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Methodological challenges 
and new perspectives of shifting 
vegetation phenology in eddy 
covariance data
Annu Panwar 1*, Mirco Migliavacca 2, Jacob A. Nelson 1, José Cortés 1, Ana Bastos 1, 
Matthias Forkel 3 & Alexander J. Winkler 1

While numerous studies report shifts in vegetation phenology, in this regard eddy covariance 
(EC) data, despite its continuous high-frequency observations, still requires further exploration. 
Furthermore, there is no general consensus on optimal methodologies for data smoothing and 
extracting phenological transition dates (PTDs). Here, we revisit existing methodologies and present 
new prospects to investigate phenological changes in gross primary productivity (GPP) from EC 
measurements. First, we present a smoothing technique of GPP time series through the derivative of 
its smoothed annual cumulative sum. Second, we calculate PTDs and their trends from a commonly 
used threshold method that identifies days with a fixed percentage of the annual maximum GPP. A 
systematic analysis is performed for various thresholds ranging from 0.1 to 0.7. Lastly, we examine 
the relation of PTDs trends to trends in GPP across the years on a weekly basis. Results from 47 
EC sites with long time series (> 10 years) show that advancing trends in start of season (SOS) are 
strongest at lower thresholds but for the end of season (EOS) at higher thresholds. Moreover, the 
trends are variable at different thresholds for individual vegetation types and individual sites, 
outlining reasonable concerns on using a single threshold value. Relationship of trends in PTDs and 
weekly GPP reveal association of advanced SOS and delayed EOS to increase in immediate primary 
productivity, but not to the trends in overall seasonal productivity. Drawing on these analyses, we 
emphasise on abstaining from subjective choices and investigating relationship of PTDs trend to 
finer temporal trends of GPP. Our study examines existing methodological challenges and presents 
approaches that optimize the use of EC data in identifying vegetation phenological changes and their 
relation to carbon uptake.

Vegetation phenology is the periodic pattern of plant life cycle such as leaf unfolding and leaf senescence. Phe-
nological records spanning over 19th and early 20th century were mainly applied on the local scale in the fields 
of forestry, agriculture and human health. Few decades later, phenological observatories and remote sensing 
products expanded worldwide, and studies reported strong response of vegetation phenology to climate change1,2. 
Around the 1980s, the eddy covariance (EC) technique emerged as a tool to monitor net carbon exchange in 
the ecosystem level3. Phenology inferred from EC techniques are extensively used for remote sensing product 
validation4,5. So far, remote sensing has contributed substantially in the field of land surface phenology6. However, 
there remains high uncertainty in elucidating the mechanistic drivers of phenological changes using remote 
sensing products7. In this context, frequent observations of carbon, heat and water fluxes provided by EC data 
offers emerging opportunities to understand the mechanisms driving phenological trends and their feedback to 
climate change8. The application of EC data for detecting changes in phenology is still in its earlier stage. Present 
EC sites offer relatively longer time series that are required to derive reliable trends. Even so, in order to leverage 
the potential of EC data, the associated methodological challenges must be thoroughly addressed.

While field observations and remote sensing products across Europe9, China10, and North America11 report an 
earlier start of spring and delayed onset of autumn in connection to global warming. Few studies on phenological 
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trends at EC sites report contradictory findings. For example, a study by12 shows no trends in 56 EC sites, while 
another by13 used 47 EC sites and revealed an earlier spring and autumn in forests and a delay in grasslands. 
These opposing results can be rooted in different methodologies used to smooth and extract PTDs from the high 
variability of EC time series. For example, while12 used a moving average filter,13 used a Savitzky-Golay filter to 
smooth the seasonal cycle of daily GPP data. For PTDs calculation both studies used threshold approach, that 
prescribe a certain threshold between the minimum and maximum seasonal cycle to indicate that vegetation 
has reached a specific phenological state. The two studies used different thresholds for PTDs, where12 employed 
15% of the multi-year daily GPP maximum value as threshold whereas the second study13 used 25% threshold.

Several smoothing and phenology detection methods are discussed and compared in the field of remote 
sensing14,15. Subjectivity on selection of smoothing function has been previously acknowledged with a convinc-
ing notion that no single smoothing method performs better than the other. Software packages like TIMESAT16 
allow the user to determine PTDs from the time series of normalized difference vegetation index (NDVI) based 
on different smoothing functions. Differences of 20 to 50 days in estimation of SOS and the length of the grow-
ing season (GSL = EOS − SOS) were recorded when Savitzky-Golay and double logistic smoothing functions17 
were used in TIMESAT. For similar reasons, remote sensing oriented studies recommend exploring  different 
smoothing methods accompanied by visual inspection. Smoothing parameters might need to be adjusted for 
specific plant functional types (PFTs), surface characteristics and vegetation indices18. While insights gained on 
smoothing methods in reference to satellite data are useful, they might not be always directly transferable to EC 
data due to the differences in spatial coverage and temporal frequencies. Furthermore, continuous carbon fluxes 
estimated by EC technique, such as Gross primary productivity (GPP), have direct association to vegetation 
activity8, whereas vegetation indices retrieved from remote sensing might not19.

