
1142 Vol. 10, No. 9 / September 2023 / Optica Research Article

Wigner function tomography via optical parametric
amplification
Mahmoud Kalash1,2,3 AND Maria V. Chekhova1,2,*
1Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
2Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 7/B2, 91058 Erlangen, Germany
3mahmoud.kalash@mpl.mpg.de
*maria.chekhova@mpl.mpg.de

Received 27 February 2023; revised 12 July 2023; accepted 26 July 2023; published 22 August 2023

Wigner function tomography is indispensable for characterizing quantum states, but its commonly used version, bal-
anced homodyne detection, suffers from several weaknesses. First, it requires efficient detection, which is critical for
measuring fragile non-Gaussian states, especially bright ones. Second, it needs a local oscillator, tailored to match the
spatiotemporal properties of the state under test, and fails for multimode and broadband states. Here we propose Wigner
function tomography based on optical parametric amplification followed by direct detection. The method is immune
to detection inefficiency and loss, and suitable for broadband, spatially and temporally multimode quantum states. To
prove the principle, we experimentally reconstruct the Wigner function of squeezed vacuum occupying a single mode
of a strongly multimode state. We obtain a squeezing of−7.5± 0.4 dB and purity of 0.91+0.09

−0.08 despite more than 97%
loss caused mainly by filtering. Theoretically, we also consider the reconstruction of a squeezed single photon—a bright
non-Gaussian state. Due to multimode parametric amplification, the method allows for simultaneous tomography of
multiple modes. This makes it a powerful tool for optical quantum information processing. © 2023 Optica Publishing

Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.488697

1. INTRODUCTION

Quantum states of light promise to revolutionize nowadays tech-
nologies such as information processing [1,2], metrology [3,4],
and sensing [5]. To explore their non-classical features, quantum
state tomography is employed [6]. In particular, one can retrieve
full information about a quantum state through reconstructing
the Wigner quasi-probability distribution [7]. The inevitable chal-
lenge for the experimental reconstruction of the Wigner function
is the fragility of quantum states to losses, including detection
inefficiency. Losses disturb quantum features such as squeezing [8],
Wigner function negativity [9], and superpositions in phase space
[10,11], leading to wrong state reconstruction. This is the case
with the most common method of tomography, based on homo-
dyne detection of optical quadratures [12]. Another drawback of
homodyne tomography is the impossibility to address simultane-
ously different modes of multimode radiation, a property that gets
increasingly important for optical quantum information [13].

As an alternative to homodyne detection, several groups
reconstructed the Wigner function from the measurement of
photon-number parity [14,15]. Indeed, the loss-tolerant tomog-
raphy of a single photon was achieved using a time-multiplexed
detection scheme [16]. This method, however, requires photon-
number resolving detectors, which imposes a limitation on the
brightness of the examined state [17,18].

Here we propose and experimentally demonstrate another
method of Wigner-function tomography using direct detection.

It is based on the fact that after sufficiently strong phase-sensitive
parametric amplification, the photon number scales as the squared
quadrature at the input of the amplifier [19], the choice of the
quadrature being determined by the phase of the pump. Recently,
this fact was used to retrieve the quadrature variances of squeezed
vacuum (SV) [19–22]. Here we show that parametric amplifica-
tion enables complete quantum state reconstruction, including
the tomography of non-Gaussian quantum states, and different
modes of a multimode state. As a proof of principle, we recon-
struct the Wigner function of a single-mode SV state filtered from
multimode radiation and show that the method is loss and noise
tolerant. We reconstruct a nearly pure state despite very low detec-
tion efficiency, additionally reduced because of filtering, without
any correction for detection loss and noise. The only losses contrib-
uting are those before amplification, and they can be minimized.
Our method can be applied to the tomography of faint and bright
non-Gaussian states, as well as to the simultaneous tomography of
states occupying different spatiotemporal modes of a multimode
state.

2. IDEA

Figure 1(a) shows the idea of the method. A quantum state |9〉
is fed into a phase-sensitive optical parametric amplifier (OPA),
with squeezing parameter G . The OPA amplifies a certain quadra-
ture xθ = x cos θ + p sin θ , where x and p are the position and
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Fig. 1. Idea of the method in (a) single-mode and (b) multimode cases.
An optical parametric amplifier (OPA) amplifies a quadrature xθ of the
input quantum state and suppresses the conjugate quadrature. Under
sufficient amplification gain G , only xθ contributes to the photon number
N(xθ ). Therefore, the statistics of xθ can be retrieved via direct detection.
The Wigner function W(x , p) is then reconstructed from a set of xθ
distributions for different θ .

