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Abstract 
 

Objective 

In our recent work pertinent to modeling of brain stimulation and neurophysiological recordings, 

substantial modeling errors in the computed electric field and potential have sometimes been 
observed for standard multi-compartment head models. The goal of this study is to quantify those 

errors and, further, eliminate them through an adaptive mesh refinement (AMR) algorithm. The 
study concentrates on transcranial magnetic stimulation (TMS), transcranial electrical stimula t ion 
(TES), and electroencephalography (EEG) forward problems.  

 

Approach 

We propose, describe, and systematically investigate an AMR method using the Boundary 
Element Method with Fast Multipole Acceleration (BEM-FMM) as the base numerical solver. The 
goal is to efficiently allocate additional unknowns to critical areas of the model, where they will 

best improve solution accuracy.  
 The implemented AMR method’s accuracy improvement is measured on head models 

constructed from 16 Human Connectome Project subjects under problem classes of TES, TMS, 
and EEG. Errors are computed between three solutions: an initial non-adaptive solution, a solution 
found after applying AMR with a conservative refinement rate, and a “silver-standard” solution 

found by subsequent 4:1 global refinement of the adaptively-refined model.  
 

Main Results 

Excellent agreement is shown between the adaptively-refined and silver-standard solutions for 
standard head models. AMR is found to be vital for accurate modeling of TES and EEG forward 

problems for standard models: an increase of less than 25% (on average) in number of mesh 
elements for these problems, efficiently allocated by AMR, exposes electric field/potential errors 
exceeding 60% (on average) in the solution for the unrefined models.  

 
Significance 

This error has especially important implications for TES dosing prediction – where the stimula t ion 
strength plays a central role – and for EEG lead fields.  Though the specific form of the AMR 
method described here is implemented for the BEM-FMM, we expect that AMR is applicable and 

even required for accurate electromagnetic simulations by other numerical modeling packages as 
well. 

 

Keywords 
Transcranial magnetic stimulation, Transcranial electrical stimulation, Electroencephalography, 
Numerical modeling, Adaptive mesh refinement 
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1. Introduction 
In the last decade, noninvasive electrical neurostimulation methods have been increasingly popular 
topics of research and application for a wide variety of psychiatric disorders. Transcrania l 
magnetic stimulation (TMS), in which an electromagnetic coil placed on the scalp induces 

electrical currents in the brain, has been applied to depression [1], anxiety [2], and addiction [3], 
among other uses. Transcranial electrical stimulation (TES), in which electrodes placed on the 

scalp inject current directly through the intervening tissues into the brain, has been applied to study 
problems including Alzheimer’s Disease [4], depression [5], and epilepsy [6]. 
Electroencephalography (EEG) has been applied in conjunction with both TMS and TES 

[4][5][6][7] to quantify and localize neuronal responses to stimulation by these methods. 
 As these methods have been applied to more problems and with greater requirements for 

precision, pre-stimulation planning and post-stimulation analysis have become vital components 
of experimental design. The planning and analysis both have been relying increasingly on accurate 
numerical electromagnetic analysis by open-source packages such as SimNIBS [8], ROAST [9], 

and BEM-FMM [10]. Such methods, however, are only as accurate as the computational models 
upon which they operate – frequently segmented from MRI data by medical image processing 

packages such as headreco [30]. In 2020, Gomez et. al. [16] carried out an investigation on, among 
other parameters, the necessary computational mesh resolution to accurately simulate TMS trials 
under various electromagnetic solver formulations. The process was time and attention intensive, 

requiring construction of progressively higher and higher resolution meshes and comparison 
against a presumed-accurate result. The meshes in this study were refined globally, resulting in a 

4x increase in number of surface elements per refinement level or a staggering 8x increase in 
number of volumetric elements per refinement level. These are steep prices to pay for guarantees 
of accurate simulation, but are the only available means to achieve such a guarantee without a 

more efficient mechanism. 
 To this end, we introduce, investigate, and describe a fast, automated adaptive mesh 
refinement (AMR) method applicable to TES, TMS, and EEG modeling problems. AMR is 

understood as an automated local refinement of a computational mesh in domains where the 
discretization error is highest. It is repeated until a user-specified convergence criterion (e.g. 

relative error between two iterations becomes less than 0.1%) or termination criterion (30 AMR 
steps elapsed) is met. AMR is a chief feature of high-end commercial ANSYS FEM (Finite 
Element Method) software for demanding low-frequency, high-frequency, and power applications 

[15]. The method is implemented and tested as an extension of our Boundary Element Fast 
Multipole Method (BEM-FMM), which has been applied to model all three mentioned 

stimulation/recording modalities [10][11][12] in addition to other problems [13][14]. To our 
knowledge, none of the other major electromagnetic modeling packages for electromagnetic brain 
stimulation offer an AMR method to date. 

 Refinement can take two main forms: a geometric bisection of a given element (“h-
refinement”) or an increase of the local approximation order (“p-refinement”). In this study, we 

consider only h-refinement. Given an initial finite element approximation, the basic idea of an h-
adaptive method is to create a refined partition by subdividing those elements where local error 
estimators indicate that the error is large; the next approximation to the solution is computed using 

the newly created model, and the process repeats. Because of their success in practice, the use of 
such adaptive methods has become more widely spread in recent years [17][18][19][20]. For the 

boundary element method (BEM), a similar methodology applies [21][22].  
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  In contrast to FEM-based solvers, BEM-FMM is capable of unconstrained numerica l 
resolution. It is capable of computing the electric field and potential (or pseudo-potential) at any 

given observation points, including points not known a priori and points arbitrarily close to model 
interfaces [10]. Where FEM-based methods must introduce additional volumetric elements to 

support such observation points in regions of rapidly-varying E-field, the BEM-FMM can compute 
a non-interpolated result that is nearly exact for the given (inexact) model geometry and the zeroth-
order charge density residing upon it. Adaptive mesh refinement for BEM-FMM was initia l ly 

introduced in [27] to accurately determine the effects of thin meningeal layers on TMS and TES 
problems. However, no systematic investigation of the method had yet been carried out and no 

other applications except for meningeal layers have been considered. 
 In this work, we introduce and describe the full implementation of an efficient adaptive 
mesh refinement algorithm for BEM-FMM. We systematically evaluate the accuracy 

improvement achieved due to AMR for TMS, TES, and EEG forward problem classes on realistic 
human head models. The source code is available for download in an OSF repository [23]. 

 

2. Materials and Methods 
2.1. Charge-Based Formulation of the Boundary Element Fast Multipole Method 

For TMS, TES following a current-based electrode approximation, and EEG, the BEM-FMM is 
formulated as a Fredholm equation of the second kind [10][12]. For TES problems following a 

voltage-based electrode approximation, the method additionally incorporates a Fredholm equation 
of the first kind via weak (additive) coupling [11]. 

 The present BEM-FMM makes several assumptions about the problem being modeled.  
First, it assumes that the model can be divided into compartments of homogeneous, linear, 
isotropic, conductive media. Second, it assumes that any electromagnetic waves have a very long 

wavelength compared to the model dimensions, so that the problem is quasi-static in nature. Third, 
it assumes that any secondary magnetic fields are negligible in magnitude compared to any primary 
magnetic fields. 

