values and generate lower-

dimensional signals of the value difference between options and their identities for choices. 

First evidence for hippocampal neurons encoding position in a value space spanned by 

changing reward probabilities has been demonstrated in macaques (Knudsen & Wallis, 2021). 

However, it remains elusive whether an entorhinal grid-like representation would encode 

changing values during prospective decision making in humans. 

Here, we aimed to investigate whether the entorhinal cortex integrates relational information 

about changing values during prospective decision making using a grid-like representation of 

an abstract value space. To address this question, we combined functional magnetic 

resonance imaging (fMRI) with a prospective decision making task which required participants 

to integrate values in an abstract two-dimensional value space. Our behavioral results show 
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that participants integrated and extrapolated changes along the two value dimensions to guide 

prospective choice, indicating they formed a map of the relationships between options. 

Crucially, while participants traversed the abstract value space along trajectories, the 

entorhinal cortex exhibited a grid-like representation, suggesting the formation of a cognitive 

map. A network of brain regions, including the ventromedial and dorsal prefrontal cortex, 

tracked not only the value difference between options during choices, but also particularly the 

prospective value component. Furthermore, the occipital-temporal cortex represented the 

more valuable option for decision making. 
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Fig. 1 | Design of prospective decision making task. Participants were instructed to track and predict changing 
values of two latent options A and B. Each latent option was signaled by one of two associated images, e.g., a face 
or a tool for option A and a hand or a scene for option B. Participants were instructed which images signaled the 
same option before the task. a Example trial, consisting of an observation phase and an active choice. During the 
observation phase, participants viewed the two options along with their changing values over a sequence of 3 time 
points (TPs). Across time points, the two value-congruent stimuli of a given option alternated. Subsequently, 
participants were asked to choose the option with the higher value at the next time point (choice time point). For 
their choice, participants had to consider how the values changed over time and accordingly how they will have 
changed towards the choice time point. Following their choice, they received feedback about the actual values at 
the choice time point. Note that in this example trial, the more valuable option changed from hand / scene (option 
B) in the beginning of the trial to face / tool (option A) at the choice time point. To facilitate fast tracking of the value 
changes across time points, options were displayed on the same side of the screen during the observation phase 
but sides were random at the choice time point. b A trial with its sequence of time points formed a trajectory through 
an underlying abstract two-dimensional value space, with the dimensions corresponding to the values associated 
with the two options. Each time point corresponded to a particular location in the value space, depicted by dots. 
The arrow in petrol depicts the trajectory through these locations. Trajectories crossing the 45°-diagonal of the 
space depicted in red involved a switch of the more valuable option. Choices sampled different time points across 
trajectories (trials). The first time point after the diagonal is referred to as the switch, the last time point before the 
diagonal as the pre and the second time point after the diagonal as the post time point. Note that the trial ended 
after the choice time point (a) and the post time point is added to the trajectory for illustration. Stimuli taken from 
publicly available stimulus datasets (Brady et al., 2008; Cichy et al., 2016; Kiani et al., 2007; Konkle et al., 2010; 
Kriegeskorte et al., 2008; Righi et al., 2012).  

 

  

low-value
option

high-value
option

28 63
Time point 1 
(2.5 s)

33 54
Time point 2
(2.5 s)

38 46
Time point 3
(2.5 s; pre)

Time point 4:
Choice (max. 3 s;
switch)

... Fixation cross (ISI, 3-8 s) ... 

43 37

Time point 4: 
Feedback (2.5 s;
switch)

... Fixation cross (ITI, 3-8 s) ... 

Observation phase:
Tracking value changes

Predicting values for 
next time point (choice):

a b

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Value of latent option A

V
al

ue
 o

f l
at

en
t o

pt
io

n 
B

TP 1

TP 2

TP 3 (pre)

TP 4 (switch)

[TP 5 (post)]

Value space

B more valuable than A

A more valuable than B

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.02.548378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.548378
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Results 

Participants integrate and extrapolate value changes for prospective choices  
We monitored whole-brain activity using fMRI while 46 participants performed a prospective 

decision making task (Fig. 1). The task required participants to maximize reward by tracking 

and predicting values (i.e., reward magnitudes) associated with two choice options. Each trial 

(Fig. 1a) consisted of an observation phase and an active choice. During the observation 

phase, participants viewed the two options along with their changing values over a sequence 

of time points. They were instructed to carefully track the value changes to be able to predict 

the options’ values at the next time point. After 3-5 observed time points, participants were 

asked to choose the option with the higher value at the next time point (choice time point). 

Correct choices were translated into a monetary bonus for participants, which was based on 

the options’ values.  

More specifically, the two options were represented by the same four category-specific stimuli, 

which were mapped onto the two options (e.g., face/tool signaled option A, while hand/scene 

signaled option B). The stimulus mapping remained constant throughout the task and 

participants were informed about it before. Across time points, the two value-congruent stimuli 

of a given option alternated.  

Crucially, a sequence of time points formed a trajectory through an underlying abstract two-

dimensional value space, with the dimensions of the space corresponding to the values 

associated with the two options (Fig. 1b, Supplementary Fig. 1). In this space, the 45°-diagonal 

represented locations where the two options had the same values. Trajectories crossing the 

45°-diagonal therefore involved a switch in which of the two options was more valuable. 

Tracking value changes over time, essentially recognizing the direction of and distances along 

a trajectory, allowed for prediction of future values and therefore detection of switches.  

Participants’ overall performance of the task, as indicated by choices of the more valuable 

option, was high (Fig. 2a, M = 87.70 %, SD = 6.48 %). If participants considered value changes 

over time for their choices, they should have detected switches of the more valuable option 

from one time point to the next. Indeed, they detected switches significantly more often than 

expected by chance (Fig. 2b; t(45) = 10.82, p < .001). Apart from the switch time point, the 

more valuable option was the same as at the preceding time point and participants could 

simply stay with that option. We therefore compared switch performance with the time points 

before (pre) and after (post) a switch. This comparison revealed a significant effect of time 

point (Fig. 2b; F(2,90) = 35.93, p < .001). Post-hoc pairwise tests indicated significantly 

reduced performance for both pre and switch compared to post (pre: t(45) = -10.72, p < .001; 

switch: t(45) = -7.35, p < .001) but no significant difference between pre and switch (t(45) = -
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0.90, p = .40; all with ⍺	= 0.016, Bonferroni-corrected for three comparisons; controls for pre 

and post individually against chance: pre t(45) = 11.02, p < .001, post t(45) = 45.17, p < .001). 

Similarly, we observed a significant effect of time point on reaction times (Supplementary Fig. 

2a; F(2,90) = 60.65, p < .001; post hoc pairwise tests: pre-post: t(45) = 9.85, p < .001, switch-

post: t(45) = 1.74, p = .09, pre-switch: t(45) = 8.33, p < .001, post hoc pairwise tests with ⍺	= 

0.016). This pattern of results suggests that participants successfully detected switches of the 

more valuable option and may even have over-extrapolated the value changes, leading to 

earlier switches than optimal.    

As switches are induced by the 45°-diagonal of the value space, we tested more continuously 

how performance is influenced by the distance between the choice location and the diagonal 

using participant-specific logistic regressions. We found that the likelihood of correct choices 

increased with increasing distance of the choice location to the diagonal (Fig. 2c-d; t(44) = 

8.03, p < .001). As a control, we tested the same relationship using only choices in switch 

trajectories where locations lay inherently closer to the diagonal (Fig. 2c; t(44) = 6.60, p < 

.001). This suggests that the closer choice locations are to the 45°-diagonal and hence the 

more similar the options’ values become, the more difficult the choices become for 

participants.  

Next, we investigated whether a reinforcement learning model which captured the prospective 

nature of the task, i.e., the value changes over time, fitted participants’ choice behavior better 

than a model that did not. To this end, we modified a Rescorla-Wagner model (Rescorla & 

Wagner, 1972) so that it updated value estimates within a trial based on prediction errors and 

additionally value changes over time points: 

VTP+1 = VTP + ⍺*(OTP + CTP - VTP) with CTP = OTP - OTP-1, 

whereby VTP and VTP+1 are values at the current and next time points, respectively, OTP is the 

outcome at the current time point, CTP reflects how the value has changed from the previous 

to the current time point and ⍺	is the learning rate (free parameter of the model). In essence, 

this prospective Rescorla-Wagner model does not only update the expected value to the 

outcome just observed, but learns which outcome to expect given the past history of changes. 

We compared this to the original Rescorla-Wagner model which does not consider value 

changes over time points: 

VTP+1 = VTP + ⍺*(OTP - VTP).  

As expected, the prospective Rescorla-Wagner model fitted the data better than the original 

Rescorla-Wagner model (Fig. 2e; model comparison per AIC: t(45) = -8.71, p < .001, with ⍺	= 

0.01, Bonferroni-corrected for five tests including alternative models). Initially, we constrained 

the learning rate of the prospective model to the range between 0 and 1, with 1 reflecting full 
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updating according to prediction errors and value changes. We observed a ceiling effect for 

the learning rate, with many participants having learning rates of 1 (M = 0.94, SD = 0.12). For 

this reason, we removed the upper bound of the learning rate and observed learning rates 

slightly above 1 on average, suggesting slight over-updating in line with the performance 

reduction at the pre time point described above (Supplementary Fig. 2f; M = 1.09, SD = 0.25; 

model comparison of unbound and bound model per AIC: t(45) = -3.96, p < .001). The learning 

rate correlated positively with performance at the switch time point (Supplementary Fig. 2g; 

r(44) = .55, p < .001) but negatively with performance at the pre time point (Supplementary 

Fig. 2h; r(44) = -.44, p = .003), reflecting the advantage and disadvantage of over-updating. In 

addition, we implemented a set of alternatives for the prospective model, e.g., with a separate 

learning rate for the change term or with a term for an expected prediction error (see Methods). 

The prospective model described above fitted the data better than all alternatives 

(Supplementary Fig. 2i; all p < .001). These modeling results confirm and extend our previous 

pre-switch-post performance analysis by showing that participants indeed extrapolated value 

changes for prospective choices, though to a slightly larger extent than optimal, presumably 

causing too early switches.  

Lastly, we reasoned that if prospective decision making is supported by a cognitive map similar 

to spatial navigation, then participants with better navigational abilities may also perform better 

in our prospective decision making task. To investigate whether this is the case, we tested 

whether behavior in our task correlated with participants’ self-reported navigational abilities 

and preferences (as measured by the Santa Barbara Sense of Direction Scale questionnaire, 

Hegarty (2002), completed in the last part of the study). We observed a significant positive 

correlation between the learning rate of the prospective Rescorla-Wagner model and self-

reported navigational abilities and preferences (Fig. 2f; correlation with learning rate: r(44) = 

.34, p = .02; correlation with overall performance: r(44) = .11, p = .45; with ⍺	 = 0.025, 

Bonferroni-corrected for two tests). In addition, we wondered whether the prospective 

component of integrating and extrapolating values over time in our task relates to model-based 

decision making in the two-stage task, which assesses reliance on a model of state transition 

probabilities across two decision stages (Daw et al., 2011). Contrary to our expectations, we 

did not observe a significant correlation with model-based decision making in the two-stage 

task, potentially due to overall reduced model-based decision making in our sample 

(Supplementary Fig. 3a-c; correlation with learning rate: r(44) = -.19, p = .20; correlation with 

overall performance: r(44) = .21, p = .15; with ⍺	= 0.025, Bonferroni-corrected for two tests).   

Taken together, our behavioral results demonstrate that participants were able to integrate 

and extrapolate changes along the two value dimensions of the space to guide choice, 

suggesting they formed a map of the relationships between options. 
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Fig. 2 | Participants integrate and extrapolate value changes for prospective choices. a Overall performance 
across all trajectories of the task. b Performance along different time points on switch trajectories: time point before 
the switch (pre), time point of the switch (switch) and time point after the switch (post). Performance at all time 
points was significantly above chance, suggesting that participants succeeded in detecting switches. Performance 
at pre and switch time points was significantly lower than at post time points. c Effect of the distance between the 
choice location and the 45°-diagonal of the value space on performance. Depicted are effect sizes estimated by a 
logistic regression, separately for including all trajectories (left) as well as including only switch trajectories as a 
control (right). In both cases, effect sizes are significantly positive, indicating that the likelihood of correct choices 
increased with a higher distance to the diagonal. d Visualization of the effect of the distance to the diagonal in c. 
Blue dots depict incorrect choice locations across participants, clustering around the 45°-diagonal. Grey dots depict 
correct choice locations. e Reinforcement learning model comparison. The Akaike information criterion (AIC) is 
significantly lower (better model fit) for the prospective Rescorla-Wagner (Prospective RW) model (right) compared 
to the Original RW model (left). f The learning rate ⍺ of the prospective Rescorla-Wagner model correlates 
significantly positively with participants’ self-reported navigational abilities and preferences (Santa Barbara Sense 
of Direction Scale (SBSOD) questionnaire, Hegarty, 2002). Dots represent participants’ data points; line represents 
linear regression line, with shaded regions as the 95% confidence interval. a,b,c,e,f Raincloud plots: dots represent 
participants’ data points; boxplots show median and upper/ lower quartile with whiskers extending to the most 
extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bar 
corresponds to mean ± SEM; distributions depict probability density function of data points. *** p < .001  
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Entorhinal cortex exhibits grid-like representation for value space 
Our behavioral results suggest that participants formed a relational value map. Relationships 

between landmarks in physical space, as well as non-spatial relational structures are 

represented by entorhinal grid cells in a cognitive map. We hypothesized that the entorhinal 

cortex might also encode changing values using a grid-like representation. Such a neural 

representation would facilitate computations of directions of and distances between value 

changes over time and thereby enable efficient prediction of future values. Previous research 

has shown that the regular hexagonal firing pattern of grid cells in the entorhinal cortex 

translates to hexadirectional activity modulations during spatial navigation in fMRI (Doeller et 

al., 2010). In our prospective decision making task, a sequence of time points formed a 

trajectory through an underlying abstract value space (Fig. 1b). More specifically, participants 

moved along trajectories with directions ranging from 0°-350° in 10°-steps in each of the four 

task blocks (fMRI runs; Supplementary Fig. 1). If participants formed a cognitive map of 

changing values, akin to maps in physical space, then activity in the entorhinal cortex should 

show a hexadirectional modulation during this movement through the value space, with higher 

activity for trajectories aligned with the putative grid orientation (phase of the hexadirectional 

signal) than for trajectories misaligned with the putative grid orientation (Fig. 3a). To test this 

hypothesis, we implemented a cross-validation procedure, estimating the putative grid 

orientation using three of four task runs and testing for a hexadirectional modulation aligned 

to the orientation in the left-out run (based on Doeller et al., 2010; Nau et al., 2018). 

In line with our hypothesis, we observed significant hexadirectional modulation of activity in 

the entorhinal cortex (Fig. 3b-c; small volume correction with pFWE < .05 TFCE; MNI peak voxel 

coordinates: 18,-6,-26; peak voxel t(45) = 4.17, pFWE = .003; one-sided test). At the whole-

brain level, we observed no further regions surviving correction (see Supplementary Table 1 

for whole-brain results with a liberal threshold of puncorr < .001). To visualize the hexadirectional 

modulation in the significant entorhinal cluster, we sorted trajectories according to the putative 

grid orientation and illustrate effects of aligned and misaligned 30°-bins (Fig. 3d). A 

complementary ROI analysis of the entorhinal cortex confirmed the hexadirectional (6-fold) 

effect and showed that the modulation of activity was specific to a 6-fold symmetry in line with 

grid-like responses, as there were no significant effects for control symmetries (Fig. 3e; ROI 

analysis, one-sided tests: 4-fold t(45) = -0.21, p = .59; 5-fold t(45) = -0.02, p = .51; 6-fold t(45) 

= 2.91, p = .003; 7-fold t(45) = 1.34, p = .10; 8-fold t(45) = 1.42, p = .08; control symmetries 

n.s.; with ⍺	= 0.01, Bonferroni-corrected for five tests). There was no significant correlation 

between the magnitude of hexadirectional modulation and task performance (Supplementary 

Fig. 4g; r(44) = -.08, p = .59).   
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Furthermore, we performed exploratory analyses to investigate the relationship between the 

entorhinal grid system and the underlying value space. First, we wondered whether grid 

orientations would be anchored to a particular reference direction through the value space. 

We speculated that a direction of 45° constitutes a particularly informative reference direction 

because it indicates that values of both options change at the same rate and – given that it is 

parallel to the 45°-diagonal of the value space – that there will be no switch of the more 

valuable option. We thus examined whether grid orientations in the significant entorhinal 

cluster would cluster around 45°, which was indeed the case (Fig. 3f; V-Test for mean 

orientation of 45° across participants: p = 0.01). Secondly, we wondered whether the grid-like 

representation of the value space might be modulated by value (i.e., reward magnitude) itself. 

Recent evidence in rodents demonstrated restructuring of grid cells in response to reward 

locations during spatial navigation, with movement of grid fields towards reward locations and 

higher firing rates for grid fields closer to reward locations (Boccara et al., 2019; Butler et al., 

2019). We therefore examined whether the magnitude of hexadirectional modulation differs 

between areas of the value space with relatively higher and lower values. To test this, we 

performed a median split of trajectories according to their mean value, i.e., contrasting 

trajectories in the lower left triangle of the space (low-value-area) with trajectories in the upper 

right triangle of the space (high-value-area). We note that this median split led to a substantial 

reduction of available trajectories per value condition and an unbalanced sampling of 

directions between the conditions, rendering this analysis less robust (Supplementary Fig. 4h; 

significant interaction between value condition and direction: F(35,1575) = 3.56, p < .001). 

Using the significant entorhinal cluster as ROI, we then repeated the cross-validated 

hexadirectional analysis separately for the two value conditions. The analysis suggested no 

difference in hexadirectional modulation between the two conditions (Supplementary Fig. 4i; 

t(45) = -1.30, p = .19). However, it is interesting to note that - contrary to our expectations 

based on the rodent literature - it suggested a hexadirectional modulation effect in low-value-

areas but not in high-value-areas (Supplementary Fig. 4i; low-value: t(45) = 2.06, p = .02; high-

value: t(45) = 0.30, p = .38; one-sided tests).  

