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Collective incentives reduce over-
exploitation of social information in
unconstrained human groups

Dominik Deffner 1,2 , David Mezey2,3, Benjamin Kahl1, Alexander Schakowski1,
Pawel Romanczuk 2,3, Charley M. Wu1,4,5 & Ralf H. J. M. Kurvers 1,2

Collective dynamics emerge from countless individual decisions. Yet, we
poorly understand the processes governing dynamically-interacting indivi-
duals in human collectives under realistic conditions. We present a naturalistic
immersive-reality experiment where groups of participants searched for
rewards in different environments, studying how individuals weigh personal
and social information andhow this shapes individual and collective outcomes.
Capturing high-resolution visual-spatial data, behavioral analyses revealed
individual-level gains—but group-level losses—of high social information use
and spatial proximity in environments with concentrated (vs. distributed)
resources. Incentivizing participants at the group (vs. individual) level facili-
tated adaptation to concentrated environments, buffering apparently exces-
sive scrounging. To infer discrete choices fromunconstrained interactions and
uncover the underlying decision mechanisms, we developed an unsupervised
Social Hidden Markov Decision model. Computational results showed that
participants were more sensitive to social information in concentrated envir-
onments frequently switching to a social relocation state where they approach
successful group members. Group-level incentives reduced participants’
overall responsiveness to social information and promoted higher selectivity
over time. Finally, mapping group-level spatio-temporal dynamics through
time-lagged regressions revealed a collective exploration-exploitation trade-
off across different timescales. Our study unravels the processes linking
individual-level strategies to emerging collective dynamics, and provides tools
to investigate decision-making in freely-interacting collectives.

Collective behavior emerges from individual-level cognition, and the
cognitive mechanisms driving social interactions strongly determine
whether social influence promotes adaptive behavior or leads to
maladaptive herding1,2. Despite their crucial role in governing the out-
comesof collectivebehaviors, thedecision-makingprocesses of human
collectives under naturalistic conditions remain poorly understood3,4.

One of the key trade-offs driving collective systems is between
using personal versus social information. Relying too heavily on per-
sonal information prevents the spread of useful information, while
relying too heavily on social information reduces exploration and
generates over-exploitation of the environment5–9. This trade-off is key
across social contexts, from social foraging,10 to the discovery of new
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tools11,12, or computer code,13 to the planting of crops14,15. In all such
situations, individuals must continuously integrate their personal
informationwith information acquired fromothers andmake strategic
decisions on different timescales. The mechanistic underpinnings of
these processes are, however, still largely unknown.

Most experimental studies to date on social decision-making used
static—and often simulated—sources of social information7 or let
interacting participants choose among a small set of well-defined
options at prespecified time points [e.g., refs. 14–18]. To understand
the mechanisms governing real-world human collective systems, we
need paradigms that allow complex social dynamics to unfold within
naturalistic environments. Analyzing behavior in such complex sys-
tems requires novel computational models that describe how dyna-
mically interacting individuals make decisions while accounting for
their unique (visual) perspectives and spatial constraints2,19,20. Such
constraints are unavoidable features of the real world and funda-
mentally shape the costs and benefits of social information use19,21;

they are thus prerequisites for testing collective dynamics in more
realistic settings and connecting abstract models to reality.

Here, we use an immersive-reality approach to study how groups
of four participants search for resources ("coins”) in a 3D virtual
environment with different resource distributions and incentive
structures. Participants could observe each other in real time and
decide to join players who successfully discovered a resource patch
(Fig. 1a and Supplementary Movie 1). The 3D environment imposes a
limited, first-person, field of view as well as realistic spatial constraints
creating a natural trade-off between individual exploration of the
environment and social information use20,22. Participants completed
four rounds of the task in a 2 × 2 design (Fig. 1c; see “Methods”). In half
of the rounds, resource units were concentrated in relatively few—but
rich—patches. In the other rounds, the same number of units were
distributed among many—but poorer—patches. Theory on producer-
scrounger games [e.g., refs. 5,10,23–26] and our own simulation
results27 predict that a “scrounging” strategy, where agents use social