 Following the assumption that compartments of the model are conductive, electric charges 
cannot accumulate in the volume. They must instead accumulate as surface charges at interfaces 

(boundaries, surfaces) between materials of different conductivities. Under the quasi-static 
assumption, these accumulated surface charges are sufficient to fully characterize (via Coulomb’s 
Law) the secondary electric field 𝑬𝑆(𝒓), which can be added to the primary electric field 𝑬𝑃(𝒓) to 

recover the total electric field 𝑬(𝑟) = 𝑬𝑃(𝒓) + 𝑬𝑆(𝒓) at any arbitrary observation point 𝒓 inside, 
outside, or on a surface of the model. The electric potential 𝑉(𝒓) can be similarly recovered at any 

arbitrary observation point. 

 The BEM-FMM solution procedure is carried out in two main steps to most efficient ly 
utilize the FMM. The first step is to solve for the charge density 𝜌(𝒓) that arises on interfaces 

between different materials due to a primary (external) electric field or enforced electric potential.  
The second step is to recover field quantities of interest (e.g. electric field, voltage, current density) 

at any observation points in terms of the primary field and the surface charges induced by that 
primary field. 
 Eq. (1) (cf. [10][1]) is the continuous form of the integral equation when the excitation 

can be written as a primary (external) electric field 𝑬𝑝(𝒓). 
 

𝜌(𝒓)

2
− 𝐾(𝒓)𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

= 𝐾(𝒓)𝒏(𝒓) ∙ 𝜀0𝑬𝑝(𝒓), 𝒓 ∈ 𝑆 (1) 
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Here, 𝑆 is the set of all points (ℝ3) lying on any boundary (surface) 𝑆 between two materials of 

different properties, 𝒓 is an arbitrary point on a boundary, 𝜌(𝒓) is the surface charge density at 𝒓, 

𝐾(𝒓) =
𝜎𝑖𝑛 −𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 +𝜎𝑜𝑢𝑡
 is the contrast between the conductivity just inside (𝜎𝑖𝑛) and just outside (𝜎𝑜𝑢𝑡 ) 

the boundary on which 𝒓 lies, 𝒏(𝒓) is the unit vector normal to the boundary at 𝒓, 𝜀0 is the 
permittivity of free space, and 𝑬𝑝(𝒓) is the primary electric field incident on the boundary at 𝒓. 

This equation is to be solved for the surface charge density 𝜌(𝒓). 

 For TMS, the primary electric field 𝑬𝑝(𝒓) on the right-hand side of Eq. (1) can be written 

in terms of the magnetic vector potential applied by the coil when driven by a time-varying electric 
current as described in Appendix A of [10]. For TES electrodes that are assumed to inject a uniform 

current flux density over their area, the primary electric field can be written in terms of the injected 
current density and the conductivity of the interior tissue (and set to zero for any facet that does 

not touch an electrode) [11]. For EEG, the primary field radiates from clusters of charge dipoles 
and can be evaluated by FMM-accelerated application of Coulomb’s Law [12]. 
 Certain problems modeled by the BEM-FMM cannot be straightforwardly written in terms 

of a primary electric field. For example, if electrodes in a TES problem are assumed to mainta in 
constant electric potentials on their surfaces, then the injected current flux density is not necessarily 

spatially constant and cannot be used to estimate a primary electric field. In this case, the primary 
electric field is 0 everywhere, and an additional constraint (specified in Eq. (2) below) is additive ly 
coupled into the integral system: 

 

1

4𝜋𝜀0

∫
𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑆

𝑑𝒓′ = 𝑉(𝒓), 𝒓 ∈ 𝑆 (2) 

 
Here, 𝑉(𝒓) denotes the electric potential that is externally enforced at 𝒓 on any boundary. For 

locations that do not touch electrodes or otherwise have an enforced voltage, 𝑉(𝒓) = 0. This is a 

Fredholm equation of the first kind. 
 The head model is constructed as a collection of triangular surface meshes representing the 
boundaries between different tissues. The charge density is expanded in terms of zeroth-order 

(pulse) basis functions – in other words, the charge density 𝑐𝑚 is assumed to be constant over the 

entire surface of any individual facet m, but may vary facet-to-facet. Discretizing Eq. (1) via the 
Galerkin method, Eq. (3) is obtained. 
 

𝑐𝑚

2
−

𝐾𝑚

𝐴𝑚

∑ (𝒏𝑚 ∙ ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚 𝐴𝑛

) 𝑐𝑛

𝑀

𝑛=1

=
𝐾𝑚

𝐴𝑚

𝜀0 ∫ 𝒏𝑚 ∙ 𝑬𝑝(𝒓)𝑑𝒓
𝐴𝑚

, 𝑚 = 1: 𝑀 (3) 

 
In Eq. (3), 𝑀 denotes the total number of triangular surface elements in the model. Eq. (3) can be 

rewritten in matrix form as  
 

𝑹𝒄 = 𝒃 (4) 
 
Note that the matrix 𝑹 is never explicitly constructed in the BEM-FMM; instead, the FMM is 

applied in conjunction with a sparse near-field correction to directly compute the matrix-vector 

product 𝑹𝒄 when necessary. The on-diagonal elements 𝑅𝑚,𝑚 =
1

2
 describe the self-interaction of 
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the planar charge density on triangle 𝑚. The off-diagonal elements 𝑅𝑚,𝑛 describe the average 

normal component of the E-field contributed to triangle 𝑚 by a charge density 𝑐𝑛 residing on 

triangle 𝑛: 

  

𝑅𝑚,𝑛 = −
𝐾𝑚

𝐴𝑚

𝒏𝑚 ∙ ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚 𝐴𝑛

,  𝑚 ≠ 𝑛 (5) 

 
For triangles sufficiently distant (> 2 to 5 average triangle radii) from each other, 𝑅𝑚,𝑛 can be 

approximated as: 

 

𝑅𝑚,𝑛 = −
𝐾𝑚

𝐴𝑚

𝒏𝑚 ∙ ∬
1

4𝜋

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝐴𝑚 𝐴𝑛

 ≈ −
𝐾𝑚𝐴𝑛

4𝜋
𝒏𝑚 ⋅

𝒓𝑚 − 𝒓𝑛

|𝒓𝑚 − 𝒓𝑛|3
,  𝑚 ≠ 𝑛 (6) 

 
where 𝒓𝑚 and 𝒓𝑛 denote the respective centroids of triangles 𝑚 and 𝑛. Interactions of this form 

can be accelerated dramatically by the FMM. For triangles close to each other, the full double 

integral over both triangles must be precomputed and applied as a correction to the FMM-
accelerated initial computation. 
 In the matrix equation formulation, the elements 𝑏𝑚  of 𝒃 are straightforwardly given by 

𝑏𝑚 =
𝐾𝑚

𝐴𝑚

𝜀0 ∫ 𝒏𝑚 ∙ 𝑬𝑝(𝒓)𝑑𝒓
𝐴𝑚

, 𝑚 = 1: 𝑀 (7) 

 
The system is solved iteratively for 𝒄 using the Generalized Minimum Residual Method 

(GMRES). Once the charge solution 𝒄 is known, the electric field can be recovered at any 

observation point not residing directly on a model surface according to Coulomb’s law Eq. (8): 
 

𝑬(𝒓) = ∑ (∫
𝑐𝑚

4𝜋𝜀0

(𝒓 − 𝒓′)

|𝒓 − 𝒓′|3
𝑑𝒓′

𝐴𝑚

)

𝑀

m=1

, 𝒓 ∉ 𝑆 (8) 

 
This computation can be similarly accelerated via the FMM. 