Taken together, these results provide evidence that the entorhinal cortex encoded the abstract 

value space using a grid-like representation, suggesting the formation of a cognitive map.   
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Fig. 3 | Entorhinal cortex exhibits grid-like representation for value space. a Logic of the grid analysis. Left: 
Schematic of a grid cell with its regular hexagonal firing pattern and an arbitrary orientation of φ = 0°, superimposed 
on the value space. Two example trajectories and their relation to the grid are shown: while the yellow example 
trajectory is aligned with the orientation of the grid, the blue example trajectory is misaligned. Right: The regular 
firing of grid cells translates to hexadirectional activity modulations in fMRI, with higher activity for trajectories 
aligned vs. misaligned with the grid orientation φ. b Grid-like hexadirectional modulation of activity, aligned with the 
mean grid orientation of the entorhinal cortex. For visualization, statistical image is thresholded at puncorr < .01. 
Voxels within the black outline are significant after correction for multiple comparisons using small volume 
correction in the entorhinal cortex (pFWE < .05, TFCE). Statistical image is displayed on the MNI template. c 
Visualization of the hexadirectional effect sizes in the significant entorhinal cluster in b across participants. d Further 
visualization of the hexadirectional effect in the significant entorhinal cluster in b. Depicted are effect sizes of 30°-
directional bins, sorted according to the mean grid orientation of the entorhinal cortex. Yellow bars depict aligned 
directions, blue bars depict misaligned directions (as in a). e Modulation of activity for different symmetries in the 
entorhinal cortex ROI (6-fold refers to the hexadirectional modulation of interest and is significant; 4-fold, 5-fold, 7-
fold and 8-fold refer to controls, all n.s.). e Polar histogram of grid orientations in 60°-space of the significant 
entorhinal cluster across participants. Grey circles depict individual participants’ orientations, bars of the histogram 
depict bins of 5°. Black arrow shows the circular mean of all participants’ orientations. Red arrow highlights an 
orientation of 45°. Grid orientations cluster around 45°.   
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A network of brain regions tracks the prospective value difference during choices  
To make a decision, representing values solely in a two-dimensional value map is not useful. 

Instead, values of the choice options also need to be mapped onto a single common scale for 

comparison. We thus tested whether neural signals track the value difference between the 

chosen and the unchosen option, especially in vmPFC based on previous literature. For this 

purpose, we modeled choice time points as a function of the chosen and unchosen values, 

derived from the prospective Rescorla-Wagner model, and contrasted these effects to test for 

a modulation by the value difference. We observed significant positive and negative 

modulation of neural activity by the value difference in a network of brain regions (see Fig. 4a 

for whole-brain effects; pFWE < .05 TFCE-corrected; see Supplementary Table 2 for a list of 

significant clusters). Positive modulations reflected higher activity for a higher value difference 

and included amongst others vmPFC (MNI peak voxel coordinates: 3,42,-8; peak voxel 

statistics: t(45) = 5.99, pFWE < .001), putamen, insular cortex, hippocampus, amygdala as well 

as motor and somatosensory cortex. Negative modulations reflected higher activity for a 

smaller value difference and included amongst others lateral parts of vPFC / OFC, dmPFC, 

thalamus and parietal cortex. These effects were still present when controlling for reaction 

time (Supplementary Fig. 5a). Furthermore, the value difference effect in the vmPFC cluster 

correlated significantly positively with task performance (Fig. 4c, r(44) = .34, p = .02; after 

exclusion of outlier: r(44) = .33, p = .03).  

Moreover, we aimed to investigate whether neural signals would track particularly the 

prospective component of the value difference, i.e., the difference based on the prospective 

values at the choice time point rather than the non-prospective values of the preceding time 

point. For this purpose, we subtracted value estimates of the original Rescorla-Wagner model 

(non-prospective) from value estimates of the prospective Rescorla-Wagner model, thereby 

extracting particularly the prospective value component for each option. We then modeled 

choice time points as a function of the prospective components of the chosen and the 

unchosen option and contrasted these effects to test for a modulation by the prospective value 

difference. Again, we observed widespread significant positive and negative modulation of 

neural activity by the prospective value difference (Fig. 4d; pFWE < .05 TFCE-corrected; see 

Supplementary Table 3 for a list of significant clusters). Many clusters overlapped with those 

tracking the original value difference. However, a cluster in vmPFC / OFC extended more 

dorsally and bordered ACC (MNI peak voxel coordinates: -7,52,-8; peak voxel statistics: t(44) 

= 5.75, pFWE < .001). This prefrontal cluster was still present when controlling for reaction time 

(Supplementary Fig. 5b). 
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Taken together, these results demonstrate that a network of brain regions, including value 

regions such as vmPFC and dPFC, tracked not only the value difference between options 

during choices, but also particularly the prospective component of that value difference. 

  

 

Fig. 4 | A network of brain regions tracks the prospective value difference during choices. a Modulation of 
activity by the difference between model-derived chosen vs. unchosen value during choices. Clusters depicted 
survive whole-brain correction (pFWE < .05, TFCE). Statistical image is displayed on the MNI template. b Based on 
our expectation of a value difference effect in vmPFC, we visualize the effect in the vmPFC cluster by showing the 
time courses of the effect sizes of the chosen and unchosen value, time-locked to choice onset (choice onset at 
0s). Lines represent the mean across participants, with shaded regions as the 95% confidence interval. c The value 
difference effect in vmPFC correlates significantly positively with performance. d Modulation of activity by the 
prospective component of the value difference during choices. The prospective component refers to the influence 
of values estimated by the prospective Rescorla-Wagner model over values estimated by the original (non-
prospective) Rescorla-Wagner model. Clusters depicted survive whole-brain correction (pFWE < .05, TFCE). 
Statistical image is displayed on the MNI template.    
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Occipital-temporal cortex represents the more valuable choice option 
To make prospective decisions in the absence of direct experience, stimulus values need to 

be constructed based on past experience. We assumed that this construction process might 

involve the sensory representations of the respective choice options. We thus hypothesized 

that we might be able to index this construction process by assessing the stimulus 

representations at the choice point, with the idea that the identity of the option associated with 

the objectively higher value might be represented more strongly than that of the option 

associated with the objectively lower value.  

To test this hypothesis, we leveraged neural responses to category-specific stimuli (faces, 

tools, scenes, body parts), which are known to activate category-selective regions of the 

occipital-temporal cortex. Using data from an independent picture viewing task (PVT) which 

took place before the prospective decision making task, we trained a decoder (support vector 

classifier) on occipital-temporal cortex voxels to distinguish neural activation patterns of the 

four category-specific stimuli (Fig. 5a). In the PVT, participants viewed a stream of pictures of 

the category-specific stimuli and performed a one-back cover task (performance: M = 94.60 

%, SD = 9.87 %, Supplementary Fig. 6a). We first examined how well we could decode 

stimulus category within the PVT, before applying the decoder to the decision making task. 

For this purpose, we estimated trial-related activation patterns and implemented a cross-

validation scheme, training the decoder on a subset of trials and predicting category labels on 

a subset of left-out test trials. Category decoding accuracy within the PVT was well above 

chance level (Supplementary Fig. 6b; M = 80.24 %, SD = 7.09 %, chance level = 25 %).  

Subsequently, we tested our hypothesis that the high-value option would be represented more 

strongly than the low-value option, in particular in participants who performed the task well. 

We estimated trial-related activation patterns in the PVT and choice-time-point-related 

activation patterns in the prospective decision making task. We then trained a decoder using 

the independent PVT data and applied it to neural activation patterns of choice time points in 

the prospective decision making task (Fig. 5b). We extracted the probabilities which the 

decoder assigned to each of the four stimuli and computed two comparisons: First, we 

compared the probabilities assigned to the two stimuli presented on-screen during choice: 

probability of the high-value stimulus vs. the low-value stimulus. Secondly, we compared the 

probabilities assigned to the two value-congruent stimuli which were not presented on-screen 

during choice (but during the time point before): probability of the congruent high-value 

stimulus vs. the congruent low-value stimulus. As expected, we observed significantly higher 

probabilities for the high-value vs. the low-value stimulus, both when comparing on-screen 

stimuli (Fig. 5c-d; t(45) = 8.92, p < .001) as well as when comparing congruent off-screen 

stimuli (Fig. 5f-g; t(45) = 7.54, p < .001). Furthermore, the probability differences correlated 
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positively with task performance (correlation for on-screen stimuli: Fig. 5e, r(44) = .38, p = .01; 

correlation for congruent stimuli: Fig. 5h, r(44) = .27, p = .07). In addition, we tested whether 

the probability differences in favor of the high-value option depended on the distance between 

the choice location and the 45°-diagonal of the value space. We found that the probability 

difference high-value vs. low-value for on-screen stimuli increased significantly with increasing 

distance to the diagonal (Supplementary Fig. 6c; on-screen stimuli: t(45) = 3.30, p = .002; 

congruent stimuli: t(45) = -1.00, p = .31), presumably reflecting difficulty similar to the 

behavioral performance-distance effect. Contrary to our expectations, there was no significant 

correlation between the probability differences in favor of the high-value option and the 

magnitude of hexadirectional modulation (Supplementary Fig. 6d-e; on-screen stimuli: r(44) = 

-.10, p = .54; congruent stimuli: r(44) = -.15, p = .34).    

We note that while we compared on-screen and off-screen congruent stimuli separately, the 

temporal proximity of their presentations during time points within a trajectory might render 

disentangling their effects difficult. To control for the temporal proximity to some extent, we 

repeated this analysis using only those choices which sampled the switch time point. In this 

case, the direction of the effect during choice (high-value vs. low-value, especially for the 

comparison of the congruent stimuli) should be different from the direction of the effect at the 

time point before the switch (pre). The probability difference effects and correlations with 

performance were still present in this control analysis (Supplementary Fig. 6f-k; on-screen 

stimuli: t(45) = 5.42, p < .001, r(44) = .49, p = .003 (correlation n.s. after outlier control); 

congruent stimuli: t(45) = 6.17, p < .001, r(44) = .46, p < .001).  

Taken together, these results show that occipital-temporal cortex represented the more 

valuable option for decision making. 
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Fig. 5 | Occipital-temporal cortex represents the more valuable choice option. a Probability map of occipital-
temporal cortex voxels used for the decoding analysis, displayed on the MNI template. Note that the decoding 
analysis was performed using participant-specific masks in native space, which were created based on anatomical 
and functional information (M = 2235 voxels, see Methods for details). This map depicts the probability of voxels in 
MNI space to be included in the mask across participants. b Example for stimuli at a choice time point. Top: Stimuli 
which are on-screen during the choice. Objective values of the stimuli at the choice time point are shown in grey 
for visualization (not shown to participants). Below: Value-congruent stimuli which are not presented on-screen 
during the choice. We compared decoding probabilities for the high- vs. low-value stimulus, separately for on-
screen stimuli (c-e) and value-congruent off-screen stimuli (f-h). c Z-scores for the decoding probability difference 
for the on-screen high- vs. low-value stimuli based on decoding permutation test (see Methods). Occipital-temporal 
cortex represents the high-value stimulus significantly stronger than the low-value stimulus. d Visualization of the 
effect in c, showing the probabilities the decoder assigned to the stimuli (before the permutation test). e The high- 
vs. low-value difference score correlates significantly positively with performance. f Z-scores for the decoding 
probability difference for the value-congruent off-screen high- vs. low-value stimuli based on decoding permutation 
test (see Methods). Occipital-temporal cortex represents the congruent high-value stimulus significantly stronger 
than the congruent low-value stimulus. g Visualization of the effect in f, showing the probabilities the decoder 
assigned to the stimuli (before the permutation test). h The correlation between the congruent high- vs. low-value 
difference score and performance was not significant. c,d,f,g Raincloud plots: dots represent participants’ data 
points; boxplots show median and upper/ lower quartile with whiskers extending to the most extreme data point 
within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bar corresponds to mean 
± SEM; distributions depict probability density function of data points. e,h Correlation plots: dots represent 
participants’ data points; line represents linear regression line, with shaded regions as the 95% confidence interval. 
Stimuli taken from publicly available stimulus datasets (Brady et al., 2008; Cichy et al., 2016; Kiani et al., 2007; 
Konkle et al., 2010; Kriegeskorte et al., 2008; Righi et al., 2012). *** p < .001          
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Discussion 

Our capacity to predict future values of choice options is central to many decisions we face in 

everyday life. Understanding the mechanisms by which the brain enables prospective decision 

making is therefore of particular importance. In this study, we combined fMRI with a 

prospective decision making task to investigate how the brain represents relational information 

about changing values of choice options in an abstract value space. Participants integrated 

and extrapolated changes along the two value dimensions to guide prospective choice. 

Crucially, while participants traversed the abstract value space along trajectories, the 

entorhinal cortex exhibited a grid-like representation, suggesting the formation of a cognitive 

map. A network of brain regions, including vmPFC and dPFC, tracked the prospective value 

difference between options and occipital-temporal cortex represented the more valuable 

choice option. 

Our finding of an entorhinal grid-like representation of an abstract value space dovetails with 

the broader idea of cognitive maps encoding abstract information (Behrens et al., 2018; 

Bellmund et al., 2018; Kaplan et al., 2017; Schiller et al., 2015) and research showing that 

vmPFC jointly encodes values and states (Moneta et al., 2023). Map-like representations of 

relationships between states enable prediction of future states (Stachenfeld et al., 2017). In 

spatial navigation and memory, the hippocampal-entorhinal system is involved in prospective 

mental simulations and imaginations of events and navigational goals (Bellmund et al., 2016; 

Brown et al., 2016; Horner et al., 2016; Nyberg et al., 2022; Pfeiffer & Foster, 2013; Schacter 

et al., 2007). In the context of prospective value-based decision making, predicting future 

states corresponds to predicting future values of choice options, such as in the introductory 

example of a stock market. Critically, value changes over time can be conceptualized as 

sequences through an abstract value space, allowing for prospective decision making by 

facilitating the computation of geometric distances and directions. In line with this, it is 

noteworthy that the degree to which participants updated values over time in our value space 

task correlated with self-reported navigational abilities and preferences during spatial 

navigation in everyday life.   

Our results extend recent evidence for map-like representations of value spaces in macaques 

into human research. For example, Bongioanni et al. (2021) showed a grid-like representation 

in the macaque medial frontal cortex as a function of step-like transitions between static 

options in a space spanned by reward magnitude and probability. Knudsen and Wallis (2021) 

found that hippocampal neurons in macaques, similar to place cells during spatial navigation 

in a physical space, encode position in a value space spanned by changing reward 

probabilities. Here, we provide evidence for an entorhinal grid-like representation of a value 

space during prospective decision making in humans.  
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Interestingly, our exploratory analysis suggests that the entorhinal grid system adapts to 

properties of the value space. More specifically, our results suggested an anchoring of grid 

orientations around 45°. We speculate that a direction of 45° constitutes a particularly 

informative reference direction through our value space. This is because it indicates that 

values of both options change at the same rate and – given that it is parallel to the 45°-diagonal 

of the value space – that there will be no switch of the more valuable option. In line with this 

speculation, recent evidence in spatial navigation demonstrated anchoring of grid orientations 

to an informative axis in a virtual navigation arena which minimizes spatial uncertainty (Julian 

et al., 2018; Julian & Doeller, 2021; Navarro Schröder et al., 2020; Stensola et al., 2015). Our 

results suggest that grid orientations might anchor to an informative axis even in more abstract 

spaces. Furthermore, we wondered whether the grid-like representation of the value space 

might be modulated by value (i.e., reward magnitude) itself. Recent evidence in rodents 

demonstrated restructuring of grid cells in response to reward locations during spatial 

navigation, with movement of grid fields towards reward locations and higher firing rates for 

grid fields closer to reward locations (Boccara et al., 2019; Butler et al., 2019). While our results 

suggested no difference in the strength of grid-like representations between low- and high-

value areas of the value space, they surprisingly pointed towards a grid-like representation of 

the low-value but not the high-value area. We note that these effects of an exploratory analysis 

should be interpreted with caution, given the absence of a clear difference in the grid-like 

signal. One could speculate that participants’ subjective gain of correct choices might have 

been higher in low-value than in high-value areas because the received reward in high-value 

areas was high anyway, in agreement with notions of value distortions as value compression 

or diminishing utility (Juechems et al., 2021; Tversky & Kahneman, 1992). While the main goal 

of our study was to assess whether a grid-like representation encodes a value space in 

principle, future studies could aim to investigate modulations of such a grid-like representation 

by value itself. 

It is conceivable to represent values during our task by two separate number lines, without 

necessarily integrating them into a two-dimensional space. Indeed, none of the participants 

reported having imagined the two-dimensional value space. However, our results, together 

with other studies demonstrating grid- and place-like representations of values (Bongioanni et 

al., 2021; Knudsen & Wallis, 2021), suggest indeed a neural representation of a two-

dimensional space. Nevertheless, it is possible that different brain regions represent values 

differently, e.g., in a map-like format vs. combining them directly into a value difference or 

summary signal.  

In light of this, while the entorhinal value map could support the prediction of future values by 

facilitating computations of directions of and distances between value changes over time, 
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other brain regions might read out the resulting values, map them onto a single common scale 

for comparison and thus generate a one-dimensional signal of the value difference used for 

decision making. In line with this notion and with previous literature in value-based decision 

making, a network of brain regions, including vmPFC, tracked the value difference between 

options during choices (Bartra et al., 2013; Boorman et al., 2009; De Martino et al., 2013; 

FitzGerald et al., 2009; Hunt et al., 2012; Knutson et al., 2005; Lee et al., 2014; Levy & 

Glimcher, 2012; O’Doherty et al., 2001; Padoa-Schioppa & Assad, 2006; Pelletier & Fellows, 

2019; Plassmann et al., 2007). We observed both positive and negative modulations of activity 

by the value difference. While positive modulations might reflect the benefit of the chosen over 

the unchosen option, negative modulations could signal the relative value of the unchosen 

option as an alternative. Moreover, a vmPFC cluster extending more dorsally (dPFC) and 

bordering ACC tracked particularly the prospective component of the value difference. This 

prospective value difference effect is in line with reports of distinct model-based value 

correlates in dmPFC and reward rate tracking for trend-guided choice in neighboring dACC 

(Doll et al., 2015; Wittmann et al., 2016). Furthermore, the pattern of a value difference signal 

directly relevant for choices in vmPFC and particularly prospective value components 

extending into dPFC dovetails with reports of a functional gradient, with vmPFC encoding 

values for executable choices and dmPFC encoding abstractly modeled values (Nicolle et al., 

2012). We speculate that the widespread involvement of brain regions in tracking values in 

our results might be explained by the high salience and relevance of values in the task. 

