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Grid-like entorhinal representation of an
abstract value space during prospective
decision making

Alexander Nitsch 1 , Mona M. Garvert1,2,3,4, Jacob L. S. Bellmund 1,
Nicolas W. Schuck 2,3,5 & Christian F. Doeller 1,6,7,8

How valuable a choice option is often changes over time, making the predic-
tion of value changes an important challenge for decision making. Prior stu-
dies identified a cognitive map in the hippocampal-entorhinal system that
encodes relationships between states and enables prediction of future states,
but does not inherently convey value during prospective decision making. In
this fMRI study, participants predicted changing values of choice options in a
sequence, forming a trajectory through an abstract two-dimensional value
space. During this task, the entorhinal cortex exhibited a grid-like repre-
sentation with an orientation aligned to the axis through the value space most
informative for choices. A network of brain regions, including ventromedial
prefrontal cortex, tracked the prospective value difference between options.
These findings suggest that the entorhinal grid system supports the prediction
of future values by representing a cognitive map, which might be used to
generate lower-dimensional value signals to guide prospective decision
making.

Optimal decision making relies on predictions of future values asso-
ciatedwith choiceoptions. For example, if youwere to invest in stocks,
you would want to choose those stocks which are likely to be more
valuable than others in the future. In particular, this implies that you
should be able to predict if and when one stock becomes more valu-
able than another and choose accordingly to maximize long-term
reward. Crucially, such prospective decision making requires an
appropriate neural representation of the relation between changing
and future values of choice options.

Prior studies established a role for parts of the ventromedial
prefrontal cortex (vmPFC) andorbitofrontal cortex (OFC) aswell as the
ventral striatum in tracking the value difference between the chosen
and the unchosen option during decisionmaking1–11. Correct decisions

in many previously used tasks depended primarily on updating values
based on experience12. However, many decisions, such as in the
introductory example of the stock market, require recognizing trends
and extrapolating values into the future. In such scenarios, dorsal
anterior cingulate cortex (dACC) has been implicated in comparing
recent and past reward rates, allowing for trend-guided choices based
on expected future rewards13,14.

Prediction of future values is enabled by an internal model, which
represents transitions between states and reward contingencies in an
environment or task. Reliance on an internal model has been referred
to as model-based decision making, and can lead to distinct value
computations found in thedorsomedial prefrontal cortex (dmPFC)15–17.
Moreover, the hippocampus has been implicated in model-based and
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value-based decision making18–24. Interestingly, Vikbladh et al.22 found
that the hippocampus serves as a common neural substrate for both
model-based decisionmaking and placememory in spatial navigation.
A possible mechanism by which the hippocampus could support both
model-based decision-making and spatial navigation is via the forma-
tion of cognitive maps.

Cognitive maps encode relationships between states in the world in
a map-like format25–32. Neurally, cognitive maps are assumed to rely on
the activity of spatially tuned cells in the hippocampal-entorhinal system.
For example, during spatial navigation, place cells in the hippocampus
exhibit increased firing at a particular location within an environment33.
Grid cells in the adjacent entorhinal cortex fire at multiple locations
within an environment and these locations form a hexagonal grid34.
Together, these cells enable self-localization and geometric computa-
tions supporting spatial navigation, e.g., the computation of distances
and directions35,36. Beyond spatial navigation, recent studies have shown
hippocampal-entorhinal map-like and grid-like representations of more
abstract information, e.g., in graph-like structures37 as well as in feature
and concept spaces38–43. Therefore, hippocampal-entorhinal cognitive
maps have been suggested to provide a more general mechanism for
organizing information, allowing for adaptive decision making25,26,44–46.
For example, two recent studies showed distance- and grid-like repre-
sentations for novel inferences during decision making in a two-
dimensional map of social hierarchies47,48.

In decision making, states in the world and values are usually
considered different entities, i.e., values (rewards) are received after
performing an action in a given state. However, it is conceivable that
values constitute states themselves, which can be represented in a
cognitive map. In line with this notion, Bongioanni et al.49 demonstrated
first evidence for a grid-like representation of an abstract value space
defined by rewardmagnitude andprobability inmacaques.While choice
options in previous studies47–49 were static with regard to their locations
in the abstract space, an interesting question is whether the same map-
like representationwould code for values of options changing over time.
By facilitating computations of directions of and distances between
value changes over time, such a cognitive map could enable efficient
prediction of future values for prospective decision making. This map
could then be used to read out resulting values and generate lower-
dimensional signals of the value difference between options and their
identities for choices. First evidence for hippocampal neurons encoding
position in a value space spanned by changing reward probabilities has
been demonstrated in macaques50. However, it remains elusive whether
an entorhinal grid-like representation would encode changing values
during prospective decision making in humans.

Here, we aimed to investigate whether the entorhinal cortex inte-
grates relational information about changing values during prospective
decision making using a grid-like representation of an abstract value
space. To address this question, we combined functional magnetic
resonance imaging (fMRI) with a prospective decision making task
which required participants to integrate values in an abstract two-
dimensional value space. Our behavioral results show that participants
integrated and extrapolated changes along the two value dimensions to
guide prospective choice, indicating they formed a map of the rela-
tionships between options. Crucially, while participants traversed the
abstract value space along trajectories, the entorhinal cortex exhibited a
grid-like representation, suggesting the formation of a cognitive map. A
network of brain regions, including the ventromedial and dorsal pre-
frontal cortex, tracked not only the value difference between options
during choices, but also particularly the prospective value component.

Results
Participants integrate and extrapolate value changes for pro-
spective choices
We monitored whole-brain activity using fMRI while 46 participants
performed a prospective decision making task (Fig. 1). The task

required participants to maximize reward by tracking and predicting
values (i.e., reward magnitudes) associated with two choice options.
Each trial (Fig. 1a) consisted of an observation phase and an active
choice. During the observation phase, participants viewed the two
options along with their changing values over a sequence of time
points. They were instructed to carefully track the value changes to be
able to predict the options’ values at the next time point. After 3–5
observed time points, participants were asked to choose the option
with the higher value at the next time point (choice time point). Cor-
rect choices were translated into a monetary bonus for participants,
which was based on the options’ values.

More specifically, the two options were represented by the same
four category-specific stimuli, which were mapped onto the two
options (e.g., face/tool signaled option A, while hand/scene signaled
option B). The stimulus mapping remained constant throughout the
task and participants were informed about it before. Across time
points, the two value-congruent stimuli of a given option alternated.

Crucially, a sequence of time points formed a trajectory through
an underlying abstract two-dimensional value space, with the dimen-
sions of the space corresponding to the values associated with the two
options (Fig. 1b, Supplementary Fig. 1). In this space, the 45°-diagonal
represented locations where the two options had the same values.
Trajectories crossing the 45°-diagonal therefore involved a switch in
which of the two options was more valuable. Tracking value changes
over time, essentially recognizing the direction of and distances along
a trajectory, allowed for prediction of future values and therefore
detection of switches.

Participants’ overall performance of the task, as indicated by
choices of the more valuable option, was high (Fig. 2a, M= 87.70%,
SD = 6.48%). If participants considered value changes over time for
their choices, they should have detected switches of themore valuable
option fromone timepoint to the next. Indeed, they detected switches
significantlymoreoften thanexpectedby chance (Fig. 2b; t(45) = 10.82,
p <0.001). Apart from the switch time point, themore valuable option
was the same as at the preceding time point and participants could
simply stay with that option. We therefore compared switch perfor-
mance with the time points before (pre) and after (post) a switch. This
comparison revealed a significant effect of time point (Fig. 2b;
F(2,90) = 35.93, p <0.001). Post-hoc pairwise tests indicated sig-
nificantly reduced performance for both pre and switch compared to
post (pre: t(45) = −10.72, p < 0.001; switch: t(45) = −7.35, p <0.001) but
no significant difference between pre and switch (t(45) = −0.90,
p =0.40; all with α =0.016, Bonferroni-corrected for three compar-
isons; controls for pre and post individually against chance: pre
t(45) = 11.02, p <0.001, post t(45) = 45.17, p <0.001; M ± SD: pre
73.91 ± 14.71%, switch 77.09 ± 16.98%, post 95.52 ± 6.83%). Similarly, we
observed a significant effect of time point on reaction times (Supple-
mentary Fig. 2a; F(2,90) = 60.65,p < 0.001; post hoc pairwise tests with
α =0.016: pre-post: t(45) = 9.85, p <0.001, switch-post: t(45) = 1.74,
p =0.09, pre-switch: t(45) = 8.33, p <0.001). This pattern of results
suggests that participants successfully detected switches of the more
valuable option and may even have over-extrapolated the value
changes, leading to earlier switches than optimal.

As switches are induced by the 45°-diagonal of the value space, we
tested more continuously how performance is influenced by the dis-
tance between the choice location and the diagonal using participant-
specific logistic regressions. We found that the likelihood of correct
choices increased with increasing distance of the choice location from
the diagonal (Fig. 2c, d; t(44) = 8.03, p <0.001; M ± SD 1.64 ± 1.37 arb.
units). As a control, we tested the same relationship using only choices
in switch trajectories where locations lay inherently closer to the
diagonal (Fig. 2c; t(44) = 6.60, p < 0.001;M ± SD 0.81 ± 0.83 arb. units).
This suggests that the closer choice locations were to the 45°-diagonal
and hence the more similar the options’ values became, the more
difficult the choices became for participants.
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Next, we investigated whether a reinforcement learning model
which captured the prospective nature of the task, i.e., the value
changes over time, fitted participants’ choice behavior better than a
model that did not. To this end, we modified a Rescorla–Wagner
model12 so that it updated value estimates within a trial based on
prediction errors and additionally value changes over time points:

VTP + 1 =VTP +α
* OTP +CTP � VTP

� �
withCTP =OTP �OTP�1, ð1Þ

whereby VTP and VTP+1 are values at the current and next time points,
respectively, OTP is the outcome at the current time point, CTP reflects
how the value has changed from the previous to the current time point
andα is the learning rate (free parameter of themodel). In essence, this
prospective Rescorla–Wagner model does not only update the
expected value to the outcome just observed, but learns which out-
come to expect given the past history of changes.We compared this to
the original Rescorla–Wagner model which does not consider value
changes over time points:

VTP + 1 =VTP +α*ðOTP � VTPÞ ð2Þ

As expected, the prospective Rescorla-Wagner model fitted the
data better than the original Rescorla-Wagner model (Fig. 2e; model
comparison per AIC: t(45) = −8.71, p < 0.001, with α =0.01, Bonferroni-
corrected for five tests including alternative models; M ± SD: pro-
spective 51.81 ± 17.68, original 63.63 ± 11.51). Initially, we constrained
the learning rate of the prospectivemodel to the range between 0 and
1, with 1 reflecting full updating according to prediction errors and
value changes. We observed a ceiling effect for the learning rate, with
many participants having learning rates of 1 (M =0.94, SD = 0.12). For

this reason, we removed the upper bound of the learning rate and
observed learning rates slightly above 1 on average, suggesting slight
over-updating in line with the performance reduction at the pre time
point described above (Supplementary Fig. 2g; M = 1.09, SD =0.25;
model comparison of unbound and bound model per AIC:
t(45) = −3.96, p <0.001). The learning rate correlated positively with
performance at the switch time point (Supplementary Fig. 2h;
r(44) = 0.55, p < 0.001) but negatively with performance at the pre time
point (Supplementary Fig. 2i; r(44) = −0.44, p =0.003), reflecting the
advantage and disadvantage of over-updating. In addition, we imple-
mented a set of alternatives for the prospective model, e.g., with a
separate learning rate for the change term or with a term for an
expected prediction error (see Methods). The prospective model
described above fitted the data better than all alternatives (Supple-
mentary Fig. 2j; all p <0.001). These modeling results confirm and
extend our previous pre-switch-post performance analysis by showing
that participants indeed extrapolated value changes for prospective
choices, though to a slightly larger extent than optimal, presumably
causing too early switches.

