Table of Contents

Figure S1. Phylogenetic tree of basidiomycete sesquiterpene synthases	2
Figure S2. Gene structure of <i>cubA</i> and alignment of CubA	3
Figure S3. SDS polyacrylamid gel electrophoresis of purified His6-tagged CubA	4
Figure S4. Temperature optimum for CubA	5
Figure S5. pH dependence of CubA	6
Figure S6. CubA-catalyzed sesquiterpene formation in vivo	7
Figure S7. PCR analysis of A. niger transformants	8
Scheme S1. Biosynthetic scheme of CubA-produced sesquiterpenes/-terpenoids	9
Table S1. Sesquiterpene products detected in vitro	10
Table S2. Sesquiterpene products detected in A. niger tES02	11
Table S3. Oligonucleotides for PCR	12
Table S4. Oligonucleotides for qRT-PCR	
Table S5. Amino acid sequences of terpene synthases used for phylogenetic analyses	13

ences14

Figure S1. Phylogenetic tree of basidiomycete sesquiterpene synthases and placement of *P. cubensis* CubA. The tree largely follows phylogenies published by Nagamine et al. and Zhang et al.^[12c, 12e] Details of enzymes used to construct this tree are provided in Table S5.

			<i>cubA</i>
В			
Р. Р. Р. С.	cubensis cyanescens mexicana serbica cinerea	CubA TS10 TS12 TS3 Cop4	⁰⁰¹ MSTEQFVLPDLLESCPLKDATNPYYKEAAAESRAWINGYDIFTDRKRAEFIQGQNELLCSHVYWYAGR ⁰⁶⁸ ⁰⁰¹ MSTSTQQFRIPDLFASCPLKDATNPYYKEAAAESRAWINSYDIFTDRKRAEFVQGANELLCSHVYFYAGR ⁰⁷⁰ ⁰⁰¹ MSPSPKQFRIPDLLESCPLKDGTNPYYKEAAAGSRAWINSYDIFTDRKRAEFVQGANELLCSHVYCFAGR ⁰⁷⁰ ⁰⁰¹ MSTSTEQFRIPDLFSCPLKDATNPHYKEATAESRAWINSYNFTDRKRAEFVQGANELLCSHVYYFAGR ⁰⁷⁰ ⁰⁰¹ MRPTARQFTLPDLFSCPLQDATNPWYKQAAAESRAWINSYNIFTDRKRAFFIQGSNELLCSHVYAYAGY ⁰⁷⁰ DEXXD
Р. Р. Р. С.	cubensis cyanescens mexicana serbica cinerea	CubA TS10 TS12 TS3 Cop4	⁰⁶⁹ EQLRTTCDFVN-LLFVV DE VS D EQNGKGARETGQVFFKAMKYPDWDDGSILAKVTKEFMARFTRLAGPRN ¹³⁷ ⁰⁷¹ EQLRTTCDFVN-LLFVV DE VS D EQNGMDARETGQVFFKAMKYPEWDDGSILAKITKEFRARLMRLAGPRN ¹³⁹ ⁰⁷¹ EQLRTTCDFVSKPLFVV DE VS D EQNGLDARATGQIFLKAMKYANWDDGSILAKITKEFRARFLRIAGPNN ¹⁴⁰ ⁰⁷¹ EQLRTTCDFVN-LLFVV DE VS D EQNGLDARATGQIFFKAMKYPEWDDGSILAKITKEFRARLMRLAGPRN ¹³⁹ ⁰⁷¹ EQFRTCCDFVN-LLFVV DE ISDDQNGQDARATGRIFVNAMRDAHWDDGSILAKITHEFRERFVRLAGPKT ¹³⁹