 
2.2. Accuracy limit: 0th order (pulse) basis functions 

As stated, the BEM-FMM solves for the charge density that accumulates at interfaces between 
tissues of differing conductivities. From this charge density, any quantities of interest (e.g. electric 
field, current density, or electric potential) can be recovered at arbitrarily-positioned observation 

points, including observation points very close to or lying on the charged interfaces. Under the 
assumption that the BEM-FMM has produced a physically realistic and accurate charge 

distribution, the desired quantities can be computed at arbitrary observation points with high 
accuracy. 
 The assumption of a realistic charge distribution may sometimes be violated due to the 

BEM-FMM’s use of zeroth order (pulse) basis functions. These basis functions effectively hold 
the charge density spatially constant over the area of any given triangle. In complex regions of the 

model – for example, in regions of sharp curvature or with multiple boundaries in close proximity 
– the initial mesh may not provide enough facets to support a charge density that varies sufficient ly 
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rapidly in a spatial sense. Such infidelity can give rise to multiple sources of error. The more benign 
is a local error that affects accuracy of field calculations at observation points in the vicinity of the 

complex region. The more insidious is error that affects triangle-to-triangle interactions during the 
solver’s iterative phase, as this error can propagate to distant regions of the model. As will be 

shown, EEG and TES forward problems are particularly susceptible to this latter error because 
their primary electric fields are localized to small regions and depend on triangle-to-triangle 
interactions to propagate their effects through the model. 

 
2.3. Algorithmic Description: Adaptive Mesh Refinement Applied to BEM-FMM 

To mitigate the aforementioned shortcoming of the zeroth order basis functions, an AMR scheme 
was incorporated into the BEM-FMM. This scheme is based on h-refinement, meaning that it 
operates by subdividing existing mesh elements into a larger number of smaller elements. It aims 

to improve the quality of the initial charge solution and subsequent electric field reconstructions 
by selectively increasing the mesh resolution in critical or complex areas of the model, without 

unnecessarily increasing mesh resolution in areas experiencing fields or charge densities with low 
spatial variation. It efficiently allocates additional degrees of freedom in the locations where they 
will best improve solution accuracy. 

 As currently implemented, the BEM-FMM augmented by AMR is carried out in alternating 
steps of “Solve” and “Refine”. During the “Solve” step, the incident stimulus/constraints are 

applied to the current version of the model, and the charge solution is obtained using an iterative 
solver (GMRES). To preserve existing solution progress, the final charge density solution 𝒄 from 

the prior model step is chosen as the initial estimate for the charge density solution for the current  
model. During the “Refine” step, the current model and solution are evaluated, certain facets are 

selected for subdivision, and neighbor integrals are recomputed. The “Refine” step creates a new 
model that has the same geometry as the prior model but introduces a greater number of unknowns. 
 Facets are selected for subdivision according to the total charge upon them (i.e., 𝑄𝑚 =
𝑐𝑚𝐴𝑚 , where 𝐴𝑚  is the area of facet 𝑚). For each surface in the model, a user-specified proportion 

𝑟 of facets belonging to that surface are selected for refinement in order of highest to lowest 

absolute value of total charge. This allocation on a per-surface basis distributes the locations of 
refinement throughout the model, as otherwise they would tend to be allocated exclusively to the 
location of the strongest source (e.g. TES electrodes). Distributing the locations of refinement in 

this manner helps smooth the convergence of the solution and prevent instances where the error 
function reaches a local minimum. 

 Refinement is performed via simple barycentric subdivision, wherein three additiona l 
vertices are inserted at the midpoints of each selected triangle’s edges to break it into four sub-
triangles. These new triangles are coplanar with and similar to the original triangle. No remeshing 

operation needs to be performed to restore mesh connectivity or manifoldness, as the BEM-FMM 
with zeroth-order pulse bases is unaffected by mesh manifoldness or lack thereof. This is a chief 

advantage of the proposed method.  
 The new triangles inherit the charge density of the original triangle to preserve solution 
progress. The charge density is not scaled upon inheritance since it is by definition already 

expressed per unit area. Fig. 1 shows an example of a small region of a mesh after multiple adaptive 
refinement steps. 

 Multiple termination criteria can be defined for the adaptive refinement method. A natural 
termination condition may involve, for example, monitoring the convergence of the electric field 
in a predefined region of interest (ROI) and terminating when the relative error between adaptive 
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steps drops below a predefined threshold. This is the termination condition used in this study. 
Another natural metric is the error between the charge density (solution) vectors produced by 

subsequent AMR steps, which would decrease the computational time required by removing the 
need to carry out (e.g.) an E-field recovery step after every AMR pass.  

 
2.4. Expected Performance of Adaptive Mesh Refinement 

If 𝑟 denotes the refinement rate (fraction of facets refined per adaptive pass) and 𝑘 denotes the 

number of adaptive passes applied, then the number of facets (unknowns) in the mesh after 

refinement is given by: 
 

𝑀′ = 𝑀(1 + 3𝑟)𝑘 (9) 

 
Where 𝑀 and 𝑀′ denote the total number of facets pre- and post-refinement, respectively. If the 

average mesh edge length in the model pre-refinement is denoted by 𝑙, then the edge length 𝑙′ of 

an average facet subjected to maximum possible refinement is given simply by  
 

 𝑙′ =
𝑙

2𝑘
 (10) 

 
Eqs. 9 and 10 show that this implementation of adaptive mesh refinement grows the model 

exponentially and is capable of increasing the mesh resolution exponentially in critical regions. If 

the number of AMR iterations were to approach infinity, it is expected that all discrete charges 𝑄𝑚  

present in the model would be drawn equal to each other. 
 To put these equations into perspective with reasonable values of 𝑘 and 𝑟 (used during 

preliminary investigations for TES and EEG), consider Connectome Subject 110411 of the Human 
Connectome Project [28][29] meshed by the commonly used headreco pipeline [30]. Pre-

refinement, this model has 1.04 M facets and average edge length 1.44 mm. After 16 adaptive 
refinement steps at a refinement rate of 1% per step (𝑘 = 16; 𝑟 = 0.01), the number of facets 

(unknowns) would increase by 60.5% to 1.67 M facets. If a certain average facet in a critical region 
were subdivided on every adaptive pass, its edge length would be scaled by a factor of 1.526e-5, 

resulting in a final edge length of 22.0 nm. 
 By contrast, suppose one iteration of global barycentric subdivision were applied. The 
mesh size would increase by 300% (total 4.16 M facets), but the edge length would only be scaled 

by a factor of 0.5: an average edge would decrease from 1.44 mm to 0.72 mm. Compared to global 
refinement, adaptive mesh refinement applied in this format is capable of increasing the mesh 

resolution to very high levels in vital regions while allocating the new unknowns efficiently. 
 