Lastly, we reasoned that if prospective decisionmaking is supported
by a cognitive map similar to spatial navigation, then participants with
better navigational abilities may also perform better in our prospective
decision making task. To investigate whether this is the case, we tested
whether behavior in our task correlated with participants’ self-reported
navigational abilities and preferences (as measured by the Santa Barbara
Sense of Direction Scale (SBSOD) questionnaire51, completed in the last
part of the study).Weobserved a significant positive correlation between
the learning rate of the prospective Rescorla–Wagner model and self-
reported navigational abilities and preferences (Fig. 2f; correlation with
learning rate: r(44) =0.34, p=0.02; correlation with overall performance:
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Fig. 1 | Design of prospective decision making task. Participants were instructed
to track and predict changing values of two latent options A and B. Each latent
optionwas signaled byone of two associated images, e.g., a face or a tool for option
A and a hand or a scene for option B. Participants were instructed which images
signaled the same option before the task. a Example trial, consisting of an obser-
vation phase and an active choice. During the observation phase, participants
viewed the two options along with their changing values over a sequence of 3 time
points (TPs). Across TPs, the two value-congruent images of a given option alter-
nated. Subsequently, participants were asked to choose the option with the higher
value at the next TP (choice TP). For their choice, participants had to consider how
the values changed over time and accordingly how they will have changed towards
the choice TP. Finally, they received feedback about the actual values at the choice
TP. Note that in this example trial, the more valuable option changed from hand /
scene (option B) in the beginning of the trial to face / tool (option A) at the choice

TP. To facilitate fast tracking of the value changes across TPs, options were dis-
played on the same side of the screen during the observation phase but sides were
random during choices. b A trial with its sequence of TPs formed a trajectory
through an underlying abstract two-dimensional value space, with the dimensions
corresponding to the values associated with the two options. Each TP corre-
sponded to a particular location in the value space, depicted by dots. The arrow in
turquoise depicts the trajectory through these locations. Trajectories crossing the
45°-diagonal of the space (red) involved a switch of the more valuable option.
Choices sampled different TPs across trajectories (trials). The first TP after the
diagonal is referred to as the switch and the TPs before and after the switch as pre
and post. Note that the trial ended after the choice TP (see a) and the post TP is
added to the trajectory for illustration. Stimuli taken from publicly available sti-
mulus datasets (see Methods)77–82.
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r(44) =0.11, p=0.45; with α=0.025, Bonferroni-corrected for two tests).
In addition, we wondered whether the prospective component of inte-
grating and extrapolating values over time in our task relates to model-
based decisionmaking in the two-stage task, which assesses reliance on a
model of state transition probabilities across two decision stages16.
Contrary to our expectations, wedid not observe a significant correlation
with model-based decision making in the two-stage task, potentially due
to overall reduced model-based decision making in our sample (Sup-
plementary Fig. 3a–c; correlation with learning rate: r(44) =−0.19,
p=0.20; correlation with overall performance: r(44) =0.21, p=0.15; with
α=0.025, Bonferroni-corrected for two tests).

Taken together, our behavioral results demonstrate that partici-
pants were able to integrate and extrapolate changes along the two
value dimensions of the space to guide choice, suggesting they formed
a map of the relationships between options.

Entorhinal cortex exhibits grid-like representation for
value space
Our behavioral results suggest that participants formed a relational
value map. Relationships between landmarks in physical space, as
well as non-spatial relational structures are represented by entorh-
inal grid cells in a cognitive map. We hypothesized that the

entorhinal cortexmight also encode changing values using a grid-like
representation. Such a neural representation would facilitate com-
putations of directions of and distances between value changes over
time and thereby enable efficient prediction of future values. Pre-
vious research has shown that the regular hexagonal firing pattern of
grid cells in the entorhinal cortex translates to hexadirectional
activity modulations during spatial navigation in fMRI52. In our pro-
spective decision making task, a sequence of time points formed a
trajectory through an underlying abstract value space (Fig. 1b). More
specifically, participants moved along trajectories with directions
ranging from 0°–350° in 10°-steps in each of the four task blocks
(fMRI runs; Supplementary Fig. 1). If participants formed a cognitive
map of changing values, akin to maps in physical space, then activity
in the entorhinal cortex should show a hexadirectional modulation
during this movement through the value space, with higher activity
for trajectories aligned with the putative grid orientation (phase of
the hexadirectional signal) than for trajectories misaligned with the
putative grid orientation (Fig. 3a). To test this hypothesis, we
implemented a cross-validation procedure, estimating the putative
grid orientation using three of four task runs and testing for a
hexadirectional modulation aligned to the orientation in the left-out
run52,53.
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Fig. 2 | Participants integrate and extrapolate value changes for prospective
choices. aOverall performance across all trajectories of the task. b Performance in
switch trajectories, at the time point before the switch (pre), of the switch (switch)
and after the switch (post). Performance at all time points was significantly above
chance (one-sample t-tests against chance (50%), all p <0.001), suggesting that
participants succeeded in detecting switches. Performance at pre and switch was
significantly lower than at post time points (repeated measures ANOVA with
Bonferroni-corrected post-hoc related-samples t-tests, all p <0.001 except for
comparison pre-switch with p =0.40). c Effect of the distance between the choice
location and the 45°-diagonal of the value space on performance, separately for all
trajectories (left) and only switch trajectories as a control (right). In both cases,
effect sizes estimated by participant-specific logistic regressions are significantly
positive (one-sample t-tests, all p <0.001), indicating that the likelihood of correct
choices increased with increasing distance from the diagonal. dVisualization of the
distance-from-the-diagonal effect in c. Blue dots depict incorrect choice locations
across participants, clustering around the 45°-diagonal. Gray dots depict correct

choice locations. e Reinforcement learning model comparison. The Akaike infor-
mation criterion (AIC) is significantly lower (better model fit) for the prospective
Rescorla–Wagner model (right) compared to the original Rescorla–Wagner model
(left) (related-samples t-test with Bonferroni correction for alternative models,
p <0.001). f The learning rate of the prospective Rescorla–Wagner model corre-
lates significantly positively with participants’ self-reported navigational abilities
and preferences (SBSOD questionnaire51; Pearson correlation with Bonferroni
correction for two tests,p =0.02).Dots represent data fromn = 46participants; line
represents linear regression line, with shaded regions as the 95% confidence
interval. a–c, e Dots represent data from n = 46 participants (n = 45 in c); boxplots
show median and upper/lower quartile with whiskers extending to the most
extreme data point within 1.5 interquartile ranges above/below the quartiles; black
circles with error bars correspond to mean± SEM; distributions depict probability
density functions of data points. Source data are provided as a Source Data file.
***p <0.001. All statistical tests were two-sided.
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In line with our hypothesis, we observed significant hexadirec-
tional modulation of activity in the entorhinal cortex (Fig. 3b, c; small
volume correction with pFWE <0.05 TFCE;MNI peak voxel coordinates:
18,−6,−26; peak voxel t(45) = 4.17, pFWE =0.003; one-sided test). At the
whole-brain level, we observed no further regions surviving correction
(see Supplementary Table 1 for whole-brain results with a liberal
threshold of puncorr <0.001). To visualize the hexadirectional modula-
tion in the significant entorhinal cluster, we sorted trajectories
according to the putative grid orientation and illustrate effects of
aligned and misaligned 30°-bins (Fig. 3d). A complementary ROI ana-
lysis of the entorhinal cortex confirmed the hexadirectional (6-fold)
effect and showed that the modulation of activity was specific to a
6-fold symmetry in line with grid-like responses, as there were no
significant effects for control symmetries (Fig. 3e; ROI analysis, one-
sided testswithM ± SD: 4-fold t(45) = −0.21,p =0.59,−0.002 ± 0.05 arb.
units; 5-fold t(45) = −0.02, p =0.51, −0.0001 ± 0.04 arb. units; 6-fold
t(45) = 2.91, p =0.003, 0.02 ±0.04 arb. units; 7-fold t(45) = 1.34,
p =0.10, 0.01 ± 0.04 arb. units; 8-fold t(45) = 1.42, p =0.08, 0.01 ± 0.04
arb. units; control symmetries n.s.; with α =0.01, Bonferroni-corrected
for five tests). There was no significant correlation between the mag-
nitude of hexadirectional modulation and task performance (Supple-
mentary Fig. 4g; r(44) = −0.08, p =0.59).

Furthermore, we performed exploratory analyses to investigate
the relationship between the entorhinal grid system and the under-
lying value space. First, we wondered whether grid orientations would
be anchored to a particular reference direction through the value
space. We speculated that a direction of 45° constitutes a particularly
informative referencedirection because it indicates that values of both

options change at the same rate and—given that it is parallel to the 45°-
diagonal of the value space—that there will be no switch of the more
valuable option. In line with this idea, participants’ performance was
higher for trajectories with directions approximately parallel to the
45°-diagonal in switch trajectories (Supplementary Fig. 2f; interaction
effect direction and switch: F(2,86) = 7.18, p = 0.001; post-hoc test
parallel vs. perpendicular in switch trajectories: t(43) = 2.90, p = 0.005,
with α =0.008, Bonferroni-corrected for 6 pairwise tests; all other
pairwise comparisons n.s. p > 0.008). We thus examined whether grid
orientations in the significant entorhinal cluster would cluster around
45°, which was indeed the case (Fig. 3f; V-Test for mean orientation of
45° across participants: p =0.01; circular M ± SD: 48.18° ± 15.99°). Sec-
ondly, we wondered whether the grid-like representation of the value
space might be modulated by value (i.e., reward magnitude) itself.
Recent evidence in rodents demonstrated restructuring of grid cells in
response to reward locations during spatial navigation, with move-
ment of grid fields towards reward locations and higher firing rates for
grid fields closer to reward locations54,55. We, therefore, examined
whether themagnitude of hexadirectionalmodulation differs between
areas of the value spacewith relatively higher and lower values. To test
this, we performed a median split of trajectories according to their
mean value, i.e., contrasting trajectories in the lower left triangle of the
space (low-value-area) with trajectories in the upper right triangle of
the space (high-value-area). We note that this median split led to a
substantial reduction of available trajectories per value condition and
an unbalanced sampling of directions between the conditions, ren-
dering this analysis less robust (Supplementary Fig. 4h; significant
interaction between value condition and direction: F(35,1575) = 3.56,
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Fig. 3 | Entorhinal cortex exhibits grid-like representation for value space.
a fMRI hexadirectional analysis logic. Left: Schematic of a grid cell with an arbitrary
orientation of φ =0°, superimposed on the value space. Right: The regular hex-
agonal firing pattern of grid cells translates to hexadirectional activity modulations
in fMRI, with higher activity for trajectories that are aligned (yellow) vs. misaligned
(blue) with the grid orientation. b Grid-like hexadirectional modulation of activity,
aligned with the putative entorhinal grid orientation. For visualization, statistical
image is thresholded at puncorr <0.01. Voxels within the black outline are significant
after correction for multiple comparisons using small volume correction in the
entorhinal cortex (one-sided non-parametric permutation test with TFCE and
pFWE <0.05). Statistical image is displayed on the MNI template. c Visualization of
the hexadirectional effect sizes in the significant entorhinal cluster in b across
participants. d Visualization of the hexadirectional effect in the significant
entorhinal cluster in b as effects of 30°-directional bins, sorted according to the
putative entorhinal grid orientation. Yellow and blue depict aligned andmisaligned

directions, respectively (as in a). e Modulation of activity for different symmetries
in the entorhinal cortex ROI (one-sided one-sample t-tests with Bonferroni cor-
rection; 6-fold refers to the hexadirectional modulation of interest, significant,
p =0.003; 4-fold (p =0.59), 5-fold (p =0.51), 7-fold (p =0.10) and 8-fold (p =0.08)
refer to control symmetries and are n.s.). f Polar histogram of grid orientations of
the significant entorhinal cluster in 60°-space across participants. Gray dots depict
individual orientations from n = 46 participants, bars depict bins of 5°. Black arrow
shows the circular mean of all participants’ orientations. Red arrow highlights an
orientation of 45°. Grid orientations cluster around 45° (V-test, p =0.01). c–e Dots
represent data from n = 46 participants; boxplots show median and upper/lower
quartile with whiskers extending to the most extreme data point within 1.5 inter-
quartile ranges above/below the quartiles; black circles with error bars correspond
to mean ± SEM; distributions depict probability density functions of data points.
Source data are provided as a Source Data file. *p =0.003 with Bonferroni α =0.01.
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p <0.001). Using the significant entorhinal cluster as ROI, we then
repeated the cross-validated hexadirectional analysis separately for
the two value conditions. The analysis suggested no difference in
hexadirectional modulation between the two conditions (Supple-
mentary Fig. 4i; t(45) = −1.30, p =0.19). However, it is interesting to
note that—contrary to our expectations based on the rodent literature
—it suggested a hexadirectional modulation effect in low-value-areas
but not in high-value-areas (Supplementary Fig. 4i; low-value:
t(45) = 2.06, p =0.02; high-value: t(45) = 0.30, p =0.38; one-
sided tests).