Ultimately, these value difference signals could be used to allocate attention to the more 

valuable option to guide eventual decision making in many foraging scenarios (Hall-McMaster 

et al., 2021; Hayden et al., 2011; Kolling et al., 2012; Wittmann et al., 2016). In line with this 

notion, occipital-temporal cortex represented the identity of the more valuable choice option. 

This result matches previous reports of prospective activation of states in the two-stage task 

(Doll et al., 2015).   

Finally, we would like to point to possible limitations of our study. First, the direction and rate 

of value changes were constant within a trial and differed across trials of our task, based on 

the sampling of different trajectories. Future studies could add noise to the value changes or 

vary them in a more fine-grained manner within trials to investigate how a map-like 

representation of a value space translates to more ecological scenarios. Secondly, we did not 

find evidence for a correlation between the grid-like representation and performance of the 

prospective decision making task across participants. In light of this, previous research 

reported mixed results for across-participant grid-behavior correlations, ranging from positive 

to negative to no reports of correlations (Constantinescu et al., 2016; Horner et al., 2016; 
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Wagner et al., 2023). Future studies could opt for testing such relationships more fine-grained 

on an individual participant level. 

In conclusion, our results provide evidence that the human entorhinal cortex uses a grid-like 

representation to integrate relational information about changing values in an abstract value 

space during prospective decision making, suggesting the formation of a cognitive map. This 

map might be used to generate lower-dimensional signals of the value difference between 

options and their identities for choices. Thus, our findings provide novel insight for our 

understanding of cognitive maps as a mechanism to guide prospective decision making in 

humans. 
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Methods 

Participants 
51 participants took part in this study. The sample size was determined by a power analysis 

using G*Power (Faul et al., 2007). This yielded a necessary sample size of 41 participants to 

achieve a statistical power of 80 % for a small-to-medium effect size (d = 0.4, α = 0.05, one-

tailed t-test). Additionally, 10 participants were recruited to account for potential dropouts. All 

participants had normal or corrected-to-normal vision, no history of or current neurological or 

psychiatric disorders and were right-handed. Participants were recruited using the participant 

database of the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 

Germany.  

For the data analysis, one participant was excluded due to missing fMRI data because of 

technical problems during data acquisition. Furthermore, four participants were excluded due 

to low performance of the prospective decision making task (performance criterion of 70% 

accuracy based on previous piloting). Thus, the final sample consisted of 46 participants (age: 

M = 28.15 years, SD = 4.77 years, range = 19-39 years; 25 female). 

The study was approved by the ethics committee at the Medical Faculty at the University of 

Leipzig (421/19-ek) and all participants gave written informed consent prior to participation. 

Participants were reimbursed with a baseline fee of 10 € / h and could additionally earn a 

monetary bonus up to 10 € based on performance (see tasks for details). 

Experimental procedure 
Overview 

The study consisted of three parts and lasted approximately three hours in total. The first part 

took place in a behavioral laboratory (approx. 45 min). Here, participants received instructions 

and training for the main task of the study, i.e., the prospective decision making task. In the 

second part (approx. 90 min), participants performed two tasks in the MRI scanner: First, they 

completed a picture viewing task (PVT) which served as an independent dataset to train a 

decoder for choice stimuli subsequently used in the prospective decision making task. 

Afterwards, they completed the prospective decision making task. In the third part (approx. 45 

min), participants returned to a behavioral laboratory to complete two post-scanning tasks: the 

two-stage task (Daw et al., 2011) to study model-based vs. model-free decision making as 

well as the Santa Barbara Sense of Direction Scale (SBSOD) questionnaire (Hegarty, 2002) 

to assess navigational abilities and preferences. 

Stimuli  

Stimuli used for the picture viewing task and the prospective decision making task in the MRI 

scanner were category-specific pictures (faces, tools, scenes, body parts) which are known to 
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elicit neural responses in category-selective regions of the occipital-temporal cortex. Stimuli 

were taken from publicly available stimulus datasets (faces: Righi et al. (2012), Face images 

courtesy of Michael J. Tarr, Carnegie Mellon University, http://www.tarrlab.org/. Funding 

provided by NSF award 0339122; tools: Brady et al. (2008), https://konklab.fas.harvard.edu/#; 

scenes: Konkle et al. (2010), https://konklab.fas.harvard.edu/#; body parts: Cichy et al. (2016), 

Kiani et al. (2007), Kriegeskorte et al. (2008), http://userpage.fu-

berlin.de/rmcichy/fusion_project_page/main.html). From these stimulus sets, three pictures of 

the categories faces, tools and scenes and one picture of the category body parts were pre-

selected. From this preselection, one picture of each category was randomly chosen to create 

a set of four pictures for each participant. 

Prospective decision making task 

Participants performed a prospective decision making task which required them to maximize 

reward by tracking and predicting values (i.e., reward magnitudes) associated with two choice 

options. The values of the two options changed over a sequence of time points and 

participants’ goal was to choose the more valuable option at the next time point. 

The options were represented by four category-specific stimuli (a face, a tool, a scene, a body 

part). Participants were instructed that two of these stimuli each formed a pair such that stimuli 

within a pair yielded the same value at a given time (they were value-congruent across the 

entire task). For example, the stimuli face and tool might have formed a pair and the stimuli 

scene and body part might have formed a pair. Hence, the task comprised two latent options 

(i.e., options A and B), with two value-congruent stimuli per option. Value congruencies 

between the four pictures were counterbalanced across participants. 

Each trial consisted of an observation phase and an active choice. During the observation 

phase, participants viewed the two options along with their changing values over a sequence 

of time points (TP). Pictures of the two options were displayed on the left and right sides of 

the screen, with their associated current values indicated by numbers underneath. Across time 

points, two aspects changed: First, which of the two value-congruent stimuli of a given option 

was shown on the screen alternated each time point (e.g., for option A TP1: face, TP2: tool, 

TP3: face, etc.). Participants were instructed that when a stimulus and its current value were 

shown on the screen, the other stimulus of the pair currently yielded the same value. Secondly, 

the values of the two latent options changed over time points. Participants were instructed to 

carefully track these changes to be able to predict the options’ values at the next time point. 

Each time point was presented for 2.5 s and was directly followed by the next time point. 

During the observation phase (initial time points), each option stayed on the same side of the 

screen to facilitate fast tracking of the changes. However, across trials the sides of the options 

were counterbalanced and distributed randomly. After 3-5 observed time points, only two 
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pictures were presented and participants were asked to choose the option with the higher 

value at this future time point (choice time point). At the choice time point, the sides of the 

pictures on the screen (left / right) were random to prevent pure side-value associations. 

Participants were asked to indicate their choice by pressing the left or the right button on an 

MRI-compatible button box. Participants were given a maximum of 3 s to respond. After their 

choice (or the timeout), a fixation cross was presented at the center of the screen for an inter-

stimulus interval sampled from a truncated exponential distribution (min = 3 s, max = 8 s, mu 

= 4 s, sampled mean = 4.1 s). Afterwards, a feedback screen was presented for 2.5 s, showing 

the pictures and their actual values at the choice time point. The value of the chosen option 

was highlighted in yellow. Lastly, a fixation cross was presented at the center of the screen for 

an inter-trial interval sampled from a truncated exponential distribution (min = 3 s, max = 8 s, 

mu = 4 s, sampled mean = 4.1 s). 

The task comprised 144 trials. Half of the trials involved a choice as described above, with 

choices at the 4th, 5th or 6th time point. The other half of the trials proceeded without any choice 

and consisted of six time points (passive trials). The purpose of including longer trials without 

any choice was to improve the estimation of trajectory-related fMRI signals for the planned 

analysis of hexadirectional signals (grid-like representation, see below). Choice and passive 

trials were intermixed randomly so that participants would always need to track the values in 

a given trial and be ready to indicate their choice. 

Crucially, a sequence of time points in a trial formed a trajectory through an underlying abstract 

two-dimensional value space. The two dimensions of the space corresponded to the values 

associated with the two options (ranging from 0 to 100). Each time point with its current values 

of the two options corresponded to a particular location in the value space and a trial could 

therefore be conceptualized as movement along a trajectory through the space. Trajectories 

were sampled with directions (angles) ranging from 0°-350° in 10°-steps (0° referring to a 

value increase along the x-dimension of the space but no change in the y-dimension). 

In this space, the 45°-diagonal represented locations where the two options had the same 

values. Trajectories crossing the 45°-diagonal therefore involved a switch in which of the two 

options was more valuable. Half of all trajectories in the task involved a switch while the other 

half did not (switch vs. non-switch trajectories). The switch time point was defined as the first 

time point after the 45°-diagonal. The switch time point appeared equally often at the 4th, 5th 

and 6th time point across all switch trajectories (equal sampling both in choice and in passive 

trials / trajectories).  

Time points (locations) along a trajectory were sampled equidistantly, i.e., the distance 

between two consecutive time points was the same within a given trajectory. The values 
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shown to participants during the task were rounded to integers. Depending on the direction 

(angle) of a trajectory, rounding could lead to differences of +/-1 in value changes between 

time points but it was ensured that this would not change the identity of the more valuable 

option at choice time points. Furthermore, the task included two types of trajectories with 

regard to the distance between two consecutive time points:  trajectories with a relatively 

smaller distance of 6 (referred to as short-distance trajectories) and trajectories with a 

relatively larger distance of 10 (referred to as long-distance trajectories). For each distance 

type, one set of trajectories (36 directions, 0°-350°) was realized as choice trials and one set 

of trajectories as passive trials. Furthermore, for a given distance type each direction was once 

realized as a switch trajectory and once as a non-switch trajectory. The assignment of switch 

vs. non-switch to choice vs. passive trials was pseudorandom with the condition that in choice 

trials, each direction was realized as a switch trajectory at least once across both distance 

types. This ensured that a response from the participant was sampled for all directions 0°-

350° involving a switch. 

As noted above, choices occurred either at the 4th, 5th or 6th time point. In non-switch 

trajectories, the 4th, 5th and 6th time point equally often constituted the choice time point for 

each distance type. In switch trajectories, for each distance type half of the choice time points 

sampled the switch time point (18 trials). The other half sampled the time point before the 

switch (pre) and the time point after the switch (post) equally often (i.e., 50 % switch time point, 

25 % pre time point, 25 % post time point; note that for 6 participants at the beginning of the 

study the balance between pre and post differed up to +/-3 trials). 

The total of 144 trials (trajectories) was pseudorandomly distributed over four task blocks 

(fMRI runs) so that each block: 

1. sampled all 36 directions ranging from 0°-350° in 10°-steps (hence, 36 trials per block), 

2. sampled switch and non-switch trajectories equally often,  

3. sampled choice and passive trajectories equally often, 

4. sampled the switch time point as the choice time point equally often (one trial more in 

one block), 

5. sampled short- and long-distance trajectories equally often 

6. and for each distance type sampled choice and passive trajectories equally often. 

In each block, the order of trajectories was randomized according to the direction. 

In each block, trajectories were positioned within the circle created by a radius of 50 from the 

central point of the two-dimensional value space at [50,50]. Equal positioning of trajectories in 
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the relevant circular area of the space was achieved by a genetic algorithm. Its goal was to 

position trajectories so as to minimize the standard deviation of the number of time points 

(locations on trajectories) falling into the 10x10 sub-squares of the relevant circular area (for 

2000 generations).  

Each block lasted approx. 13 min (M = 12.74 min, SD = 0.15 min). It started with a fixation 

cross presented at the center of the screen for 10 s before the first trial. After the last trial, a 

fixation cross was presented at the center of the screen for 15 s, followed by a message 

informing the experimenter that the block finished and the MRI run could be stopped. After 

each block, participants received feedback about their performance in the given block. The 

feedback stated the number of correctly answered trials as well as the earned monetary bonus 

in the given block. More specifically, in each block a trial was randomly chosen for the bonus. 

If the answer in this trial was correct, the highest values across the entire trial were summed 

up and converted into a bonus (so that a value of 50 yielded 0.20 €). If the answer in this trial 

was false, no bonus was won. Participants were instructed about this bonus beforehand. 

Participants could take a short break before the next block. 

Participants received instructions for the task and a training of 25 trials before performing the 

main task in the scanner. During training, incorrectly answered trials were repeated until 

answered correctly. For instructions and training only, a distinct set of stimuli of everyday 

objects from a publicly available stimulus dataset (Brady et al., 2008) was used.  

At the end of the study, participants were asked about their strategies to solve the task and 

whether they imagined the underlying two-dimensional value space. None of the participants 

reported having imagined the two-dimensional value space.  

The task was programmed in Python 3.7 using the PsychoPy package (Peirce et al. (2019); 

version 3.1.5; https://lindeloev.net/psychopy-course/) in Spyder (https://www.spyder-ide.org/; 

version 4.0.0b3) distributed via Anaconda (https://www.anaconda.com/; version 2019.03). The 

instruction was programmed using the Psycho Builder (Peirce et al. (2019); version 2020.2.3).   

Picture Viewing Task (PVT) 

Before the prospective decision making task, participants performed a picture viewing task 

(PVT) which served as an independent dataset to train a decoder for subsequent analyses. 

Participants viewed a stream of pictures of the category-specific stimuli which were later used 

as choice stimuli in the prospective decision making task. The PVT was participants’ first 

exposure to these category-specific stimuli during the study.  

To ensure that participants paid attention to the presentation of the stimuli, they performed a 

one-back task as a cover task. In each trial, a stimulus was presented for 2 s at the center of 

the screen. This was followed by a fixation cross at the center of the screen for an inter-trial 
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interval sampled from a truncated exponential distribution (min = 2 s, max = 8 s, mu = 3 s, 

sampled mean = 3.3 s). If the fixation cross was red, participants had to judge whether the 

stimulus in the next trial was the same as the preceding stimulus before the fixation cross (test 

trial). If the fixation cross was white, no judgement was required (regular trial). In test trials, 

participants had to indicate their judgement by pressing one of two buttons on an MRI-

compatible button box if the stimulus was the same as the preceding one and the other button 

if it was different. Button contingencies (left vs. right button for which type of judgement) were 

counterbalanced and randomized across participants. Participants were instructed to press 

the button while the stimulus was presented (hence maximum response time of 2 s). After a 

test trial the task proceeded without direct trial-specific feedback.  

The task consisted of 65 trials, with 14 regular trials per stimulus (+1 for one stimulus) and 2 

test trials per stimulus. The sequence of trials was generated pseudorandomly so that every 

stimulus was preceded equally often by every other stimulus including self-repetitions (i.e., 

serial-order counterbalanced sequence; Brooks (2012)). Test trials were distributed 

pseudorandomly over the trial sequence so that every bin of 8 trials contained a test trial. Of 

the 2 test trials per stimulus, one trial was realized as a self-repetition trial (same-stimulus-

judgement) and one as a non-self-repetition trial (different-stimulus-judgement).  

The task lasted approx. 6 min (M = 6.18 min, SD = 0.02 min). The task started with a fixation 

cross presented at the center of the screen for 10 s before the first trial. After the last trial, a 

fixation cross was presented at the center of the screen for 15 s, followed by a message 

informing the experimenter that the task finished and the MRI run could be stopped. 

Afterwards, participants received feedback about their task performance. The feedback stated 

the number of correctly answered trials as well as the earned monetary bonus. Participants 

were instructed that for each correctly answered test trial they would earn a bonus of 0.15 €. 

Participants could take a short break after the task. 

Serial-order counterbalancing of the trial sequence was performed in Matlab using a script by 

Brooks (2012). The task was programmed in Python 3.7 using the PsychoPy package (Peirce 

et al. (2019); version 3.1.5; https://lindeloev.net/psychopy-course/) in Spyder 

(https://www.spyder-ide.org/; version 4.0.0b3) distributed via Anaconda 

(https://www.anaconda.com/; version 2019.03).  

Two-stage task 

Participants performed the two-stage decision making task developed by Daw et al. (2011) to 

study model-based vs. model-free decision making. The task structure consisted of two 

decision stages and participants’ goal was to maximize rewards obtained by decisions at the 

second stage. Stimuli were character symbols.   
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In each trial, decisions were made at two stages. At the first stage, participants had to choose 

between two stimuli by pressing one of two buttons on a keyboard. The chosen stimulus 

moved to the top of the screen. Below, one of two second-stage states was presented. The 

second stage consisted of two other stimuli and participants had to choose one of them by 

pressing one of two buttons on a keyboard. The second-stage decision was either rewarded 

(displayed by a coin) or not (displayed by a red X), presented on the screen for 1 s. Participants 

had a maximum of 3 s to indicate their decision.  

Transitions to the two second-stage states depended probabilistically on the first-stage 

decision. One stimulus at the first stage led to one second-stage state with a higher probability 

of 70 % (common transition) while it led to the other second-stage state with a lower probability 

of 30 % (rare transition). This transition pattern was reversed for the other first-stage stimulus. 

At the second stage, reward probabilities were determined by a Gaussian process with a 

standard deviation of .025 and reflecting boundaries of .25 and .75.   

Participants were instructed that one of the first-stage stimuli primarily lead to one second-

stage state and vice versa and that this pattern would remain constant across the task. 

Furthermore, they were instructed that reward probabilities of second-stage stimuli could 

change and that collected rewards would be translated into a monetary bonus at the end of 

the task.  

Participants performed a training with 50 trials and a distinct set of stimuli. The main task 

comprised 201 trials. At the end of the task, participants received feedback stating the earned 

monetary bonus based on their performance (bonus was calculated as 0.015 € per obtained 

reward). The task lasted approx. 30 min.    