Gross primary productivity (GPP) is a measure of the overall rate of carbon fixation through photosynthesis. 
However, GPP estimates based on models and proxies are prone to noise due to the stochastic nature of turbu-
lence and uncertainties in partitioning algorithms20. To obtain phenology from GPP, it is necessary to smooth 
the daily fluctuations and noise in the signal. It is important to note that different smoothing functions can yield 
different outcomes. Figure 1A illustrates this by comparing smoothed GPP obtained from two commonly used 
spline and lowess smoothing functions. The difference between the two smoothing functions is most noticeable 
in the spring and around the peak of the season. It should be acknowledged that the choice of smoothing func-
tion is influenced by parameters that determine the fit to the data. For example, spline is a piecewise regression 
method that is sensitive to the number of segments or knots provided by the user, while Lowess smoothing is a 
weighted local linear fit controlled by the defined fraction of data used in each fit. Additionally, different meth-
odologies define PTDs differently. The threshold method compares the smoothed vegetation index to a fixed 
percentage of its annual maximum, with the days passing this threshold before and after the annual maximum 
defined as the start and end of the season, respectively. On the other hand, the derivative method looks for the 

Figure 1.   A schematic diagram of different smoothing functions and Phenological Transition Dates (PTDs) 
selection methodologies. Data: GPP values for year 2001 at an evergreen needleleaf forest, eddy covariance site 
at Tharandt Forest (DE-Tha), Germany. (A) The smoothing of raw data (dotted points) using spline (7 knots) 
and lowess (0.5 smoothing fraction) methods. (B) Depiction of the threshold and first derivative methods to 
select the start (SOS) and end of season (EOS) for spline and lowess smoothed GPP. (C) SOS and EOS obtained 
from different threshold values and first derivative method. The PTDs also differ for spline and lowess smoothed 
GPP time series.
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maximum and minimum values of the first derivative of smoothed GPP, which are then inferred as the start and 
end of the season, respectively. Figure 1B shows the positions of the 0.3 (30% of maximum GPP) and 0.5 (50% 
of maximum GPP) thresholds, and Fig. 1C shows the start of season (SOS) and end of season (EOS) obtained at 
these thresholds from spline and lowess smoothed GPP. Similarly, SOS and EOS obtained from the first deriva-
tive approach show slight differences for different smoothing functions.

Accounting for the influence of different smoothing and PTDs selection methods is crucial for trend analysis. 
Trends might vary when PTDs are obtained at different thresholds or it could be that an optimal threshold best 
captures the phenological changes of interest21. Previous studies tend to use a threshold value of 0.2 that occur 
around the timing of early bud bursting and leaf unfolding during spring. A higher 0.5 threshold is also a typical 
choice for capturing the rapid change in leaf greenness22. Even so, the threshold values might represent different 
stages of vegetation activity for different plant functional types. For instance, satellite based spring phenology 
were found highly correlated to ground phenology of broadleaf trees at 0.75 threshold, but at much lower 0.2 
threshold for the understory plants23. Moreover, different vegetation indices obtained from remote sensing can 
produce dissimilar PTDs at a single threshold. As shown previously, spring onset calculated at the 0.5 threshold 
using the normalized difference vegetation index was closer to the date of GPP at 0.1 threshold. But spring onset 
based on leaf area index was found closer to the date of GPP at 0.2 threshold24. Different footprints of satellite 
and EC sites to some extent cause this mismatch. Although not yet explicitly confirmed, choices of thresholds 
might also explain observed discrepancies of phenological trend analysis25. To our knowledge no previous study 
has investigated trends of PTDs at different thresholds at ecosystem level using EC data. In this study we revisit 
derivative and threshold methods used to determine PTDs using GPP time series and present new perspectives 
on phenological trend analysis utilizing EC data.

Existing studies specifically addressed the trends of seasonal26 and annual flux integral of GPP in model or 
remote sensing data27. Few studies show the monthly scale GPP and its response to climate factors28,29. In this 
context, the daily availability of EC data is not utilized to its full potential, and in our view trend analysis of 
finer temporal scale captures valuable information on the dynamic of ecosystem productivity and their relation 
to PTDs shifts. By relating trends in PTDs to weekly trends in GPP, we evaluate how the shift in SOS and EOS 
impact the subsequent and overall annual productivity.