Taken together, these results provide evidence that the entorhinal
cortex encoded the abstract value space using a grid-like representa-
tion, suggesting the formation of a cognitive map.

A network of brain regions tracks the prospective value differ-
ence during choices
To make a decision, representing values solely in a two-dimensional
valuemap is not useful. Instead, values of the choice options also need
to be mapped onto a single common scale for comparison. We thus
tested whether neural signals track the value difference between the
chosen and the unchosen option, especially in vmPFC based on pre-
vious literature. For this purpose, we modeled choice time points as a
function of the chosen and unchosen values, derived from the pro-
spective Rescorla-Wagner model, and contrasted these effects to test
for a modulation by the value difference. We observed significant
positive and negative modulation of neural activity by the value dif-
ference in a network of brain regions (see Fig. 4a for whole-brain
effects; pFWE <0.05 TFCE-corrected; see Supplementary Table 2 for a
list of significant clusters). Positive modulations reflected higher
activity for a higher value difference and included amongst others
vmPFC (MNI peak voxel coordinates: 3,42,−8; peak voxel statistics:
t(45) = 5.99, pFWE <0.001), putamen, insular cortex, hippocampus,
amygdala as well as motor and somatosensory cortex. Negative mod-
ulations reflected higher activity for a smaller value difference and
included amongst others lateral parts of vPFC / OFC, dmPFC, thalamus
and parietal cortex. These effects were still present when controlling
for reaction time (Supplementary Fig. 5a) and when restricting the
analysis to correct trials only (Supplementary Fig. 6a). Furthermore,
the value difference effect in the vmPFC cluster correlated significantly
positively with task performance (Fig. 4c, r(44) = 0.34, p = 0.02; after
exclusion of outlier: r(44) = 0.33, p =0.03).

Moreover, we aimed to investigate whether neural signals would
track particularly the prospective component of the value difference,
i.e., the difference based on the prospective values at the choice time
point rather than the non-prospective values of the preceding time
point. For this purpose, we subtracted value estimates of the original
Rescorla-Wagnermodel (non-prospective) from value estimates of the
prospective Rescorla-Wagner model, thereby extracting particularly
the prospective value component for each option. We then modeled
choice time points as a function of the prospective components of the
chosen and the unchosen option and contrasted these effects to test
for a modulation by the prospective value difference. Again, we
observed widespread significant positive and negative modulation of
neural activity by the prospective value difference (Fig. 4d; pFWE <0.05
TFCE-corrected; see Supplementary Table 3 for a list of significant
clusters). Many clusters overlapped with those tracking the original
value difference. However, a cluster in vmPFC/OFC extended more
dorsally and bordered ACC (MNI peak voxel coordinates: −7,52,−8;
peak voxel statistics: t(44) = 5.75, pFWE < 0.001). This prefrontal cluster
was still present when controlling for reaction time (Supplementary
Fig. 5b), restricting the analysis to correct trials only (Supplementary
Fig. 6b) and controlling for the distance between the choice location
and the 45°-diagonal (Supplementary Fig. 7).

Taken together, these results demonstrate that a network of brain
regions, including value regions such as vmPFC and dPFC, tracked not

only the value difference between options during choices, but also
particularly the prospective component of that value difference.

Discussion
Our capacity to predict future values of choice options is central to
many decisions we face in everyday life. Understanding the mechan-
isms by which the brain enables prospective decision making is
therefore of particular importance. In this study, we combined fMRI
with a prospective decision making task to investigate how the brain
represents relational information about changing values of choice
options in an abstract value space. Participants integrated and extra-
polated changes along the two value dimensions to guide prospective
choice. Crucially, while participants traversed the abstract value space
along trajectories, the entorhinal cortex exhibited a grid-like repre-
sentation, suggesting the formation of a cognitive map. A network of
brain regions, including vmPFC and dPFC, tracked the prospective
value difference between options.

Ourfinding of anentorhinal grid-like representation of an abstract
value space dovetails with the broader idea of cognitive maps encod-
ing abstract information25,26,45,46 and research showing that vmPFC
jointly encodes values and states56. Map-like representations of rela-
tionships between states enable prediction of future states30. In spatial
navigation and memory, the hippocampal-entorhinal system is
involved in prospectivemental simulations and imaginations of events
and navigational goals57–62. In the context of prospective value-based
decision making, predicting future states corresponds to predicting
future values of choice options, such as in the introductory example of
a stock market. Critically, value changes over time can be con-
ceptualized as sequences through an abstract value space, allowing for
prospective decision making by facilitating the computation of geo-
metric distances and directions. In line with this, it is noteworthy that
the degree towhich participants updated values over time in our value
space task correlated with self-reported navigational abilities and
preferences during spatial navigation in everyday life.

Our results extend recent evidence for map-like representations of
value spaces inmacaques into human research. For example, Bongioanni
et al.49 showed a grid-like representation in the macaque medial frontal
cortex as a function of step-like transitions between static options in a
space spanned by reward magnitude and probability. Knudsen and
Wallis50 found that hippocampal neurons in macaques, similar to place
cells during spatial navigation in a physical space, encode position in a
value space spanned by changing reward probabilities. Here, we provide
evidence for an entorhinal grid-like representation of a value space
during prospective decision making in humans.

Interestingly, our exploratory analysis suggests that the entorh-
inal grid system adapts to properties of the value space. More speci-
fically, our results suggested an anchoring of grid orientations around
45° and participants’ performance was also increased for directions
parallel to 45° in switch trajectories. We speculate that a direction of
45° constitutes a particularly informative reference direction through
our value space. This is because it indicates that values of both options
change at the same rate and—given that it is parallel to the 45°-diagonal
of the value space—that there will be no switch of the more valuable
option. In line with this speculation, recent evidence in spatial navi-
gation demonstrated anchoring of grid orientations to an informative
axis in a virtual navigation arena which minimizes spatial
uncertainty63–66. Our results suggest that grid orientations might
anchor to an informative axis even in more abstract spaces. Further-
more, we wondered whether the grid-like representation of the value
space might be modulated by value (i.e., reward magnitude) itself.
Recent evidence in rodents demonstrated restructuring of grid cells in
response to reward locations during spatial navigation, with move-
ment of grid fields towards reward locations and higher firing rates for
grid fields closer to reward locations54,55. While our results suggested
no difference in the strength of grid-like representations between low-
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and high-value areas of the value space, they surprisingly pointed
towards a grid-like representation of the low-value but not the high-
value area.We note that these effects of an exploratory analysis should
be interpreted with caution, given the absence of a clear difference in
the grid-like signal. One could speculate that participants’ subjective
gain of correct choices might have been higher in low-value than in
high-value areas because the received reward in high-value areas was

high anyway, in agreement with notions of value distortions as value
compression or diminishing utility67,68. While the main goal of our
study was to assess whether a grid-like representation encodes a value
space in principle, future studies could aim to investigatemodulations
of such a grid-like representation by value itself.

It is conceivable to represent values during our task by two
separate number lines, without necessarily integrating them into a
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Fig. 4 | A network of brain regions tracks the prospective value difference
during choices. aModulation of activity by the difference betweenmodel-derived
chosen vs. unchosen value during choices. Clusters depicted survive whole-brain
correction (two-sided non-parametric permutation test with TFCE andpFWE<0.05).
Statistical image is displayed on theMNI template. b Based on our expectation of a
value difference effect in vmPFC, we visualize the effect in the vmPFC cluster by
showing the time courses of the effect sizes of the chosen and unchosen value,
time-locked to choice onset (choice onset at 0 s). Lines represent the mean across
participants, with shaded regions as the 95% confidence interval. c The value dif-
ference effect in vmPFC correlates significantly positively with performance (two-

sided Pearson correlation, p =0.02). Dots represent data from n = 46 participants;
line represents linear regression line, with shaded regions as the 95% confidence
interval. d Modulation of activity by the prospective component of the value dif-
ference during choices. The prospective component refers to the influence of
values estimatedby the prospectiveRescorla–Wagnermodel over values estimated
by the original (non-prospective) Rescorla–Wagner model. Clusters depicted sur-
vive whole-brain correction (two-sided non-parametric permutation test with TFCE
andpFWE <0.05). Statistical image is displayedon theMNI template. Sourcedata are
provided as a Source Data file.
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two-dimensional space. Indeed, none of the participants reported
having imagined the two-dimensional value space. However, our
results, together with other studies demonstrating grid- and place-like
representations of values49,50, suggest indeed a neural representation
of a two-dimensional space. Nevertheless, it is possible that different
brain regions represent values differently, e.g., in a map-like format vs.
combining them directly into a value difference or summary signal.

In light of this, it is interesting to note that we found no evidence
for a grid-like representation in vmPFC, where previous studies also
reported such grid-like representations38,39,48,49. While keeping in mind
that it is difficult to interpret the lack of evidence, we can only spec-
ulate as to why this discrepancy might have arisen. Based on a body of
literature implicating vmPFC in representing the one-dimensional
value difference between options during decision making1–11,69, one
could assume that this is one of vmPFC’s predominant coding
schemes. It is conceivable that in our value-based decisionmaking task
with a high demand to track values, vmPFC engaged in its more pre-
valent coding scheme, which was encoding a one-dimensional value
difference signal rather than the two-dimensional space. This idea is
also in linewith a recent study demonstrating a subjective value but no
grid-like effect in vmPFC during a value-based intertemporal choice
task70. In this case, different value representations in the hippocampal-
entorhinal system and vmPFC could serve complementary functions.
For example, while the entorhinal value map could support the pre-
diction of future values by facilitating computations of directions of
and distances between value changes over time, other brain regions
such as vmPFC might read out the resulting values, map them onto a
single common scale for comparison and thus generate a one-
dimensional signal of the value difference used for decision making.
In line with this notion and with previous literature in value-based
decisionmaking, a network of brain regions, including vmPFC, tracked
the value difference between options during choices in our study. We
observed both positive and negative modulations of activity by the
value difference. While positive modulations might reflect the benefit
of the chosen over the unchosen option, negative modulations could
signal the relative value of the unchosen option as an alternative.
Moreover, a vmPFC cluster extending more dorsally (dPFC) and bor-
dering ACC tracked particularly the prospective component of the
value difference. This prospective value difference effect is in line with
reports of distinct model-based value correlates in dmPFC and reward
rate tracking for trend-guided choice in neighboring dACC14,17. Fur-
thermore, the pattern of a value difference signal directly relevant for
choices in vmPFC and particularly prospective value components
extending into dPFC dovetails with reports of a functional gradient,
with vmPFC encoding values for executable choices and dmPFC
encoding abstractly modeled values71. We speculate that the wide-
spread involvement of brain regions in tracking values in our results
might be explained by the high salience and relevance of values in the
task. Ultimately, these value difference signals could be used to allo-
cate attention to the more valuable option to guide eventual decision
making in many foraging scenarios14,72–74.

Finally, we would like to point to possible limitations of our
study. First, the direction and rate of value changes were constant
within a trial and differed across trials of our task, based on the
sampling of different trajectories. Future studies could add noise
to the value changes or vary them in a more fine-grained manner
within trials to investigate how a map-like representation of a
value space translates to more ecological scenarios. Secondly, we
did not find evidence for a correlation between the grid-like
representation and performance of the prospective decision
making task across participants. In light of this, previous research
reported mixed results for across-participant grid-behavior cor-
relations, ranging from positive to negative to no reports of
correlations39,59,75. Future studies could opt for testing such rela-
tionships more fine-grained on an individual participant level.

In conclusion, our results provide evidence that the human
entorhinal cortex uses a grid-like representation to integrate relational
information about changing values in an abstract value space during
prospective decision making, suggesting the formation of a cognitive
map. Thismapmight be used to generate lower-dimensional signals of
the value difference between options and their identities for choices.
Thus, our findings provide novel insight for our understanding of
cognitive maps as a mechanism to guide prospective decision making
in humans.