Fig. 1 | Collective foraging task and Social Hidden Markov Decision model.
a Participants in groups of four searched for circular resource patches in a square
environment. A metal detector lighted up when they discovered a patch. Partici-
pants could observe each other in real time and decide to join other players who
have discovered a patch (exploiting players indicated by digging animation; see
avatar on the right). b Once participants have discovered a patch or joined others,
they started extracting coins in amini-game by clicking on coin symbols appearing
on the screen in a 2-second interval. c Participants completed four rounds of the
task in a 2 × 2 experimental design. Each group conducted two rounds in a con-
centrated environment (5 patches with 48 coins each) and two rounds in a dis-
tributed environment (15 patches with 16 coins each). Colored dots and lines
represent snapshots of the current position of four players as well as their

movement trajectories during the last minute. Lighter green patches have fewer
coins left. Half of the groups were incentivized on the group level and half of the
groups were incentivized on the individual level. d Our computational approach
uses state-dependent variables to assign participants to hidden states at each time
point: “Individual Exploration” (I; independently search for resource patches) or
“Social Relocation” (S; use social information and approach successful group
members). The model simultaneously infers the transition probabilities between
latent states (as “Exploitation” E is known, we only need to explicitly model tran-
sitions between I and S). We model the (time-dependent) influence of state pre-
dictors on the probability to stop exploring and switch to social relocation, PI−>S
(see Eq. (1)). Coin images reproduced under a Attribution-NonCommercial 4.0
International (CC BY-NC 4.0) from https://www.pngall.com/usd-crypto-coin-png.
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information to join resourcepatches discoveredbyothers, increases in
frequency (relative to individually searching “producers”) when pat-
ches are difficult to find but rich in resources. Therefore, we expected
participants to rely more on social information and to be less selective
in concentrated compared to distributed environments.

Across social systems, individual incentives do not always align
with the interest of the collective and theory on producer-scrounger
dynamics5,10,24–26, and the evolution of social learning6,28 predicts that
social information use can be individually beneficial while at the same
time reducing collective performance or population fitness. To inves-
tigate howparticipants balance the pros and cons of social information
use depending on their interdependence with others, half of the
groups were incentivized on the group level (i.e., paid depending on
group success), while the other half on the individual level (i.e., paid
dependingonpersonal success). Since scroungers capitalizeonothers’
discoveries and compete for limited local resources, we expected
participants to rely less on social informationwhen incentivized on the
group level reducing maladaptive over-exploitation of social infor-
mation (see preregistration for the full set of predictions: https://osf.
io/5r736/29).

Our analyses leveragedhigh-resolution time-series data fromeach
participant of their visual information and movement trajectories.
Behavioral analyses revealed individual-level benefits of high social
information use and spatial proximity in concentrated resource
environments, which came at the expense of group performance.
Crucially, group-level incentives alleviated the negative consequences
of apparently excessive scrounging. We next developed an unsu-
pervised Social Hidden Markov Decision model (inspired by animal
movement models in ecology30,31) to simultaneously infer decision
sequences between latent states and describe how resource distribu-
tions, incentives, and situational factors influence participants’ deci-
sions to use social information (Fig. 1d). Quantifying such latent social
decision-making, we uncovered the mechanisms underlying beha-
vioral outcomes, demonstrating how participants strategically adjus-
ted their social information use to both environmental demands and
incentive structure. Group incentives facilitated adaptive tuning of
decision strategies over time, with increased selectivity acting as a
safeguard against maladaptive over-reliance on social information.
Finally, we mapped the emerging group-level spatio-temporal
dynamics through time-lagged Gaussian-process regressions and dis-
covered consistent collective benefits of more individualistic search in
distributed environments and a collective exploration-exploitation
trade-off in concentrated environments.

Results
We start by examining participants' behavior before turning to com-
putational analyses. Results are reported as population-level effects
from hierarchical Bayesian models controlling for the participant and
group-level variability in both intercepts and slopes (for frequentist
analyses of main behavioral results producing identical conclusions,
see Supplementary Tables 1 and 3–7). Inferences are based on pos-
terior contrasts between conditions (on the outcome scale for beha-
vior, on a latent scale for computational results), reported as posterior
means and 90% highest posterior density intervals (HPDIs). We also
report evidence ratios (ERs), which are equivalent to (one-sided) Bayes
factors, to quantify the relative posterior probability for a directed
effect compared to its alternative32.