Р. Р. Р. С.	cubensis cyanescens mexicana serbica cinerea	CubA TS10 TS12 TS3 Cop4	¹³⁹ TKRFIDLCESYTACVGEEAELRERSELLDLASYIPLRRQNSAVLLCFALVEYILGIDLADEVYEDEMFMK ²⁰⁷ ¹⁴⁰ AKRFIDLCGSYTDCVGQEAELRERAELLDLASYTPLRRQNSAVLLCFALVEYILGIDLSDEVYEDENFMK ²⁰⁹ ¹⁴¹ ARRFIELCESYTECVGREAELRERGELLDLASYMPLRRQNSAVLLCFALNEYNLGIDLDDEVYQNETFMR ²¹⁰ ¹⁴⁰ AKRFVDLCESYTECVGQEAELRERRELLDLASYTPLRRQNSAVLLCFALVECVLGIDLSDEVYEDETFMK ²⁰⁹ ¹⁴⁰ VRRFADLCESYTECVGREAELRERNQVLGLNDFIALRRQNSAVLLCYSLVEYILGIDLDDEVYEDPTFAK ²⁰⁹
Р. Р. Р. Р.	cubensis cyanescens mexicana serbica cinerea	CubA TS10 TS12 TS3 Cop4	NDXXSXXXE 208AYWAACDQVCWTNDIYSYDMEQSKGLAGNNIVSILMNENGTNLQETADYIGERCGEFVSDYMSAKSQISP ²⁷⁷ 210AYWAACDHVCWANDYSYDMEQSKGLAGNNIVSILMNENGTSLQETSDFIGARCSEFVTDYLSAKRELSP ²⁷⁹ 211AYWAACDHVCWANDYSYDMEQSKGLAGNNIVTILMNENGTTLQETSDYIGVRCKEFCRRLSVGKSQLSP ²⁸⁰ 210AYWAACDHVCWANDYSYDMEQSKGLAGNNIVSILMNENGTSLQETADFIGVRCSEFTADYLSAKSQLSP ²⁷⁹ 210AYWAACDFVCWANDYSYDMEQAKGHTGNNVVTVLMKEKDLSLQEASDYIGRECEKQMRDYLEAKSQLLQ ²⁷⁹
Р. Р. Р. С.	cubensis cyanescens mexicana serbica cinerea	CubA TS10 TS12 TS3 Cop4	²⁷⁸ SLGPEALQFIDFVGYWMIGNIEWCFETPRYFGSRHLEIKETRVVHLRPKEVPEGLSSEDCIESDDE ³⁴³ ²⁸⁰ SLGPEAAHFIESIGSWTIGNVAWSFETVRYFGPRHLEVKETRVVYLKPKEVPEGLSSEDCIESDEE ³⁴⁵ ²⁸¹ SLGPEAARFIEAIGSWMIGNIAWSFETVRYFGSRHLEVKETRVVHLRPRECQLSEDSSESDEE ³⁴⁴ ²⁸⁰ S-LGPEAVRFIESIGSWMIGNIAWSFETVRYFGSRHLEVKETRVVYLRPKEVPEDVLSEGCPESDGE ³⁴⁵ ²⁸⁰ STDLPQEAVRYIEALGYWMVGNLVWSFESQRYFGAQHERVKATHVVHLRPSSVLEASCDSDS-DSDC ³⁴⁵

А

Figure S2. The *P. cubensis* sesquiterpene synthase CubA. A) Gene structure of *cubA*. Lines represent introns. B) Alignment of the CubA amino acid sequence with *Coprinopsis cinerea* Cop4 and other *Psilocybe* clade IIb sesquiterpene synthases. The portions highlighted in green represent conserved motifs for Mg²⁺ cation coordination at the active site entrance.

Figure S3. SDS polyacrylamide gel electrophoresis of purified His₆-tagged *Psilocybe cubensis* CubA. The calculated protein mass for CubA is 41.3 kDa. As protein standard, the Blue Eye prestained marker (Jena Bioscience) was loaded.

Figure S4. Temperature optimum of *P. cubensis* CubA. The activity was assessed *in vitro* by chromatographically measuring total product formation, i.e., areas under the curve of all identified sesquiterpene products in the GC-chromatogram. Error bars indicate the standard error (n = 3).