Methods
Participants
51 participants took part in this study. The sample size was determined
by a power analysis using G*Power76. This yielded a necessary sample
size of 41 participants to achieve a statistical power of 80% for a small-
to-medium effect size (d =0.4, α =0.05, one-tailed t-test). Additionally,
10 participants were recruited to account for potential dropouts. All
participants hadnormal or corrected-to-normal vision, no history of or
current neurological or psychiatric disorders and were right-handed.
Participants were recruited using the participant database of the Max
Planck Institute for Human Cognitive and Brain Sciences, Leipzig,
Germany.

For the data analysis, one participant was excluded due tomissing
fMRI data because of technical problems during data acquisition.
Furthermore, four participants were excluded due to lowperformance
of the prospective decisionmaking task (performance criterion of 70%
accuracy based on previous piloting). Thus, the final sample consisted
of 46 participants (age: M = 28.15 years, SD = 4.77 years, range = 19–39
years; 25 female).

The study was approved by the ethics committee at the Medical
Faculty at theUniversity of Leipzig (421/19-ek) and all participants gave
written informed consent prior to participation. Participants were
reimbursed with a baseline fee of 10 € / h and could additionally earn a
monetary bonus up to 10 € based on performance (see tasks for
details).

Experimental procedure
The study consisted of three parts and lasted approximately three
hours in total. The first part took place in a behavioral laboratory
(approx. 45min). Here, participants received instructions and a train-
ing for themain task of the study, i.e., the prospective decisionmaking
task. In the second part (approx. 90min), participants performed two
tasks in the MRI scanner: First, they completed a picture viewing task
(PVT) which served as an independent dataset to train a decoder for
choice stimuli subsequently used in the prospective decision making
task. Afterwards, they completed the prospective decision making
task. In the third part (approx. 45min), participants returned to a
behavioral laboratory to complete two post-scanning tasks: the two-
stage task16 to study model-based vs. model-free decision making as
well as the Santa Barbara Sense of Direction Scale (SBSOD)
questionnaire51 to assess navigational abilities and preferences.

Task stimuli
Stimuli used for the picture viewing task and the prospective decision
making task in the MRI scanner were category-specific pictures (faces,
tools, scenes, body parts) which are known to elicit neural responses in
category-selective regions of the occipital-temporal cortex. Stimuli
were taken from publicly available stimulus datasets (faces: Righi
et al.77, Face images courtesy of Michael J. Tarr, Carnegie Mellon Uni-
versity, http://www.tarrlab.org/. Funding provided by NSF award
0339122; tools: Brady et al.78, https://konklab.fas.harvard.edu/#;
scenes: Konkle et al.79, https://konklab.fas.harvard.edu/#; body parts:
Cichy et al.80, Kiani et al.81, Kriegeskorte et al.82, http://userpage.fu-
berlin.de/rmcichy/fusion_project_page/main.html, https://www.cns.
nyu.edu/kianilab/Datasets.html). From these stimulus sets, three
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pictures of the categories faces, tools and scenes and one picture of
the category body parts were pre-selected. From this preselection, one
picture of each category was randomly chosen to create a set of four
pictures for each participant.

Prospective decision making task
Participants performed a prospective decision making task which
required them to maximize reward by tracking and predicting values
(i.e., reward magnitudes) associated with two choice options. The
values of the two options changed over a sequence of time points and
participants’ goal was to choose the more valuable option at the next
time point.

The options were represented by four category-specific stimuli (a
face, a tool, a scene, a body part). Participants were instructed that two
of these stimuli each formed a pair such that stimuli within a pair
yielded the same value at a given time (they were value-congruent
across the entire task). For example, the stimuli face and tool might
have formed a pair and the stimuli scene and body part might have
formed a pair. Hence, the task comprised two latent options (i.e.,
options A and B), with two value-congruent stimuli per option. Value
congruencies between the four pictures were counterbalanced across
participants.

Each trial consisted of an observation phase and an active choice.
During the observation phase, participants viewed the two options
along with their changing values over a sequence of time points (TP).
Pictures of the twooptionswere displayedon the left and right sides of
the screen, with their associated current values indicated by numbers
underneath. Across time points, two aspects changed: First, which of
the two value-congruent stimuli of a given option was shown on the
screen alternated each time point. Participants were instructed that
when a stimulus and its current value were shown on the screen, the
other stimulus of the pair currently yielded the same value. Secondly,
the values of the two latent options changed over time points. Parti-
cipants were instructed to carefully track these changes to be able to
predict the options’ values at the next time point. Each time point was
presented for 2.5 s and was directly followed by the next time point.
During the observation phase (initial time points), each option stayed
on the same side of the screen to facilitate fast tracking of the changes.
However, across trials the sides of the options were counterbalanced
and distributed randomly. After 3–5 observed time points, only two
pictures were presented and participants were asked to choose the
option with the higher value at this future time point (choice time
point). At the choice time point, the sides of the pictures on the screen
(left / right) were random to prevent pure side-value associations.
Participants were asked to indicate their choice by pressing the left or
the right button on an MRI-compatible button box. Participants were
given amaximumof 3 s to respond. After their choice (or the timeout),
a fixation cross was presented at the center of the screen for an inter-
stimulus interval sampled from a truncated exponential distribution
(min = 3 s, max = 8 s, mu = 4 s, sampled mean = 4.1 s). Afterwards, a
feedback screenwaspresented for 2.5 s, showing thepictures and their
actual values at the choice time point. The value of the chosen option
was highlighted in yellow. Lastly, a fixation cross was presented at the
center of the screen for an inter-trial interval sampled froma truncated
exponential distribution (min = 3 s, max= 8 s, mu = 4 s, sampled
mean= 4.1 s).

The task comprised 144 trials. Half of the trials involved a choice
as described above, with choices at the 4th, 5th or 6th time point. The
other half of the trials proceeded without any choice and consisted of
six time points (passive trials). The purpose of including longer trials
without any choicewas to improve the estimation of trajectory-related
fMRI signals for the planned analysis of hexadirectional signals (grid-
like representation, see below). Choice and passive trials were inter-
mixed randomly so that participants would always need to track the
values in a given trial and be ready to indicate their choice.

Crucially, a sequence of time points in a trial formed a trajectory
through an underlying abstract two-dimensional value space. The two
dimensions of the space corresponded to the values associated with
the two options (ranging from 0 to 100). Each time point with its
current values of the twooptions corresponded to aparticular location
in the value space and a trial could therefore be conceptualized as
movement along a trajectory through the space. Trajectories were
sampledwith directions (angles) ranging from0°–350° in 10°-steps (0°
referring to a value increase along the x-dimension of the space but no
change in the y-dimension).

In this space, the 45°-diagonal represented locations where the
two options had the same values. Trajectories crossing the 45°-diag-
onal therefore involved a switch in which of the two options wasmore
valuable. Half of all trajectories in the task involved a switch while the
other half did not (switch vs. non-switch trajectories). The switch time
point was defined as the first time point after the 45°-diagonal. The
switch time point appeared equally often at the 4th, 5th and 6th time
point across all switch trajectories (equal sampling both in choice and
in passive trials / trajectories).

Time points (locations) along a trajectory were sampled equidis-
tantly, i.e., the distance between two consecutive time points was the
samewithin agiven trajectory. The values showntoparticipants during
the task were rounded to integers. Depending on the direction (angle)
of a trajectory, rounding could lead to differences of +/−1 in value
changes between time points but it was ensured that this would not
change the identity of the more valuable option at choice time points.
Furthermore, the task included two types of trajectories with regard to
the distance between two consecutive time points: trajectories with a
relatively smaller distance of 6 (referred to as short-distance trajec-
tories) and trajectories with a relatively larger distance of 10 (referred
to as long-distance trajectories). For each distance type, one set of
trajectories (36 directions, 0°–350°) was realized as choice trials and
one set of trajectories as passive trials. Furthermore, for a given dis-
tance type each direction was once realized as a switch trajectory and
once as a non-switch trajectory. The assignment of switch vs. non-
switch to choice vs. passive trials was pseudorandom with the condi-
tion that in choice trials, each direction was realized as a switch tra-
jectory at least once across both distance types. This ensured that a
response from the participant was sampled for all directions 0°–350°
involving a switch.

As noted above, choices occurred either at the 4th, 5th or 6th time
point. In non-switch trajectories, the 4th, 5th and 6th time point equally
often constituted the choice time point for each distance type. In switch
trajectories, for each distance type half of the choice time points sam-
pled the switch time point (18 trials). The other half sampled the time
point before the switch (pre) and the time point after the switch (post)
equally often (i.e., 50% switch time point, 25% pre time point, 25% post
time point; note that for 6 participants at the beginning of the study the
balance between pre and post differed up to +/−3 trials).

The total of 144 trials (trajectories) was pseudorandomly dis-
tributed over four task blocks (fMRI runs) so that each block:
1. sampled all 36 directions ranging from 0°–350° in 10°-steps

(hence, 36 trials per block),
2. sampled switch and non-switch trajectories equally often,
3. sampled choice and passive trajectories equally often,
4. sampled the switch time point as the choice time point equally

often (one trial more in one block),
5. sampled short- and long-distance trajectories equally often,
6. and for each distance type sampled choice and passive trajec-

tories equally often.

In each block, the order of trajectories was randomized according
to the direction.

In each block, trajectories were positioned within the circle cre-
ated by a radius of 50 from the central point of the two-dimensional
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value space (coordinates: x = 50, y = 50). Equal positioning of trajec-
tories in the relevant circular area of the space was achieved by a
genetic algorithm. Its goal was to position trajectories so as to mini-
mize the standard deviation of the number of timepoints (locations on
trajectories) falling into the 10 × 10 sub-squares of the relevant circular
area (for 2000 generations).

Each block lasted approx. 13min (M = 12.74min, SD =0.15min). It
started with a fixation cross presented at the center of the screen for
10 s before the first trial. After the last trial, a fixation cross was pre-
sented at the center of the screen for 15 s, followed by a message
informing the experimenter that the block finished and the MRI run
could be stopped. After each block, participants received feedback
about their performance in the given block. The feedback stated the
number of correctly answered trials as well as the earned monetary
bonus in the given block. More specifically, in each block a trial was
randomly chosen for the bonus. If the answer in this trial was correct,
the highest values across the entire trial were summed up and con-
verted into a bonus (so that a value of 50 yielded 0.20 €). If the answer
in this trial was false, no bonus was won. Participants were instructed
about this bonus beforehand. Participants could take a short break
before the next block.

Participants received instructions for the task and a training of 25
trials before performing the main task in the scanner. During training,
incorrectly answered trials were repeated until answered correctly. For
instructions and training only, a distinct set of stimuli of everyday
objects from a publicly available stimulus dataset78 was used.

At the end of the study, participants were asked which strategies
they used to solve the task. Then they were told about the underlying
two-dimensional value space and asked whether they imagined such a
space. The first question about the strategies was only verbal so that
we cannot exactly quantify them. While participants mentioned,
amongst others, imagining separate number lines and trying to cal-
culate the value changes, they also reported that they felt that the
value and stimulus changes happened very fast. For the second
question—whether participants imagined the underlying two-
dimensional value space—we recorded answers to potentially
exclude those participants from the analysis. No participant reported
having imagined the underlying two-dimensional value space.

The task was programmed in Python 3.7 using the PsychoPy
package83 (version 3.1.5; https://lindeloev.net/psychopy-course/) in
Spyder (https://www.spyder-ide.org/; version 4.0.0b3) distributed via
Anaconda (https://www.anaconda.com/; version 2019.03). The
instruction was programmed using the PsychoPy Builder83 (version
2020.2.3).

Picture viewing task (PVT)
Before the prospective decisionmaking task, participants performed a
picture viewing task (PVT) which served as an independent dataset to
train a decoder for subsequent analyses. Participants viewed a stream
of pictures of the category-specific stimuli which were later used as
choice stimuli in the prospective decision making task. The PVT was
participants’ first exposure to these category-specific stimuli during
the study.