Foraging performance and scrounging
Participants incentivized on the group level showed no difference in
performance between environments (−0.05 [−8.9, 8.1], ER = 1.05;
Fig. 2a and Supplementary Table 1), whereas participants incentivized
on the individual level performed worse in concentrated than dis-
tributed environments (−8.4 [−16.7, −0.5], ER = 20.7). To quantify
success differences among incentive conditions over time, we

computed exploitation probabilities at 1-minute intervals in each
round (Fig. 2b and Supplementary Fig. 1). In concentrated environ-
ments, group-incentivized participants consistently outperformed
those incentivized on the individual level after four minutes. In dis-
tributed environments, individually incentivized participants initially
performed better before converging on the same probability of suc-
cess. Investigating success conditional on prior experience (Supple-
mentary Table 2), we found that group-incentivized participants
performed better than individually incentivized participants when
foraging in concentrated environments for a second consecutive time
(15.0 [4.3, 26.2], ER = 76.7), but not in the first round of the experiment
(3.1 [−8.6, 14.3], ER = 2.1) or when having previously foraged in dis-
tributed environments (0.01 [−11.3, 11.4], ER =0.99).

The structure of the environment also induced different patterns
of foraging behavior. In concentrated environments, participants dis-
covered fewer new patches (group incentives: −5.2 [−5.7, −4.7], ER >
100; individual incentives: −5.6 [−6.1, −5.1], ER > 100; Supplementary
Table 3) but joined more patches discovered by others (group incen-
tives: 1.4 [0.7,2], ER> 100; individual incentives: 1.1 [0.4, 1.8], ER> 100;
Supplementary Table 4). Participants also stayed closer to group
members (average distance to the other three players when focal
player was not exploiting; group incentives: −6.4 [−7.6, −5.3], ER> 100;
individual incentives: −8.8 [−10.1, −7.6], ER > 100; Supplementary
Table 5) and lookedmore at others (average number of players in field
of view when focal player was not exploiting; group incentives: 0.08
[0.05, 0.1], ER > 100; individual incentives: 0.14 [0.11, 0.17], ER > 100;
see Supplementary Fig. 2 and Supplementary Table 6), suggesting
increased social attention in concentrated environments (see Supple-
mentary Fig. 3 for aggregated results).

To account for the influence of participants’ unique visual per-
spectives, we next computed scrounging rates as conditional prob-
abilities for players to join a patch where they had observed one (or
more) exploiting group member(s). Scrounging rates were higher in
concentrated than indistributed environments (group incentives: 0.44
[0.37,0.50], ER> 100; individual incentives: 0.48 [0.42,0.54], ER > 100),
with most scrounging behavior seeming to occur in participants
incentivized on the individual level while foraging in concentrated
environments (individual vs. group incentives in concentrated envir-
onments: 0.06 [−0.03,0.16], ER = 5.7; Fig. 2c and Supplementary
Table 7).

Determinants of individual and collective success
Can this apparently excessive scrounging explain the reduced per-
formance of individually incentivized participants in concentrated
environments?To relate behavioralmetrics to the number of collected
coins, we used multilevel Poisson regressions accounting for baseline
success differences between incentive conditions. In concentrated
environments, individual participants benefited from high scrounging
rates (Fig. 2d, top) and close proximity to others (Fig. 2e, top). This
suggests individual-level adaptive benefits of social information use in
resource environmentswhere the behavior of others provides valuable
information. By contrast, collective performance was higher if, on
average, fewer players exploited a patch (Fig. 2d, bottom) and, to a
lesser degree, if groupmembers kept greater inter-individual distance
(Fig. 2e, bottom), revealing opposing effects of social information use
on individual vs. collective performance. In distributed environments,
where social information has a lower value, both individual and col-
lective performance was highest if participants joined fewer patches
discovered by group members and stayed further away from
each other.