2.5. Human Head Models Under Test 

The human head models considered in the following accuracy tests are 16 subjects from the Human 
Connectome Project [28][29]. Surface mesh models for these subjects were generated using the 

headreco pipeline [30]. These models have 1.06 M facets on average, have an average triangle 
edge length of 1.43 mm, and contain seven tissues. The tissues are air, skin, skull, cerebrospinal 
fluid, gray matter, white matter, ventricles, and eyes as shown in Fig. 2 c,d. In general, we refer to 

a given boundary by the name of its interior tissue. For example, the “gray matter surface” would 
refer to the GM/CSF boundary. 
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 A second set of models was derived based on these 16 Connectome subject models in the 
spirit of our prior work [27], where we investigated the impact of meningeal layers that are not 

commonly segmented by the major packages. These 16 extended models contain additional tissue 
boundaries constructed by expansion or contraction of existing boundaries as shown in Fig. 2e,f. 

The skin volume was subdivided into layers of skin, fat, and muscle. The skull volume was 
subdivided into two layers of cortical bone separated by one layer of cancellous (spongy) bone. 
Layers representing the dura mater, arachnoid mater, and pia mater were introduced in the CSF 

volume outside the GM. In this study, we are proposing to add to existing segmentations skin, fat, 
and muscle of the scalp, outer table, diploë, and inner table of the skull, and three brain meninges, 

all via known anatomical rules: 

 Scalp→skin, fat, muscle. To partition space between skin and bone shells, the following 

data can be used: skin – 20%, fat – 40%, muscle – 40%. These values are widely used in safety 
studies for MR RF coils ([34] and other sources cited there). Other references (e.g., [33]) predict 
the conductivities. 

 Skull→outer table, diploë, inner table. Based on data from [35]-[39] for 300 subjects, the 

following estimates can be deduced in the frontal lobe: outer table (cortical) – 30%; diploë 

(cancellous) – 40%; inner table (cortical) – 30%. For the parietal lobe, the diploë thickness may 
exceed 50% [39]. The following values can be used there: outer table – 30%; diploë – 50%; inner 

table – 20%. A smooth transition is automatically made from one lobe to another. Variations of 
this scheme are easily programmable. The conductivity values from [31] can be used: cortical 
bone: 6.4 mS/m, cancellous bone: 29 mS/m. 

 CSF→dura mater, arachnoid, true CSF, pia mater. Here, we can use integral data given 

in [32], [40]-[43]: 1.11 mm for dura, 0.2 mm for arachnoid, and 0.1 mm for pia mater except in 

the longitudinal fissure. Further algorithmic details are given in [27]. The final models have 1.59 
M facets on average with an average triangle edge length of 1.45 mm. 

 It is critical to note that these 14-tissue models are introduced for the sole purpose of testing 
the AMR method, and not for the purpose of comparing their solutions against their corresponding 
7-tissue models. Based on previous work [27], it is expected that the extra tissues have a substantia l 

impact on TES and EEG simulations, and that accurate segmentation of these tissues will be 
necessary for future applications. The construction of these tissues based on anatomical rules 

represents an attempt to characterize the solvability and convergence of this future class of 
problem. The solutions themselves may be inaccurate due to the conjectural nature of the models. 
 Tables 1 and 2 contain the conductivities assigned to each tissue type appearing in the 14-

tissue and 7-tissue models, respectively. Entries marked by an asterisk (*) denote values that were 
computed by a weighted average of composite tissues’ individual conductivities. The “Skin” 

conductivity for the 7-tissue model was computed by a weighted average of the “Skin”, “Fat”, and 
“Muscle” conductivities from the 14-tissue model with weights assigned according to relative 
thicknesses of these layers. Similarly, the “Bone” conductivity for the 7-tissue model was 

computed by a weighted average of the “Cortical Bone” and “Trabecular Bone” tissues. 
 

2.6. Testing Impact of AMR: General Setup 

To explore the impact and importance of AMR itself, three distinct quasi-static modalities of 
forward problem were investigated: TES, TMS, and EEG. Simulations were carried out both on 

the simple 7-tissue models and on the complex 14-tissue models. In all cases, the source either 
targets (TES, TMS) or originates in (EEG) the left motor hand area (M1HAND ). 
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 For each model and each forward problem mode, three solutions were computed. The 
initial solution was found by solving the model as-is, without invoking AMR. The second solution 

was found after subjecting the model to AMR with the following parameters: refinement rate = 
1% of facets per step, maximum number of refinement steps = 30, and E-field (TES, TMS) or 

voltage (EEG) in the observation region changes by less than 1% from one AMR pass to the next. 
The final solution was computed after subjecting the adaptively-refined model to a final global 
refinement step, where every facet in the adaptively-refined model was indiscrimina te ly 

subdivided into four sub-facets. These solutions will be referred to respectively as the “standard” 
(STD), “adaptive mesh refinement” (AMR), and “reference” (REF) cases. 

 Errors were computed between the STD/REF, STD/AMR, and AMR/REF solutions in 
manners appropriate for the mode of forward problem. The first error describes the amount of 
improvement possible due to adaptive mesh refinement. The second describes the improvement 

achieved by applying adaptive mesh refinement with the stated configuration. The third 
describes the remaining available improvement that could be achieved through a higher 

refinement rate or stricter convergence criterion (greater number of AMR steps). 
 Most simulation parameters were consistent across the problem classes, and they were set 
to extremely conservative values to minimize sources of error unrelated to the adaptive mesh 

refinement method. Table 3 summarizes these common simulation parameters, together with 
typical values that may be used for simple or difficult problems as a reference. 

The FMM precision was set to 1e-6, where a value of 1e-2 is sufficient for typical problems 
and 1e-4 is usually used for difficult problems. For almost all invocations of GMRES, the 
termination criteria were (a) relative residual of 1e-5 or (b) 50 iterations elapsed (a condition which 

was required when dealing with the 14-tissue models). Since GMRES is invoked on every adaptive 
step and the solution vectors are rolled forward from step to step, the GMRES convergence usually 

saturates over the course of the adaptive mesh refinement method, provided that the refinement 
method itself is converging. To support a fair comparison with the refined solutions, it is required 
that GMRES convergence must also saturate for the initial non-adaptive solution. For this reason, 

the maximum number of GMRES iterations for the initial (NA) solution was set to 100. 
 Further information on the mode-specific stimulus and evaluated error metrics is given in 

the subsequent sections. 
 