To ensure that participants paid attention to the presentation of
the stimuli, they performed a one-back cover task. In each trial, a sti-
mulus was presented for 2 s at the center of the screen. This was fol-
lowed by a fixation cross at the center of the screen for an inter-trial
interval sampled from a truncated exponential distribution (min = 2 s,
max = 8 s, mu = 3 s, sampledmean= 3.3 s). If the fixation cross was red,
participants had to judge whether the stimulus in the next trial was the
same as the preceding stimulus before the fixation cross (test trial). If
the fixation cross was white, no judgement was required (regular trial).
In test trials, participants had to indicate their judgement by pressing
one of two buttons on an MRI-compatible button box if the stimulus
was the same as the preceding one and the other button if it was

different. Button contingencies (left vs. right button for which type of
judgement) were counterbalanced and randomized across partici-
pants. Participants were instructed to press the button while the sti-
mulus was presented (hence maximum response time of 2 s). After a
test trial the task proceeded without direct trial-specific feedback.

The task consisted of 65 trials, with 14 regular trials per stimulus
(+1 for one stimulus) and 2 test trials per stimulus. The sequence of
trials was generated pseudorandomly so that every stimulus was pre-
ceded equally often by every other stimulus including self-repetitions
(i.e., serial-order counterbalanced sequence)84. Test trials were dis-
tributed pseudorandomly over the trial sequence so that every bin of 8
trials contained a test trial. Of the 2 test trials per stimulus, one trialwas
realized as a self-repetition trial (same-stimulus-judgement) and one as
a non-self-repetition trial (different-stimulus-judgement).

The task lasted approx. 6min (M=6.18min, SD=0.02min). The
task started with a fixation cross presented at the center of the screen
for 10 s before the first trial. After the last trial, a fixation cross was
presented at the center of the screen for 15 s, followed by a message
informing the experimenter that the task finished and theMRI run could
be stopped. Afterwards, participants received feedback about their task
performance. The feedback stated the number of correctly answered
trials as well as the earnedmonetary bonus. Participants were instructed
that for each correctly answered test trial they would earn a bonus of
0.15 €. Participants could take a short break after the task.

Serial-order counterbalancing of the trial sequence was per-
formed inMatlab using a script byBrooks84. The taskwas programmed
in Python 3.7 using the PsychoPy package83 (version 3.1.5; https://
lindeloev.net/psychopy-course/) in Spyder (https://www.spyder-ide.
org/; version 4.0.0b3) distributed via Anaconda (https://www.
anaconda.com/; version 2019.03).

Two-stage task
Participants performed the two-stage decisionmaking task developed
by Daw et al.16 to study model-based vs. model-free decision making.
The task structure consisted of two decision stages and participants’
goal was to maximize rewards obtained by decisions at the second
stage. Stimuli were character symbols.

In each trial, decisions were made at two stages. At the first stage,
participants had to choose between two stimuli by pressing one of two
buttons on a keyboard. The chosen stimulus moved to the top of the
screen. Below, one of two second-stage states was presented. The
second stage consisted of two other stimuli and participants had to
chooseoneof thembypressing one of twobuttons ona keyboard. The
second-stage decisionwas either rewarded (displayed by a coin) or not
(displayed by a red X), presented on the screen for 1 s. Participants had
a maximum of 3 s to indicate their decision.

Transitions to the two second-stage states depended probabil-
istically on the first-stage decision. One stimulus at the first stage led to
one second-stage state with a higher probability of 70% (common
transition) while it led to the other second-stage state with a lower
probability of 30% (rare transition). This transition pattern was
reversed for the other first-stage stimulus. At the second stage, reward
probabilities were determined by a Gaussian process with a standard
deviation of 0.025 and reflecting boundaries of 0.25 and 0.75.

Participants were instructed that one of the first-stage stimuli
primarily lead to one second-stage state and vice versa and that this
pattern would remain constant across the task. Furthermore, they
were instructed that rewardprobabilities of second-stage stimuli could
change and that collected rewards would be translated into a mone-
tary bonus at the end of the task.

Participants performed a training with 50 trials and a distinct set
of stimuli. The main task comprised 201 trials. At the end of the task,
participants received feedback stating the earned monetary bonus
based on their performance (bonus was calculated as 0.015 € per
obtained reward). The task lasted approx. 30min.
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For this task, a PsychoPy-based Python script from a publicly
available repository (Abraham Nunes, https://abrahamnunes.github.
io/paradigms/) was used. The script was adapted in Python 3.7 using
the PsychoPy package83 (version 3.1.5; https://lindeloev.net/psychopy-
course/) in Spyder (https://www.spyder-ide.org/; version 4.0.0b3)
distributed via Anaconda (https://www.anaconda.com/; version
2019.03).

Santa Barbara Sense of Direction Scale (SBSOD)
Participants filled out the Santa Barbara Sense of Direction Scale
(SBSOD) questionnaire51 on a computer. This questionnaire measures
navigational abilities and preferences and consists of 15 items (self-
referential statements). Items were presented subsequently in the
upper part of the screen, together with a 7-point rating scale under-
neath (1 = strongly agree, 7 = strongly disagree). Participants were
asked to indicate their response by pressing the respective number on
a keyboard and confirming their response with enter (response was
self-paced).

To compute the score of the questionnaire, responses to positive
items were reverse-coded so that a higher overall score reflected
higher navigational abilities and preferences.

The task was programmed in Python 3.7 using the PsychoPy
package83 (version 3.1.5; https://lindeloev.net/psychopy-course/) in
Spyder (https://www.spyder-ide.org/; version 4.0.0b3) distributed via
Anaconda (https://www.anaconda.com/; version 2019.03).

MRI data acquisition
MRI data were recorded using a 3 Tesla Siemens Magnetom Prisma Fit
scanner (Siemens, Erlangen, Germany) with a 32-channel head coil.

After a localizer scan, functional scans (fMRI) for the picture
viewing task and the four runs of the prospective decisionmaking task
were acquired using T2*-weighted whole-brain gradient-echo echo
planar imaging (GE-EPI) with multiband acceleration, sensitive to
blood-oxygen-level-dependent (BOLD) contrast85,86. Settings of the
fMRI sequence were as follows: TR = 1500ms; TE = 22ms; voxel size =
2.5mm isotropic; field of view = 204mm; flip angle = 70°; partial
fourier = 0.75; bandwidth = 1794 Hz/Px; multi-band acceleration fac-
tor = 3; 69 slices interleaved; distance factor = 0%; phase encoding
direction = A-P. On average, 253 volumes were recorded for the PVT
(M = 252.76 volumes, SD = 5.45 volumes) and 514 volumes per run of
the prospective decision making task (M = 513.70 volumes, SD = 7.57
volumes).

After the second run of the prospective decision making task,
field maps were acquired to measure and later correct for mag-
netic field inhomogeneities. Field maps were acquired using both
opposite phase-encoded EPIs and a double echo sequence. Set-
tings of the opposite phase-encoded EPIs were as follows: TR =
8000ms; TE = 50ms; voxel size = 2.5 mm isotropic; field of
view = 204mm; flip angle = 90°; partial fourier = 0.75; band-
width = 1794 Hz/Px; multi-band acceleration factor = 1; 69 slices
interleaved; distance factor = 0%. Settings of the double echo
sequence were as follows: TR = 620ms; TE1 = 4.00ms; TE2 = 6.46
ms; voxel size = 2.5 mm isotropic; field of view = 204mm; flip
angle = 60°; bandwidth = 412 Hz/Px; 69 slices interleaved; distance
factor = 0%.

At the end of the scanning session, a T1-weighted MPRAGE ana-
tomical scan was acquired (TR = 2300ms; TE = 2.98ms; voxel size = 1
mm isotropic; field of view = 256mm; flip angle = 9°; bandwidth =
240Hz/Px; distance factor = 50%).

To measure physiological noise signals during the fMRI runs, pulse
oximeter data were recorded on participants’ hands using a Siemens
pulse sensor and the PhysioLog function of the multiband sequence.

Task stimuli were projected on a screen via a mirror attached to
the head coil and behavioral responses were collected with an MRI-
compatible button box.

Behavioral data analysis software
We performed all behavioral analyses in Python 3.8 using Spyder
(https://www.spyder-ide.org/; version 5.1.5) distributed via Anaconda
(https://www.anaconda.com/; version 2020.11). Statistical analyses
were based on the packages scipy (version 1.10.0) and statsmodels
(version 0.13.2). T-tests and correlations tests were based on non-
parametric permutation-based approaches to assess significance
(10000 permutations). If not stated otherwise, we used an alpha level
of .05 and two-sided tests.

Performance and reaction time analysis of the prospective
decision making task
We calculated performance in the prospective decisionmaking task as
the proportion of trials with a correct choice, defined as choice of the
objectively more valuable option at the choice time point. We first
assessed whether participants met our performance criterion of at
least 70% (based on previous piloting, see Participants) to be included
in the final analysis sample. For this purpose, we left trials withmissing
responses labeled as incorrect (total of 50 trialswithmissing responses
across participants). For further analyses, we labeled trialswithmissing
responses as NaNs so that they were not considered in the analyses.
Furthermore, we labeled trial scores as NaNs if both options had the
same objective value at the choice time point (same value could hap-
pendue to constraints by thedirection (angle) of the trajectory;M = 2.2
trials, SD= 1.19 trials across participants). We log-transformed
reaction times.

In switch trajectories, we tested whether performance at the
switch time point was better than expected by chance using a one-
sample t-test against 50% (and as controls also for the pre and post
time point). Furthermore, we tested whether the time point in switch
trajectories (pre, switch, post) influenced performance and reaction
times using repeated measures ANOVAs and post-hoc pairwise tests
(related-samples t-tests, withα = 0.016, Bonferroni-corrected for three
comparisons).

To estimate the effect of the distance between the choice location
and the 45°-diagonal of the value space on performance, we imple-
mented a logistic regression for eachparticipant predicting trial scores
based on the distance. We then tested participant-specific effect sizes
against 0 using a one-sample t-test on the group level. As a control, we
repeated this analysis using only choices in switch trajectories where
locations lay inherently closer to the diagonal. In both all and switch-
trajectories-only analyses, one extreme outlier data point was exclu-
ded from the group level test (data point was 301.08 SD and 128.28 SD
away from sample mean without that data point). We visualized the
effect by showing correct and incorrect choice locations in the value
space. For reaction times, we tested the effect of the distance from the
diagonal using participant-specific linear regressions.

To test whether performance was influenced by short- vs. long-
distance trajectories, we implemented a repeated measures ANOVA
with the factors distance type and time point (pre, switch, post).

We also analyzed performance for different directions of trajec-
tories. We binned directions according to quadrants, reflecting whe-
ther values increased or decreased for both options or in opposite
directions (Q1: 10–80°, Q2: 100–170°, Q3: 190–260°, Q4: 280–350° and
cardinal directions of 0°,90°,180° and 270° as a separate bin). We
tested whether the quadrant influenced performance using a repeated
measures ANOVA. Furthermore, we compared performance for
directions approximately parallel to the 45°-diagonal (sampled direc-
tions: 40°, 50°, 220°, 230°), directions approximately perpendicular to
the 45°-diagonal (sampled directions: 130°, 140°, 310°, 320°) and all
other directions, by taking into account possible differences due to the
differences in switches, using a repeated measures ANOVA with the
within-subject factors direction and switch vs. non-switch trajectory
(two participants excluded due to missing data for some conditions).
We further investigated the interaction effect using post-hoc pairwise
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related-samples t-tests with Bonferroni correction (α =0.008,
Bonferroni-corrected for 6 pairwise tests).

Reinforcement learning model for the prospective decision
making task
We investigated whether a reinforcement learning model which cap-
tured the prospective nature of the task, i.e., the value changes over
time, fitted participants’ choice behavior better than a model that did
not. To this end, we modified a Rescorla-Wagner model12. The
Rescorla-Wagner model updates value estimates of choice options
according to a prediction error, defined as the difference between the
expected value and the received outcome. We modified the original
Rescorla–Wagner model so that it updated value estimates within a
trial based on prediction errors and additionally value changes over
time points. We refer to this modified version as the prospective
Rescorla-Wagnermodel.More specifically, each option’s valuewithin a
trial was updated according to:

VTP + 1 =VTP +α
* OTP +CTP � VTP

� �
withCTP =OTP �OTP�1, ð3Þ

whereby VTP and VTP+1 are values at the current and next time points,
respectively, OTP is the outcome at the current time point, CTP reflects
how the value has changed from the previous to the current time point
and α is the learning rate (free parameter of the model). Value esti-
mates of both options were translated into choices by computing the
probability of each option’s choice using a softmax function:

PA =
eβ *VA

eβ *VA + eβ *VB
, ð4Þ

with PA as the probability of choosing optionA, e as the exponential,VA

and VB as the values of options A and B (values divided by 100) and β as
inverse temperature indicating the determinacy of choices (free
parameter of the model). In each trial, values were initialized with the
objective values of the first time point, outcomes of the second time
point were received and value predictionsweremade for the following
time points.