Figure S5. pH dependence of *P. cubensis* CubA product formation. The activities were assessed individually for all products > 3% of the cumulated peak area of the *in vitro* reaction. Panel A shows sativene formation, B: β -copaene, C: germacrene D, D: cubebol/ δ -cadinene, E: germacrene D-4-ol. Chemical structure in the respective panels represent the relative configuration. Relative abundance refers to the area under curve in arbitrary units for the signals of the respective compound. Error bars indicate the standard error (n = 3). Color code: blue – citrate buffer, orange – MOPS buffer, grey – TRIS buffer.

Figure S6. Gas chromatographic analysis of CubA-catalyzed sesquiterpene formation in *Aspergillus niger*. Shown are ethyl acetate extracts of a doxycycline-induced (a) and non-induced culture (b) of *A. niger* tES02. Chromatograms c and d represent extracts of induced and non-induced cultures of the empty vector control strain, *A. niger* tNAL000. Compound numbers are assigned as follows: β -cubebene (1), β -elemene (2), sativene (3), β -copaene (4), germacrene D (5), cubebol (6), δ -cadinene (7), germacrene D-4-ol (8), and τ -muurolol (9). Structures are shown in Scheme S1.

Figure S7. Agarose gel electrophoresis of PCR amplicons to verify the full-length integration of the *cubA* expression construct pES06 in the *Aspergillus niger* genome.

Scheme S1. Proposed scheme of the biosynthetic relationship of sesquiterpenoid products resulting from the terpene synthase activity of *Psilocybe cubensis* CubA. Confirmed products (relative stereochemistry shown) are highlighted in red. The scheme was compiled following various publications.^[17,18,35]

Table S1. Sesquiterpenes and -terpenoids identified after *in vitro* product formation assays with *Psilocybe cubensis* CubA. Percentages are referenced to total integral of the selected sesquiterpenoids.

Compound	<i>t</i> _R (min)	Integral	Integral (% of	Retention	Retention	Retention	Present in Piper	Present in
			total alea)	(observed)	(Adams) ^[30a]	(NIST) ^[30c] *	oil? ^[20a,20b]	archangelica oil? ^[20c]
β-Cubebene (1)	23.97	6.94 x 10 ⁶	0.3	1391	1387	1389	yes	no
β-Elemene (2)	24.05	2.57 x 10 ⁷	1.3	1393	1389	1391	yes	yes
Sativene (3)	24.23	1.06 x 10 ⁸	5.2	1398	1390	1396	no	no
β-Copaene (4)	25.57	3.02 x 10 ⁸	15.0	1431	1430	1432	no	yes
Germacrene D (5)	27.67	3.38 x 10 ⁸	16.7	1483	1484	1481	yes	yes
Cubebol (6)	29.03	9.02 x 10 ⁸	44.6	1517	1514	1515	yes	no
δ-Cadinene (7)	29.33	7.05 x10 ⁷	3.5	1525	1522	1524	yes	yes
Germacrene D-4-ol (8)	31.35	2.67 x 10 ⁸	13.2	1577	1574	1574	yes	no
т-Muurolol (9)	33.86	3.96 x 10 ⁶	0.2	1643	1640	1642	yes	no

*NIST: National Institute for Standards and Technology.

Compound	<i>t</i> _R (min)	Integral	Integral (% of total area)	Retention Index	Retention Index	Retention Index	Present in <i>Piper</i> cubeba	Present in Angelica
				(observed)	(Adams) ^[30a]	(NIST) ^[30c] *	oil? ^[20a,20b]	archangelica oil? ^[20c]
β-Cubebene (1)	24.00	2.92 x 10 ⁸	3.8	1391	1387	1389	yes	no
β-Elemene (2)	24.07	1.69 x 10 ⁸	2.2	1392	1389	1391	yes	yes
Sativene (3)	24.25	5.21 x 10 ⁸	7.2	1397	1390	1396	no	no
β-Copaene (4)	25.61	1.87 x 10 ⁹	23.9	1430	1430	1432	no	yes
Germacrene D (5)	27.69	5.81 x 10 ⁸	7.5	1482	1484	1481	yes	yes
Cubebol (6)	29.07	2.57 x 10 ⁹	32.7	1516	1514	1515	yes	no
δ-Cadinene (7)	29.36	1.03 x 10 ⁹	13.3	1524	1522	1524	yes	yes
Germacrene D-4-ol (8)	31.37	3.06 x 10 ⁸	3.8	1576	1574	1574	yes	no
т-Muurolol (9)	33.93	4.67 x 10 ⁸	6.1	1643	1644	1642	yes	no