For this task, a PsychoPy-based Python script from a publicly available repository (Abraham 

Nunes, https://abrahamnunes.github.io/paradigms/) was used. The script was adapted in 

Python 3.7 using the PsychoPy package (Peirce et al. (2019); version 3.1.5) in Spyder 

(https://www.spyder-ide.org/; version 4.0.0b3) distributed via Anaconda 

(https://www.anaconda.com/; version 2019.03).  

Santa Barbara Sense of Direction Scale (SBSOD) 

Participants filled out the Santa Barbara Sense of Direction Scale (SBSOD) questionnaire 

(Hegarty, 2002) on a computer. This questionnaire measures navigational abilities and 

preferences and consists of 15 items (self-referential statements). Items were presented 

subsequently in the upper part of the screen, together with a 7-point rating scale underneath 

(1 = strongly agree, 7 = strongly disagree). Participants were asked to indicate their response 

by pressing the respective number on a keyboard and confirming their response with enter 

(response was self-paced).  
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To compute the score of the questionnaire, responses to positive items were reverse-coded 

so that a higher overall score reflected higher navigational abilities and preferences. 

The task was programmed in Python 3.7 using the PsychoPy package (Peirce et al. (2019); 

version 3.1.5; https://lindeloev.net/psychopy-course/) in Spyder (https://www.spyder-ide.org/; 

version 4.0.0b3) distributed via Anaconda (https://www.anaconda.com/; version 2019.03). 

MRI data acquisition  

MRI data were recorded using a 3 Tesla Siemens Magnetom Prisma Fit scanner (Siemens, 

Erlangen, Germany) with a 32-channel head coil.  

After a localizer scan, functional scans (fMRI) for the picture viewing task and the four runs of 

the prospective decision making task were acquired using T2*-weighted whole-brain gradient-

echo echo planar imaging (GE-EPI) with multiband acceleration, sensitive to blood-oxygen-

level-dependent (BOLD) contrast (Feinberg et al., 2010; Moeller et al., 2010). Settings of the 

fMRI sequence were as follows: TR = 1500 ms; TE = 22 ms; voxel size = 2.5 mm isotropic; 

field of view = 204 mm; flip angle = 70°; partial fourier = 0.75; bandwidth = 1794 Hz/Px; multi-

band acceleration factor = 3; 69 slices interleaved; distance factor = 0 %; phase encoding 

direction = A-P. On average, 253 volumes were recorded for the PVT (M = 252.76 volumes, 

SD = 5.45 volumes) and 514 volumes per run of the prospective decision making task (M = 

513.70 volumes, SD = 7.57 volumes).  

After the second run of the prospective decision making task, field maps were acquired to 

measure and later correct for magnetic field inhomogeneities. Field maps were acquired using 

both opposite phase-encoded EPIs and a double echo sequence. Settings of the opposite 

phase-encoded EPIs were as follows: TR = 8000 ms; TE = 50 ms; voxel size = 2.5 mm 

isotropic; field of view = 204 mm; flip angle = 90°; partial fourier = 0.75; bandwidth = 1794 

Hz/Px; multi-band acceleration factor = 1; 69 slices interleaved; distance factor = 0 %. Settings 

of the double echo sequence were as follows: TR = 620 ms; TE1 = 4.00 ms; TE2 = 6.46 ms; 

voxel size = 2.5 mm isotropic; field of view = 204 mm; flip angle = 60°; bandwidth = 412 Hz/Px; 

69 slices interleaved; distance factor = 0 %. 

At the end of the scanning session, a T1-weighted MPRAGE anatomical scan was acquired 

(TR = 2300 ms; TE = 2.98 ms; voxel size = 1 mm isotropic; field of view = 256 mm; flip angle 

= 9°; bandwidth = 240 Hz/Px; distance factor = 50 %).  

To measure physiological noise signals during the fMRI runs, pulse oximeter data were 

recorded on participants’ hands using a Siemens pulse sensor and the PhysioLog function of 

the multiband sequence.  
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Task stimuli were projected on a screen via a mirror attached to the head coil and behavioral 

responses were collected with an MRI-compatible button box.  

Behavioral data analysis 
We performed all behavioral analyses in Python 3.8 using Spyder (https://www.spyder-

ide.org/; version 5.1.5) distributed via Anaconda (https://www.anaconda.com/; version 

2020.11). Statistical analyses were based on the packages scipy (version 1.10.0) and 

statsmodels (version 0.13.2). T-tests and correlations tests were based on non-parametric 

permutation-based approaches to assess significance (10000 permutations). If not stated 

otherwise, we used an alpha level of .05 and two-sided tests.   

Prospective decision making task performance and reaction times  

We calculated performance in the prospective decision making task as the proportion of trials 

with a correct choice, defined as choice of the objectively more valuable option at the choice 

time point. We first assessed whether participants met our performance criterion of at least 70 

% (based on previous piloting, see Participants) to be included in the final analysis sample. 

For this purpose, we left trials with missing responses labeled as incorrect (total of 50 trials 

with missing responses across participants). For further analyses, we labeled trials with 

missing responses as NaNs so that they were not considered in the analyses. Furthermore, 

we labeled trial scores as NaNs if both options had the same objective value at the choice 

time point (same value could happen due to constraints by the direction (angle) of the 

trajectory; M = 2.2 trials, SD = 1.19 trials across participants). We log-transformed reaction 

times. 

In switch trajectories, we tested whether performance at the switch time point was better than 

expected by chance using a one-sample t-test against 50 % (and as controls also for the pre 

and post time point). Furthermore, we tested whether the time point in switch trajectories (pre, 

switch, post) influenced performance and reaction times using repeated measures ANOVAs 

and post-hoc pairwise tests (related-samples t-tests, with ⍺	= 0.016, Bonferroni-corrected for 

three comparisons).   

To estimate the effect of the distance between the choice location and the 45°-diagonal of the 

value space on performance, we implemented a logistic regression for each participant 

predicting trial scores based on the distance. We then tested participant-specific effect sizes 

against 0 using a one-sample t-test on the group level. As a control, we repeated this analysis 

using only choices in switch trajectories where locations lay inherently closer to the diagonal. 

In both all and switch-trajectories-only analyses, one extreme outlier data point was excluded 

from the group level test (data point was 301.08 SD and 128.28 SD away from sample mean 

without that data point). We visualized the effect by showing correct and incorrect choice 
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locations in the value space. For reaction times, we tested the effect of the distance to diagonal 

using participant-specific linear regressions. 

To test whether performance was influenced by short- vs. long-distance trajectories, we 

implemented a repeated measures ANOVA with the factors distance type and time point (pre, 

switch, post). We also analyzed performance for different directions of trajectories. We binned 

directions according to quadrants, reflecting whether values increased or decreased for both 

options or in opposite directions (Q1: 10-80°, Q2: 100-170°, Q3: 190-260°, Q4: 280-350° and 

cardinal directions of 0°,90°,180° and 270° as a separate bin). We tested whether the quadrant 

influenced performance using a repeated measures ANOVA.  

Reinforcement learning model for prospective decision making task 

We investigated whether a reinforcement learning model which captured the prospective 

nature of the task, i.e., the value changes over time, fitted participants’ choice behavior better 

than a model that did not. To this end, we modified a Rescorla-Wagner model (Rescorla & 

Wagner, 1972). The Rescorla-Wagner model updates value estimates of choice options 

according to a prediction error, defined as the difference between the expected value and the 

received outcome. We modified the original Rescorla-Wagner model so that it updated value 

estimates within a trial based on prediction errors and additionally value changes over time 

points. We refer to this modified version as the prospective Rescorla-Wagner model. More 

specifically, each option’s value within a trial was updated according to: 

VTP+1 = VTP + ⍺*(OTP + CTP - VTP) with CTP = OTP - OTP-1, 

whereby VTP and VTP+1 are values at the current and next time points, respectively, OTP is the 

outcome at the current time point, CTP reflects how the value has changed from the previous 

to the current time point and ⍺	 is the learning rate (free parameter of the model). Value 

estimates of both options were translated into choices by computing the probability of each 

option’s choice using a softmax function: 

PA = 
!!	∗	$%

!!	∗	$% 		#		!!	∗	$&
 , 

with PA as the probability of choosing option A, e as the exponential, VA and VB as the values 

of options A and B (values divided by 100) and b as inverse temperature indicating the 

determinacy of choices (free parameter of the model). In each trial, values were initialized with 

the objective values of the first time point, outcomes of the second time point were received 

and value predictions were made for the following time points.  

We fitted this prospective Rescorla-Wagner model to each participant’s choice data and 

searched for the best-fitting estimates of the free parameters ⍺	and b by minimizing the 
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negative log-likelihood of the model. Parameter estimates were initially bound to ranges [0,1] 

for ⍺	and [0,100] for b. As we observed a ceiling effect for ⍺, we removed its upper bound to 

allow estimates greater than 1. 

We compared the fit of this prospective Rescorla-Wagner model to the fit of the original 

Rescorla-Wagner model. The original Rescorla-Wagner model does not consider value 

changes over time points (no prospective component): 

VTP+1 = VTP + ⍺*(OTP - VTP). 

Notations, translation of value estimates into choice probabilities using a softmax function and 

model fitting were the same as described above. Parameter estimates of the original Rescorla-

Wagner model were bound to ranges [0,1] for ⍺	and [0,100] for b. We compared the fits of the 

prospective and the original Rescorla-Wagner model by testing for a difference in the Akaike 

Information Criterion (AIC) using a related-samples t-test (with ⍺	= 0.01, Bonferroni-corrected 

for five tests including alternative models, see below). We extracted parameter estimates of 

the winning model (prospective Rescorla-Wagner model). As a control, we correlated the 

learning rate ⍺	 with performance at the switch and the pre time point using Pearson 

correlations. 

In addition to the prospective Rescorla-Wagner model described above, we implemented four 

alternative control models which similarly aimed to capture the prospective nature of the task: 

1. Prospective control model 1: Similar to prospective Rescorla-Wagner model described 

above, but CTP as the option’s value change is updated itself across time points with 

its own learning rate: 

VTP+1 = VTP + ⍺*(OTP + CTP_exp - VTP)  

with CTP = OTP - OTP-1  

and CTP_exp =  CTP for the first update within a trial, and CTP_exp = CTP_exp + ⍺C*CTP 

afterwards.  

2. Prospective control model 2: Value update with standard prediction error and an 

additional parameter for the value change: 

VTP+1 = VTP + ⍺*(OTP - VTP) + d*( OTP - OTP-1) 

3. Prospective control model 3: Value update with standard prediction error and expected 
prediction error, similar to expected prediction error models in Wittmann et al. (2016): 

VTP+1 = VTP + ⍺*PE + PEexp 

PE = OTP - VTP  
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PEexp = PE for the first update within a trial, PEexp = PEexp + ⍺*(PE - PEexp) afterwards  

4. Prospective control model 4: Similar to prospective control model 3, but PEexp is 
updated with its own learning rate: 

VTP+1 = VTP + ⍺*PE + PEexp 

PE = OTP - VTP  

PEexp = PE for the first update within a trial, PEexp = PEexp + ⍺PE*(PE - PEexp) afterwards 

To allow similar parameter fits as for the prospective Rescorla-Wagner model described 

above, we removed the upper bound of 1 for learning rates of these control models. The 

prospective Rescorla-Wagner model described above fitted the data better than any of the 

control models (test for difference in AIC using related-samples t-tests; PC1: t(45) = -3.58, p 

< .001; PC2: t(45) = -4.30, p < .001; PC3: t(45) = -6.93, p < .001; PC4: t(45) = -5.92, p < .001, 

with ⍺	= 0.0125, Bonferroni-corrected for four comparisons).  

Picture viewing task performance 

We calculated performance in the one-back cover task of the picture viewing task as the 

proportion of correctly answered test trials. For this purpose, we labeled trials with missing 

responses as incorrect. For two participants at the beginning of the study, button presses were 

not registered due to a technical mistake (except for the first test trial). Therefore, we could 

not assess performance for these participants. However, we still used their fMRI data of the 

picture viewing task for the fMRI analysis as the purpose of the one-back cover task was only 

to ensure participants’ attention to the stimuli. In addition, two participants reported that they 

confused the buttons for the two response types (button contingencies: left or right button for 

same or different stimulus judgement). Indeed, their responses matched exactly the opposite 

pattern of all correct trial-wise responses. For this reason, we reverse-coded their responses 

to calculate their performance. 

Two-stage task: model-based decision making 

Analogously to Daw et al. (2011), we tested whether the probability of repeating a first-stage 

choice depended on the reward and the transition type in the preceding trial. For this purpose, 

we labeled each trial as 1 if participants chose the same first-stage stimulus as in the preceding 

trial and as 0 if not. We calculated stay percentages for the factors reward (received or not) 

and transition type (common or rare). Across participants, we tested whether stay percentages 

were influenced by reward, transition type and their interaction using a repeated measures 

ANOVA.  

In addition, we fitted each participant’s choice data using the hybrid reinforcement learning 

model as described in Daw et al. (2011). This model learns values by both model-based and 
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model-free decision algorithms. Both values are weighted by a free parameter indicating the 

influence of model-based values on choices (ranging from 0 for model-free to 1 for model-

based). In addition, the model contains separate learning rates and inverse temperatures for 

the two stages as well as a perseverance parameter and an eligibility trace. We fitted this 

model using its implementation in the hBayesDM package (Ahn et al. (2017); version 1.1.1; 

model: ts_par7).  

We correlated estimates of the model-based parameter of the two-stage task with the learning 

rate and overall performance of the prospective decision making task using Pearson 

correlations (with ⍺ = 0.025, Bonferroni-corrected for two tests).  

Santa Barbara Sense of Direction Scale (SBSOD) correlations 

We correlated scores of the SBSOD with the learning rate and overall performance of the 

prospective decision making task using Pearson correlations (with ⍺ = 0.025, Bonferroni-

corrected for two tests).   

MRI preprocessing 
We performed all MRI analyses (preprocessing and main analyses) in Python 3.8 using 

Spyder (https://www.spyder-ide.org/; version 5.1.5) distributed via Anaconda 

(https://www.anaconda.com/; version 2020.11). MRI analyses were mainly based on the 

packages nilearn (version 0.9.0), nibabel (version 3.2.1), scikit-learn (version 1.0.1) as well as 

FSL (version 6.0.3), ANTS (version 2.3.5) and tools stated below. Statistical analyses were 

based on the package scipy (version 1.10.0) and statsmodels (version 0.13.2). T-tests and 

correlations tests were based on non-parametric permutation-based approaches to assess 

significance (10000 permutations). If not stated otherwise, we used an alpha level of .05 and 

two-sided tests. 

Conversion of MRI data to the Brain Imaging Data Structure (BIDS) standard 

We converted DICOM files of the MRI scanner to NIfTI files and reorganized them according 

to the BIDS standard (K. J. Gorgolewski et al., 2016) using the tool dcm2bids (version 2.1.6, 

https://unfmontreal.github.io/Dcm2Bids/). Furthermore, we removed facial structure in the 

anatomical scan using the tool pydeface (version 2.0.0, 

https://github.com/poldracklab/pydeface) to further anonymize the data. For the functional task 

runs, we created event files specifying the details of the task events during the given fMRI run.        

Preprocessing by fMRIPrep 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

20.2.6 (Esteban et al., 2018; Esteban et al., 2022; RRID:SCR_016216), which is based on 

Nipype 1.7.0 (Esteban et al., 2022; Gorgolewski et al., 2011; RRID:SCR_002502). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.02.548378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.548378
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008, 

RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-

reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh 

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 

brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al., 2001). Brain 

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et 

al., 1999), and the brain mask estimated previously was refined with a custom variation of the 

method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-

matter of Mindboggle (RRID:SCR_002438, Klein et al., 2017). Volume-based spatial 

normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The following templates were 

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 

[Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s 

MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration 

Model [Evans et al., 2012, RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], 

Functional data preprocessing 

For each of the 5 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) 

was estimated based on two (or more) echo-planar imaging (EPI) references with opposing 

phase-encoding directions, with 3dQwarp Cox & Hyde (1997) (AFNI 20160207). Based on the 

estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (Greve & Fischl, 2009). Co-registration was 

configured with six degrees of freedom. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 

Jenkinson et al., 2002). BOLD runs were slice-time corrected to 0.708s (0.5 of slice acquisition 

range 0s-1.42s) using 3dTshift from AFNI 20160207 (Cox & Hyde (1997), 

RRID:SCR_005927). The BOLD time-series were resampled onto the following surfaces 
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(FreeSurfer reconstruction nomenclature): fsnative, fsaverage. The BOLD time-series 

(including slice-timing correction when applied) were resampled onto their original, native 

space by applying a single, composite transform to correct for head-motion and susceptibility 

distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. The BOLD time-series were resampled into 

standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. Automatic removal of motion artifacts using independent 

component analysis (ICA-AROMA, Pruim et al. (2015)) was performed on the preprocessed 

BOLD on MNI space time-series after removal of non-steady state volumes and spatial 

smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). 

Corresponding “non-aggresively” denoised runs were produced after such smoothing. 

Additionally, the “aggressive” noise-regressors were collected and placed in the 

corresponding confounds file. Several confounding time-series were calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global 

signals. FD was computed using two formulations following Power (absolute sum of relative 

motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement between 

affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both 

using their implementations in Nipype (following the definitions by Power et al. (2014)). The 

three global signals are extracted within the CSF, the WM, and the whole-brain masks. 

Additionally, a set of physiological regressors were extracted to allow for component-based 

noise correction (CompCor, Behzadi et al. (2007)). Principal components are estimated after 

high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s 

cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 2% variable voxels within the brain 

mask. For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are 

generated in anatomical space. The implementation differs from that of Behzadi et al. (2007) in 

that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are 

subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained 

by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 

components are not extracted from voxels containing a minimal fraction of GM. Finally, these 

masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original 

implementation). Components are also calculated separately within the WM and CSF masks. 