In this study, we present a new simple smoothing method called integral smoothing, which derives the 
smoothed time series of GPP through the derivative of its smoothed annual cumulative sum. We demonstrate that 
integral smoothing is more robust to user-defined smoothing parameters compared to directly smoothing the 
raw GPP signals. Additionally, we investigate the differences in PTDs and their trends when calculated at various 
threshold values. We identify sites with high variability in PTD trends among different thresholds. Furthermore, 
we highlight the importance of examining weekly trends of GPP throughout the year, as it provides additional 
mechanistic insights into phenological changes, beyond solely analyzing trends in PTDs.

Data and methods
Data.  For this study eddy covariance data was aggregated from the FLUXNET 201530 , ICOS warm winter 
202031 and AmeriFlux FLUXNET, all of which were processed using the OneFlux processing pipeline30. The site 
information is summarized in a table in the data availability section. For general analysis of PTDs total number 
of 83 EC sites30 are used. For the trend analysis, 47 EC sites that have more than 10 years of quality data are 
selected. To determine vegetation phonological transition dates we use the time series of GPP. It is to be pointed 
that eddy covariance towers do not measure GPP directly, it is obtained from the partitioning of net ecosys-
tem exchange (NEE). In this study we use daily estimates of GPP obtained from the night-time partitioning 
method32 where the night-time data are used to parameterize a respiration model. This method is based on the 
assumption that during night-time, plants primarily undergo respiration and there is no assimilation of carbon 
dioxide. Since GPP is modelled from NEE, so it is expected that missing or poor quality of GPP data originates 
from the poor quality of NEE observations. Based on these reasoning, in our work the quality of GPP data is 
inferred from the quality flag of NEE. Years with more than 70% of days with good quality NEE (original or good 
quality gap filled from the OneFlux NEE_QC) data are included in our analysis. For the trend related analysis, 
results are aggregated for specific PFTs. There are 11 cropland (CRO), 8 grassland (GRA), 4 mixed forest (MF), 
15 evergreen needle-leaf forest (ENF) and 9 deciduous broad-leaf forest (DBF) EC sites used for phenological 
trend analysis.

Smoothing.  Here we propose integral smoothing for GPP time series: rather than smoothing GPP time 
series directly, we first calculate its cumulative sum for the calendar year and smooth its integral. In order to 
produce continuous multi-year time series along with the year in consideration the last 30 days of the preced-
ing and first 30 days of the following calendar year are also used. As apparent in Fig. 2A, the cumulative sum of 
GPP time series is continuous and has higher signal to noise ratio than the original GPP time series, making the 
smoothing more straightforward than the former. The first step of integral smoothing is to smooth the cumula-
tive sum of GPP, shown in blue dashed curve. For smoothing we use spline function with 10 number of knots. 
Lastly, the smoothed GPP (blue curve) is obtained from the first derivative of the smoothed time series of the 
GPP cumulative curve. Likewise, integral smoothing is performed for each calendar year. The smoothed GPP 
for the year in consideration is then obtained by removing the extra 60 days of the preceding and the following 
years. For the first/last year of the GPP time series, the last/first 30 days of the same year are used to obtain the 
extra 60 days that the smoothing filter requires.

Figure 2A shows that integral smoothing produces a slightly different fit than the direct smoothing of GPP. 
In this case, their differences are more evident around the start of season and near the peak of season, when the 
signals are weaker than the noise. To further assess the sensitivity of direct and integral smoothing to user defined 
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smoothing parameters Fig. 2B show smoothed GPP for different knots number ranging from 5 to 18. It is appar-
ent that smoothed GPP obtained from lower and higher knots are substantially different for direct and integral 
smoothing. To quantify the sensitivity of each smoothing to knot numbers, based on 83 EC sites we then calculate 
the standard deviation ( σ ) between the smoothed GPP time-series calculated for different knots. Figure 2C shows 
the differences of σ between direct and integral smoothing for all the sites of different PFTs. For most of the sites 
belonging to CRO, GRA and ENF, σ for direct smoothing is higher indicating greater differences in smoothed 
GPP when different number of knots are used. Overall, Fig. 2C confirms the high objectivity (through low σ ) of 
integral smoothing to number of spline smoothing knots over the traditional direct smoothing method.

Smoothing of vegetation signals is the primary step to obtain phenological transition events. Hereafter, our 
analysis uses integral smoothing to obtain smoothed GPP time series in EC data. For consistency, in all the 
cases the number of knots used for integral smoothing is set to 10. Based on visual inspection we deduce the 
suitability of using 10 knots for all the EC sites. As already demonstrated in Fig. 2, integral smoothing is more 
robust towards the number of knots, therefore results might not perturb to a greater extent if knots are changed 
for instance from 9 to 12. Based on our analysis in Fig. 2 it can be ensured that the influence of number of knots 
is weaker for integral smoothing than the direct smoothing. We suggest to not use a lower number of knots (< 6) 
given it can produce over-smoothing. Conversely, higher knots number can result in over-fitting and incorporate 
too much variability that is not appropriate for calculating phenological transition dates.