Beyond social information use, participants also collected more
coins if they independently discovered more new patches in both
concentrated (0.14 [0.12, 0.15], ER > 100) and distributed (0.09 [0.08,
0.09], ER > 100) environments as patch discoverers had more time to
collect coins without sharing resources with others. For both
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environments, participants with relatively directed and regular
movement trajectories discovered more patches highlighting an
important role for effective individual search (Supplementary Fig. 4).

Solitary foragers
To compare group foragers to solitary ones, we recruited additional
participants who searched for coins on their own (see “Methods”).
Foraging in the same resource environments but without competition,
individual foragers, on average, collectedmore coins thanparticipants
in groups. They performed similarly in both environments and dis-
covered more patches in distributed environments (Supplementary
Fig. 5; see Supplementary Fig. 6 for movement metrics and
discoveries).

Social Hidden Markov Decision Model
Next, we use a computational approach to delineate the mechanisms
underlying participants' decisions to respond to or ignore social
information. A computational approach is necessary because obser-
vablemetrics, such as patch joining events, are only indirect indicators
of underlying strategies33. Such latent strategies as well as the deci-
sions to switch between them lie at the core of theoretical (producer-
scrounger) models but cannot be directly observed. Imagine, for
instance, that a player decides to use social information and moves
towards an exploiting group member but does not arrive before all
coins are collected; or, more luckily, this player might even indepen-
dently discover a new patch while relocating. In both scenarios, we do
not observe the player joining a patch, although they have actively
decided to use social information.

Our model uses a time series of three state-dependent variables
(on a one-second resolution; Fig. 1d and Supplementary Fig. 7) to
probabilistically assign participants to one of two latent states at each
point in time: individual exploration or social relocation (see “Meth-
ods”). Individual exploration is characterized by irregular movement
not directed towards successful peers, whereas social relocation is
characterized by consistent, directed movement towards exploiting
group members. Note that the latent states are statistically inferred
from changes in movement and interaction patterns, not hard-coded
basedon arbitrary criteria;weonly selected thenumber of latent states
and provided the model with prior information about how the states
are expected to differ (i.e., which state should have larger values in the
state-dependent variables). Reassuringly, the model estimated smaller
turning angles, larger reduction in distance to exploiting players, and
smaller relative bearings for the social relocation state compared to
the individual exploration state (Supplementary Fig. 8), confirming
that the identified latent states correspond to our target of inference
(Supplementary Fig. 7 shows an example of a recovered state sequence
using the Viterbi algorithm).

State predictors and their adaptive consequences. Our model
simultaneously infers the time-dependent transition probabilities
between latent states. This allows us to describe how incentive con-
ditions i and resource distributions j along with currently available
(visual) information influence the probability of switching from indi-
vidual exploration to social relocation at time t. Specifically, we esti-
mated the condition-specific influence of exploitation visibility V,
visible patch distance D, number of visible exploiting players N, and

Fig. 2 | Behavioral results. a Coins collected per incentive condition and envir-
onment (concentrated in blue, distributed in green). Each circle represents one
round per participant (n = 160 participants), larger filled dots represent posterior
means (as well as 90% HPDIs) from a Bayesian multilevel Poisson model.
b Performance differences between incentive conditions (positive values indicate
an advantage for group incentives), computed as the probability of exploiting a
patch in 1-minute intervals (posterior means and 90% HPDIs; n = 160). c Posterior
scrounging rates (conditional probabilities that players join a patch where they had
observed at least one exploiting group member) per incentive condition and