For each CompCor decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient to explain 50 percent 

of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 

components are dropped from consideration. The head-motion estimates calculated in the 
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correction step were also placed within the corresponding confounds file. The confound time 

series derived from head motion estimates and global signals were expanded with the 

inclusion of temporal derivatives and quadratic terms for each (Satterthwaite et al., 2013). 

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated 

as motion outliers. All resamplings can be performed with a single interpolation step by 

composing all the pertinent transformations (i.e., head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and 

output spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms 

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other 

kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer).  

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. (2014), 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation 

(https://fmriprep.org/en/latest/workflows.html). 

MRI data quality checks 

We assessed fMRI data quality based on measures of head motion as a potential source for 

noise and artifacts. We investigated framewise displacement for each run and participant and 

marked each volume as an outlier if it exceeded a threshold of 0.5 mm (criterion used by 

fMRIPrep). On average, motion was relatively low (mean framewise displacement across 

participants: M = 0.15 mm, SD = 0.04 mm, range = 0.07 – 0.25 mm; mean percentage of 

outlier volumes: M = 0.91 %, SD = 1.34 %, range = 0 – 6.09 %; all participants below our 

criterion of max. 10 % outlier volumes for inclusion in the main data analyses). To control for 

head motion, we included motion parameters as confounds in first-level GLMs (see below).  

Additionally, we assessed MRI data quality using the tool MRIQC (version 0.16.1) which 

calculates a set of image quality metrics for both functional and anatomical image data.  

Region of interest (ROI) definition  

For our hypothesis of a grid-like representation in the entorhinal cortex, we used participant-

specific bilateral entorhinal cortex masks created by FreeSurfer segmentations of the 

participants’ anatomical images during preprocessing with fMRIPrep (FreeSurfer labels 1006 

& 2006, M = 269 voxels, SD = 42 voxels). For small volume correction within the entorhinal 

cortex on the group level, we combined both participant-specific anatomy and MNI standard 

atlas labeling. For this purpose, we first transformed the participant-specific masks to MNI 

standard space and created the union of all masks across participants. We then intersected 

this union mask with the entorhinal cortex mask of the Juelich Histological Atlas provided by 
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FSL and thresholded at 50% probability. Finally, we intersected this mask with the whole-brain 

group mask comprising only voxels shared across participants (resulting mask used for small 

volume correction: 411 voxels; Supplementary Fig. 4a). 

For our choice decoding hypothesis, we leveraged neural responses to category-specific 

stimuli (faces, tools, scenes, body parts) in category-selective regions of the occipital-temporal 

cortex. We created participant-specific occipital-temporal ROI masks as follows. First, we 

thresholded occipital and temporal lobe probability masks of the MNI Structural Atlas provided 

by FSL (version 6.0.3) at a threshold of 25 % and created their union. We then transformed 

this MNI-based mask to each participants’ native space using ANTS (version 2.3.5) and 

resampled it to the resolution of the functional data based on transformation files created 

during preprocessing with fMRIPrep. We intersected these with participant-specific gray 

matter masks. For this purpose, we thresholded gray matter probability masks created by 

fMRIPrep’s segmentation of the anatomical image at a threshold of 50 % and resampled them 

to the functional resolution. In the decoding analysis, we used these participant-specific gray 

matter occipital-temporal masks for additional feature selection based on univariate stimulus-

category effects in the PVT training data (see below). The final masks used for choice 

decoding comprised 2235 voxels on average (SD = 173 voxels; Fig. 5a). 

fMRI data analysis  
General set-up of first level general linear models (GLMs) 

For our fMRI data analyses, we used both univariate and multivariate approaches. For both 

approaches, we modeled the fMRI data using event-related GLMs. In the following, we briefly 

describe commonalities of GLMs across analyses.     

We implemented run-wise first level GLMs using the FirstLevelModel class of the nilearn 

package. GLMs were computed within a brain mask (either in participants’ native space or in 

MNI standard space, stated for each analysis below). To create a common brain mask for all 

runs, we resampled the anatomical brain mask in native or MNI space created during 

preprocessing with fMRIPrep to the resolution of the functional data. Task-related regressors 

in the GLMs were convolved with the Glover haemodynamic response function (HRF). 

Temporal autocorrelation in the fMRI data was accounted for using an autoregressive AR(1) 

model. For univariate analyses, the data were spatially smoothed with a 6 mm full-width at half 

maximum Gaussian filter (FWHM). For the multivariate choice decoding analysis, no 

smoothing was applied to preserve differences between voxels.     

All GLMs included the following regressors for task-related events of no interest: two 

regressors for left and right button presses with a stick duration as well as a regressor 

modeling the end-of-block notification screen at the end of a run. To control for noise signals 
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in the fMRI data, the GLMs included 37 confound regressors estimated during preprocessing 

with fMRIPrep. Following the denoising strategy proposed by Satterthwaite et al. (2013), these 

confounds included 24 motion parameters (6 basic translation / rotation parameters, 6 

temporal derivatives of these and 12 quadratic terms of the basic parameters and their 

derivatives) as well as 12 global signal parameters (3 basic average CSF, WM and global 

signal parameters, 3 temporal derivatives of these and 6 quadratic terms of the basic 

parameters and their derivatives). Additionally, the confounds included framewise 

displacement as a summary metric of frame-to-frame head motion. Furthermore, the GLMs 

included discrete cosine-basis regressors estimated by fMRIPrep to account for temporal low-

frequency signal drifts. 

Analysis of hexadirectional signals (grid-like representation) 

To investigate whether the entorhinal cortex encodes the abstract value space using a grid-

like representation, we implemented the hexadirectional analysis approach by Doeller et al. 

(2010). Grid cells in the entorhinal cortex are characterized by their regular hexagonal firing 

pattern which translates to hexadirectional activity modulations during navigation in fMRI, with 

higher activity for navigation in directions aligned with the putative grid orientation (phase of 

the hexadirectional signal) than for trajectories misaligned with the putative grid orientation. 

The analysis consists of two steps: In the first step, the grid orientation is estimated and in the 

second step the prediction of hexadirectional modulation according to the grid orientation is 

tested using independent data. Here, we tested for such a hexadirectional modulation as a 

function of trajectories through our value space. We implemented a cross-validation 

procedure, estimating the putative entorhinal grid orientation using three of four task runs and 

testing for a hexadirectional modulation aligned to the orientation in the left-out test run (based 

on Doeller et al., 2010; Nau et al., 2018).  

We implemented this cross-validation procedure on fMRI data in participants’ native space to 

enable estimations of grid orientations in participant-specific entorhinal cortex ROIs. 

In the estimation set (three of four runs, GLM1), the GLM for each run included a main effect 

regressor modeling trajectories including all time points and a main effect regressor modeling 

feedback periods. The regressors were modeled with the actual onset and durations of the 

events during the task. The trajectory regressor was accompanied by two parametrically 

modulated regressors. These modulations reflected the sine and cosine of the direction 

(angle) θ of the trajectory with 60° (6-fold) periodicity (sin(6*θt) and cos(6*θt)). Values for both 

regressors were demeaned. Effect sizes of the regressors were averaged across runs of the 

estimation set (fixed effects). We then used the effect sizes of the sine (𝛽!"#) and cosine (𝛽$%!) 

regressors to estimate the grid orientation in 60°-space (range [0,60°]) in each voxel of the 

entorhinal cortex (see ROI definition) as follows:  
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Subsequently, we calculated the mean orientation across voxels of the entorhinal cortex with 

a weighting of the voxels by their amplitude of the hexadirectional modulation (-𝛽!"#	
, +	𝛽$%!, 	) 

(Stangl et al., 2017). For this purpose, we first transformed voxel orientations back to 360°-

space to allow for calculations of trigonometric functions (multiplication by 6). We then 

transformed these orientations and the amplitudes from polar to cartesian coordinates and 

took the mean separately for both dimensions. Afterwards, we transformed the mean back to 

polar coordinates and subsequently transformed the mean orientation back to 60°-space. 

In the independent test set (left-out run, GLM2), the GLM included a main effect regressor 

modeling trajectories including all time points and a main effect regressor modeling feedback 

periods. The regressors were modeled with the actual onset and durations of the events during 

the task. The trajectory regressor was accompanied by a parametrically modulated regressor 

reflecting a six-fold (hexadirectional) sinusoidal modulation based on the mean entorhinal grid 

orientation (cos(6*(qt - Q))). Values for the regressor were demeaned. Effect sizes of the 

parametric cosine regressor were averaged across the four cross-validation folds (fixed 

effects) to obtain an overall effect size.  

For group level statistics, we first transformed effect size images of the parametric cosine 

regressor to MNI standard space. We then performed an analysis with small volume correction 

based on our a priori ROI of the entorhinal cortex (see ROI definition). Additionally, we 

performed a whole-brain analysis based on a whole-brain group mask comprising only voxels 

shared across participants. We tested significance across participants using non-parametric 

permutation testing implemented in FSL Randomise with 10000 permutations. We used one-

sided tests as the predicted direction of the hexadirectional effect is inherently positive (higher 

activity for navigation in directions aligned vs. misaligned with the grid orientation). We used 

threshold-free cluster enhancement and corrected for multiple comparisons with family-wise 

error rate (pFWE < 0.05) within the small volume correction mask and whole-brain. For 

exploration of whole-brain effects at an uncorrected threshold of p < .001, we extracted cluster 

information using nilearn and respective brain region labels of the Harvard-Oxford Cortical 

Structural Atlas, Harvard-Oxford Subcortical Structural Atlas and Juelich Histological Atlas 

using FSL atlasquery.  

To visualize the hexadirectional effect in the significant entorhinal cortex cluster, we 

implemented an additional GLM for the test set (left-out run, GLM2) by binning trajectories 
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based on directions. To this end, we sorted trajectories into bins of 30° based on the mean 

entorhinal grid orientation (+/- 15° of the grid orientation and multiples of 60°). This resulted in 

12 trajectory bin regressors, 6 reflecting trajectories aligned and 6 misaligned with the grid 

orientation. In this GLM, we therefore modeled trajectories using the 12 bin regressors and a 

main effect regressor for all trajectories capturing the mean. Effect size images were averaged 

across the four cross-validation folds (fixed effects) and transformed to MNI standard space. 

We extracted the mean effect size of each trajectory bin in the significant cluster. 

In control analyses, we investigated the relationship of the hexadirectional effect with the 

spatial and temporal stability of voxel-wise grid orientations in the significant entorhinal cortex 

cluster. Spatial stability refers to similarity of orientations across voxels within the significant 

cluster. To investigate spatial stability, we first transformed effect size images of the sine (𝛽!"#) 

and cosine (𝛽$%!) regressors of the estimation GLM (GLM1) based on all runs (to increase 

power) to MNI standard space. We then estimated voxel orientations as described above. For 

each participant, we tested deviation from a uniform distribution of voxel orientations in the 

significant cluster using a Rayleigh test for non-uniformity of circular data (implemented in the 

package pycircstat, version 0.0.2, https://github.com/circstat/pycircstat). Across participants, 

we calculated a Pearson correlation between the Rayleigh z-statistic and the hexadirectional 

effect. To control for similarity of voxels introduced by smoothing, we additionally investigated 

spatial stability using unsmoothed data. Temporal stability refers to similarity of orientations 

within a voxel across time. To investigate temporal stability, we followed the logic of the cross-

validation procedure described above and additionally estimated orientations in the left-out 

test run. For each voxel and for each cross-validation fold, we calculated the orientation 

difference between the estimation and the test set. Subsequently, we averaged orientation 

differences across folds and classified voxels as stable if their mean orientation difference was 

within 15°. Across participants, we tested whether the percentage of stable voxels was 

different from 50% using a one-sample t-test. Furthermore, we calculated a Pearson 

correlation between the percentage of stable voxels and the hexadirectional effect.    

In addition to the small volume correction analysis, we conducted a complementary ROI 

analysis based on participants’ individual entorhinal Freesurfer masks. In this ROI analysis, 

we also investigated the specificity of a hexadirectional (6-fold) modulation of activity in line 

with grid cell firing by performing control analyses for a four-, five-, seven- and eight-fold 

modulation (same cross-validation procedure as described above). On the group level, we 

tested whether effect sizes were different from 0 using one-sample t-tests (with ⍺	= 0.01, 

Bonferroni-corrected for five tests). 

We assessed the relationship between the hexadirectional effect in the significant entorhinal 

cluster and overall task performance using a Pearson correlation.  
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Lastly, we performed exploratory analyses to investigate the relationship between the 

entorhinal grid system and the underlying value space. First, we investigated clustering of 

orientations in the significant entorhinal cluster. To this end, we estimated each participant’s 

mean orientation in the significant cluster as described above (based on all runs to increase 

power). We tested whether orientations across participants cluster around 45° using a V-Test 

(implemented in the package astropy, version 5.0, The Astropy Collaboration et al. (2022)). 

Secondly, we tested whether the magnitude of the hexadirectional modulation differed 

between high- and low-value-areas of the value space. For this purpose, we performed a 

median split of trajectories according to their mean value. This meant contrasting trajectories 

in the lower left triangle of the space (low-value-area) with trajectories in the upper right 

triangle of the space (high-value-area). We note that this median split led to a substantial 

reduction of available trajectories per value condition and an unbalanced sampling of 

directions between the conditions, rendering this analysis less robust. To examine sampling 

of directions, we counted the frequency of directions per condition per participant and tested 

for differences using a repeated measures ANOVA across participants with the factors 

direction and value condition. We repeated the cross-validated hexadirectional analysis 

described above, with two changes: First, we based this analysis on the significant entorhinal 

cluster, both for the estimation of the grid orientation (GLM1) and for testing the 

hexadirectional effect on the group level (ROI analysis). Note that this analysis is still unbiased 

as we were interested in the difference of the hexadirectional effect between value conditions. 

Secondly, the GLMs for the estimation and test set estimated effects separately for the value 

conditions. More specifically, the estimation set (GLM1) included separate main effect and 

sine- and cosine-parametrically modulated regressors for each value condition and the grid 

orientation was estimated separately for each value condition. Analogously, the independent 

test set (left-out run, GLM2) included separate main effect and cosine-parametrically 

modulated regressors for each value condition. We averaged effect sizes across voxels of the 

ROI (significant cluster of the overall hexadirectional effect). Across participants, we tested for 

a difference between value conditions using a related-samples t-test as well as for individual 

effects using one-sample t-tests (one-sided).  

Value difference analysis 

To investigate whether fMRI activity is modulated by the value difference between options 

during choices, we implemented a GLM with three main effect regressors: one regressor 

modeled the observation phase (initial time points) of the trajectories, one regressor modeled 

choice time points and one regressor modeled feedback periods. The regressors were 

modeled with the actual onset and durations of the events during the task. The choice time 

point regressor was accompanied by two parametrically modulated regressors. These 
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modulations reflected the value of the chosen option and the value of the unchosen option, as 

estimated by the prospective Rescorla-Wagner model. Values for both regressors were 

demeaned so that they were orthogonal to the main effect regressor. We then contrasted the 

estimated effect sizes of the chosen value vs. the unchosen value regressor [1, -1] to test for 

a modulation of activity by the value difference. Contrasts were averaged across runs (fixed 

effects). 

To investigate whether fMRI activity is modulated specifically by the prospective component 

of the value difference, we changed the two parametrically modulated regressors for the 

choice time points as follows: One regressor reflected the difference in the value estimate of 

the chosen option between the prospective Rescorla-Wagner model and the original Rescorla-

Wagner model (non-prospective). Analogously, the other regressor reflected the difference in 

the value estimate of the unchosen option between the prospective Rescorla-Wagner model 

and the original Rescorla-Wagner model (non-prospective). We excluded one participant from 

this analysis because the value estimates of the two models were very similar (mean 

difference = 0.16, participant with lowest learning rate in the prospective Rescorla-Wagner 

model). 

In a control analysis, we added an additional parametrically modulated regressor for choice 

time points reflecting reaction time. Reaction times were log-transformed and demeaned. 

We computed these GLMs on fMRI data in MNI standard space. For group level statistics, we 

performed whole-brain analyses based on a whole-brain group mask comprising only voxels 

shared across participants. We tested the significance of contrasts across participants using 

non-parametric permutation testing implemented in FSL Randomise with 10000 permutations. 

We used threshold-free cluster enhancement and corrected for multiple comparisons with 

family-wise error rate (pFWE < 0.05). We extracted cluster information using nilearn and 

respective brain region labels of the Harvard-Oxford Cortical Structural Atlas, Harvard-Oxford 

Subcortical Structural Atlas and Juelich Histological Atlas using FSL atlasquery.      

Furthermore, we visualized the value difference effect in the significant vmPFC cluster by 

showing time courses of the effects of the chosen and unchosen value time-locked to the 

onset of the choice time points. For this purpose, we extracted the preprocessed fMRI time 

series of voxels in the vmPFC cluster. Analogously to general first-level modeling, we spatially 

smoothed (6 mm FWHM) and cleaned the data by regressing out confounds and temporal 

low-frequency signal drifts. We z-scored each voxel’s time series, averaged them across 

voxels of the cluster and interpolated the signal (cubic spline interpolation). For each choice 

time point, we extracted the cluster signal in a time window of 16s, time-locked to 1s before 

onset of the choice time point in steps of 0.1s until 15s after onset. Subsequently, we ran a 
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linear regression across choice time points of a run for each time step (in steps of 0.1s), with 

the regressors chosen value, unchosen value, trial number and an intercept. Value and trial 

regressors were demeaned beforehand. We extracted effect sizes of the chosen and 

unchosen value regressor for all time steps and averaged them across runs for a given 

participant. Lastly, we averaged these time courses across participants for visualization. 

We tested for a relationship between the value difference effect in the vmPFC cluster and task 

performance using a Pearson correlation.  

Choice decoding analysis  

To investigate whether occipital-temporal cortex represents the high-value option more 

strongly than the low-value option during choices, we implemented the following decoding 

analysis. Using independent data from the picture viewing task (PVT) which took place before 

the prospective decision making task, we trained a decoder (support vector classifier) on 

occipital-temporal cortex voxels to distinguish neural activation patterns of the four category-

specific stimuli (faces, tools, scenes, body parts). We then applied this decoder to neural 

activation patterns of choice time points in the prospective decision making task. We 

performed this analysis in participants’ native space. 