Calculation of phenological transition dates and their trends.  In this study we calculate PTDs 
using two highly cited threshold and derivative methods. For the threshold method, the annual GPP is first 
normalized (0 to 1) using the minimum-maximum approach. The day of year corresponding to a given thresh-
old of normalized GPP curve is then identified, the first point is defined as SOS and the second as EOS. PTDs 
are calculated for every 0.05 increment in the threshold values ranging from 0.1 to 0.7. In addition to threshold 
methods, PTDs are also calculated from the first derivative of smoothed GPP cycle. Derivative method is viewed 
as an ecologically meaningful approach that is capable of handling multiple growth cycles33. Day of year with 

Figure 2.   (A) An illustration of Integral smoothing that obtains smoothed GPP through the derivative of its 
annual cumulative time series. Data is smoothed with spline function (10 knots) (B) Smoothed GPP obtained 
from direct and integral smoothing method using spline function at different knots (5–18). Data for A and B: 
year 2001, US-Bo1: Bondville eddy covariance site, Grassland. (C) Sensitivity of direct and integral smoothing 
to perturbations of the number of knots in 83 EC sites belonging to different PFTs. The sensitivity is obtained as 
the mean standard deviation ( σ ) of smoothed time-series for different knots (5–18). Higher standard deviation 
depicting high sensitivity to knots. The x-axis shows the difference between the standard deviation calculate for 
direct ( σDir ) and integral ( σInt ) smoothing.
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maximum value of first derivative are assigned as SOS and day with minimum as EOS. It should be noted that 
derivative method is sensitive to smoothing of GPP. One of our secondary objective of using derivative method 
is to examine how it compares to PTDs calculated from different thresholds.

For some sites and years, the annual GPP curve is not symmetric and the threshold might not be crossed twice 
in the same year. In such cases the start/end of season fall in the previous/next year. This technique is effective for 
ecosystem where the entire seasonal cycle does not occur in the same calendar year. Moreover, cases are identi-
fied when the threshold is crossed more than one day before or after the peak of season, a common observation 
specially in autumn phenology. For such cases, crossings closest to the peak of season are assigned as PTDs. 
For ecosystem with two growing season, the peak is assigned to the most productive growing season, meaning 
single SOS and EOS for one calender year. In principle our approach works well for EC sites in the southern 
hemisphere, since our method can look for SOS and EOS in the previous and next years. More information on 
our method is provided in a Python package called EasyPhenology34.

Trend analysis of PTDs is performed for 47 EC sites that have more than 10 years of quality data. Trends are 
calculated using the Theil-Sen estimator, which is resistant to the outliers and tends to lead accurate confidence 
intervals25. The Theil-Sen estimator is the median of all possible pairwise slopes in a time-series, defined as

Here, y represents PTD, and n is the total number of years.
SOS, EOS and growing season length (GSL = EOS − SOS) and their trends are calculated for different thresh-

old values. Please note, the trend in GSL is not the difference of the trends in EOS and trends in SOS, but is the 
trends of the difference between EOS and SOS. One of our primary objectives is to determine if the trends in 
PTDs vary significantly when PTDs are calculated from different threshold values. To quantify this we calculate 
the standard deviation among trends.

Results
Phenological transition dates and thier trends at different thresholds.  Our first objective is to 
quantify the differences between PTDs calculated from different thresholds and derivative method. Figure 3A 
shows the histograms of SOS and EOS obtained at different thresholds (0.1–0.7, with an increment of 0.05) for 
83 EC sites from different PFTs. Lower threshold values yield to earlier SOS, and delayed EOS. SOS and EOS 
obtained from 0.5 and higher thresholds are found to be closer to the one estimated from the first derivative 
method (in cyan). To illustrate the distinction between each thresholds. Figure 3B shows the bar plot of the 
differences between PTDs calculated from subsequent thresholds. In general, these differences are higher at 
lower thresholds and remain quite consistent ( by 3–4 days), as one moves towards the higher thresholds. When 
plotting the same for each PFTs, the differences among SOS are higher for evergreen needle leaf forest (ENF) at 
lower thresholds, representing their broader GPP seasonal curve and lower seasonal amplitude. For cropland, 
however, the differences are not so abrupt, indicating faster increase in GPP and their narrower GPP seasonal 
curve. Similar observations are important to understand that the user defined threshold values can influence 
interpretation of vegetation activities for different PFTs.