environment. d Average number of coins collected per individual as a function of
individual-specific scrounging rates (with 90%HPDIs; top;n = 160) andper group as
a function of forager density (i.e., average number of players exploiting a given
patch; bottom; n = 40). e (Average) number of coins per round per individual (top;
n = 160) and group (bottom; n = 40) in concentrated and distributed environments
as a functionof distance (standardized averagedistance tootherplayers). Lines and
uncertainty intervals show effects from multilevel regressions accounting for
baseline differences between incentive conditions and individual and group-level
variability in both intercepts and slopes (transparent text if 90% HPDI overlaps 0).
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time since success T (Fig. 1d; see “Methods”):
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Averaging over all situations when at least one exploiting player was
visible (i.e., V = 1), participants were more likely to switch to social
relocation and approach others in concentrated compared to dis-
tributed environments with both group (0.03 [0.004, 0.06], ER = 26.4)
and individual (0.05 [0.02, 0.08], ER > 100) incentives (Fig. 3a, first
row). Moreover, individual incentives reliably increased participants’
propensity to use social information in concentrated (0.04 [0.002,
0.07], ER= 21.7) but less so in distributed (0.01 [−0.01, 0.04], ER = 5.8)
environments. Thus, participants were more likely to switch to social
relocation when prioritizing their individual success, particularly in
concentrated environments where scrounging is beneficial,

uncovering the decision mechanisms underlying the observed
scrounging rates (Fig. 2c). Using individual decision-weight estimates
(i.e., random effects of state predictors from the multilevel computa-
tional model) to predict success reveals that individuals benefited
from more social information use in both environments (Fig. 3b,
first row).

Turning to the strategies participants used to integrate social
information, we found that, across conditions, participants were more
likely to use social information if observed successful group members
were close rather than farther away, suggesting selective rather than
indiscriminate use of social information (Fig. 3a, second row). This
selectivity with respect to distance proved adaptive in distributed, but
not in concentrated environments (Fig. 3b, second row). Moreover,
participants preferentially decided to join patches where fewer group
members were exploiting in the individual but not in the group
incentive condition (Fig. 3a, third row). Being selective with respect to
the number of others at a patch proved neutral in both environments

Fig. 3 | State predictors and their adaptive consequences. a Full posterior dis-
tributions (transparent curves) and 90% HPDIs (darker areas) for the influence of
different state predictors on the probability that participants switch from indivi-
dual exploration to social relocation per environment (concentrated in blue, dis-
tributed in green) and incentive condition. The top row shows baseline switching
probabilities across all situations in which participants observe (a) successful

player(s), the other rows show deviations from this expectation on the logit scale.
b Success (average number of coins collected per individual; n = 160) in con-
centrated (left) and distributed (right) environments as a function of individual-
level decision weights. Lines and uncertainty intervals show effects from log-
normal regression models accounting for baseline success differences between
incentive conditions (reported above, transparent text if 90% HPDI overlaps 0).
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(Fig. 3b, third row), likely reflecting the fact that participants observed
two players exploiting the same patch in only 14% of cases and three
players in only 3% of cases (one player in 83%). As a last factor, we also
investigated the influence of past personal success on the probability
to respond to social information. Surprisingly, we found that partici-
pants did not become more likely to use social information if unsuc-
cessful for a longer time and there was also no relationship between
individual-level weights and foraging success (Fig. 3a, b, fourth row).

Investigating the role of latent decision weights on collective
performance reveals the same pattern observed for behavioral out-
comes (Supplementary Fig. 9). The averagebaselineprobability to turn
social for groups was negatively related to collective success in con-
centrated environments, again revealing a contrast to individual-level
outcomes where high social information use proved beneficial. Other
decision weights were unrelated to collective success.

Temporal dynamics in state predictors. Over time, group-
incentivized participants outperformed those incentivized on the
individual level in concentrated environments (Fig. 2b and Supple-
mentary Table 2). Did participants adjust their decision-making over
time or did they enter the experiment with fixed, unchanging strate-
gies? Figure 4 shows the temporal dynamics in state predictors from
the time-varying state predictorsmodel (see Supplementary Fig. 10 for
similar linear trends).