To estimate neural activation patterns of stimuli in the PVT training data, we implemented a 

Least-Squares Separate GLM approach. More specifically, we ran 57 single-trial-GLMs, one 

for each regular trial of the task. Each GLM included one regressor modeling the trial of interest 

and one regressor modeling all other regular trials. Test trials were modeled in a separate 

regressor. The regressors were modeled with the actual onset and durations of the events 

during the task. We used z-scores of the trial regressors for the next steps (56 z-scores, the 

first trial was discarded to allow for balanced sampling of stimulus categories: 14 trials per 

category).  

Based on the PVT training data, we created the final participant-specific ROI masks used for 

the decoding analysis. We combined the predefined anatomical gray matter occipital-temporal 

masks with the functional PVT data to select category-stimuli-responsive voxels (features). To 

this end, we extracted trial-wise z-scores for each voxel within the predefined anatomical 

mask. We z-standardized them across trials and performed univariate feature selection by 

computing ANOVA F-values between each feature and the trial labels. We selected those 20 

% of the voxels with the highest F-values. The resulting masks were used for the decoding 

analysis in the next steps.  

As a control, we first examined how well we could decode stimulus category within the PVT, 

before applying the decoder to the decision making task. For this purpose, we extracted trial-

wise z-scores for each voxel within the decoding ROI mask. We implemented a 7-fold cross-
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validation scheme with 8 left-out test trials (2 trials per category) and 48 training trials. We 

trained a decoder to distinguish neural activation patterns of the four category-specific stimuli 

and to predict labels for the left-out test trials (support vector classifier, regularization 

parameter C = 1.0, kernel = rbf). We z-standardized trial-wise z-scores within the training set 

and applied the standardization parameters to the test trials. We assessed accuracy as the 

proportion of correctly predicted trials, averaged over cross-validation folds. Note that we 

conducted this analysis using the decoding ROI mask based on previous univariate feature 

selection across all trials of the PVT (see above). We did so as this was the mask used for the 

following across-task decoding (PVT to prospective decision making task) and the stimulus 

category decoding within the PVT served only as a control.    

Next, we aimed to investigate stimulus representations during choices in the prospective 

decision making task. To first estimate neural activation patterns of choice time points in the 

prospective decision making task, we implemented the following GLM. One regressor 

modeled the observation phase (initial time points) of the trajectories and one regressor 

modeled feedback periods. Each choice time point (18 choice time points per run) was 

modeled in a separate regressor. The regressors were modeled with the actual onset and 

durations of the events during the task. We used z-scores of the choice time point regressors 

as test data for the across-task decoding analysis. 

For each voxel within the decoding ROI mask, we extracted trial-wise z-scores of the PVT as 

training data and choice z-scores of the prospective decision making task as test data. We z-

standardized the data run-wise. We then trained a decoder to distinguish neural activation 

patterns of the four category-specific stimuli based on the PVT data (support vector classifier, 

regularization parameter C = 1.0, kernel = rbf, probability = True to enable probability 

estimates). Subsequently, we applied this decoder to the neural activation patterns of choices 

in the prospective decision making task. More specifically, we extracted the probabilities which 

the decoder assigned to each of the four stimuli and computed two difference scores for each 

choice. First, we compared the probabilities assigned to the two stimuli presented on-screen 

during choice: probability of the stimulus with the objectively higher value vs. probability of the 

stimulus with the objectively lower value. Secondly, we compared the probabilities assigned 

to the two value-congruent stimuli which were not presented on-screen during choice (but 

during the time point before): probability of the congruent high-value stimulus vs. the congruent 

low-value stimulus. To compare these difference scores against chance level performance of 

the decoder, we implemented a permutation test, repeating this procedure 1000 times with 

randomly permuted trial labels in the PVT training data. For each choice, we then converted 

the original difference scores to z-scores based on the null distribution generated by the 

permutations. Lastly, we averaged z-scores across choices to obtain two summary scores per 
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participant. On the group level, we tested participant-specific z-scores against 0 using one-

sample t-tests. Furthermore, we calculated Pearson correlations between the z-scores and 

task performance. In addition, we tested whether the probability differences in favor of the 

high-value option depended on the distance between the choice location and the 45°-diagonal 

of the value space using participant-specific linear regressions. We then tested participant-

specific effect sizes against 0 using a one-sample t-test on the group level. Furthermore, we 

calculated Pearson correlations between the probability differences in favor of the high-value 

option and the hexadirectional modulation effect in the significant entorhinal cluster. 

When comparing on-screen and congruent off-screen stimuli separately, the temporal 

proximity of their presentations during time points within a trajectory might render 

disentangling their effects difficult. To control for the temporal proximity to some extent, we 

repeated the analysis using only those choices which sampled the switch time point as a 

control. In this case, the direction of the effect during choice (high-value vs. low-value, 

especially for the comparison of the congruent stimuli) should be different from the direction 

of the effect at the time point before the switch (pre).  
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Supplementary figures 

 

Supplementary Fig. 1 | Trajectories through the value space. a Example of trajectories through the value space 
in a task block. Arrows depict trajectories, and dots along trajectories depict the time points. b In each task block, 
directions of trajectories were sampled homogeneously from 0°-350° in 10°-steps.     
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Supplementary Fig. 2 | Participants integrate and extrapolate value changes for prospective choices. a 
Reaction times (log) along different time points on switch trajectories: time point before the switch (pre), time point 
of the switch (switch) and time point after the switch (post). There was a significant effect of time point on reaction 
times (F(2,90) = 60.65, p < .001; post hoc pairwise tests: pre-post: t(45) = 9.85, p < .001, switch-post: t(45) = 1.74, 
p = .09; pre-switch: t(45) = 8.33, p < .001; with ⍺ = 0.016, Bonferroni-corrected for three comparisons). b Effect of 
the distance between the choice location and the diagonal of the value space on reaction times. Depicted are effect 
sizes estimated by a linear regression, separately for including all trajectories (left) as well as including only switch 
trajectories as a control (right). There were no significant effects (all trajectories: t(45) = -1.29, p = .20; switch 
trajectories: t(45) = -2.01, p = .051). c Performance along different time points on switch trajectories (analogously 
to a), separately for the two types of trajectories with regard to the distance between two consecutive time points 
(see Methods): trajectories with a relatively smaller distance between time points (short-distance trajectories) or a 
relatively larger distance (long-distance trajectories). We reasoned that variation in the distance between time 
points would place different demands on extrapolating values. Previous piloting work indicated performance 
differences between these two distance levels, with higher performance at the switch and lower performance at 
the pre time point in short-distance compared to the long-distance trajectories. Contrary to our expectations based 
on previous piloting, we did not observe a significant interaction between distance type and time points (interaction 
effect: F(2,90) = 1.40, p = .25; main effect of distance type: F(1,45) = 0.16, p = .69; direct comparison of the switch 
time point: t(45) = 1.69, p = .097). d Performance for different directions (angles) of trajectories. Line depicts mean 
performance and error bars correspond to the standard error of the mean. e Performance for different quadrants 
of directions (angles). Q1 refers to directions 10°-80°, Q2 to 100°-170°, Q3 to 190°-260°, Q4 to 280°-350° and 
cardinal refers to directions 0°, 90°, 180° and 270°. We observed an effect of quadrant, potentially driven by slightly 
higher performance for cardinal directions and slightly lower performance in Q4 (F(4,180) = 2.93, p = .02). f 
Estimated parameters of the learning rate ⍺ of the prospective Rescorla-Wagner model. A learning rate of 1 reflects 
full updating of values according to prediction errors and value changes, learning rates above 1 hence suggest 
slight over-updating. g Significant positive correlation between the learning rate ⍺ of the prospective Rescorla-
Wagner model and performance at the switch time point (r(44) = .55, p < .001; after exclusion of outlier with 
performance=0: r(44) = .41, p = .005). h Significant negative correlation between the learning rate ⍺ of the 
prospective Rescorla-Wagner model and performance at the pre time point. i Reinforcement learning model 
comparison for all models including alternative control models. ORW refers to the original Rescorla-Wagner (RW) 
model and PRW refers to the prospective Rescorla-Wagner (RW) model as depicted in Fig. 2 of the main text. PC 
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refers to prospective control models and the numbers correspond to numbers of these control models in the 
Methods section. Depicted is the Akaike information criterion (AIC), with lower values indicating better model fit. 
Models are ordered according to their mean AIC from left to right. The prospective Rescorla-Wagner model (PRW) 
fitted the data better than any control model (all p < .001, see Methods). a,b,c,e,f,i Raincloud plots: dots represent 
participants’ data points; boxplots show median and upper/ lower quartile with whiskers extending to the most 
extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bar 
corresponds to mean ± SEM; distributions depict probability density function of data points. g,h Correlation plots: 
dots represent participants’ data points; line represents linear regression line, with shaded regions as the 95% 
confidence interval.  *** p < .001 
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Supplementary Fig. 3 | Correlation of the prospective decision making task with the two-stage task. a Two-
stage task: Probability of repeating a first-stage choice (staying) as a function of reward and transition type in the 
preceding trial. As expected, we observed a significant effect of reward (F(1,45) = 20.50, p < .001) and a significant 
interaction of reward and transition type (F(1,45) = 4.38, p = .04; main effect transition type: F(1,45) = 3.37, p = 
.07). In addition, we fitted choice behavior with the hybrid reinforcement learning model as described in Daw et al. 
(2011) to extract a model-based parameter estimate per participant (y-axis in b-c, parameter ranging from 
0=model-free to 1=model-based). To our surprise, model-based behavior in our sample was less pronounced than 
typically observed, given the relatively smaller interaction effect of reward and transition type as well as lower 
estimates of the model-based parameter compared to Daw et al. (2011). We speculate that this might be partly 
attributed to participants’ exhaustion after the MRI session when performing the task at the end of the study. b-c 
We did not observe any significant correlations between the model-based parameter and the learning rate or 
performance in our prospective decision making task (with ⍺ = 0.025, Bonferroni-corrected for two tests). We 
speculate that the restricted range of the model-based parameter might have contributed to the lack of a correlation.  
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Supplementary Fig. 4 | Entorhinal cortex exhibits grid-like representation for value space. a Entorhinal cortex 
mask used for small volume correction on the group level. Mask is displayed on the MNI template. b-f Control 
analyses to examine the stability of grid orientations in the significant entorhinal cluster. The magnitude of the 
hexadirectional modulation should depend on both spatial and temporal stability of grid orientations. b Regarding 
spatial stability, we observed significant clustering of orientations across voxels within-participant. Depicted are the 
Rayleigh z statistics of the Rayleigh test for non-uniformity of circular data. The test indicated significant deviation 
from uniformity of voxel orientations in all participants (p < .05 in all participants). c To illustrate this spatial stability, 
this plot shows a polar histogram of voxel orientations in the significant entorhinal cluster of an example participant 
(median Rayleigh z statistic). Red arrow denotes the mean orientation. d Across participants, this spatial stability 
correlated significantly positively with the magnitude of the hexadirectional modulation (r(44) = .74, p < .001). The 
effects in b and d were still present when analyzing spatial stability in unsmoothed data (Rayleigh test for non-
uniformity of circular data: p < .05 in 41 of 46 participants; correlation: r(44) = .85, p < .001).  e Regarding temporal 
stability, we assessed the percentage of voxels with an orientation difference less than 15° between the estimation 
set and the left-out test run. Across participants, we observed significant temporal stability (percentage of stable 
voxels > 50% in 27 of 46 participants, t(45) = 2.78, p = .01). f Across participants, this temporal stability correlated 
significantly positively with the magnitude of the hexadirectional modulation (r(44) = .86, p < .001). g The magnitude 
of the hexadirectional modulation does not correlate significantly with performance of the task. h Sampling of 
directions after median split of trajectories according to their mean value. i Hexadirectional modulation in the 
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significant entorhinal cluster, separately for the high- and low-value condition. While the analysis suggested no 
difference between the two conditions, it suggested a hexadirectional modulation effect only in the low-value 
condition. b,e,i Raincloud plots: dots represent participants’ data points; boxplots show median and upper/ lower 
quartile with whiskers extending to the most extreme data point within 1.5 interquartile ranges above/below the 
upper/lower quartile; black circle with error bar corresponds to mean ± SEM; distributions depict probability density 
function of data points. d,f,g Correlation plots: dots represent participants’ data points; line represents linear 
regression line, with shaded regions as the 95% confidence interval. * p < .05, ** p < .01    
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Supplementary Fig. 5 | A network of brain regions tracks the prospective value difference during choices. 
a Control analysis: Modulation of activity by the difference between model-derived chosen vs. unchosen value 
during choices after controlling for reaction time. Clusters depicted survive whole-brain correction (pFWE < .05, 
TFCE). Statistical image is displayed on the MNI template. b Control analysis: Modulation of activity by the 
prospective component of the value difference during choices after controlling for reaction time. The prospective 
component refers to the influence of values estimated by the prospective Rescorla-Wagner model over values 
estimated by the original (non-prospective) Rescorla-Wagner model. Clusters depicted survive whole-brain 
correction (pFWE < .05, TFCE). Statistical image is displayed on the MNI template. 
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Supplementary Fig. 6 | Occipital-temporal cortex represents the more valuable choice option. a 
Performance in the one-back cover task of the picture viewing task (PVT). b Decoding accuracy for stimulus 
category decoding (faces, tools, scenes, body parts) within the PVT, using a leave-trials-out cross-validation 
procedure. The dashed line at 25 % denotes chance level performance of the decoder. Stimulus category decoding 
accuracy was well above chance. c Effect of the distance between the choice location and the 45°-diagonal of the 
value space on the decoding probability difference high- vs. low-value option. Depicted are effect sizes estimated 
by a linear regression, separately for on-screen (left) and for off-screen congruent stimuli (right). For on-screen 
stimuli, effect sizes are significantly positive, indicating that the probability difference in favor of the high-value 
option increased with a higher distance to the diagonal. d The probability difference in favor of the high-value option 
for on-screen stimuli does not correlate significantly with the magnitude of the hexadirectional modulation. e The 
probability difference in favor of the high-value option for congruent stimuli does not correlate significantly with the 
magnitude of the hexadirectional modulation. f-k Control analysis for choice decoding using only those choices 
which sampled the switch time point. Logic of the figures is the same as in Fig. 5 of the main text. f Z-scores for 
the probability difference for the on-screen high- vs. low-value stimuli based on decoding permutation test (see 
Methods). Occipital-temporal cortex represents the high-value stimulus significantly stronger than the low-value 
stimulus. g Visualization of the effect in f, showing the probabilities the decoder assigned to the stimuli (before the 
permutation test). h Correlation between the high- vs. low-value difference score and performance at the switch 
time point (r(44) = .49, p = .003; after exclusion of two outliers: r(42) = .17, p = .28). i Z-scores for the probability 
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difference for the congruent high- vs. low-value stimuli based on decoding permutation test (see Methods). 
Occipital-temporal cortex represents the congruent high-value stimulus significantly stronger than the congruent 
low-value stimulus. j Visualization of the effect in g, showing the probabilities the decoder assigned to the stimuli 
(before the permutation test). i The congruent high-value vs. low-value difference score correlates significantly 
positively with performance at the switch time point (r(44) = .46, p < .001; after exclusion of two outliers: r(42) = 
.34, p = .02). a,b,c,f,g,i,j Raincloud plots: dots represent participants’ data points; boxplots show median and upper/ 
lower quartile with whiskers extending to the most extreme data point within 1.5 interquartile ranges above/below 
the upper/lower quartile; black circle with error bar corresponds to mean ± SEM; distributions depict probability 
density function of data points. d,e,h,k Correlation plots: dots represent participants’ data points; line represents 
linear regression line, with shaded regions as the 95% confidence interval. ** p < .01, *** p < .001      
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Supplementary tables 

Supplementary Table 1: Exploratory whole-brain clusters of the hexadirectional modulation 

effect  

No clusters survived family-wise error correction in the whole-brain analysis. This table lists 

clusters at an uncorrected threshold of p < .001 with a minimum of 10 voxels. Table lists MNI 

coordinates (X, Y, Z), statistical T values and atlas labels of peak voxels of the clusters. Atlas 

labels are based on the Harvard-Oxford Cortical Structural Atlas (HOCSA), Harvard-Oxford 

Subcortical Structural Atlas (HOSSA) and Juelich Histological Atlas (JHA) provided by FSL. If 

no label was found for a given atlas, the atlas is not listed. Subclusters are denoted by letters 

after the cluster ID.  

Cluster 
ID 

X Y Z T 
value 

Cluster 
Size 
(voxels) 

Atlas label 

1 -9.0 -11.0 9.0 4.25 12 HOSSA: 

100% Left Thalamus 

JHA: 

1% WM Corticospinal tract L 

2 18.0 -6.0 -26.0 4.17 30 HOCSA: 

66% Parahippocampal Gyrus, 

anterior division 

HOSSA: 

66% Right Cerebral Cortex, 24% 

Right Hippocampus, 8% Right 

Amygdala, 2% Right Cerebral 

White Matter 

JHA: 

68% GM Hippocampus entorhinal 

cortex R, 27% GM Hippocampus 

subiculum R, 16% GM 

Hippocampus hippocampal-

amygdaloid transition area R, 5% 

GM Hippocampus cornu ammonis 

R, 2% GM Amygdala_superficial 
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group R, 1% GM 

Amygdala_laterobasal group R 

3 6.0 -26.0 -38.0 3.95 12 HOSSA: 

100% Brain-Stem 

4 -27.0 -3.0 -28.0 3.91 26 HOCSA: 

9% Parahippocampal Gyrus, 

anterior division, 1% Temporal Pole 

HOSSA: 

50% Left Amygdala, 27% Left 

Cerebral White Matter, 12% Left 

Cerebral Cortex, 11% Left 

Hippocampus 

JHA: 

92% GM Amygdala_laterobasal 

group L, 5% GM 

Amygdala_superficial group L, 4% 

GM Hippocampus subiculum L, 2% 

WM Optic radiation L, 2% GM 

Hippocampus cornu ammonis L 

4a -22.0 -1.0 -38.0 3.47  HOCSA: 

69% Parahippocampal Gyrus, 

anterior division, 6% Temporal 

Fusiform Cortex, anterior division, 

3% Temporal Fusiform Cortex, 

posterior division, 1% Temporal 

Pole 

HOSSA: 

85% Left Cerebral Cortex, 2% Left 

Cerebral White Matter 

JHA: 
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98% GM Hippocampus entorhinal 

cortex L 

5 13.0 -21.0 -31.0 3.59 14 HOSSA: 

99% Brain-Stem 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.02.548378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.548378
http://creativecommons.org/licenses/by-nc-nd/4.0/


60 
 

Supplementary Table 2: Significant clusters of the value difference effect 

Clusters surviving family-wise error correction in whole-brain analysis (pFWE < .05). Table lists 

MNI coordinates (X, Y, Z), statistical T values and atlas labels of peak voxels of the clusters. 