The variation among PTDs calculated at different thresholds are not fully documented in the literature, and 
their trends can vary considerably depending on the choice of threshold. Figure 4A shows trends of SOS, EOS 
and GSL obtained at different thresholds and using the first derivative method for each PFTs. We found that all 
PFTs show advancing SOS trends at lower thresholds that tend to become weaker or even positive for mixed 
forest (MF) at higher thresholds. Cropland (CRO) shows the strongest early shift in SOS which is likely human 
induced, as earlier sowing dates are adopted to offset the impacts of climate change. Evergreen needle leaf forest 
(ENF), Decidous Broadleaf forest (DBF) and MF show stronger earlier shift in SOS at lower thresholds. Trends in 
EOS are quite distinct among PFTs. Grassland (GRA) shows delayed EOS at higher (> 0.3) thresholds. MF sites 
show earlier shift in EOS at all the thresholds, relatively higher negative trends towards high thresholds. For DBF, 
EOS trends are positive at lower thresholds and to some degree negative at higher thresholds. The contrasting 
trends of SOS and EOS at different thresholds also impact the trends in GSL. Overall, trends in GSL increase 
at lower thresholds and decrease at higher thresholds. The increasing GSL trends at lower threshold are mostly 
defined by the advancing trends in SOS. At higher thresholds, trends in GSL are dominantly representing the 
advancing trends in EOS, except for grasslands.

To evaluate how these trends impact GPP seasonal cycle, Fig. 4B shows PTDs trends along with the median 
GPP annual cycles for each PFTs, shaded area encloses the lower (Q1) and upper (Q3) quartile. For visualization 
purposes, the trends are converted into 10 times the observed trends in days/decade. Amplification of trends is 
not intended for forecasting but doing so it is easier to comprehend the directions of PTDs trends in relation to 
mean GPP seasonal cycles. Overall, except GRA all the PFTs show earlier shift in SOS but for MF, SOS shows 
slight delay at high thresholds. CRO, ENF and MF display clear earlier shift in EOS, in DBF however earlier EOS 
is only visible at higher thresholds. Only in GRA a clear delay in EOS is present notably at high thresholds. In 
Fig. 4 results are aggregated for each PFTs but as apparent from the high variation of GPP seasonal cycle, specially 
among cropland and grasslands sites, sites within same PFTs might show distinctive trends.

Next, we investigate how trends vary at different thresholds for specific sites. Figure 5 shows the mean 
trends of SOS, EOS and GSL for EC sites located in the regions of North America and Europe. Symbols with a 
magenta border highlight the sites which show high standard deviation (> 0.5 days/decade for SOS and EOS, 
and > 0.5 days/decade for GSL) among trends obtained from different thresholds. The confidence interval for 
the high standard deviation is obtained from the bootstrapping method. For most of the sites, trends are strongly 
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dependent on the threshold choice: out of 47 sites, 18 sites show uncertain trends in SOS, 20 sites in EOS and 
29 sites in GSL trends when calculated using different threshold values. We did not find any strong association 
of uncertainty in trends to the PFTs or geographical distribution of sites. Also, the sites with uncertain trends in 
SOS did not always show uncertain trends in EOS. The uncertainty in trends can be due to the short length of 
the time series, for a signal that is prone to high inter-annual variability.

Shifting phenology and carbon uptake.  It is only reasonable to expect that shifts in phenological events 
influence the carbon balance of the ecosystem. In temperate ecosystems, earlier spring is associated with higher 
overall carbon assimilation simply because additional warmer days are available for photosynthetic activities35. 
Usually, to quantify relationship of PTDs and ecosystem productivity, analysis are performed for seasonal to 
annual scale. Here, we suggest an alternative approach that analyze immediate GPP changes around PTDs, 
which should contain dynamic information on GPP response to shifts in PTDs. To do so, we obtain long-term 
trends of GPP at weekly time scale. It is to pointed that we do not use weekdays for aggregating weekly GPP 
because when used for different years it can lead to mismatch in day of years. Instead, the weeks are redefined 
starting from the first day of the year, thereby each regression constitutes GPP observations from the aggregation 
of same days of the year.