We first focus on participants incentivized at the group level.
Participants started with similar overall propensities for social infor-
mation use in both environments but, over time, seemed to become
more likely to use social information in concentrated (0.20 [−0.01,
0.42], ER= 12.8) and less likely to use social information in distributed
environments (−0.11 [−0.27, 0.05], ER = 6.2), suggesting calibration of
social decision-making over time. Participants in concentrated envir-
onments started as rather indiscriminate social learners but, over time,
became more selective and began to strongly rely on distance (−0.45
[−0.64,−0.26], ER > 100) and the number of exploiting players (−0.55
[−0.88, −0.24], ER > 100) as cues. This tuning of decision strategies
towards more selectivity might act as a safeguard against the over-
reliance on social information and, therefore, (partly) explain the
emerging benefits of collectively-incentivized participants (Fig. 2b). In
distributed environments, decision weights stayed relatively constant
and therewereno clear trends in the influenceof the time since the last
success.

In the individual incentive condition, baseline levels of social
information use started at higher levels compared to the group
incentive condition and seemed to increase even further in con-
centrated environments (0.18 [−0.03, 0.40], ER = 10.4). Unlike collec-
tively incentivized participants, there was no distinct development
towards more selective social information use in either environment.

Collective visual-spatial dynamics
Our behavioral results suggested that, averaging over the whole
rounds, groups benefited from less social information use and lower
proximity in both environments (Fig. 2d,e, bottom). However, collec-
tive outcomes dynamically unfold over time, calling for a deeper
understanding of the timescales at which the costs and benefits of
social information use occur. To examine such fine-grained collective
dynamics, we quantify the changing relationships between groups’
visual-spatial organization and collective foraging success for different
time lags (Fig. 5; Supplementary Fig. 11 shows results forup to 3-minute
time lags in steps of 5 seconds). Positive (negative) regression weights
for a given time lag τ mean that greater inter-individual distance/visi-
bility among group members at time t − τ increased (decreased)
groups’ current collective foraging success at time t.

In distributed environments, groups of individuals who stayed
farther away from each other were indeed more successful irre-
spective of time interval and incentive condition. In concentrated
environments, we observed more intricate temporal dynamics. At
relatively short timescales ( < ≈ 15 s for group incentives, < ≈ 8 s for
individual incentives), smaller inter-individual distances were asso-
ciated with greater collective success; being closer together allowed
collectives to better exploit clustered resources discovered by group
members. This beneficial effect of grouping was especially pro-
nounced for groups incentivized on the collective level. On the flip
side, at longer timescales, larger distances among group members
were associated with greater foraging success. If groups disperse,
they are better able to explore large parts of the environment and
discover one of the few, rich patches, thereby, increasing their col-
lective foraging success in the future. Individually incentivized
groups benefited more strongly from spatial distancing, likely
because their higher sensitivity to social information increased their
risks for over-exploitation and herding. At even longer timescales,
there was no longer an association between group distance and
foraging success (Supplementary Fig. 11).

Fig. 4 | Temporal dynamics in state predictors. 100 random draws from the
posterior distribution (transparent lines) as well as posteriormeans (solid lines) for
the influence of different state predictors over time in each round per incentive
condition and environment (concentrated in blue, distributed in green). The first

column shows baseline switching probabilities across all situations in which parti-
cipants observe (a) successful player(s), the following columns show deviations
from this expectation on the logit scale.
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Turning to inter-individual visibility, we observe a negative effect
at short timescales ( < ≈ 20 s) for both environments and incentive
conditions. As players could not see others while exploiting a patch,
low visibility oftenmeant that a lot of players were currently collecting
coins. More substantially, the number of visual connections among
groupmemberswas positively related to collective success longer into
the future across all conditions, suggesting that groups paying more
attention to others in this crucial time window of patch discovery had
greater success later on.

Discussion
Finding and collecting rewards in heterogeneous environments is key
for adaptive collective behavior, yet it remains largely unknown how
individuals in freely interacting groups make strategic choices in nat-
uralistic environments and how these choices might shape individual
and collective outcomes. We designed a 3D immersive-reality collec-
tive foraging paradigm to obtain fine-grained visual and spatial data
from interacting groups and developed computational Social Hidden
Markov Decision models to extract and understand strategic choices
from naturalistic behavior. Collective foraging provides an ideal test-
bed to study social decision-making and collective adaptation in a
controlled, yet ecologically relevant, context1,34. Anthropologists have
identified our unique abilities to collectively find and extract high-
quality resources from diverse environments as a defining feature of
human adaptability35–38. Collective foraging further unites several key
ecological and social challenges, such as navigating uncertain envir-
onments, cooperating with others to achieve common goals, as well as
competing to gain privileged access to resources34,39.