Table S2. Sesquiterpenes and -terpenoids identified after heterologous production of CubA in *Aspergillus niger* **tES02.** The host was induced with 30 μg mL⁻¹ doxycycline. Percentages are referenced to the total integral of the selected compounds.

*NIST: National Institute for Standards and Technology.

Table S3. Oligonucleotides used for PCR.

Name	Sequence in 5 ⁻³ direction	Target	
oES03	GGTGCCGCGCGGCAGCCATATGTCTACTGAACAATTCGTCC		
oES04	CTCGAGTGCGGCCGCAAGCTTCTACTCATCGTCGGACTCAATGC	CUDA (CDNA)	
oES11	TCTCATCACAGCACCATGCATATGTCTACTGAACAATTCGTCC	$aub A (\pi D M A)$	
oES12	AATCACTGCTGTTATCCATGGTCACTCATCGTCGGACTCAATGC	CUDA (GDNA)	
oMG370	GATCCTCTCTGATATTGTCG	<i>terA</i> promoter in pSMXpress 2	

Table S4. Oligonucleotides used for qRT-PCR in this study. Primer efficiency, linear correlation coefficient (R^2), and expected amplicon size are indicated for the primer pairs used for qRT-PCR analysis.

Name	Sequence in 5´-3´ direction	Target	Efficiency (R²)	Amplia (I gDNA	con size bp) cDNA
oMG388 oMG389	GTGTCAACAACAACATCATTCC AGATCAACGACAGAGACATCG	gpdA	95% (0.99984)	208	133
oPS532 oPS533	GATCAAGTCTGCTGGACCAA TGCAGGTTCGTTCCATTTTCG	cubA	98% (0.99991)	175	113

Clade	Organism	Name	Accession number
Ι	C. cinerea	Cop1	EAU89322.2
	C. cinerea	Cop2	EAU85264.1
	C. cinerea	Cop3	EAU88892.1
	L. rhinocerotis	GME3634	KX281943.1
	L. rhinocerotis	GME3638	KX281944.1
	O. olearius	Omp1	jgi Ompol1 1311 MUStwsD_GLEAN_10001317
	O. olearius	Omp3	jgi Ompol1 4636 MUStwsD_GLEAN_10003938
lla	A. aegerita	Agr2	A0A5Q0QNJ2
	A. aegerita	Agr5	A0A5Q0QS18
	C. pseudo-pinsitus	CpSTS8	LC436352.1
	C. pseudo-pinsitus	CpSTS9	LC436353.1
	C. pseudo-pinsitus	CpSTS11	LC436355.1
	C. pseudo-pinsitus	CpSTS12	LC436356.1
	C. pseudo-pinsitus	CpSTS16	LC436360.1
	G. marginata	Galma_104215	jgi Galma1 104215 estExt_Genewise1Plus.C_370136
	S. stellatus	Sphst_47084	jgi Sphst1 47084 fgenesh1_pg.39_#_2
llb	C. cinerea	Cop4	A0A5Q0QNJ2
	C. puteana	Copu2	A0A5Q0QSI8
	C. puteana	Copu3	LC436352.1
	O. olearius	Omp4	LC436353.1
	O. olearius	Omp5a	LC436355.1
	O. olearius	Omp5b	LC436356.1
	S. hirsutum	ShSTS10	LC436360.1
	S. hirsutum	ShSTS11	jgi Galma1 104215 estExt_Genewise1Plus.C_370136
	S. hirsutum	ShSTS12	jgi Sphst1 47084 fgenesh1_pg.39_#_2
111	A. aegerita	Agr6	MN146029.1
	A. gallica	Pro1	AGR34199.1
	C. pseudo-pinsitus	CpSTS1	LC436345.1
	C. pseudo-pinsitus	CpSTS4	LC436348.1
	C. pseudo-pinsitus	CpSTS6	LC436350.1
	D. bispora	Denbi1_659367	jgi Denbi1 659367 e_gw1.88.48.1
	H. annosum	Hetan2_454193	jgi Hetan2 454193 Genemark.7021_g
	H. sublateritium	Hypsu1_138665	jgi Hypsu1 138665 e_gw1.30.115.1
	O. olearius	Omp6	jgi Ompol1 4774 MUStwsD_GLEAN_10003820
	O. olearius	Omp7	jgi Ompol1 2271 MUStwsD_GLEAN_10000831
	S. hirsutum	ShSTS13	jgi Stehi1 50042 e_gw1.2.358.1