2.7. Testing Impact of AMR: Transcranial Electrical Stimulation 

To model transcranial electrical stimulation, five voltage electrodes were placed on the skin 
surface in a focal ring configuration [31] above the motor hand area. The electrodes were circular 

with radii of 5 mm, and the four return electrodes were separated from the central active electrode 
by 30 mm center-to-center. Fig. 3a shows the problem geometry for Connectome Subject 122620. 

For the initial solution and all subsequent adaptively-refined solutions, the charge solution 

was first found for an applied potential of +1 V on the central active electrode and -1 V on the four 
return electrodes, then linearly scaled to achieve an injected current of 1 mA on the central 

electrode. Injected current was computed according to  

𝐼 = 𝜎𝑠𝑘𝑖𝑛 ∑(−𝑬𝑗 ⋅ 𝒏𝑗)𝐴𝑗

𝑗

, 𝑗 𝜖 𝐽𝑒 (11) 

where 𝜎𝑠𝑘𝑖𝑛  denotes the conductivity of skin, 𝐽𝑒 denotes the set containing the indices of all facets 

belonging to the central electrode, 𝑬𝑗 denotes the electric field just inside the skin surface at model 

facet 𝑗, 𝒏𝑗 denotes the unit normal vector of facet 𝑗 pointing out of the skin surface, and 𝐴𝑗 denotes 

the area of facet 𝑗. To rescale the charge solution and achieve an injected current of 1 mA, the 
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computed charge density vector 𝐜 was multiplied by 
1 mA

𝐼
. This method grants control over the total 

injected current without enforcing a spatially-constant current density over the electrode surface, 

since the spatially-constant field may be unrealistic except for purpose-built electrodes. 
 A local preemptive refinement step of two iterations of 4:1 subdivision was carried out on 

skin and electrode facets within a sphere centered on the central electrode and large enough to 
enclose all electrodes. The skin surface (including electrodes) was then excluded from further 
adaptive or global refinement. This preemptive refinement was performed because the voltage 

electrode formulation requires application of a dense preconditioner to couple the Neumann and 
Dirichlet components of the integral equation, and unsupervised adaptive mesh refinement of the 

voltage electrodes can quickly grow this preconditioner to an unwieldy size. A useful side effect 
for the purpose of this study is that the preemptive refinement step prevents modification of the 
immediate source of injected current by the AMR method; this improves parity with the TMS 

results (whose coils’ current filaments are never adaptively subdivided) and the EEG results (for 
which the cortical dipoles are never rearranged, subdivided, or otherwise altered in density). 

 For the purpose of evaluating the AMR’s E-field convergence criterion, an observation 
region in the vicinity of the GM target point was constructed. Within a radius of 2 cm from the 
target point, observation points were placed halfway between the GM and WM surfaces (i.e. on 

the midlayer) with density approximately equal to the triangular mesh nodal density. The total 
electric fields from all three solutions were computed at these observation points. Inter-step errors 

in the E-field were evaluated by applying the L21 norm given in Eq. 12 to these lists of E-field 
measurements. This error norm, as well as the relative difference measure (RDM) given in Eq. 13, 
was also applied in the post-simulation analysis of error between the STD/REF, STD/AMR, and 

AMR/REF solutions.  

Δ𝑬𝐿21 = (∑|𝑬𝑛
𝑡𝑒𝑠𝑡 − 𝑬𝑛

𝑏𝑎𝑠𝑒|

𝑛

) (∑|𝑬𝑛
𝑏𝑎𝑠𝑒|

𝑛

)⁄  (12) 

 

Δ𝑬𝑅𝐷𝑀 = 0.5 ∗ |
𝑬𝑡𝑒𝑠𝑡

|𝑬𝑡𝑒𝑠𝑡|
−

𝑬𝑏𝑎𝑠𝑒

|𝑬𝑏𝑎𝑠𝑒|
|

𝐿21

 (13) 

 

In Eq. 12, |∗| denotes the Euclidean 2-norm, and 𝑬𝑛 denotes the electric field measured at the ROI 
observation point with index 𝑛. In Eq. 13, the |∗| operators in the denominators of the test and base 

terms refer to the matrix 2-norm, and the |∗|𝐿21  operator indicates that the difference of the test 

and base terms is to be taken in the L21-norm sense of Eq. 12. Broadly speaking, Δ𝑬𝐿21 measures 

the relative change in overall E-field magnitude, while Δ𝐸𝑅𝐷𝑀  measures a joint change in spatial 

distribution of E-field strength and E-field direction. All errors were computed using the total 
electric field. 
 

2.8. Testing Impact of AMR: Transcranial Magnetic Stimulation 

To model transcranial magnetic stimulation, a model of a C-B60 coil (MagVenture, Denmark) was 

positioned according to a target placed on the motor hand area at the GM surface. The coil was 
placed such that its centerline was normal to the skin surface and passed through the target point 
on the GM surface, the angle between the fissure longitudinalis and the dominant E-field direction 

along the coil’s centerline was approximately 45 degrees, and the shortest distance from any part 
of the skin to any part of the coil windings was 10 mm to account for the coil housing. The coil 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.11.552996doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552996
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

was modeled as a collection of 17k elementary current segments, and the incident electric field 
was calculated in terms of these elements’ magnetic vector potential. The coil was driven by a 

sinusoidal current of amplitude 5 kA and frequency 3 kHz, and the problem was solved at the 
instant when the time derivative of that current was maximized (94 kA/ms). Fig. 3b shows the 

problem and coil geometry for Connectome Subject 122620. 
 The ROI for this method was the same as for TES: observation points were placed at the 
midlayer surface halfway between GM and WM within a sphere of radius 2 cm centered on the 

GM target point. Convergence was again evaluated using the L21 norm of the total E-field sampled 
in the ROI. 

 

2.9. Testing Impact of AMR: Electroencephalography 

The EEG problem is configured differently from the TMS and TES problems in terms of the 

location of the sources, definition of the observation region, and quantity measured at the 
observation region. The sources used in this study are finite-length current dipoles (a current source 
and current sink) placed roughly halfway between the GM and WM surfaces (cortical layer III/IV) 

within a sphere of radius 2.3 mm centered on a target point (a wall of the central sulcus) at the 
motor hand area. The dipoles are oriented roughly normal to the cortex and are assigned a current 

density following the Okada-Murakami constant of 1
nA⋅m

mm2  [45]. Fig. 3c shows the dipole location 

and distribution for Connectome Subject 122620. 
 The observation region is defined as the set of centroids of all facets belonging to the skin 

surface, and the field quantity to be evaluated at this surface is the electric potential instead of the 
E-field. The convergence error metric applied in this case was the 2-norm error given in Eq. 14 

below, and the RDM error metric given in Eqs. 15a-b was used for subsequent analysis. 
 