As predicted by game-theoretic models of collective foraging
[e.g., refs. 10,25,40], participants systematically adjusted their social
information use to the resource distribution relying more on the
behavior of others when resources were difficult to find, but provided
a large potential for exploitation (i.e., in concentrated compared to
distributed environments). Our work not only translates and tests
predictions from idealized producer-scrounger models in more rea-
listic social scenarios but, thereby, alsohighlights the fundamental role
space and perception play in modulating social decision-making.
Moreover, we found that participants calibrated their strategies over
time, becoming more (less) likely to use social information in con-
centrated (distributed) environments, extending previous research
highlighting the importance of selective and strategic social learning
rather than pure copying or innovation13,15,20.

In both environments, individuals benefited from high propen-
sities to switch to social relocation, whereas actually capitalizing on
social information and scrounging atpatches discoveredbyotherswas
only adaptive in concentrated environments but maladaptive in dis-
tributed environments. The reason for this apparent contradiction
might be that participants could still discover new patches while
approaching group members and more directed movement even
generally increased their chances of patch discovery. Therefore, par-
ticipants incurred little costs by frequently responding to social
information even if resources were evenly distributed, thus generating
divergent consequences for latent propensities to respond to social
information compared tomanifest outcomes.Moreover, in distributed
environments, where far-away patches were likely depleted before
arrival, participants collected more points if they tuned their pro-
pensity to switch to social relocation based on the distance of
exploiting group members, supporting recent theoretical predictions
on the importance of selective copying in collective search41.

Large amounts of social information use proved adaptive for
individuals (in concentrated environments) but maladaptive for col-
lectives.Groupsperformedbetter in either environment if, on average,
fewer players exploited a given patch and players stayed further away
from each other; additionally, solitary foragers generally out-
performed participants in groups. Crucially, placing the incentives on
the collective level alleviated the negative collective consequences of
high social information use. In concentrated environments, where
scrounging is individually beneficial, collectively incentivized partici-
pants were less likely to respond to social information and exploit
patches discovered by others, increasing their foraging success com-
pared to participants incentivized on the individual level. Group
incentives had a more reliable effect on latent switching probabilities
compared toobserved scrounging rateswhere the evidencewas rather
weak. This is likely because switching probabilities in the computa-
tional model directly reflect decisions to use social information and
approach successful others, whereas scrounging rates are influenced
by many other factors beyond an individual’s control such as the
behavior of others, highlighting the need to model social information
use at the level of latent decisions instead of noisy behavioral out-
comes. Moreover, group incentives also facilitated adaptive tuning of
latent decision strategies over time, with increased selectivity likely
safeguarding against maladaptive over-use of social information.
There was no change towards more selective social information use in
the individual incentive condition, suggesting that participants

Fig. 5 | Collective visual-spatial dynamics. Time-lagged Gaussian-process
regression weights (including 90% HPDIs) predicting collective foraging success
(number of players exploiting a patch) based on (a) distance (average pairwise
distance among players) and (b) visibility (number of visual connections among

group members, ranging from 0, where no one is looking at others, and 12, where
everyone is looking at everyone else) across different time intervals per incentive
condition and environment (concentrated in blue, distributed in green).
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consistently aimed to maximize their own success, which benefited
from frequent scrounging. Previously, Hung and Plott showed that a
“majority rule institution” where participants were rewarded depend-
ing on group accuracy, reduced information cascades42. Similarly,
Bazazi and colleagues showed that collective incentives reduced
individuals’ reliance on social information in an interactive group
estimation task and, thereby, increased the diversity of opinions and
group wisdom43. The present findings extend such work demonstrat-
ing how incentive structure together with environmental affordances
influences social information use and its collective consequences in
more unconstrained and spatially explicit scenarios.