Table S5. Amino acid sequences of terpene synthases used for phylogenetic analyses.

S. hirsutum	ShSTS15	jgi Stehi1 64702 e_gw1.15.166.1
S. hirsutum	ShSTS16	jgi Stehi1 73029 estExt_Genewise1.C_2_t30189
C. cinerea	Cop6	EAU89298.1
F. pinicola	Fompi1	jgi Fompi3 84944 Fompi1.gm1.3035_g
O. olearius	Omp9	jgi Ompol1 3258 MUStwsD_GLEAN_10000543
O. olearius	Omp10	jgi Ompol1 3981 MUStwsD_GLEAN_10000292
S. hirsutum	Stehi1_159379	jgi Stehi1 159379 gm1.8309_g

References

IV

- [12c] a) S. Nagamine, C. Liu, J. Nishishita, T. Kozaki, K. Sogahata, Y. Sato, A. Minami, T. Ozaki, C. Schmidt-Dannert, J. I. Maruyama, H. Oikawa, *Appl. Environ. Microbiol.* **2019**, *85*, e00409-19.
- [12e] C. Zhang, X. Chen, A. Orban, S. Shukal, F. Birk, H.-P. Too, M. Rühl, ACS Chem. Biol. 2020 15, 1268- 1277.
- [17] F. Lopez-Gallego, S. A. Agger, D. Abate-Pella, M. D. Distefano, C. Schmidt-Dannert, ChemBioChem 2010, 11, 1093–1106.
- [18] W. Mischko, M. Hirte, M. Fuchs, N. Mehlmer, T. B. Brück, *Microb. Cell. Fact.* 2018, 17, 164.
- [20] a) R. Bos, H. J. Woerdenbag, O. Kayser, W. J. Quax, K. Ruslan, Elfami, J. Essent. Oil Res. 2007, 19, 14–17; b) E. Al-Sayed, H. A. Gad, D. M. El-Kersh, ACS Omega 2021, 6, 25652–25663; c) J. C. Chalchat, R. P. Garry, J. Essent. Oil Res. 1997, 9, 311–319.
- [30a] R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corp., Carol Stream, IL, 2007.
- [30c] National Institute for Standards and Technology, Mass Spectral & Retention Index Library, 2017.
- [35] a) Rehka T, D. Sharma, F. Lin, Y. Khai Choong, C. Lim, C. Jobichen, C. Zhang, ACS Catal. 2023, 13, 4949–4959; b) H. Koo, C. Vickery, Y. Xu, G. V. Louie, P. E. O'Maille, M. Bowman, C. M. Nartey, M. D. Burkart, J. P. Noel. J. Antibiot. 2016, 69, 524–533; c) S. Garms, T. G. Köllner, W. Boland, J. Org. Chem. 2010, 75, 5590–5600; d) C. Nakano, T. Tezuka, S. Horinouchi, Y. Ohnishi, J. Antibiot. 2012, 65, 551–558; e) Y.-Y. Li, X.-M. Tan, J. Yang, L.-P. Guo*, G. Ding, J. Agric. Food Chem. 2020, 68, 9827–9838; f) D. Arigoni. Pure Appl. Chem. 1975, 41, 219-245.