Δ𝑉 =
|𝑉𝑡𝑒𝑠𝑡 − 𝑉𝑏𝑎𝑠𝑒|

|𝑉𝑏𝑎𝑠𝑒|
 (14) 

 

Δ𝑉𝑅𝐷𝑀 = (∑ 𝐴𝑛 ∗ (
𝑉𝑛

𝑡𝑒𝑠𝑡

𝑉𝑛𝑜𝑟𝑚
𝑡𝑒𝑠𝑡

−
𝑉𝑛

𝑏𝑎𝑠𝑒

𝑉𝑛𝑜𝑟𝑚
𝑏𝑎𝑠𝑒

)

2

𝑛

)

1/2

 

where 

(15a) 

𝑉𝑛𝑜𝑟𝑚

𝑡𝑒𝑠𝑡 (𝑏𝑎𝑠𝑒)
= (∑ 𝐴𝑚 ∗ (𝑉𝑚

𝑡𝑒𝑠𝑡 (𝑏𝑎𝑠𝑒)
)

2

 

𝑚

)

1/2

 

 

(15b) 

 

 

In Eq. 14, 𝑉𝑡𝑒𝑠𝑡  and 𝑉𝑏𝑎𝑠𝑒 are the vectors of voltages measured at the centroids of all skin 
surface facets and |∗| denotes the Euclidean vector norm. In Eqs. 15a-b, 𝐴𝑛 denotes the area of 

ROI facet 𝑛, 𝑉𝑛
𝑡𝑒𝑠𝑡  denotes entry 𝑛 of 𝑉𝑡𝑒𝑠𝑡 , 𝑉𝑛

𝑏𝑎𝑠𝑒 denotes entry 𝑛 of 𝑉𝑏𝑎𝑠𝑒, and 𝑛 and 𝑚 iterate 
over all facets in the ROI. 

 To achieve good convergence, the 14-tissue EEG test cases required two deviations from 
the standard treatment applied to the other cases. First, the pia mater surface was removed from 

the models due to the complicated interaction between the finite- length dipole sources and the 
double-layer of GM/pia mater charges separated by less than 0.1 mm. Second, the refinement 
rate was increased from 1% to 3% of model facets per refinement step. 
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3. Results 

3.1. Impact of AMR: Transcranial Electrical Stimulation 

Fig. 4 shows the final refinement maps for the bone, CSF, GM, and WM meshes of 

Connectome Subject 122620 for the TES test. The color scale denotes the number of subdivis ions 
that were applied in the construction of a given facet in the final model. For example, a facet 

colored light blue is the product of one 4:1 subdivision step; its edge length is equal to its origina l 
(parent) facet’s edge length divided by 2 and its area is equal to its parent’s area divided by 4. An 
orange facet in this particular figure is the product of three consecutive 4:1 subdivision steps; i.e., 

its edge length is equal to the original (great-grandparent) facet’s edge length divided by 8, and its 
area is equal to the original facet’s area divided by 64. Facets in dark blue have not been subdivided 

at all in the course of the adaptive mesh refinement method.  
Fig. 5 shows the electric field magnitudes in the observation region as well as element-

wise absolute differences in the field magnitudes across refinement levels for the 7-tissue and 14-

tissue models of Connectome Subject 122620. Fig. 6 presents several summary convergence 
metrics for all 16 subjects: the number of AMR passes elapsed to achieve convergence by subject, 

the average (over 16 subjects) and maximum inter-pass charge and E-field errors, and the average 
and maximum number of GMRES iterations required for each adaptive refinement pass. Finally, 
Table 4 (Section 3.4) summarizes and compares observation region L21 and RDM errors with the 

other modalities. Errors were computed on a per-model basis; the table presents the average of 
those errors over the 16 models in each class. The individual model errors are presented in 

Appendix A. 
 Note that the number of elapsed AMR passes shown in Fig. 6 differs from the maximum 
refinement level shown in Fig. 4. The reason for the discrepancy is that only 1% of triangles (per 

our choice of r = 1%) are subdivided on each step according to the total-charge-based cost function. 
If a facet were refined 11 consecutive times (i.e., on every AMR pass for the 14-tissue model of 
Connectome Subject 122620), this would imply that its total charge had been in the top 99th 

percentile on each of the 10 previous steps, in addition to the start of the 11th. By the start of the 
11th pass, the facet’s area and corresponding weight would have been reduced by a factor of 410 ≈
106. Except for facets extremely close (e.g., on the order of nanometers) to sources, such a small 

facet is not likely to remain in the 99th percentile for total charge on all adaptive passes, and other 

facets would be selected in its place. 
 

3.2. Impact of AMR: Transcranial Magnetic Stimulation 

 Fig. 7 shows the refinement map for the bone, CSF, GM, and WM meshes of Connectome 
Subject 122620 for the TMS test. Fig. 8 shows the electric field magnitudes in the observation 

region as well as element-wise absolute differences in the field magnitudes across refinement 
levels for the 7-tissue and 14-tissue models of Connectome Subject 122620. Fig. 9 provides 
convergence summary results for both model classes, Table 4 presents aggregate error metrics over 

all subjects, and subject-specific errors are presented in Appendix A. It appears that TMS is a 
rather trivial case where the initial resolution of the model is usually sufficient, even with 14 

tissues. 
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3.3. Impact of AMR: Electroencephalography 

Fig. 10 shows the refinement maps for the skin, bone, CSF, GM, and WM meshes of Connectome 

Subject 122620 for the 7-tissue and 14-tissue EEG tests. Fig. 11 shows a visual comparison of the 
voltage measured on the skin surface for the same subject as well as element-wise differences in 

that voltage across the refinement levels. Fig. 12 captures convergence metrics, Table 4 captures 
aggregate error metrics, and Appendix A captures subject-specific errors. 

Table 4 summarizes the 2-norm errors computed for the 7-tissue and 14-tissue models for 

the voltage evaluated over the skin surface. The average error over 14 models is given; per-
model errors are presented in Appendix A.  

 

3.4: Performance Summary 

Table 4 captures multiple summary errors for the three stimulation modes and the two 

classes of model. As stated previously, the error between the STD and REF cases describes the 
magnitude of improvement possible due to AMR. The error between the STD and AMR cases 

describes the improvement that was achieved by AMR, and the error between the AMR and REF 
cases describes the further improvement that would be possible if the AMR method were carried 
out for a greater number of iterations or using a higher refinement rate. 

Table 5 summarizes the average model size increases that were required to achieve the 
convergence conditions of the AMR method for each problem class. Recall that the 13-tissue EEG 

problem was carried out with a refinement rate of 3% of facets per AMR step rather than the 1% 
rate used in all other methods; the required model size increase for this problem class should make 
the motivation for that decision apparent. Additionally, the average and standard deviation of 

number of AMR steps (over 16 subjects per problem class) are reported. 
 

4. Discussion 
 For TMS simulations, there appears to be little benefit from using adaptive mesh 
refinement to model the electric field arising at the midlayer surface. The main reason for this is 

that the primary electric field from the coil typically dominates the secondary field by a factor of 
2 to 1 or greater. No matter how well the mesh is refined, the coil’s incident field directly dictate s 

the charges induced at the interfaces as well as two thirds of the total electric field at the 
observation surface. By reciprocity, it is also expected that MEG modeling would not benefit 
substantially from adaptive mesh refinement in this format since the magnetic field of the localized 

current sources is unaffected by the conductivity interfaces. Even a full-model pass of 4:1 
barycentric subdivision that increases the model size by 300% only results in roughly a 4% E-field 

magnitude deviation for the 14-tissue model. 
 In stark contrast, for TES simulations, adaptive mesh refinement becomes very important 
for accurate E-field simulations. In this case, the primary electric field is zero (except for electrode 

facets in the case of constant-current electrodes), and the secondary electric field both arises from 
and dictates the final distribution of the interfacial charges. The electric field at the observation 

surface has two orders of dependency on the underlying charge distribution: first, the charge-to-
charge interaction must properly distribute the charges, and second, the charges must have 
sufficient resolution to accurately recover the secondary electric field at the observation surface.  