momentum quadratures, respectively, and θ is the amplifica-
tion phase determined by the pump. The OPA amplifies xθ by a
factor e G and simultaneously de-amplifies the conjugate quadra-
ture by the same amount. If G is sufficiently high, the amplified
quadrature xθ dominates the output signal, and therefore, direct
detection allows for extracting information about the quadrature
xθ . Indeed, the photon-number operator after amplification,
N̂θ = x̂ ′2θ + p̂ ′2θ −

1
2 , with x̂ ′θ = e G x̂θ and p̂ ′θ = e−G p̂θ being

the output quadratures, under sufficiently high G will have
contribution only from the amplified quadrature:

N̂θ ≈ e 2G x̂ 2
θ . (1)

At this point, the statistics of Nθ replicate those of x 2
θ . We

can thus obtain the continuous-variable probability distribu-
tion P (|xθ |) (see Supplement 1) and then, provided the input
state is centrally symmetric, P (xθ )= P (−xθ ), also the complete
quadrature probability distribution:

P (xθ )= e G
√

Nθ P (Nθ ). (2)

With this approach, the losses present after amplification
will not affect the obtained quadrature distributions, since the
detection inefficiency just scales down the photon numbers, pre-
serving the envelope of their distribution. Therefore, provided
the quadratures are sufficiently amplified before being disturbed
[23], quadrature distributions can still be retrieved no matter
what optical losses or detection inefficiencies are present after
amplification.

The detection scheme does not require photon-number resolu-
tion; after sufficient amplification, the photon number is measured
as intensity, by photocurrent or charge integrating detectors such
as p-i-n diodes, charge-coupled devices (CCDs), or spectrometers.
Such detection schemes smoothen the photon-number distribu-
tion [24], turning the photon number into a continuous variable.
Typical values of the squeezing parameter in setups using strongly
pumped parametric downconversion (PDC) can reach G = 15

[25]. This value enables amplification by more than 10 orders of
magnitude, although in practice, even three to four orders suffice.
Such moderate amplification can be provided by nonlinear wave-
guides pumped with pJ pulses [22] or even by CW-pumped ring
resonators [26]. Under such amplification, the detection noise is
not a restriction either. It follows that the brightness of the state
under study is not a limitation for this tomography scheme; it can
be applied to both bright and faint states down to the single-photon
level.

Importantly, the method can work even with broadband and
multimode states, both spatially and temporally, since paramet-
ric amplification is intrinsically a multimode process [27–29]
[Fig. 1(b)]. This can be achieved by tailoring the mode structure
of the parametric amplifier to cover the mode content of input
states. If the input and amplifier modes match, the amplification
can be simultaneous over all modes, and different quadratures
xθn can be amplified depending on the phase between the pump
and the modes. In this case, each mode will experience a certain
amplification gain Gn . To retrieve the amplifier eigenmodes and
corresponding gain values, one needs to amplify only the vacuum
[30,31]. After simultaneous multimode amplification, modes can
be filtered out or sorted. Notably, this property is impossible with
usual homodyne tomography.

Calculations in Fig. 2 illustrate this procedure for the case
of a non-Gaussian initial state: a 4.3 dB squeezed single photon
[Fig. 2(a)]. After a sufficiently strong phase-sensitive amplification
of quadrature xθ , the Wigner function W(x , p) gets stretched
along xθ . Figure 2(b) shows the Wigner function after ampli-
fication with the squeeze factor G = 2.7 and phase θ = π/4.
Despite a moderate, and definitely achievable in experiment,
squeeze factor, the Wigner function becomes so stretched that the
photon-number distribution is now fully determined by the one-
dimensional marginal probability distribution of the amplified
quadrature [32]:

Fig. 2. Calculated scenario of Wigner-function tomography via
parametric amplification: the case of a 4.3 dB squeezed single photon.
(a) Wigner function of the input quantum state. (b) Wigner function
after amplification of quadrature xθ ; here θ = π/4. Strong amplifica-
tion (G = 2.7) results in almost one-dimensional Wigner function,
and the photon number is given by only the amplified quadrature.
(c) Continuous-variable photon-number distribution P (Nθ ), to be
measured via direct detection. (d) Probability transformation: quadrature
distribution P (xθ ) retrieved via Eq. (2).

https://doi.org/10.6084/m9.figshare.23786409
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Fig. 3. Simplified experimental scheme: OPA1 generates broadband
multimode squeezed vacuum, which is imaged on OPA2. Then, for each
mode, OPA2 amplifies the same quadrature xθ , whose choice is deter-
mined by the pump phase. The amplified state is directly detected after
spectral and spatial filtering for a set of θ values.