Figure 6 shows mean GPP annual cycle, trends in PTDs and GPP trends at weekly time-step for two EC sites. 
The GPP annual cycle (in black) is calculated from the daily GPP data for all the available years and is shown 
here as a benchmark for the interpretation of GPP trends (in green). Each green point shows GPP trend over 
years for the week constituting of days of years on x-axis. Darker green points being significant trends (p value 
< 0.05) and lighter green points are the non-significant trends. One can do similar analysis for daily GPP data, 
but daily trends can be noisy and insignificant. We choose weekly time steps because it allows more data points 
that is 7 times the number of years and yield robust regressions. The mean trends in SOS (in blue) and EOS (in 
red) are displayed in the corresponding plot, for demonstration, these trends are shown for 0.5 threshold. Posi-
tion of SOS and EOS is depicted through the rectangles whose width in x-axis represents their variation along 
the years. In the Fr-Fon site, spring and autumn both advanced, in US-NR1 spring delayed and no trends are 
noticed in autumn. How representative these trends are can be assessed by the trends in weekly GPP. Clearly for 

Figure 3.   (A) Histograms of SOS and EOS obtained from different thresholds (see color bar) and first 
derivative method (cyan) (B)The bar plot of the median of the difference of PTDs at successive threshold values 
for SOS (blue) and EOS (red). Symbols show the median values for each PFTs.
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site FR-Fon/US-N1 the advance/delay in spring led to increasing/decreasing trends of GPP around the mean 
SOS/EOS. Strikingly, advancing EOS in FR-FOn is linked to decreased GPP trends around EOS.

Figure 6 A (for SOS) and B (for EOS) summarize the relationship of PTDs trends and immediate GPP trends 
[± 2weeks] around the mean PTDs for all EC sites. As already stated, PTDs at different thresholds can have 
variable trends. On that account, the linear regression is obtained for different threshold as well as for deriva-
tive method. In general, we found that the earlier/delayed trends in SOS/EOS is well correlated to the increased 
productivity (GPP trends) around ( ± 2 weeks) the SOS/EOS. The bar plots show the sensitivities of GPP trends 
around PTDs to the trends in PTDs, they are obtained from the slopes of the linear regressions shown in the 
upper plots. For both SOS and EOS the slope increases with thresholds till the threshold of 0.5 and afterwards 
the slope reduces at higher thresholds. The R2 shows the strength of the slope that is strongest for threshold 
values of 0.3 and 0.5 for SOS and at thresholds 0.2–0.3 for EOS. According to these analyses the GPP is highly 
sensitive to trends in PTDs around the mid thresholds. This is also the time when GPP increases most rapidly 
during the growing season. Lastly, Fig. 6C shows GSL trends and its relation to the seasonal productivity (SOS 
to EOS) of the ecosystem. Overall, trends in GPP are not strongly related to trends in GSL. This is also indicated 
via very weak R2 of the slope. When comparing the results for different thresholds, mostly increase in GSL is 
very weakly related to increase in GPP.

Discussion
The present study highlights the potential of eddy covariance data in examining phenological trends and the 
associated methodological challenges. Based on the thorough analysis of 83 EC sites we demonstrate that dif-
ferent smoothing and phenology detection methods can produce different phenological transition dates, and 
thus, user choice uncertainties must be addressed. To reduce the subjectivity in data smoothing, we presented 
integral smoothing method that is less sensitive to smoothing parameters in comparison to the traditional direct 

Figure 4.   (A)The mean trends in SOS, EOS and GSL at different threshold values for different PFTs. (B) 
Conceptualizing the amplified SOS and EOS trends (days/century) and depiction of their impact on GPP 
seasonal cycle shift. The dashed lines show the median trend with their error bar representing the lower and 
higher confidence interval obtained from the Theil-Sen estimator. Shaded area is the standard deviation of GPP 
cycle for all the sites in the specific PFTs. Arrows indicate the overall direction of the shift.
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smoothing of GPP data. Our approach is more robust to changes in smoothing parameters, yet not fully objective. 
However, it is much simpler and straightforward compared to previously suggested objective approaches such as 
logistic function of time36. To further optimize smoothing parameters we recommend to use generalized cross 
validation methods37 and explore a range of smoothing parameters. In our work we only used spline smoothing, 
but forthcoming research can benefit by further developing integral smoothing approaches for other functional 
and local fitting smoothing methods. The prospective approach of integral smoothing can be easily further tested 
for remotely measured vegetation indices that are correlated to GPP38,39 signals.

This work systematically estimated the phenological changes at different thresholds and evaluated their trends 
and impacts on GPP fluxes. PTDs calculated at different thresholds relate to different stages of vegetation activi-
ties that are otherwise not identified when only a single threshold value is used. We show that PTDs at different 
thresholds are associated to the shape of the GPP seasonal cycle. For larger GSL but lower seasonal amplitude 
of GPP such as in ENF, the differences in PTDs are significant among lower thresholds, as depicted in Fig. 3. 
The seasonal cycle of GPP of croplands and DBF, on the other hand, tend to be narrow with a larger seasonal 
amplitude. We suggest that for multi-site analysis the optimal threshold value for PTD calculation could be a 
function of the width and amplitude of GPP seasonal cycles. Along these lines, a recent remote sensing study 
developed a regionally modified threshold algorithm to improve PTD retrievals for ecosystems with low seasonal 
amplitude40. In the present study, the threshold was prescribed for the whole growing season to retrieve SOS 
and EOS but previous studies have used in-season thresholds for cases when spring and autumn had different 