Atlas labels are based on the Harvard-Oxford Cortical Structural Atlas (HOCSA), Harvard-

Oxford Subcortical Structural Atlas (HOSSA) and Juelich Histological Atlas (JHA) provided by 

FSL. If no label was found for a given atlas, the atlas is not listed. Subclusters are denoted by 

letters after the cluster ID.     

Cluster 
ID 

X Y Z T 
value 

Cluster 
Size 
(voxels) 

Atlas label 

Positive effect 

1 -34.0 2.0 14.0 10.95 32064 HOCSA: 
37% Central Opercular Cortex, 15% 
Insular Cortex, 1% Frontal 
Operculum Cortex 

HOSSA: 
73% Left Cerebral Cortex, 27% Left 
Cerebral White Matter 

1a -4.0 -3.0 46.0 10.39  HOCSA: 
46% Cingulate Gyrus, anterior 
division, 40% Juxtapositional Lobule 
Cortex (formerly Supplementary 
Motor Cortex) 

HOSSA: 
87% Left Cerebral Cortex, 12% Left 
Cerebral White Matter 

JHA: 
42% GM Premotor cortex BA6 L 

1b -49.0 -6.0 12.0 9.78  HOCSA: 
49% Central Opercular Cortex, 2% 
Postcentral Gyrus, 1% Precentral 
Gyrus 

HOSSA: 
51% Left Cerebral Cortex, 49% Left 
Cerebral White Matter 

JHA: 
35% GM Secondary somatosensory 
cortex / Parietal operculum OP4 L, 
9% GM Secondary somatosensory 
cortex / Parietal operculum OP1 L, 
7% GM Broca's area BA44 L, 4% GM 
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Primary auditory cortex TE1.0 L, 3% 
GM Secondary somatosensory 
cortex / Parietal operculum OP3 L 

1c 50.0 -1.0 9.0 9.35  HOCSA: 
59% Central Opercular Cortex, 2% 
Planum Polare, 1% Precentral Gyrus, 
1% Inferior Frontal Gyrus, pars 
opercularis 

HOSSA: 
63% Right Cerebral Cortex, 36% 
Right Cerebral White Matter 

JHA: 
28% GM Secondary somatosensory 
cortex / Parietal operculum OP4 R, 
20% GM Secondary somatosensory 
cortex / Parietal operculum OP3 R, 
4% GM Inferior parietal lobule PFop 
R, 2% GM Primary auditory cortex 
TE1.2 R 

2 23.0 -53.0 -56.0 7.21 83 No label  

3 -22.0 -55.0 -58.0 6.21 31 No label  

4 3.0 42.0 -8.0 5.99 1394 HOCSA: 
63% Paracingulate Gyrus, 17% 
Frontal Medial Cortex, 16% Cingulate 
Gyrus, anterior division  

HOSSA: 
91% Right Cerebral Cortex, 7% Left 
Cerebral Cortex, 1% Right Cerebral 
White Matter 

4a -4.0 32.0 -11.0 5.67  HOCSA: 
33% Paracingulate Gyrus, 32% 
Subcallosal Cortex, 13% Cingulate 
Gyrus, anterior division, 9% Frontal 
Medial Cortex 

HOSSA: 
90% Left Cerebral Cortex, 10% Left 
Cerebral White Matter, 0% Right 
Cerebral Cortex 

4b -7.0 27.0 -8.0 5.51  HOCSA: 
63% Subcallosal Cortex, 3% 
Paracingulate Gyrus, 1% Cingulate 
Gyrus, anterior division 

HOSSA: 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2023. ; https://doi.org/10.1101/2023.08.02.548378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.02.548378
http://creativecommons.org/licenses/by-nc-nd/4.0/


62 
 

69% Left Cerebral Cortex, 31% Left 
Cerebral White Matter 

JHA: 
4% WM Cingulum L, 1% WM Callosal 
body 

4c -29.0 32.0 -14.0 5.40  HOCSA: 
46% Frontal Orbital Cortex, 19% 
Frontal Pole 

HOSSA: 
65% Left Cerebral Cortex, 35% Left 
Cerebral White Matter 

5 33.0 34.0 -14.0 4.19 35 HOCSA: 
48% Frontal Pole, 38% Frontal 
Orbital Cortex 

HOSSA: 
87% Right Cerebral Cortex, 13% 
Right Cerebral White Matter 

5a 18.0 22.0 -14.0 2.79  HOCSA: 
12% Frontal Orbital Cortex 

HOSSA: 
85% Right Cerebral White Matter, 
15% Right Cerebral Cortex 

6 -37.0 -11.0 -48.0 4.19 3 HOCSA: 
11% Inferior Temporal Gyrus, 
anterior division, 8% Temporal 
Fusiform Cortex, posterior division, 
8% Inferior Temporal Gyrus, 
posterior division, 6% Temporal 
Fusiform Cortex, anterior division 

HOSSA: 
38% Left Cerebral Cortex, 0% Left 
Cerebral White Matter 

7 1.0 14.0 14.0 4.14 9 HOSSA: 
51% Right Lateral Ventricle, 36% 
Right Cerebral White Matter, 9% Left 
Cerebral White Matter, 4% Left 
Lateral Ventricle, 0% Left Cerebral 
Cortex 

JHA: 
40% WM Callosal body 

8 15.0 32.0 6.0 3.23 8 HOSSA: 
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97% Right Cerebral White Matter, 3% 
Right Lateral Ventricle 

JHA: 
97% WM Callosal body, 5% WM 
Cingulum R 

Negative effect 
1 6.0 24.0 52.0 -10.28 11448 HOCSA: 

52% Superior Frontal Gyrus, 10% 
Paracingulate Gyrus 

HOSSA: 
79% Right Cerebral Cortex, 21% 
Right Cerebral White Matter 

JHA: 
20% GM Premotor cortex BA6 R 

1a 30.0 7.0 59.0 -9.56  HOCSA: 
34% Middle Frontal Gyrus, 22% 
Superior Frontal Gyrus, 1% 
Precentral Gyrus 

HOSSA: 
80% Right Cerebral Cortex, 10% 
Right Cerebral White Matter 

1b -2.0 29.0 39.0 -9.52  HOCSA: 
61% Paracingulate Gyrus, 15% 
Superior Frontal Gyrus 

HOSSA: 
86% Left Cerebral Cortex, 1% Right 
Cerebral Cortex, 0% Left Cerebral 
White Matter 

1c 3.0 37.0 46.0 -9.49  HOCSA: 
55% Superior Frontal Gyrus, 1% 
Paracingulate Gyrus 

HOSSA: 
69% Right Cerebral Cortex, 9% Left 
Cerebral Cortex 

JHA: 
1% GM Premotor cortex BA6 R 

2 -37.0 -65.0 -28.0 -9.96 2796 No label 

2a -32.0 -65.0 -28.0 -9.93  No label 

2b 30.0 -63.0 -28.0 -8.86  No label 

2c 8.0 -78.0 -24.0 -8.52  HOCSA: 
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3% Occipital Fusiform Gyrus, 2% 
Lingual Gyrus 

HOSSA: 
5% Right Cerebral Cortex 

3 43.0 -38.0 42.0 -9.09 3463 HOCSA: 
41% Supramarginal Gyrus, posterior 
division, 10% Superior Parietal 
Lobule, 5% Angular Gyrus, 5% 
Postcentral Gyrus, 4% 
Supramarginal Gyrus, anterior 
division 

HOSSA: 
68% Right Cerebral Cortex, 32% 
Right Cerebral White Matter 

JHA: 
28% GM Anterior intra-parietal sulcus 
hIP3 R, 17% GM Anterior intra-
parietal sulcus hIP2 R, 11% GM 
Superior parietal lobule 7PC R, 3% 
GM Anterior intra-parietal sulcus hIP1 
R 

3a -47.0 -50.0 52.0 -8.25  HOCSA: 
24% Supramarginal Gyrus, posterior 
division, 22% Angular Gyrus, 13% 
Superior Parietal Lobule, 2% 
Supramarginal Gyrus, anterior 
division, 1% Lateral Occipital Cortex, 
superior division 

HOSSA: 
65% Left Cerebral Cortex, 25% Left 
Cerebral White Matter 

JHA: 
40% GM Inferior parietal lobule PFm 
L, 32% GM Inferior parietal lobule PF 
L, 15% GM Anterior intra-parietal 
sulcus hIP2 L, 12% GM Inferior 
parietal lobule Pga L, 11% GM 
Anterior intra-parietal sulcus hIP1 L, 
10% GM Superior parietal lobule 7PC 
L, 9% GM Anterior intra-parietal 
sulcus hIP3 L, 3% GM Superior 
parietal lobule 5L L 

3b 48.0 -45.0 52.0 -8.04  HOCSA: 
38% Supramarginal Gyrus, posterior 
division, 33% Angular Gyrus, 9% 
Superior Parietal Lobule 
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HOSSA: 
82% Right Cerebral Cortex, 17% 
Right Cerebral White Matter 

JHA: 
77% GM Inferior parietal lobule PFm 
R, 13% GM Anterior intra-parietal 
sulcus hIP1 R, 12% GM Inferior 
parietal lobule Pga R, 12% GM 
Anterior intra-parietal sulcus hIP2 R, 
2% GM Anterior intra-parietal sulcus 
hIP3 R, 1% GM Superior parietal 
lobule 7PC R 

3c 38.0 -48.0 42.0 -7.39  HOCSA: 
23% Superior Parietal Lobule, 18% 
Supramarginal Gyrus, posterior 
division, 15% Angular Gyrus 

HOSSA: 
60% Right Cerebral Cortex, 39% 
Right Cerebral White Matter 

JHA: 
45% GM Anterior intra-parietal sulcus 
hIP1 R, 29% GM Anterior intra-
parietal sulcus hIP3 R, 20% GM 
Anterior intra-parietal sulcus hIP2 R 

4 -12.0 2.0 -1.0 -8.09 1717 HOSSA: 
60% Left Pallidum, 40% Left Cerebral 
White Matter 

4a 8.0 7.0 9.0 -7.82  HOSSA: 
57% Right Caudate, 41% Right 
Lateral Ventricle, 2% Right Cerebral 
White Matter 

4b 10.0 2.0 14.0 -7.39  HOSSA: 
68% Right Caudate, 30% Right 
Lateral Ventricle, 1% Right Cerebral 
White Matter, 1% Right Thalamus 

4c 10.0 4.0 -1.0 -7.29  HOSSA: 
90% Right Cerebral White Matter, 5% 
Right Caudate, 4% Right Pallidum, 
0% Right Cerebral Cortex, 0% Right 
Thalamus, 0% Right Lateral 
Ventricle, 0% Right Accumbens 

5 -19.0 42.0 -21.0 -6.0 19 HOCSA: 
72% Frontal Pole, 3% Frontal Orbital 
Cortex 
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HOSSA: 
75% Left Cerebral Cortex, 20% Left 
Cerebral White Matter 

6 -9.0 -58.0 -51.0 -5.73 5 No label 
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Supplementary Table 3: Significant clusters of the prospective value difference effect 

Clusters surviving family-wise error correction in whole-brain analysis (pFWE < .05). Table lists 

MNI coordinates (X, Y, Z), statistical T values and atlas labels of peak voxels of the clusters. 

Atlas labels are based on the Harvard-Oxford Cortical Structural Atlas (HOCSA), Harvard-

Oxford Subcortical Structural Atlas (HOSSA) and Juelich Histological Atlas (JHA) provided by 

FSL. If no label was found for a given atlas, the atlas is not listed. Subclusters are denoted by 

letters after the cluster ID. In total, 96 clusters including subclusters were found. Table lists 10 

clusters with the most extreme T values, separately for positive and negative effects.  

Cluster 
ID 

X Y Z T 
value 

Cluster 
Size 
(voxels) 

Atlas label 

Positive effect 

1 -34.0 -26.0 56.0 6.77 1029 HOCSA: 
34% Postcentral Gyrus, 25% 
Precentral Gyrus 

HOSSA: 
67% Left Cerebral Cortex, 32% Left 
Cerebral White Matter 

JHA: 
44% WM Corticospinal tract L, 42% 
GM Primary motor cortex BA4p L, 
28% GM Primary somatosensory 
cortex BA3b L, 28% GM Primary 
motor cortex BA4a L, 10% GM 
Primary somatosensory cortex BA1 
L, 6% GM Primary somatosensory 
cortex BA2 L 

1a -32.0 -23.0 62.0 6.50  HOCSA: 
34% Precentral Gyrus, 14% 
Postcentral Gyrus 

HOSSA: 
55% Left Cerebral Cortex, 44% Left 
Cerebral White Matter 

JHA: 
51% GM Premotor cortex BA6 L, 
47% WM Corticospinal tract L, 32% 
GM Primary motor cortex BA4a L, 
5% GM Primary somatosensory 
cortex BA3b L, 5% GM Primary 
somatosensory cortex BA1 L, 4% 
GM Primary motor cortex BA4p L 
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1b -34.0 -33.0 66.0 6.39  HOCSA: 
51% Postcentral Gyrus, 6% 
Superior Parietal Lobule, 3% 
Precentral Gyrus, 2% 
Supramarginal Gyrus, anterior 
division 

HOSSA: 
66% Left Cerebral Cortex, 22% Left 
Cerebral White Matter 

JHA: 
71% GM Primary somatosensory 
cortex BA1 L, 30% GM Primary 
motor cortex BA4a L, 29% GM 
Primary somatosensory cortex BA2 
L, 27% GM Primary somatosensory 
cortex BA3b L, 12% GM Primary 
motor cortex BA4p L, 8% GM 
Superior parietal lobule 5L L, 5% 
GM Superior parietal lobule 7PC L, 
1% WM Corticospinal tract L 

1c -54.0 -26.0 49.0 6.09  HOCSA: 
61% Postcentral Gyrus, 17% 
Supramarginal Gyrus, anterior 
division 

HOSSA: 
84% Left Cerebral Cortex, 11% Left 
Cerebral White Matter 

JHA: 
58% GM Primary somatosensory 
cortex BA2 L, 56% GM Primary 
somatosensory cortex BA1 L, 31% 
GM Inferior parietal lobule PF L, 
20% GM Inferior parietal lobule PFt 
L, 9% GM Anterior intra-parietal 
sulcus hIP2 L, 3% GM Primary 
somatosensory cortex BA3b L, 2% 
GM Inferior parietal lobule PFop L 

2 45.0 -28.0 26.0 6.67 124 HOCSA: 
31% Parietal Operculum Cortex, 
10% Supramarginal Gyrus, anterior 
division, 1% Supramarginal Gyrus, 
posterior division 

HOSSA: 
56% Right Cerebral White Matter, 
44% Right Cerebral Cortex 
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JHA: 
40% GM Secondary 
somatosensory cortex / Parietal 
operculum OP1 R, 34% GM Inferior 
parietal lobule PFop R, 24% GM 
Inferior parietal lobule PFcm R, 4% 
GM Anterior intra-parietal sulcus 
hIP2 R 

3 -49.0 -23.0 22.0 6.38 107 HOCSA: 
31% Central Opercular Cortex, 
15% Parietal Operculum Cortex, 
4% Postcentral Gyrus, 1% 
Supramarginal Gyrus, anterior 
division 

HOSSA: 
53% Left Cerebral Cortex, 47% Left 
Cerebral White Matter 

JHA: 
72% GM Secondary 
somatosensory cortex / Parietal 
operculum OP1 L, 19% GM Inferior 
parietal lobule PFop L, 9% GM 
Secondary somatosensory cortex / 
Parietal operculum OP4 L, 7% GM 
Inferior parietal lobule PFcm L, 3% 
GM Primary auditory cortex TE1.0 
L 

3a -44.0 -33.0 22.0 4.07  HOCSA: 
60% Parietal Operculum Cortex, 
3% Supramarginal Gyrus, posterior 
division, 1% Central Opercular 
Cortex, 1% Superior Temporal 
Gyrus, posterior division 

HOSSA: 
67% Left Cerebral Cortex, 31% Left 
Cerebral White Matter 

JHA: 
63% GM Inferior parietal lobule 
PFcm L, 30% GM Secondary 
somatosensory cortex / Parietal 
operculum OP1 L, 3% GM Inferior 
parietal lobule PFop L, 1% GM 
Inferior parietal lobule PF L 

4 50.0 -63.0 -6.0 6.06 77 HOCSA: 
44% Lateral Occipital Cortex, 
inferior division, 11% Inferior 
Temporal Gyrus, temporooccipital 
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part, 8% Middle Temporal Gyrus, 
temporooccipital part, 2% Occipital 
Fusiform Gyrus 

HOSSA: 
67% Right Cerebral Cortex, 33% 
Right Cerebral White Matter 

JHA: 
8% GM Visual cortex V5 R 

5 -39.0 -1.0 16.0 5.78 1093 HOCSA: 
57% Central Opercular Cortex, 
10% Insular Cortex 

HOSSA: 
78% Left Cerebral Cortex, 22% Left 
Cerebral White Matter 

5a -29.0 7.0 -6.0 5.56  HOSSA: 
73% Left Cerebral White Matter, 
27% Left Putamen, 0% Left 
Cerebral Cortex 