P (x ′θ )=
∫

W(x ′θ , p ′θ )dp ′θ . (3)

In other words, the squared amplified quadrature can be mapped
to the photon number, and the probability distributions of the two
variables are related through Eq. (2). Figure 2(c) shows the photon-
number distribution of the amplified state, calculated using the
continuous-variable approximation for the expression from Ref.
[33] (see Supplement 1). This distribution, measurable via direct
detection, carries the information about marginal distribution
Eq. (3), and therefore, the initial marginal distribution P (xθ ). The
resulting marginal distribution, calculated using Eq. (2), is shown
in Fig. 2(d). Similar to the homodyne tomography of the Wigner
function, a set of such marginal distributions for different phases θ
enables the reconstruction of W(x , p).

3. EXPERIMENT

As a proof of principle, we reconstruct the Wigner function of a
SV occupying one mode out of a highly multimode state, which is
Gaussian but still very sensitive to losses. We use (Fig. 3) two OPAs
based on PDC. OPA1 generates SV, with squeezing parameter G sq,
and OPA2 performs phase-sensitive amplification with squeezing
parameter G . Both OPAs are pumped with picosecond pulses at
354.67 nm, and both are highly multimode and broadband, unlike
in the case of cavity- or waveguide-based sources: the spectral
bandwidth in the collinear direction is 30 nm, and the angular
divergence is 25 mrad. The SV emitted by OPA1 has 50 spatial
and 370 spectral modes. To overcome the diffraction and make
all spatial modes amplified, the SV emitted by OPA1 is imaged on
OPA2 [20].

The pump phase before OPA2, determining which quadrature
xθ is amplified, can be locked at different values (see Supplement
1). To make Eq. (1) valid for all phases θ , the squeezed quadrature
should be amplified sufficiently to overcome the initially anti-
squeezed quadrature. Therefore, the choice of G relies on the initial
squeezing given by G sq. In experiment, we set G sq = 1.0± 0.1
and G = 4.4± 0.1, which makes Eq. (1) valid to an accuracy
better than 0.2% (see Supplement 1). In addition, this value of G
provides an acceptable signal-to-noise ratio at the detection stage
when amplifying the squeezed quadrature.

After blocking the pump radiation with a dichroic mirror,
we filter the SV spatially and spectrally. For spatial filtering, we
couple the fundamental squeezed mode (whose shape is close to
Gaussian) into a single-mode optical fiber (see Supplement 1).
The spectral filtering, with a monochromator, is to a bandwidth of
0.08 nm at the degenerate wavelength of 709.33 nm. In addition
to selecting just a fraction of the squeezing mode, it introduces
more than 95% loss (see Supplement 1), which, however, does not

affect the measurement due to the sufficiently strong amplification.
Alternatively, multiple spatial and spectral modes can be sorted
out and addressed simultaneously by introducing a spatial light
modulator and/or other optical elements [34–37].

Finally, the filtered radiation is detected with a triggered
sCMOS camera (quantum efficiency 70%). Out of the illuminated
region, a single pixel is used, with dark counts of 2± 1 photons per
pulse. This noise, although quite low, exceeds the mean photon
number of the state, 〈N〉 = 1.4. But parametric amplification,
similar to the local oscillator in homodyne detection, provides
enough energy to overcome this noise. Overall optical losses after
amplification exceed 97% (see Supplement 1).

4. RESULTS

We measure the number of photons pulse by pulse and acquire
statistics over 8000 pulses for different amplification phases rang-
ing from θ = 0 (anti-squeezed quadrature x amplified) to θ = π/2
(squeezed quadrature p amplified). To calibrate the measurement,
we send to OPA2 the vacuum state by simply blocking the SV
radiation from OPA1.

Figure 4(a) shows the results of these photon-number measure-
ments for different experimental settings. In one measurement,
OPA2 amplified the anti-squeezed quadrature (blue points). In
another case, OPA2 amplified the vacuum because SV after OPA1
was blocked (orange points). In the third case, OPA2 amplified the
squeezed quadrature (yellow points). The measured mean photon
numbers in these three cases are 〈N̂0〉 = 511± 7, 〈N̂vac〉 = 73± 1,
and 〈N̂π

2
〉 = 12.8± 0.2 photons, respectively.

Recalling that the mean photon numbers after amplification
scale as the squared quadratures before amplification [see Eq. (1)]
and for the SV state, 〈x̂θ 〉 = 0, the mean photon number after
OPA2 is a measure of the quadrature variance at its input [19].