Figure 5.   The mean trends in SOS (A), EOS (B) and GSL (C) at different threshold values for EC sites, see the 
color bar. Symbols represent different PFTs. Magenta border highlights sites with high uncertainty among trends 
at different thresholds. Sites with uncertain SOS and EOS trends are defined when the standard deviation is 
greater than 0.5 days/decade among trends at different thresholds. For GSL the uncertain sites are the sites with 
the standard deviation greater that 1 day/decade among trends at different thresholds.
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minima41. Similarly, in the case of asymmetric or bimodal GPP seasonal cycles, separate threshold values should 
be carefully selected for SOS and EOS calculations.

Our results show overall advancing trends in SOS at lower thresholds for all the PFTs except in grasslands. 
These findings are in agreement with the previous work based on EC sites13. Our analysis show weaker and 
uncertain EOS trends at lower thresholds, that might explain findings from the prior study13, where EOS was 
also retrieved at a lower (0.25) threshold. In certain cases for CRO, GRA and DBF, delayed EOS was observed at 
lower thresholds that is consistent with remote sensing findings42–44. However, not many studies explore trends 
of EOS at higher thresholds. According to our study, advancing EOS trends are prominent at higher thresholds 
in the majority of PFTs. Strong trends of EOS at higher thresholds are justifiable since most important climatic 
effect on the pigment pools degradation occur at the beginning of the autumn decay. On contrary, autumn 
penology at lower thresholds can be influenced by other mechanistic player such as wind induced leaf litterfall 

Figure 6.   Representation of the mean trends in SOS (in blue) and EOS (in red) and weekly trends in GPP (in 
green, left-hand side y-axis) for two EC sites. Blue and red rectangles show the mean positions of SOS and EOS 
and the numbers show their mean trends in days/decade. The points with significant GPP trends are depicted 
in darker green color. For reference the mean annual GPP cycle is shown in black color (right-hand side y-axis). 
(A) (for SOS) and (B) (for EOS) show the scatter plot of PTDs trends and GPP trends around PTDs (± 2 weeks) 
for PTDs obtained at different threshold (see color-bar, cyan for values obtained from first derivative method). 
The slope shows the sensitivity of GPP trends to PTDs trends (slope), obtained from the linear regression of the 
scatter plots for each thresholds and R2 shows the strength of the slope. (C) show similar plot for GSL and sum 
of GPP trends from SOS to EOS.
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that might outclass the impact of climate change. Similarly, PTD calculated at lower thresholds are also prone 
to processes occurring in the understorey, that can be quite different depending on sites and site management.

Another promising finding show increasing trends in GSL at lower thresholds due to earlier shift in SOS at 
lower thresholds but decreasing trends at higher thresholds due to earlier shift in EOS at higher thresholds. This 
raises concerns about calculating GSL trends when SOS and EOS are obtained from the same threshold value. 
GSL trends are more indicative of ecosystem functioning when SOS is calculated from lower threshold and EOS 
from the higher threshold. Alternatively, GSL and its trends can be calculated for different sets of thresholds 
depending on the respective vegetation stage.

Even though our analysis were aggregated for different PFT types, the trends among PFTs and thresholds are 
still variable and uncertain for different EC sites. This may be due to the limited length of the time series of EC 
data and strong inter-annual fluctuations leading noise in trend analyses. To find the optimal threshold that best 
represents vegetation activity, integration of ground citizen phenological observations45,46 to EC observations 
could be beneficial. Moreover, complementing EC sites with digital cameras is also advocated for the objective 
measure of phenological stages47,48.

Our findings have important implications on investigating the link between PTDs trends and its influence 
on the ecosystem productivity. So far, previous studies focused on seasonal scale changes in phenology. For 
instance, based on a biophysical models and EC data, Baldocchi et al.49 estimated that at temperate deciduous 
forests one day increase in growing season length enhances the net ecosystem CO2 exchange by 5.9 gCm−2 . 
Later Richardson et al.50 used spatial and temporal patterns of 21 FLUXNET sites to quantify the relationship 
between productivity and phenology through the spring time (April–June) carbon flux integrals. Several other 
studies also look into the individual contribution of SOS and EOS shifts on the net carbon uptake during growing 
season51,52. Following these advances, we extended GPP trend analysis for a much finer weekly scale. We found 
strong relationship of earlier shift in SOS/EOS to increased/decreased trends of immediate primary productivity. 
However, no strong relations were noted in the seasonal scale, indicating compensating effect of phenological 
shifts. Similar compensating effects are reported in relation to water availability and ecosystem productivity. A 
previous study53 showed that the declining net ecosystem productivity was attributed to late season summer 
drought induced by earlier onset of spring. For future studies, we advocate trend analysis of other confounding 
factors such as temperature, water and light availability to explicitly understand their individual role in shaping 
ecosystem productivity.