High mesh resolution is required along the main current paths to accurately model the current 
distribution. For example, the total current flowing into the GM of Connectome Subject 122620 

decreased by 21% over the course of the AMR for the focal TES electrode montage. An 
appropriately high-resolution mesh is necessary to prevent even minute current deviations due to 
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discretization error. This is highlighted by the results shown in Tables 4 and 5: a 13% (on average) 
increase in number of unknowns, appropriately distributed by the AMR method, results in a 

correction to E-field magnitude at the midlayer surface on the order of (on average) 65%. For the 
14-tissue TES case, the E-field direction also was subject to a change in direction and/or relative 

distribution of magnitude of 64%, though a model size increase of 68% was necessary to achieve 
sufficient resolution in this case. 
 EEG forward problems also benefit substantially from adaptive mesh refinement, for 

similar reasons to the TES case. In the case of EEG, the sources are highly singular dipoles that lie 
within millimeters of model boundaries. Similarly to TES, most current sourced by the cortical 

dipoles will shunt back to their negative ends without crossing the GM/CSF boundary, let alone 
reaching the skin. Discretization error in the vicinity of the dipoles can dramatically alter current 
paths in this critical region and produce radically different voltage distributions at the skin surface . 

This case is illustrated in Fig. 11. The 7 and 13-tissue models each demonstrate large changes in 
skin surface voltage magnitude and distribution as captured by Tables 4 and 5. Similarly to TES, 

the 7-tissue EEG case achieves such dramatic changes after only a 21% increase in number of 
unknowns on average. 
 The mesh refinement algorithm as implemented has one very significant limitation: the 

mesh refinement step does not improve the fidelity of the mesh to the underlying geometry. As 
previously stated, all subtriangles introduced by the adaptive mesh refinement method are coplanar 

to their respective parent triangles. As a result, the method strictly introduces additional unknowns 
into the geometry specified by the initial mesh. Further, charges tend to accumulate at sharp edges 
in the mesh. When every triangle’s normal vector points in a unique direction with respect to its 

neighbors, this phenomenon’s impact is minimized. When large regions of locally-coplanar 
triangles border other large regions of locally-coplanar triangles, charges may accumulate 

disproportionately along the lines of triangles attached to the border. This accumulation represents 
a deviation from the underlying problem geometry. 
 Apart from the obvious desire to use a more accurate model, several approaches may be 

adopted to minimize these effects. One option is to interpolate the local mesh curvature and 
translate new vertices to lie upon the interpolated surface. Another is to apply smoothing methods 

after interpolating additional vertices, although this option risks altering the geometry of the init ia l 
mesh. A memory-intensive solution may be to develop a very high-resolution reference mesh and 
resample new vertices from that reference mesh during refinement. This particular solution would 

have the added benefit of enabling the initial mesh to start with an even lower resolution, saving 
computational time. 

 Multiple improvements could be made to improve the convergence and execution time of 
the proposed AMR method. In many situations, especially the highly singular EEG problems, it is 
possible for a facet’s total charge after subdivision (1/4 of the total pre-subdivision charge) to 

remain greater than the threshold selected for subdivision. A natural improvement would be to 
preemptively apply a second (third, fourth, …) round of barycentric subdivision to such facets, as 

the subdivision time is negligible compared to the time that must be spent recomputing neighbor 
integrals and iteratively solving the refined model. Another possible speed improvement could be 
achieved by only recomputing neighbor integrals for subdivided facets rather than recomputing all 

integrals. Other metrics for facet selection, such as current flux through faces, may also speed up 
convergence for certain problem classes. 
 An open problem is the appropriate selection of the refinement rate 𝑟. Large values of 𝑟 

tend to increase the number of unnecessary unknowns introduced into the problem at each AMR 
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step. When 𝑟 is too small, neighboring facets in critical regions may be refined on (e.g.) alternating 

AMR steps, causing erratic convergence behavior that can cause the method to terminate early. 
This is the phenomenon that prompted the increase from 𝑟 = 1% to 𝑟 = 3% for the 13-tissue EEG 

models. 

 

5. CONCLUSION 

In this work, we have described and implemented a conceptually simple, yet effective and 

computationally efficient adaptive mesh refinement method for the quasi-static charge-based 

boundary element method with fast multipole acceleration (BEM-FMM). We have demonstrated 

large improvements to the accuracy of electric potential and electric field measurements at 

observation surfaces for TES/EEG primary field quantities and no degradation of accuracy for 

TMS/MEG primary field quantities. For standard 7-tissue TES and EEG forward problems, an 

increase of only 25% in number of unknowns, allocated efficiently by AMR, reveals changes of 

65% or more in the electric field or potential at observation surfaces. The present adaptive mesh 

refinement method is tailored to the BEM-FMM with 0th order basis functions: it takes advantage 

of the BEM-FMM’s robustness against manifoldness defects to avoid a full remeshing procedure, 

thus saving time and minimizing computational complexity. To our knowledge, other methods do 

not support this simplification yet. 
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Fig. 1: Example of a small region of mesh subjected to adaptive mesh refinement in the vicinity of 

a focal current source (out of frame past the upper right corner). Three distinct levels of 
subdivision are visible: unmodified facets of the initial mesh (left), facets subjected to one AMR 

pass (center, top left, and bottom right), and facets subjected to two AMR passes (top right). No 
attempt is made to restore mesh connectivity across neighboring triangles subjected to different 
levels of refinement since no BEM-FMM basis functions depend on such connectivity. 
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Fig. 2: a,b) T1/T2 Images for Connectome subject 120111 and headreco segmentation for scalp 
(1) and skull (2) shown in blue. Dura mater is seen on the T1 image. c,d) The same images and 

base headreco segmentation for scalp (1), skull (2), CSF (3), gray matter (4), and white matter 
(5). The headreco routine subsumes the dura mater into the CSF volume. e,f) Base headreco 

segmentation (blue) and new extracerebral compartments (pale pink). They agree with the 
background MRI information. Two insets display meninges. 
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Fig. 3: Source configurations for Connectome Subject 122620 (segmented by the headreco 
pipeline) for each class of forward problem. (a): TES electrode configuration. A focal ring 

configuration with one positive (red) and four negative (blue) electrodes is shown positioned above 
the motor hand area. The cyan sphere denotes the selected target point on the GM surface. (b): 