The quadrature variance, normalized to vacuum level,
is shown in Fig. 4(b) (points) as a function of θ , fitted by
Var(x̂θ )/Var(x̂vac)= a cos2 θ + d (line). From this depend-
ence, we obtain the degrees of squeezing −7.5± 0.2 dB and
anti-squeezing 8.4± 0.1 dB. This is in good agreement with the
values of G sq, optical losses (0.6%) before amplification and the

Fig. 4. (a) Sets of 8000 photon-number measurements for cases
of amplifying the anti-squeezed quadrature (blue), vacuum (orange),
and squeezed quadrature (yellow). (b) Measured quadrature variance
as a function of θ (points) and its sinusoidal fit (line). (c), (d) Photon-
number distributions for cases of amplifying anti-squeezed and squeezed
quadratures, respectively (points), and their fits (lines).
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Fig. 5. (a), (b) Measured quadrature distributions for anti-squeezed
and squeezed quadratures, respectively (points), and their Gaussian fits
(lines). (c) Reconstructed Wigner function of the SV state. White dashed
line shows the Wigner function of the vacuum state at 1/

√
e level.

imperfect alignment/mode matching (characterized by the visibil-
ity of phase-sensitive amplification V = 95%), which adds 5.3%
to the total amount of loss (see Supplement 1).

We obtained photon-number probability distributions by
sampling the photon-number data into 35 bins for each phase
value. Figures 4(c) and 4(d) show these distributions for cases of
amplified anti-squeezed and squeezed quadratures, respectively
(points). Due to imperfect spatial filtering, the detected number of
modes was 1.2, which was taken into account in the fit (lines); see
Supplement 1.

The quadrature probability distributions were obtained by
applying transformation Eq. (2) to the corresponding mea-
sured photon-number distributions. Figures 5(a) and 5(b) show
examples for anti-squeezed and squeezed quadratures, respectively.

Finally, we reconstructed the Wigner function of the SV state
by applying the inverse Radon transform to the obtained fits of all
quadrature probability distributions [6]. For more complicated
cases, one could use the maximum likelihood method to avoid
the artifacts appearing due to the reconstruction. The recon-
structed distribution [Fig. 5(c)] fairly resembles a SV state with
1x = 1.30± 0.06 and 1p = 0.21± 0.01. The dashed white
circle at the center marks the Wigner function of the vacuum
state at 1/

√
e level, corresponding to 1xvac = 0.5. The recon-

struction yields the amounts of squeezing and anti-squeezing
of −7.5± 0.4 dB and 8.3± 0.4 dB, respectively, in perfect
agreement with the values obtained by measuring the mean
photon number. The purity of the state [38] was found to be
12xvac/(1x1p)= 0.91+0.09

−0.08. The fidelity of this state to the SV
state calculated theoretically for G sq = 1 is 99.4%. These results,
obtained without any correction for losses, prove the feasibility of
the method under real-life conditions.

5. CONCLUSION

In conclusion, we have demonstrated the tomography of quantum
states based on optical parametric amplification, which provides
its tolerance to detection loss and noise. As a proof of principle,

we applied the method to a SV state, achieving a degree of squeez-
ing −7.5± 0.4 dB and purity of 0.91+0.09

−0.08, despite more than
97% losses in the detection channel. With such losses, almost no
squeezing could be observed with homodyne detection.

The method can also be applied to non-Gaussian states, includ-
ing bright ones, which are especially susceptible to losses. The
only restriction is that the state should have a centrally symmetric
Wigner function, but this includes a vast variety of non-Gaussian
states, in particular, Fock, squeezed Fock, even/odd Schrödinger
cat, and importantly, Gottesman-Kitaev-Preskill (GKP) states [39]
which are required for fault-tolerant quantum computing [40].

Parametric amplification is a multimode process; therefore,
the method is suitable for the tomography of broadband and
multimode quantum states. Multiple input modes can be ampli-
fied simultaneously if they match the amplifier eigenmodes.
Afterwards, a specific mode can be filtered out. In our experiment,
we filtered a single spatial eigenmode out of 50 modes, and a frac-
tion of a frequency eigenmode out of 370 modes. Compared to
homodyne-detection measurements over multimode SV [29,41],
our method gives far better purity.

More interestingly, being immune to loss, the method also
allows for simultaneous tomography of multiple modes, if a mode
sorter is placed before detection. By scanning the phase between
the pump and the modes, different quadratures of all modes can
be measured simultaneously. Notably, this property is impossible
with usual homodyne tomography because of inevitable losses
accompanying mode sorting.

The possibility to characterize all modes at once and the
loss immunity make the method a perfect candidate for high-
dimensional quantum information applications [13,42].
Moreover, the method can assist chip-based generation, manipula-
tion, and detection of quantum states [22,43–46], which paves the
way towards real photonic quantum computers.
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