We fitted this prospective Rescorla–Wagner model to each par-
ticipant’s choice data and searched for the best-fitting estimates of the
free parameters α and β by minimizing the negative log-likelihood of
themodel. Parameter estimates were initially bound to ranges [0,1] for
α and [0,100] for β. As we observed a ceiling effect for α, we removed
its upper bound to allow estimates greater than 1.

We compared the fit of this prospective Rescorla–Wagner model
to the fit of the original Rescorla–Wagner model. The original
Rescorla–Wagner model does not consider value changes over time
points (no prospective component):

VTP + 1 =VTP +α*ðOTP � VTPÞ: ð5Þ

Notations, translation of value estimates into choice probabilities
using a softmax function andmodel fitting were the same as described
above. Parameter estimates of the original Rescorla-Wagner model
were bound to ranges [0,1] for α and [0,100] for β. We compared the
fits of the prospective and the original Rescorla–Wagner model by
testing for a difference in the Akaike Information Criterion (AIC) using
a related-samples t-test (with α =0.01, Bonferroni-corrected for five
tests including alternativemodels, see below).Weextractedparameter
estimates of thewinningmodel (prospective Rescorla-Wagnermodel).
As a control, we correlated the learning rate αwith performance at the
switch and the pre time point using Pearson correlations.

In addition to the prospective Rescorla–Wagner model described
above, we implemented four alternative control models which simi-
larly aimed to capture the prospective nature of the task:

• Prospective control model 1: Similar to prospective Rescorla-
Wagner model described above, but CTP as the option’s value
change is updated itself across time points with its own learning
rate:

VTP + 1 =VTP +α*ðOTP +CTP exp � VTP Þ ð6Þ

with CTP_exp =CTP and CTP =OTP -OTP-1 for the first update within a
trial, and CTP_exp =CTP_exp + αC*CTP afterwards.

• Prospective control model 2: Value update with standard pre-
diction error and an additional parameter for the value change:

VTP + 1 =VTP +α*ðOTP � VTPÞ+ δ*ðOTP � OTP�1Þ ð7Þ

• Prospective control model 3: Value update with standard pre-
diction error and expected prediction error, similar to expected
prediction error models in Wittmann et al.14:

VTP + 1 =VTP +α*PE +PEexp ð8Þ

with PE =OTP -VTP and PEexp = PE for the first updatewithin a trial,
and PEexp = PEexp+ α*(PE - PEexp) afterwards

• Prospective control model 4: Similar to prospective control
model 3, but the expected prediction error is updated with its
own learning rate:

VTP + 1 =VTP +α*PE +PEexp ð9Þ

with PE =OTP - VTP and PEexp = PE for the first update within a trial, and
PEexp = PEexp+ αPEE*(PE - PEexp) afterwards.

To allow similar parameter fits as for the prospective Rescorla-
Wagner model described above, we removed the upper bound of 1 for
learning rates of these control models. The prospective
Rescorla–Wagner model described above fitted the data better than
any of the control models (test for difference in AIC using related-
samples t-tests; PC1: t(45) = −3.58, p <0.001; PC2: t(45) = −4.30,
p <0.001; PC3: t(45) = −6.93, p < 0.001; PC4: t(45) = −5.92, p <0.001,
with α =0.0125, Bonferroni-corrected for four comparisons).

Performance analysis of picture viewing task
We calculated performance in the one-back cover task of the picture
viewing task as the proportion of correctly answered test trials. For this
purpose, we labeled trials withmissing responses as incorrect. For two
participants at the beginning of the study, button presses were not
registered due to a technical mistake (except for the first test trial).
Therefore, we could not assess performance for these participants.
However, we still used their fMRI data of the picture viewing task for
the fMRI analysis as the purpose of the one-back cover task was only to
ensure participants’ attention to the stimuli. In addition, two partici-
pants reported that they confused the buttons for the two response
types (button contingencies: left or right button for same or different
stimulus judgement). Indeed, their responses matched exactly the
opposite pattern of all correct trial-wise responses. For this reason, we
reverse-coded their responses to calculate their performance.

Analysis of model-based decision making in the two-stage task
Analogously to Daw et al.16, we tested whether the probability of
repeating a first-stage choice depended on the reward and the transi-
tion type in the preceding trial. For this purpose, we labeled each trial
as 1 if participants chose the same first-stage stimulus as in the pre-
ceding trial and as 0 if not. We calculated stay percentages for the
factors reward (received or not) and transition type (common or rare).
Across participants, we tested whether stay percentages were
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influenced by reward, transition type and their interaction using a
repeated measures ANOVA.

In addition, we fitted each participant’s choice data using the
hybrid reinforcement learning model as described in Daw et al.16. This
model learns values by both model-based and model-free decision
algorithms. Both values are weighted by a free parameter indicating
the influence of model-based values on choices (ranging from 0 for
model-free to 1 for model-based). In addition, the model contains
separate learning rates and inverse temperatures for the two stages as
well as a perseverance parameter and an eligibility trace. We fitted this
model using its implementation in the hBayesDM package87 (version
1.1.1; model: ts_par7).

We correlated estimates of the model-based parameter of the
two-stage task with the learning rate and overall performance of the
prospective decision making task using Pearson correlations (with
α =0.025, Bonferroni-corrected for two tests).

Santa Barbara Sense of Direction Scale (SBSOD) correlations
We correlated scores of the SBSOD with the learning rate and overall
performance of the prospective decision making task using Pearson
correlations (with α = 0.025, Bonferroni-corrected for two tests).

MRI analysis software
We performed all MRI analyses (preprocessing and main analyses) in
Python 3.8 using Spyder (https://www.spyder-ide.org/; version 5.1.5)
distributed via Anaconda (https://www.anaconda.com/; version
2020.11). MRI analyses were mainly based on the packages nilearn
(version 0.9.0), nibabel (version 3.2.1), scikit-learn (version 1.0.1) as
well as FSL (version 6.0.3), ANTS (version 2.3.5) and tools stated below.
Statistical analyses were based on the package scipy (version 1.10.0)
and statsmodels (version 0.13.2). T-tests and correlations tests were
based on non-parametric permutation-based approaches to assess
significance (10000 permutations). If not stated otherwise, we used an
alpha level of 0.05 and two-sided tests.

Conversion of MRI data to the Brain Imaging Data Structure
(BIDS) standard
We converted DICOM files of the MRI scanner to NIfTI files and reor-
ganized them according to the BIDS standard88 using the tool
dcm2bids (version 2.1.6, https://unfmontreal.github.io/Dcm2Bids/).
Furthermore, we removed facial structure in the anatomical scan using
the tool pydeface (version 2.0.0, https://github.com/poldracklab/
pydeface) to further anonymize the data.

Preprocessing by fMRIPrep
Results included in this manuscript come from preprocessing per-
formed using fMRIPrep 20.2.689,90 (RRID:SCR_016216), which is based
on Nipype 1.7.091,92 (RRID:SCR_002502).

Anatomical data preprocessing
A total of 1 T1-weighted (T1w) images were foundwithin the input BIDS
dataset. The T1-weighted (T1w) image was corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection93, distributed with ANTs
2.3.394 (RRID:SCR_004757), and used as T1w-reference throughout the
workflow. The T1w-reference was then skull-stripped with a Nipype
implementation of the antsBrainExtraction.sh workflow (from ANTs),
using OASIS30ANTs as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using fast (FSL 5.0.9,
RRID:SCR_00282395). Brain surfaces were reconstructed using recon-
all (FreeSurfer 6.0.1, RRID:SCR_00184796), and the brain mask esti-
mated previously was refinedwith a customvariationof themethod to
reconcile ANTs-derived and FreeSurfer-derived segmentations of the
cortical gray-matter of Mindboggle (RRID:SCR_00243897). Volume-
based spatial normalization to two standard spaces

(MNI152NLin2009cAsym,MNI152NLin6Asym) was performed through
nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-
extracted versions of both T1w reference and the T1w template. The
following templates were selected for spatial normalization: ICBM 152
Nonlinear Asymmetrical template version 2009c98 [RRID:SCR_008796;
TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-
linear 6th Generation Asymmetric Average Brain Stereotaxic Registra-
tion Model99 [RRID:SCR_002823; TemplateFlow ID:
MNI152NLin6Asym],

Functional data preprocessing
For each of the 5 BOLD runs found per subject (across all tasks and
sessions), the following preprocessing was performed. First, a refer-
ence volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. A B0-nonuniformity map (or field-
map) was estimated based on two (ormore) echo-planar imaging (EPI)
references with opposing phase-encoding directions, with 3dQwarp100

(AFNI 20160207). Based on the estimated susceptibility distortion, a
corrected EPI (echo-planar imaging) reference was calculated for a
more accurate co-registration with the anatomical reference. The
BOLD reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-based
registration101. Co-registration was configured with six degrees of
freedom.Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and trans-
lation parameters) are estimated before any spatiotemporal filtering
using mcflirt (FSL 5.0.9102). BOLD runs were slice-time corrected to
0.708 s (0.5 of slice acquisition range 0–1.42 s) using 3dTshift from
AFNI 20160207 (ref. 100, RRID:SCR_005927). The BOLD time-series
were resampled onto the following surfaces (FreeSurfer reconstruc-
tion nomenclature): fsnative, fsaverage. The BOLD time-series
(including slice-timing correction when applied) were resampled
onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions.
These resampled BOLD time-series will be referred to as preprocessed
BOLD in original space, or just preprocessed BOLD. The BOLD time-
series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space. First, a reference volume
and its skull-stripped version were generated using a custom metho-
dology of fMRIPrep. Automatic removal of motion artifacts using
independent component analysis (ICA-AROMA103) was performed on
the preprocessed BOLD on MNI space time-series after removal of non-
steady state volumes and spatial smoothingwith an isotropic, Gaussian
kernel of 6mm FWHM (full-width half-maximum). Corresponding
“non-aggresively” denoised runs were produced after such smoothing.
Additionally, the “aggressive” noise-regressors were collected and
placed in the corresponding confounds file. Several confounding time-
series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FDwas
computed using two formulations following Power (absolute sum of
relative motions104, and Jenkinson (relative root mean square dis-
placement between affines102). FD and DVARS are calculated for each
functional run, both using their implementations in Nipype (following
the definitions by ref. 104). The three global signals are extracted
within the CSF, theWM, and the whole-brainmasks. Additionally, a set
of physiological regressors were extracted to allow for component-
based noise correction (CompCor105). Principal components are esti-
mated after high-pass filtering the preprocessed BOLD time-series
(using a discrete cosine filter with 128 s cut-off) for the two CompCor
variants: temporal (tCompCor) and anatomical (aCompCor). tComp-
Cor components are then calculated from the top 2% variable voxels
within the brain mask. For aCompCor, three probabilistic masks (CSF,
WM and combined CSF +WM) are generated in anatomical space. The
implementation differs from that of Behzadi et al.105 in that instead of
eroding the masks by 2 pixels on BOLD space, the aCompCor masks
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are subtracted a mask of pixels that likely contain a volume fraction of
GM. This mask is obtained by dilating a GM mask extracted from the
FreeSurfer’s aseg segmentation, and it ensures components are not
extracted from voxels containing a minimal fraction of GM. Finally,
these masks are resampled into BOLD space and binarized by thresh-
olding at 0.99 (as in the original implementation). Components are
also calculated separately within the WM and CSF masks. For each
CompCor decomposition, the k components with the largest singular
values are retained, such that the retained components’ time series are
sufficient to explain 50 percent of variance across the nuisance mask
(CSF, WM, combined, or temporal). The remaining components are
dropped from consideration. The head-motion estimates calculated in
the correction step were also placed within the corresponding con-
founds file. The confound time series derived from head motion esti-
mates andglobal signalswere expandedwith the inclusion of temporal
derivatives and quadratic terms for each106. Frames that exceeded a
threshold of 0.5mm FD or 1.5 standardized DVARS were annotated as
motion outliers. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations (i.e.,
head-motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and output spaces).
Gridded (volumetric) resamplings were performed using antsApply-
Transforms (ANTs), configuredwith Lanczos interpolation tominimize
the smoothing effects of other kernels107. Non-gridded (surface)
resamplings were performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (ref. 108,
RRID:SCR_001362), mostly within the functional processing workflow.
For more details of the pipeline, see the section corresponding to
workflows in fMRIPrep’s documentation (https://fmriprep.org/en/
latest/workflows.html).