This research could provide insights into the relative importance of phenological shifts in driving seasonal 
scale trends in GPP. In future studies, it would be valuable to explore the individual contributions of shifting 
phenology on vegetation productivity in comparison to the influences of natural disturbances29, carbon fixation54 
and nutrient availability55, which are also significant drivers of global greening trends56,57. By examining these 
factors separately, we can gain a deeper understanding of their respective impacts on vegetation productivity.

Conclusion
Amidst surging interest in vegetation phenology, use of EC data is still limited due to underlying methodological 
challenges. In this work we first present an integral smoothing approach that reduces subjectivity in the smooth-
ing of GPP time series. Moving forward, integral smoothing could be further developed for other vegetation 
indices. Calculating PTDs is among other key issues and till date there is no general consensus on the optimal 
method. Our detailed and systematic analysis on PTD calculation at different thresholds outlines reasonable 
concerns on using a single threshold and call for a systematic use of multiple thresholds in phenological studies 
from satellite, phenocam and flux observations. PTD trends can vary in magnitude or even in direction when 
different thresholds are used. In general, vegetation from different PFTs show stronger earlier shifts in SOS at 
lower thresholds. On the contrary, EOS trends were variable at lower thresholds, but showed gradually advancing 
trends at higher thresholds. These findings should be considered when selecting thresholds for specific ecosys-
tems, seasons and PFTs. Within this framework we presented GPP trends at weekly scales, providing quantitative 
insights into the impact of PTD shifts on ecosystem productivity. Annual seasonal productivity were only weakly 
related to growing season length, besides, this relationship can vary with the threshold values. Our findings show 
that the shifts in PTDs mainly impact the immediate productivity around PTDs, while the seasonal productivity 
can depend on other confounding factors such as water availability and radiation. Overall, this study addresses 
the existing methodological challenges and present new perspectives to improve the use of EC data in measuring 
vegetation phenological responses to climate change.
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Site ID (PFT) Data source DOI

AT-Neu* (GRA) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​21

AU-DaP (GRA) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​23

BE-Bra* (MF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

BE-Lon* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

BE-Vie* (MF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CA-Gro (MF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​34

CA-Man (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​35

CA-Oas* (DBF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​43

CA-Obs* (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​44

CA-Qfo (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​45

CA-TP1 (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​50

CA-TP3 (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​52

CA-TP4* (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14400​53

CH-Aws (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CH-Cha* (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CH-Dav* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CH-Fru* (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CH-Lae* (MF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CH-Oe1 (GRA) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​35

CH-Oe2* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CZ-BK1* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CZ-BK2 (GRA) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​44

CZ-RAJ (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

CZ-Stn* (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Geb* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Gri* (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Hai* (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Hzd (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Kli* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Lnf (DBF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​50

DE-Obe* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-RuR (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-RuS (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-RuW (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DE-Tha* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

DK-Sor* (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FI-Hyy* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FI-Let (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FI-Sod* (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​60

FR-Aur* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FR-Bil (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FR-Fon* (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FR-Gri* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FR-Hes (DBF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

FR-LBr (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​63

FR-Lam* (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IL-Yat* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-BCi (CRO) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-Col (DBF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​67

IT-Lav* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-MBo* (GRA) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-Ren* (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-Ro1 (DBF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​74

IT-Ro2 (DBF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​75

IT-SR2 (ENF) WarmWinter2020 https://​doi.​org/​10.​18160/​2G60-​ZHAK

IT-SRo* (ENF) FLUXNET2015 https://​doi.​org/​10.​18140/​FLX/​14401​76
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Data availability
The datasets analysed during the current study are publicly available at FLUXNET 2015 (https://​fluxn​et.​org/​
data/​fluxn​et2015-​datas​et/), ICOS warm winter 2020 (https://​www.​icos-​cp.​eu/​data-​produ​cts/​2G60-​ZHAK) and 
AmeriFlux FLUXNET (https://​ameri​flux.​lbl.​gov/​data/​about​data/), all of which were processed using the OneFlux 
processing pipeline30. The site information is summarized in the following table. For general analysis of Figure 2 
and Figure 3, 83 EC sites are used. For the trend analysis, 47 EC sites that have more than 10 years of quality data 
are used. More information on data of individual sites is available at the DOIs provided in Table 1.
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