JHA: 
58% WM Inferior occipito-frontal 
fascicle L, 12% WM Uncinate 
fascicle L 

5b -32.0 -6.0 2.0 5.52  HOSSA: 
61% Left Putamen, 39% Left 
Cerebral White Matter, 0% Left 
Cerebral Cortex 

5c -22.0 -13.0 -18.0 5.09  HOSSA: 
91% Left Hippocampus, 2% Left 
Amygdala 

JHA: 
80% GM Hippocampus cornu 
ammonis L, 42% GM Hippocampus 
subiculum L, 34% GM 
Hippocampus dentate gyrus L, 
14% GM Amygdala_superficial 
group L, 13% GM Hippocampus 
hippocampal-amygdaloid transition 
area L, 13% GM Hippocampus 
entorhinal cortex L, 11% GM 
Amygdala_laterobasal group L, 4% 
GM Amygdala_centromedial group 
L 

6 -54.0 -65.0 39.0 5.77 273 HOCSA: 
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38% Lateral Occipital Cortex, 
superior division, 1% Angular 
Gyrus 

HOSSA: 
48% Left Cerebral Cortex, 0% Left 
Cerebral White Matter 

6a -54.0 -65.0 34.0 5.56  HOCSA: 
74% Lateral Occipital Cortex, 
superior division, 5% Angular 
Gyrus 

HOSSA: 
85% Left Cerebral Cortex, 1% Left 
Cerebral White Matter 

JHA: 
32% GM Inferior parietal lobule 
PGp L, 16% GM Inferior parietal 
lobule Pga L, 12% GM Inferior 
parietal lobule PFm L 

6b -52.0 -55.0 29.0 4.31  HOCSA: 
49% Angular Gyrus, 14% 
Supramarginal Gyrus, posterior 
division, 5% Lateral Occipital 
Cortex, superior division 

HOSSA: 
70% Left Cerebral Cortex, 29% Left 
Cerebral White Matter 

JHA: 
47% GM Inferior parietal lobule Pga 
L, 31% GM Inferior parietal lobule 
PFm L, 20% GM Inferior parietal 
lobule PF L 

7 -7.0 52.0 -8.0 5.75 1423 HOCSA: 
53% Frontal Medial Cortex, 24% 
Paracingulate Gyrus, 13% Frontal 
Pole 

HOSSA: 
91% Left Cerebral Cortex, 9% Left 
Cerebral White Matter 

7a -19.0 59.0 26.0 5.20  HOCSA: 
75% Frontal Pole 

HOSSA: 
79% Left Cerebral Cortex, 15% Left 
Cerebral White Matter 
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7b -14.0 54.0 34.0 4.98  HOCSA: 
79% Frontal Pole 

HOSSA: 
82% Left Cerebral Cortex, 9% Left 
Cerebral White Matter 

7c -4.0 59.0 19.0 4.82  HOCSA: 
53% Frontal Pole, 19% Superior 
Frontal Gyrus, 8% Paracingulate 
Gyrus 

HOSSA: 
91% Left Cerebral Cortex, 4% Left 
Cerebral White Matter 

8 28.0 -8.0 -18.0 5.16 539 HOSSA: 
48% Right Amygdala, 34% Right 
Hippocampus, 2% Right Cerebral 
White Matter 

JHA: 
79% GM Amygdala_laterobasal 
group R, 74% GM Hippocampus 
cornu ammonis R, 15% GM 
Hippocampus dentate gyrus R, 5% 
GM Amygdala_superficial group R, 
3% GM Hippocampus subiculum R, 
1% GM Amygdala_centromedial 
group R 

8a 18.0 -11.0 -14.0 4.79  HOSSA: 
78% Right Amygdala, 12% Right 
Hippocampus, 5% Right Cerebral 
White Matter, 0% Right Cerebral 
Cortex 

JHA: 
35% GM Amygdala_superficial 
group R, 23% GM Hippocampus 
subiculum R, 22% GM 
Hippocampus hippocampal-
amygdaloid transition area R, 14% 
WM Corticospinal tract R, 14% GM 
Amygdala_laterobasal group R, 
12% GM Hippocampus cornu 
ammonis R, 8% GM 
Amygdala_centromedial group R, 
6% GM Hippocampus entorhinal 
cortex R, 2% WM Acoustic 
radiation R 

8b 25.0 12.0 -1.0 4.73  HOSSA: 
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96% Right Putamen, 4% Right 
Cerebral White Matter 

8c 40.0 -30.0 -21.0 4.22  HOCSA: 
53% Temporal Fusiform Cortex, 
posterior division, 11% Inferior 
Temporal Gyrus, posterior division, 
3% Inferior Temporal Gyrus, 
temporooccipital part, 2% 
Temporal Occipital Fusiform Cortex 

HOSSA: 
69% Right Cerebral Cortex, 30% 
Right Cerebral White Matter 

JHA: 
2% GM Hippocampus cornu 
ammonis R, 1% WM Optic radiation 
R 

9 -2.0 -48.0 32.0 4.90 57 HOCSA: 
84% Cingulate Gyrus, posterior 
division, 10% Precuneous Cortex 

HOSSA: 
96% Left Cerebral Cortex, 1% Left 
Cerebral White Matter, 1% Right 
Cerebral Cortex 

9a -9.0 -53.0 29.0 4.59  HOCSA: 
32% Cingulate Gyrus, posterior 
division, 11% Precuneous Cortex 

HOSSA: 
57% Left Cerebral White Matter, 
43% Left Cerebral Cortex 

JHA: 
3% WM Callosal body 

10 -7.0 -23.0 49.0 4.85 327 HOCSA: 
54% Precentral Gyrus, 15% 
Cingulate Gyrus, posterior division, 
3% Cingulate Gyrus, anterior 
division, 3% Juxtapositional Lobule 
Cortex (formerly Supplementary 
Motor Cortex) 

HOSSA: 
81% Left Cerebral Cortex, 19% Left 
Cerebral White Matter 

JHA: 
40% GM Premotor cortex BA6 L, 
34% GM Primary motor cortex 
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BA4a L, 4% WM Corticospinal tract 
L, 3% GM Superior parietal lobule 
5M L 

10a -4.0 -6.0 56.0 4.77  HOCSA: 
78% Juxtapositional Lobule Cortex 
(formerly Supplementary Motor 
Cortex) 

HOSSA: 
81% Left Cerebral Cortex, 17% Left 
Cerebral White Matter 

JHA: 
78% GM Premotor cortex BA6 L 

10b -7.0 -11.0 59.0 4.70  HOCSA: 
43% Juxtapositional Lobule Cortex 
(formerly Supplementary Motor 
Cortex), 6% Precentral Gyrus 

HOSSA: 
52% Left Cerebral Cortex, 48% Left 
Cerebral White Matter 

JHA: 
96% GM Premotor cortex BA6 L, 
3% WM Corticospinal tract L 

10c 8.0 -3.0 56.0 4.15  HOCSA: 
44% Juxtapositional Lobule Cortex 
(formerly Supplementary Motor 
Cortex), 2% Precentral Gyrus, 1% 
Cingulate Gyrus, anterior division  

HOSSA: 
50% Right Cerebral White Matter, 
50% Right Cerebral Cortex 

JHA: 
61% GM Premotor cortex BA6 R 

Negative effect 

1 30.0 29.0 4.0 -6.77 23 HOCSA: 
11% Frontal Orbital Cortex, 7% 
Insular Cortex, 6% Inferior Frontal 
Gyrus, pars triangularis, 3% Frontal 
Operculum Cortex 

HOSSA: 
64% Right Cerebral White Matter, 
36% Right Cerebral Cortex 
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2 6.0 -65.0 52.0 -6.51 1337 HOCSA: 
66% Precuneous Cortex, 2% 
Lateral Occipital Cortex, superior 
division 

HOSSA: 
70% Right Cerebral Cortex, 30% 
Right Cerebral White Matter 

JHA: 
38% GM Superior parietal lobule 
7P R, 32% GM Superior parietal 
lobule 7A R, 5% GM Superior 
parietal lobule 7M R 

2a -2.0 -63.0 54.0 -5.35  HOCSA: 
83% Precuneous Cortex 

HOSSA: 
85% Left Cerebral Cortex, 6% Left 
Cerebral White Matter, 1% Right 
Cerebral Cortex 

JHA: 
42% GM Superior parietal lobule 
7A L, 33% GM Superior parietal 
lobule 7P L 

2b -24.0 -53.0 42.0 -5.27  HOCSA: 
24% Superior Parietal Lobule, 5% 
Lateral Occipital Cortex, superior 
division, 4% Supramarginal Gyrus, 
posterior division, 2% Angular 
Gyrus 

HOSSA: 
64% Left Cerebral White Matter, 
36% Left Cerebral Cortex 

JHA: 
17% GM Anterior intra-parietal 
sulcus hIP3 L, 10% GM Anterior 
intra-parietal sulcus hIP1 L, 1% GM 
Superior parietal lobule 7A L 

2c 10.0 -43.0 46.0 -5.25  HOCSA: 
56% Precuneous Cortex, 16% 
Cingulate Gyrus, posterior division, 
2% Postcentral Gyrus  

HOSSA: 
76% Right Cerebral Cortex, 24% 
Right Cerebral White Matter 
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JHA: 
20% GM Superior parietal lobule 
5Ci R, 5% GM Superior parietal 
lobule 5M R 

3 1.0 17.0 49.0 -6.41 351 HOCSA: 
54% Paracingulate Gyrus, 7% 
Superior Frontal Gyrus, 2% 
Cingulate Gyrus, anterior division  

HOSSA: 
69% Right Cerebral Cortex, 7% 
Left Cerebral Cortex, 0% Right 
Cerebral White Matter 

JHA: 
29% GM Premotor cortex BA6 R 

3a 3.0 29.0 46.0 -4.15  HOCSA: 
31% Superior Frontal Gyrus, 27% 
Paracingulate Gyrus 

HOSSA: 
67% Right Cerebral Cortex, 9% 
Left Cerebral Cortex 

JHA: 
3% GM Premotor cortex BA6 R 

3b 8.0 32.0 44.0 -3.79  HOCSA: 
31% Superior Frontal Gyrus, 11% 
Paracingulate Gyrus 

HOSSA: 
57% Right Cerebral Cortex, 43% 
Right Cerebral White Matter 

JHA: 
8% GM Premotor cortex BA6 R 

4 1.0 -88.0 -11.0 -6.33 732 HOCSA: 
45% Lingual Gyrus, 6% Occipital 
Pole, 3% Intracalcarine Cortex, 1% 
Occipital Fusiform Gyrus 

HOSSA: 
32% Right Cerebral Cortex, 26% 
Left Cerebral Cortex, 4% Right 
Cerebral White Matter, 0% Left 
Cerebral White Matter 

JHA: 
4% GM Visual cortex V1 BA17 R 
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4a 8.0 -80.0 -8.0 -5.38  HOCSA: 
71% Lingual Gyrus, 6% Occipital 
Fusiform Gyrus, 1% Intracalcarine 
Cortex  

HOSSA: 
78% Right Cerebral Cortex, 18% 
Right Cerebral White Matter, 0% 
Left Cerebral Cortex 

JHA: 
56% GM Visual cortex V1 BA17 R, 
52% GM Visual cortex V2 BA18 R, 
12% WM Optic radiation R, 6% GM 
Visual cortex V3V R 

4b -12.0 -73.0 16.0 -4.24  HOCSA: 
24% Intracalcarine Cortex, 9% 
Cuneal Cortex, 3% Supracalcarine 
Cortex, 2% Precuneous Cortex 

HOSSA: 
59% Left Cerebral White Matter, 
41% Left Cerebral Cortex 

JHA: 
40% GM Visual cortex V1 BA17 L, 
18% WM Optic radiation L, 10% 
GM Visual cortex V2 BA18 L 

4c 13.0 -65.0 9.0 -4.18  HOCSA: 
61% Intracalcarine Cortex, 4% 
Lingual Gyrus, 2% Supracalcarine 
Cortex  

HOSSA: 
67% Right Cerebral Cortex, 33% 
Right Cerebral White Matter 

JHA: 
74% GM Visual cortex V1 BA17 R, 
33% GM Visual cortex V2 BA18 R, 
32% WM Optic radiation R, 10% 
GM Visual cortex V3V R, 1% GM 
Visual cortex V4 R 

5 30.0 -60.0 52.0 -5.93 517 HOCSA: 
44% Lateral Occipital Cortex, 
superior division, 11% Superior 
Parietal Lobule, 7% Angular Gyrus 

HOSSA: 
66% Right Cerebral Cortex, 29% 
Right Cerebral White Matter 
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JHA: 
37% GM Anterior intra-parietal 
sulcus hIP3 R, 28% GM Superior 
parietal lobule 7A R, 10% GM 
Anterior intra-parietal sulcus hIP1 
R, 2% GM Superior parietal lobule 
7PC R, 1% GM Superior parietal 
lobule 7P R 

5a 33.0 -53.0 44.0 -5.0  HOCSA: 
25% Superior Parietal Lobule, 21% 
Angular Gyrus, 8% Lateral 
Occipital Cortex, superior division, 
2% Supramarginal Gyrus, posterior 
division 

HOSSA: 
59% Right Cerebral Cortex, 41% 
Right Cerebral White Matter 

JHA: 
25% GM Anterior intra-parietal 
sulcus hIP3 R, 11% GM Anterior 
intra-parietal sulcus hIP1 R, 6% 
GM Anterior intra-parietal sulcus 
hIP2 R, 2% GM Superior parietal 
lobule 7A R 

5b 45.0 -43.0 49.0 -4.95  HOCSA: 
41% Supramarginal Gyrus, 
posterior division, 18% Angular 
Gyrus, 8% Superior Parietal 
Lobule, 2% Postcentral Gyrus, 1% 
Supramarginal Gyrus, anterior 
division  

HOSSA: 
71% Right Cerebral Cortex, 27% 
Right Cerebral White Matter 

JHA: 
42% GM Inferior parietal lobule 
PFm R, 15% GM Anterior intra-
parietal sulcus hIP2 R, 15% GM 
Anterior intra-parietal sulcus hIP1 
R, 14% GM Anterior intra-parietal 
sulcus hIP3 R, 5% GM Inferior 
parietal lobule Pga R, 4% GM 
Superior parietal lobule 7PC R, 2% 
GM Inferior parietal lobule PF R 

5c 50.0 -35.0 52.0 -4.88  HOCSA: 
30% Supramarginal Gyrus, anterior 
division, 28% Supramarginal 
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Gyrus, posterior division, 13% 
Postcentral Gyrus, 2% Superior 
Parietal Lobule, 1% Angular Gyrus 

HOSSA: 
81% Right Cerebral Cortex, 15% 
Right Cerebral White Matter 

JHA: 
39% GM Inferior parietal lobule PFt 
R, 28% GM Inferior parietal lobule 
PFm R, 25% GM Primary 
somatosensory cortex BA2 R, 19% 
GM Anterior intra-parietal sulcus 
hIP2 R, 10% GM Superior parietal 
lobule 7PC R, 2% GM Primary 
somatosensory cortex BA1 R 

6 30.0 12.0 56.0 -5.38 72 HOCSA: 
35% Middle Frontal Gyrus, 11% 
Superior Frontal Gyrus 

HOSSA: 
66% Right Cerebral Cortex, 30% 
Right Cerebral White Matter 

6a 30.0 9.0 64.0 -4.81  HOCSA: 
22% Middle Frontal Gyrus, 18% 
Superior Frontal Gyrus 

HOSSA: 
62% Right Cerebral Cortex, 2% 
Right Cerebral White Matter 

7 50.0 37.0 26.0 -5.31 6 HOCSA: 
41% Frontal Pole, 16% Middle 
Frontal Gyrus 

HOSSA: 
67% Right Cerebral Cortex, 1% 
Right Cerebral White Matter 

JHA: 
12% GM Broca's area BA45 R 

8 53.0 34.0 26.0 -4.88 2 HOCSA: 
15% Middle Frontal Gyrus, 10% 
Frontal Pole 

HOSSA: 
38% Right Cerebral Cortex, 1% 
Right Cerebral White Matter 

JHA: 
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4% GM Broca's area BA45 R 

9 -42.0 9.0 24.0 -4.77 344 HOCSA: 
31% Inferior Frontal Gyrus, pars 
opercularis, 12% Precentral Gyrus, 
5% Middle Frontal Gyrus 

HOSSA: 
56% Left Cerebral Cortex, 44% Left 
Cerebral White Matter 

JHA: 
32% GM Broca's area BA44 L 

9a -44.0 -3.0 42.0 -4.2  HOCSA: 
35% Precentral Gyrus, 7% Middle 
Frontal Gyrus 

HOSSA: 
51% Left Cerebral Cortex, 49% Left 
Cerebral White Matter 

JHA: 
19% GM Premotor cortex BA6 L, 
10% WM Corticospinal tract L, 3% 
GM Primary motor cortex BA4a L 

9b -34.0 -1.0 49.0 -4.16  HOCSA: 
28% Precentral Gyrus, 17% Middle 
Frontal Gyrus, 1% Superior Frontal 
Gyrus 

HOSSA: 
57% Left Cerebral Cortex, 43% Left 
Cerebral White Matter 

JHA: 
18% GM Premotor cortex BA6 L, 
8% GM Primary motor cortex BA4a 
L, 4% WM Corticospinal tract L 

9c -47.0 -1.0 52.0 -4.11  HOCSA: 
52% Precentral Gyrus, 18% Middle 
Frontal Gyrus 

HOSSA: 
81% Left Cerebral Cortex, 15% Left 
Cerebral White Matter 

JHA: 
81% GM Premotor cortex BA6 L, 
1% GM Primary motor cortex BA4a 
L 
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10 -22.0 -26.0 24.0 -4.31 47 HOSSA: 
95% Left Cerebral White Matter, 
4% Left Lateral Ventricle, 1% Left 
Caudate 

JHA: 
28% WM Corticospinal tract L, 19% 
WM Superior occipito-frontal 
fascicle L 

10a -9.0 -23.0 26.0 -3.88  HOSSA: 
69% Left Cerebral White Matter, 
31% Left Lateral Ventricle, 0% Left 
Cerebral Cortex 

JHA: 
49% WM Callosal body, 2% WM 
Cingulum L 
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