MRI data quality checks
We assessed fMRI data quality based onmeasures of headmotion as a
potential source for noise and artifacts. We investigated framewise
displacement for each run and participant andmarked each volume as
an outlier if it exceeded a threshold of 0.5mm (criterion used by
fMRIPrep). On average, motion was relatively low (mean framewise
displacement across participants: M =0.15mm, SD =0.04mm,
range =0.07–0.25mm; mean percentage of outlier volumes:
M =0.91%, SD = 1.34%, range = 0–6.09%; all participants below our cri-
terion of max. 10% outlier volumes for inclusion in the main data
analyses). To control for headmotion, we includedmotion parameters
as confounds in first-level GLMs (see below).

Additionally, we assessed MRI data quality using the tool MRIQC
(version 0.16.1) which calculates a set of image qualitymetrics for both
functional and anatomical image data.

Region of interest (ROI) definition
For our hypothesis of a grid-like representation in the entorhinal cor-
tex, we used participant-specific bilateral entorhinal cortex masks
created by FreeSurfer segmentations of the participants’ anatomical
images during preprocessing with fMRIPrep (FreeSurfer labels 1006 &
2006, M = 269 voxels, SD = 42 voxels). For small volume correction
within the entorhinal cortex on the group level, we combined both
participant-specific anatomy and MNI standard atlas labeling. For this
purpose, we first transformed the participant-specific masks to MNI
standard space and created the union of all masks across participants.
We then intersected this union mask with the entorhinal cortex mask
of the Juelich Histological Atlas provided by FSL and thresholded at
50% probability. Finally, we intersected this mask with the whole-brain
group mask comprising only voxels shared across participants
(resulting mask used for small volume correction: 411 voxels; Supple-
mentary Fig. 4a). To further explore vmPFC representations, we
defined two ROIs as spheres with a 7mm radius (1) around the peak
voxel of our value difference analysis in vmPFC (MNI peak voxel

coordinates: 3,42,−8; 89 voxels) and (2) around the peak voxel of the
hexadirectional effect reported by Constantinescu et al.39 in vmPFC
(MNI peak voxel coordinates: 16,54,−2; 95 voxels).

For our choice decoding hypothesis, we leveraged neural
responses to category-specific stimuli (faces, tools, scenes, body parts)
in category-selective regions of the occipital-temporal cortex. We
created participant-specific occipital-temporal ROI masks as follows.
First, we thresholded occipital and temporal lobe probability masks of
theMNI Structural Atlas provided by FSL (version 6.0.3) at a threshold
of 25% and created their union. We then transformed this MNI-based
mask to each participants’ native space using ANTS (version 2.3.5) and
resampled it to the resolution of the functional data based on trans-
formation files created during preprocessing with fMRIPrep. We
intersected these with participant-specific gray matter masks. For this
purpose, we thresholded gray matter probability masks created by
fMRIPrep’s segmentation of the anatomical image at a threshold of
50% and resampled them to the functional resolution. In the decoding
analysis, we used these participant-specific gray matter occipital-
temporal masks for additional feature selection based on univariate
stimulus-category effects in the PVT training data (see below). Thefinal
masks used for choice decoding comprised 2235 voxels on average
(SD = 173 voxels; Supplementary Fig. 8a).

General set-up of first level general linear models (GLMs)
For our fMRI data analyses, we used both univariate and multivariate
approaches. For both approaches, we modeled the fMRI data using
event-related GLMs. In the following, we briefly describe commonal-
ities of GLMs across analyses.

We implemented run-wise first level GLMs using the First-
LevelModel class of thenilearnpackage.GLMswere computedwithin a
brain mask (either in participants’ native space or in MNI standard
space, stated for each analysis below). To create a commonbrainmask
for all runs, we resampled the anatomical brain mask in native or MNI
space created during preprocessingwith fMRIPrep to the resolution of
the functional data. Task-related regressors in the GLMs were con-
volved with the Glover haemodynamic response function (HRF).
Temporal autocorrelation in the fMRI data was accounted for using an
autoregressive AR(1) model. For univariate analyses, the data were
spatially smoothed with a 6mm full-width at half maximum Gaussian
filter (FWHM). For the multivariate choice decoding analysis, no
smoothing was applied to preserve differences between voxels.

All GLMs included the following regressors for task-related events
of no interest: two regressors for left and right button presses with a
stick duration as well as a regressor modeling the end-of-block notifi-
cation screen at the end of a run. To control for noise signals in the
fMRI data, the GLMs included 37 confound regressors estimated dur-
ing preprocessing with fMRIPrep. Following the denoising strategy
proposed by Satterthwaite et al.106, these confounds included 24
motion parameters (6 basic translation / rotation parameters, 6 tem-
poral derivatives of these and 12 quadratic terms of the basic para-
meters and their derivatives) as well as 12 global signal parameters (3
basic average CSF, WM and global signal parameters, 3 temporal
derivatives of these and 6 quadratic terms of the basic parameters and
their derivatives). Additionally, the confounds included framewise
displacement as a summary metric of frame-to-frame head motion.
Furthermore, the GLMs included discrete cosine-basis regressors
estimated by fMRIPrep to account for temporal low-frequency signal
drifts.

Analysis of hexadirectional signals (grid-like representation)
To investigate whether the entorhinal cortex encodes the abstract
value space using a grid-like representation, we implemented the
hexadirectional analysis approach by Doeller et al.52. Grid cells in the
entorhinal cortex are characterized by their regular hexagonal firing
pattern which translates to hexadirectional activity modulations
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during navigation in fMRI, with higher activity for navigation in
directions aligned with the putative grid orientation (phase of the
hexadirectional signal) than for trajectories misaligned with the puta-
tive grid orientation. The analysis consists of two steps: In thefirst step,
the grid orientation is estimated and in the second step the prediction
of hexadirectional modulation according to the grid orientation is
tested using independent data. Here, we tested for such a hexadirec-
tionalmodulation as a functionof trajectories throughour value space.
We implemented a cross-validation procedure, estimating the putative
entorhinal grid orientation using three of four task runs and testing for
a hexadirectional modulation aligned to the orientation in the left-out
test run52,53.

We implemented this cross-validation procedure on fMRI data in
participants’ native space to enable estimations of grid orientations in
participant-specific entorhinal cortex ROIs.

In the estimation set (three of four runs, GLM1), the GLM for each
run included amain effect regressormodeling trajectories including all
time points and a main effect regressor modeling feedback periods.
The regressors were modeled with the actual onset and durations of
the events during the task. The trajectory regressor was accompanied
by two parametrically modulated regressors. These modulations
reflected the sine and cosine of the direction (angle) θ of the trajectory
with 60° (6-fold) periodicity (sin(6*θt) and cos(6*θt)). Values for both
regressors were demeaned. Effect sizes of the regressors were aver-
aged across runs of the estimation set (fixed effects). We then used the
effect sizes of the sine ðβsinÞ and cosine ðβcosÞ regressors to estimate the
grid orientation in 60°-space (range [0,60°]) in each voxel of the
entorhinal cortex as follows:

Θ =
arctan βsin

βcos

� �

6

Subsequently, we calculated the mean orientation across voxels
of the entorhinal cortex with a weighting of the voxels by their

amplitude of the hexadirectional modulation (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2
sin +β

2
cos

q
)109. For this

purpose, we first transformed voxel orientations back to 360°-space to
allow for calculations of trigonometric functions (multiplication by 6).
We then transformed these orientations and the amplitudes from
polar to cartesian coordinates and took the mean separately for both
dimensions. Afterwards, we transformed the mean back to polar
coordinates and subsequently transformed themean orientation back
to 60°-space.

In the independent test set (left-out run, GLM2), theGLM included
a main effect regressor modeling trajectories including all time points
and amain effect regressormodeling feedbackperiods.The regressors
weremodeledwith the actual onset and durations of the events during
the task. The trajectory regressorwas accompaniedby aparametrically
modulated regressor reflecting a six-fold (hexadirectional) sinusoidal
modulation based on the estimated mean entorhinal grid orientation
(cos(6*(θt - Θ))). Values for the regressor were demeaned. Effect sizes
of the parametric cosine regressor were averaged across the four
cross-validation folds (fixed effects) to obtain an overall effect size.

For group level statistics, we first transformed effect size images
of the parametric cosine regressor to MNI standard space. We then
performed an analysis with small volume correction based on our a
priori ROI of the entorhinal cortex (see ROI definition). Additionally,
we performed a whole-brain analysis based on a whole-brain group
mask comprising only voxels shared across participants. We tested
significance across participants using non-parametric permutation
testing implemented in FSL Randomize with 10000 permutations. We
used one-sided tests as the predicted direction of the hexadirectional
effect is inherently positive (higher activity for navigation in directions
aligned vs. misaligned with the grid orientation). We used threshold-
free cluster enhancement and corrected formultiple comparisonswith

family-wise error rate (pFWE <0.05) within the small volume correction
mask and whole-brain. For exploration of whole-brain effects at an
uncorrected threshold of p <0.001, we extracted cluster information
using nilearn and respective brain region labels of the Harvard-Oxford
Cortical Structural Atlas, Harvard-Oxford Subcortical Structural Atlas
and Juelich Histological Atlas using FSL atlasquery.

To visualize the hexadirectional effect in the significant entorhinal
cluster, we implemented an additional GLM for the test set (left-out
run, GLM2) by binning trajectories based ondirections. To this end, we
sorted trajectories into bins of 30° based on the mean entorhinal grid
orientation (+/− 15° of the grid orientation and multiples of 60°). This
resulted in 12 trajectory bin regressors, 6 reflecting trajectories aligned
and 6 misaligned with the grid orientation. In this GLM, we therefore
modeled trajectories using the 12 bin regressors and a main effect
regressor for all trajectories capturing the mean. Effect size images
were averaged across the four cross-validation folds (fixed effects) and
transformed toMNI standard space.We extracted themean effect size
of each trajectory bin in the significant cluster.

In control analyses, we investigated the relationship of the hex-
adirectional effect with the spatial and temporal stability of voxel-wise
grid orientations in the significant entorhinal cluster. Spatial stability
refers to similarity of orientations across voxels within the significant
cluster. To investigate spatial stability, we first transformed effect size
images of the sine ðβsinÞ and cosine ðβcosÞ regressors of the estimation
GLM (GLM1) based on all runs (to increase power) to MNI standard
space. We then estimated voxel orientations as described above. For
each participant, we tested deviation from a uniform distribution of
voxel orientations in the significant cluster using a Rayleigh test for
non-uniformity of circular data (implemented in the package pycirc-
stat, version 0.0.2, https://github.com/circstat/pycircstat). Across
participants, we calculated a Pearson correlation between the Rayleigh
z-statistic and the hexadirectional effect. To control for similarity of
voxels introduced by smoothing, we additionally investigated spatial
stability using unsmoothed data. Temporal stability refers to similarity
of orientations within a voxel across time. To investigate temporal
stability, we followed the logic of the cross-validation procedure
described above and additionally estimated orientations in the left-out
test run. For each voxel and for each cross-validation fold, we calcu-
lated the orientation difference between the estimation and the test
set. Subsequently, we averaged orientation differences across folds
and classified voxels as stable if their mean orientation difference was
within 15°. Across participants, we tested whether the percentage of
stable voxels was different from 50% using a one-sample t-test. Fur-
thermore, we calculated a Pearson correlation between the percentage
of stable voxels and the hexadirectional effect.