TMS coil position above the motor hand area at the gray matter surface. The coil model in use is 
a MagVenture C-B60. The black line denotes the centerline of the coil, the cyan sphere denotes 
the selected target point on the GM surface, and the white line denotes the expected primary E-

field direction at the target point. (c, d): EEG cortical current dipole configuration. (c): Center of 
cortical dipole cluster (cyan sphere) shown above the WM surface. (d): 260 finite-length dipoles 

are placed between the GM (gray) and WM (cyan) surfaces centered on the target point. Current 
flows along the dipoles from the red endpoints to the blue endpoints along the yellow segments. 
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Fig. 4: (a-d): TES AMR maps for bone, CSF, GM, and WM (respectively) for the 7-tissue model 

of Connectome Subject 122620. The color map indicates the number of refinement steps that 
were applied to subdivide a facet of the initial model into a given facet of the refined model. The 

current paths beneath the electrodes are clearly visible in the refinement levels of the skull and 
CSF. (e-h): AMR maps for the same tissues for the 14-tissue model. 
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Fig. 5: (a-c): Standard, adaptive, and reference (respectively) solutions for the total E-field 

magnitude (V/m) in the observation region for the 7-tissue model of Connectome Subject 122620. 
(d-f): Absolute error in E-field is shown between STD/REF, STD/AMR, and AMR/REF solutions 

respectively. (g-l): Solutions and differences for the 14-tissue model. 
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Fig. 6: (a): Number of adaptive refinement steps taken by each subject to achieve convergence 

for the 7-tissue models under TES. (b): Average (16 subjects) and maximum (16 subjects) inter-
step E-field and charge solution vector errors at the end of each adaptive mesh refinement step. 

(c): Average and maximum GMRES iterations required by each AMR step. Note that the average 
includes entries of 0 for models that had converged prior to the given step; this decision was 
made to give a reasonable average runtime estimate for large numbers of models. (d-f): The 

same information is presented for the 14-tissue models under TES. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.11.552996doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.552996
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

 
  

Fig. 7: (a-d): TMS AMR maps for bone, CSF, GM, and WM (respectively) for the 7-tissue model 
of Connectome Subject 122620. The color map indicates the number of refinement steps that were 

applied to subdivide a facet of the initial model into a given facet of the refined model. Note that 
the most refinement occurs at the sulcal walls, where the normal component of the total electric 
field is strongest. (e-h): AMR maps for the same tissues for the 14-tissue model. 
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Fig. 8: (a-c): Standard, adaptive, and reference (respectively) solutions for the total E-field 

magnitude (V/m) in the observation region for the 7-tissue model of Connectome Subject 122620. 
(d-f): Absolute error in E-field is shown between STD/REF, STD/AMR, and AMR/REF solutions 

respectively. (g-l): Solutions and differences for the 14-tissue model. 
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Fig. 9: (a): Number of adaptive refinement steps taken by each subject to achieve convergence 

for the 7-tissue models under TMS. (b): Average (16 subjects) and maximum (16 subjects) inter-
step E-field and charge solution vector errors at the end of each adaptive mesh refinement step. 

(c): Average and maximum GMRES iterations required by each AMR step. (d-f): The same 
information is presented for the 14-tissue models under TMS. 
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Fig. 10: (a-d): EEG AMR maps for bone, CSF, GM, and WM (respectively) for the 7-tissue 
model of Connectome Subject 122620. The color map indicates the number of refinement steps 

that were applied to subdivide a facet of the initial model into a given facet of the refined model. 
The strongest refinement by far occurs in the immediate vicinity of the current dipoles. (e-h): 
AMR maps for the same tissues for the 14-tissue model. 
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Fig. 11: (a-c): Standard, adaptive, and reference (respectively) solutions for the potential (µV) 

in the observation region for the 7-tissue model of Connectome Subject 122620. (d-f): Signed 
error in potential is shown between STD/REF, STD/AMR, and AMR/REF solutions respectively. 

Note the difference in colorbar scales between (d-e) and (f). (g-l): Solutions and differences for 
the 14-tissue model. 
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Fig. 12: (a): Number of adaptive refinement steps taken by each subject to achieve convergence 

for the 7-tissue models under EEG. (b): Average (16 subjects) and maximum (16 subjects) inter-
step potential and charge solution vector errors at the end of each adaptive mesh refinement 

step. (c): Average and maximum GMRES iterations required by each AMR step. (d-f): The same 
information is presented for the 13-tissue models under EEG. 
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Table 1: Tissue Conductivities Assigned to the 7-Tissue Models 

Tissue Conductivity (S/m) 

Skin* 0.1989 

Bone* 0.0177 

Eyes 1.2000 

Cerebrospinal Fluid 1.6540 

Gray Matter 0.2750 

White Matter 0.1260 

Ventricles 1.6540 

 
 
 

Table 2: Tissue Conductivities Assigned to the 14-Tissue Models 

Tissue Conductivity (S/m) Tissue Conductivity (S/m) 

Skin 0.1700 Dura Mater 0.1000 

Fat 0.0573 Arachnoid Mater 0.1250 

Muscle 0.3550 Cerebrospinal Fluid 1.6540 

Eyes 1.2000 Pia Mater 0.1500 

Cortical Bone 0.0064 Gray Matter 0.2750 

Trabecular Bone 0.0290 White Matter 0.1260 

Ventricles 1.6540  
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Table 3: Simulation parameters common to all forward problem classes 

Parameter Selected value Typical value, 

simple problem 

Typical value, 

difficult problem 

FMM precision 1e-6 1e-2 1e-4 

GMRES target residual, initial 1e-5 1e-4 1e-3 

GMRES target residual, general 1e-5 1e-4 1e-3 

GMRES max iterations, initial 100 20 50 

GMRES max iterations, general 50 20 50 

 
 

 

Table 4: Average (over 16 subjects) summary errors for TES, TMS, and EEG 

Model and problem STD/REF  

(L21, RDM) 

STD/AMR  

(L21, RDM) 

AMR/REF  

(L21, RDM) 

7-tissue, focal TES 68.12%,      4.21% 64.87%,      4.49% 3.34%,     1.19% 

14-tissue, focal TES 165.54%,    62.92% 174.20%,    63.37% 10.37%,     3.58% 

7-tissue, TMS 1.44%,      0.46% 0.69%,      0.27% 1.02%,     0.32% 

14-tissue, TMS 3.53%,      1.95% 1.83%,      0.68% 2.36%,     1.47% 

7-tissue, EEG 99.67%,    49.37% 100.13%,    48.62% 2.67%,     1.94% 

13-tissue, EEG 101.37%,    57.58% 100.12%,    60.03% 8.48%,     6.98% 

 
 

 
Table 5: Average (over 16 subjects) model changes for TES, TMS, and EEG 

Model and problem Avg. model size 

increase 

Avg. AMR steps Std. dev. AMR steps 

7-tissue, focal TES 12.64% 5.0 0.9 

14-tissue, focal TES 67.70% 18.9 4.1 

7-tissue, TMS 2.87% 1.1 0.3 

14-tissue, TMS 5.17% 1.8 1.2 

7-tissue, EEG 21.12% 6.4   2.5 

13-tissue, EEG 128.16% 15.8 9.9 
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