In addition to the small volume correction analysis, we conducted
a complementary ROI analysis based on participants’ individual
entorhinal Freesurfer masks. In this ROI analysis, we also investigated
the specificity of a hexadirectional (6-fold) modulation of activity in
linewith grid cellfiring byperforming control analyses for a four-, five-,
seven- and eight-fold modulation (same cross-validation procedure as
described above). On the group level, we tested whether effect sizes
were different from 0 using one-sample t-tests (with α =0.01,
Bonferroni-corrected for five tests).

We assessed the relationship between the hexadirectional effect
in the significant entorhinal cluster and overall task performance using
a Pearson correlation.

Lastly, we performed exploratory analyses to investigate the
relationship between the entorhinal grid system and the underlying
value space. First, we investigated clustering of orientations in the
significant entorhinal cluster. To this end, we estimated each partici-
pant’s mean orientation in the significant cluster as described above
(based on all runs to increase power). We tested whether orientations
across participants cluster around 45° using a V-Test (implemented in
the package astropy110, version 5.0). Secondly, we tested whether the
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magnitude of the hexadirectional modulation differed between high-
and low-value-areasof the value space. For thispurpose,weperformed
amedian split of trajectories according to theirmeanvalue. Thismeant
contrasting trajectories in the lower left triangle of the space (low-
value-area) with trajectories in the upper right triangle of the space
(high-value-area). We note that this median split led to a substantial
reduction of available trajectories per value condition and an unba-
lanced sampling of directions between the conditions, rendering this
analysis less robust. To examine sampling of directions, we counted
the frequency of directions per condition per participant and tested
for differences using a repeated measures ANOVA across participants
with the factors direction and value condition. We repeated the cross-
validated hexadirectional analysis described above, with two changes:
First, we based this analysis on the significant entorhinal cluster, both
for the estimation of the grid orientation (GLM1) and for testing the
hexadirectional effect on the group level (ROI analysis). Note that this
analysis is still unbiased as we were interested in the difference of the
hexadirectional effect between value conditions. Secondly, the GLMs
for the estimation and test set estimated effects separately for the
value conditions.More specifically, the estimation set (GLM1) included
separate main effect and sine- and cosine-parametrically modulated
regressors for each value condition and the grid orientation was esti-
mated separately for each value condition. Analogously, the inde-
pendent test set (left-out run,GLM2) included separatemain effect and
cosine-parametrically modulated regressors for each value condition.
We averaged effect sizes across voxels of the ROI (significant cluster of
the overall hexadirectional effect). Across participants, we tested for a
difference between value conditions using a related-samples t-test as
well as for individual effects using one-sample t-tests (one-sided).

To further explore vmPFC representations,we repeated the cross-
validated hexadirectional analysis while estimating the putative grid
orientation in vmPFC (two vmPFC ROIs, see Region of interest (ROI)
definition, analysis directly inMNI space). For each ROI, we then tested
whether effect sizes were different from 0 using one-sample t-tests.

Value difference analysis
To investigate whether fMRI activity is modulated by the value dif-
ference between options during choices, we implemented a GLMwith
three main effect regressors: one regressor modeled the observation
phase (initial time points) of the trajectories, one regressor modeled
choice time points and one regressor modeled feedback periods. The
regressors were modeled with the actual onset and durations of the
events during the task. The choice time point regressor was accom-
panied by two parametrically modulated regressors. These modula-
tions reflected the value of the chosen option and the value of the
unchosen option, as estimated by the prospective Rescorla-Wagner
model. Values for both regressors were demeaned so that they were
orthogonal to the main effect regressor. We then contrasted the esti-
mated effect sizes of the chosen value vs. the unchosen value regressor
[1, −1] to test for a modulation of activity by the value difference.
Contrasts were averaged across runs (fixed effects).

To investigate whether fMRI activity is modulated specifically
by the prospective component of the value difference, we chan-
ged the two parametrically modulated regressors for the choice
time points as follows: One regressor reflected the difference in
the value estimate of the chosen option between the prospective
Rescorla-Wagner model and the original Rescorla-Wagner model
(non-prospective). Analogously, the other regressor reflected the
difference in the value estimate of the unchosen option between
the prospective Rescorla-Wagner model and the original
Rescorla–Wagner model (non-prospective). We excluded one
participant from this analysis because the value estimates of the
two models were very similar (mean difference = 0.16, participant
with lowest learning rate in the prospective
Rescorla–Wagner model).

In three control analyses, (1) we added an additional para-
metrically modulated regressor for choice time points reflecting
reaction time, (2) we restricted the parametrically modulated value
regressors to correct trials only and (3) we added an additional para-
metrically modulated regressor for choice time points reflecting the
distance between the choice location and the 45°-diagonal. Reaction
times were log-transformed and demeaned, the distance between the
choice location and the diagonal was demeaned.

We computed these GLMs on fMRI data in MNI standard space.
For group level statistics, we performedwhole-brain analyses based on
a whole-brain group mask comprising only voxels shared across par-
ticipants. We tested the significance of contrasts across participants
using non-parametric permutation testing implemented in FSL Ran-
domize with 10000 permutations. We used threshold-free cluster
enhancement and corrected formultiple comparisonswith family-wise
error rate (pFWE < 0.05).We extracted cluster information using nilearn
and respective brain region labels of the Harvard–Oxford Cortical
Structural Atlas, Harvard–Oxford Subcortical Structural Atlas and
Juelich Histological Atlas using FSL atlasquery.

Furthermore, we visualized the value difference effect in the sig-
nificant vmPFC cluster by showing time courses of the effects of the
chosen andunchosen value time-locked to theonset of the choice time
points. For this purpose, we extracted the preprocessed fMRI time
series of voxels in the vmPFC cluster. Analogously to general first-level
modeling, we spatially smoothed (6mm FWHM) and cleaned the data
by regressing out confounds and temporal low-frequency signal drifts.
We z-scored each voxel’s time series, averaged them across voxels of
the cluster and interpolated the signal (cubic spline interpolation). For
each choice time point, we extracted the cluster signal in a time win-
dow of 16 s, time-locked to 1 s before onset of the choice time point in
steps of 0.1 s until 15 s after onset. Subsequently, we ran a linear
regression across choice time points of a run for each time step (in
steps of 0.1 s), with the regressors chosen value, unchosen value, trial
number and an intercept. Value and trial regressors were demeaned
beforehand. We extracted effect sizes of the chosen and unchosen
value regressor for all time steps and averaged them across runs for a
given participant. Lastly, we averaged these time courses across par-
ticipants for visualization.

We tested for a relationship between the value difference effect in
the vmPFC cluster and task performance using a Pearson correlation.

Choice decoding analysis (Supplementary Figs. 8–10)
To investigate whether the occipital-temporal cortex represents the
high-value option more strongly than the low-value option during
choices, we implemented the following decoding analysis. Using
independent data from the picture viewing task (PVT) which took
place before the prospective decision making task, we trained a
decoder (support vector classifier) on occipital-temporal cortex voxels
to distinguish neural activation patterns of the four category-specific
stimuli (faces, tools, scenes, body parts).We then applied this decoder
to neural activation patterns of choice time points in the prospective
decision making task. We performed this analysis in participants’
native space.

To estimate neural activation patterns of stimuli in the PVT
training data, we implemented a Least-Squares Separate GLM
approach. More specifically, we ran 57 single-trial-GLMs, one for each
regular trial of the task. EachGLM includedone regressormodeling the
trial of interest and one regressormodeling all other regular trials. Test
trials were modeled in a separate regressor. The regressors were
modeled with the actual onset and durations of the events during the
task. We used z-scores of the trial regressors for the next steps (56 z-
scores, the first trial was discarded to allow for balanced sampling of
stimulus categories: 14 trials per category).

Based on the PVT training data, we created the final participant-
specific ROI masks used for the decoding analysis. We combined the
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predefined anatomical gray matter occipital-temporal masks with the
functional PVT data to select category-stimuli-responsive voxels (fea-
tures). To this end, we extracted trial-wise z-scores for each voxel
within the predefined anatomical mask. We z-standardized them
across trials and performed univariate feature selection by computing
ANOVA F-values between each feature and the trial labels. We selected
those 20% of the voxels with the highest F-values. The resulting masks
were used for the decoding analysis in the next steps.

As a control, wefirst examinedhowwellwe coulddecode stimulus
category within the PVT, before applying the decoder to the decision
making task. For this purpose, we extracted trial-wise z-scores for each
voxel within the decoding ROI mask. We implemented a 7-fold cross-
validation scheme with 8 left-out test trials (2 trials per category) and
48 training trials.We trained a decoder to distinguish neural activation
patterns of the four category-specific stimuli and to predict labels for
the left-out test trials (support vector classifier, regularization para-
meter C = 1.0, kernel = rbf). We z-standardized trial-wise z-scores
within the training set and applied the standardization parameters to
the test trials. We assessed accuracy as the proportion of correctly
predicted trials, averaged over cross-validation folds. Note that we
conducted this analysis using the decoding ROI mask based on pre-
vious univariate feature selection across all trials of the PVT (see
above). We did so as this was the mask used for the following across-
task decoding (PVT to prospective decision making task) and the sti-
mulus category decoding within the PVT served only as a control.

Next, we aimed to investigate stimulus representations during
choices in the prospective decision making task. To first estimate
neural activation patterns of choice time points in the prospective
decision making task, we implemented the following GLM. One
regressor modeled the observation phase (initial time points) of the
trajectories and one regressormodeled feedback periods. Each choice
time point (18 choice time points per run) was modeled in a separate
regressor. The regressors were modeled with the actual onset and
durations of the events during the task. We used z-scores of the choice
timepoint regressors as test data for the across-taskdecoding analysis.

For each voxel within the decoding ROI mask, we extracted trial-
wise z-scores of the PVT as training data and choice z-scores of the
prospective decision making task as test data. We z-standardized the
data run-wise. We then trained a decoder to distinguish neural acti-
vation patterns of the four category-specific stimuli based on the PVT
data (support vector classifier, regularization parameter C = 1.0, ker-
nel = rbf, probability = True to enable probability estimates). Subse-
quently, we applied this decoder to the neural activation patterns of
choices in the prospective decision making task. More specifically, we
extracted the probabilities which the decoder assigned to each of the
four stimuli and computed twodifference scores for each choice. First,
we compared the probabilities assigned to the two stimuli presented
on-screen during choice: probability of the stimulus with the objec-
tively higher value vs. probability of the stimulus with the objectively
lower value. Secondly, we compared the probabilities assigned to the
two value-congruent stimuli which were not presented on-screen
during choice (but during the time point before): probability of the
congruent high-value stimulus vs. the congruent low-value stimulus.
To compare these difference scores against chance level performance
of the decoder, we implemented a permutation test, repeating this
procedure 1000 times with randomly permuted trial labels in the PVT
training data. For each choice, we then converted the original differ-
ence scores to z-scores based on the null distribution generated by the
permutations. Lastly, we averaged z-scores across choices to obtain
two summary scores per participant. On the group level, we tested
participant-specific z-scores against 0 using one-sample t-tests. Fur-
thermore, we calculated Pearson correlations between the z-scores
and task performance.

When comparing on-screen and congruent off-screen stimuli
separately, the temporal proximity of their presentations during time

points within a trajectory might render disentangling their effects
difficult. To control for the temporal proximity to some extent, we
repeated the analysis using only those choices which sampled the
switch time point as a control. In this case, the direction of the effect
during choice (high-value vs. low-value, especially for the comparison
of the congruent stimuli) should be different from the direction of the
effect at the time point before the switch (pre).

Given that participants performed the task very well (M = 87.70%),
the stronger representation of the high-value option compared to the
low-value option might be driven by selective attention towards the
chosen option. To disentangle a value from an attention/choice effect,
we repeated the analysis using only incorrectly answered trials (note
the very low number of available incorrect trials). In this case, a
stronger representation of the high vs. low value optionwould suggest
a value effect while the opposite pattern, a stronger representation of
the low-value option, would suggest an attention / choice effect.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data to reproduce the statistical analyses reported in this paper are
available on the Open Science Framework (https://osf.io/z4k5v/). Task
stimuli are available in public stimulus datasets77–82. The Harvard-
Oxford Cortical and Subcortical Structural Atlases and the Juelich
Histological Atlas used for the neuroimaging analyses are provided by
FSL. Source data are provided with this paper.

Code availability
Analysis code is available on Github (https://github.com/nitschalex/
Paper_Value_Space).
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