At first glance, the collective drawbacks of high social information
use we observed seem to contradict models of collective search [e.g.,
refs. 40,41,44] that have shown that high degrees of social information
use can also be beneficial on a collective level in rich and clustered
environments. However, in such models, individual exploration is
typically governed by a randomwalk or similar stochastic process and
social information provides the only source of adaptive information.
Human participants, in contrast, use rich internal models of the
environment and the task, as well as memory, to systematically search
the arena. Theseenhanced individual exploration abilities likely shifted
the relative collective benefits of personal and social information use
compared to theoreticalmodels.Moreover, our time-lagged dynamics
analysis provided a subtler picture of when and how it is beneficial for
collectives to join forces. In distributed environments, collectives
indeed consistently benefited from independent search. In con-
centrated environments, our results suggested that groups need to
dynamically adjust their visual-spatial organization over time and
collectively strike the right balance between independent exploration
and joint exploitation. Recently, we have introduced a mechanistic
agent-based simulation framework for collective foraging which
combines individual-level evidence accumulation of personal and
social cueswith particle-basedmovement27. So far, we have focused on
the role of reward distribution and real-world constraints on social
information use and foraging success27; exploring additional factors
such as different individual search processes, cognitive abilities, or
resource types will grant broader insights into the determinants of
collective foraging success.

A promising avenue for future experiments could be to investi-
gate cases of collective foragingwhere social information use does not
create zero-sum scenarios, as in the present paradigm, but facilitates
novel abilities to emerge on the group level, such as collective tracking
of mobile resources45–47. Other interesting extensions of our paradigm
would be to systematically vary the group size, which has been pre-
dicted to affect the rate of scrounging25, and to include patches of
different qualities forcing individuals to additionally decide when to
leave a given patch48. As we found that the benefits of collective
incentives increased over time (both within and across rounds),
researchers could also investigate in greater detail how individuals
(and collectives) update their strategies as a function of their own and
observed payoffs.

Moving forward, we want to emphasize that developing more
naturalistic experimental paradigms should not be a research goal in
itself, unless the added complexity provides additional theoretical
insights. By “naturalistic”, we thus do not mean conditions that are
simply more complex or appear more similar to the real world, but
heterogeneous environments which are shaped endogenously as a
consequence of one’s own and others’ actions and which are marked
by temporal and spatial autocorrelation49,50. In our case, including
perceptual and spatial constraints added key features of real-world
decision environments21,25, which, as we showed, fundamentally shape
the costs and benefits of social information use. The cues that parti-
cipants can base their decisions on (e.g., the distance to visible others)
arise naturally as a consequence of their choices and the behavior of
others insteadof being externally imposedby the experimenter. As the

ecological validity of such cues (i.e., the degree to which they reflect
statistical patterns in the world) also determines the ecological validity
of the experiment itself51, naturalistic approaches in this stricter sense
also help us to bridge the gap between the lab and the real world.

Finally, to identify and model latent choices between different
behavioral states ("Individual Exploration” and “Social Relocation”), we
developed a bespoke Social Hidden Markov Decision model. Tradi-
tionally, cognitive and behavioral scientists have investigated choices
in relatively static and highly standardized experimental situations.
Although abstracting away from real-world details and controlling the
environment participants face can allow researchers to more accu-
rately identify cognitive processes and strategies, ultimately, we aim to
understandhowpeoplemake unconstraineddecisions in relevant real-
world ecologies. Technological advances now provide us with unpre-
cedented access to the individual-level informational environments
and constraints that guide strategic choices in humans and other
animals20,52,53. Such dynamic data require dynamic statistical inference
and Hidden Markov models provide ideal tools to simultaneously
extract meaningful patterns from multidimensional time-series data
and use internal or external situational factors to predict switches
between the identifiedhidden states. Althoughourmodel is tailored to
the present experimental paradigm (especially with respect to the
state-dependent variables), our freely available modeling code and in-
depth documentation set the scene for future research on the socio-
ecological drivers of social decision-making in human and (non-
human) animal collectives. In addition to other naturalistic behavioral
experiments20,54,55, Social Hidden Markov Decision models can, for
instance, be applied to human crowd behavior to better understand
how situational factors influence movement patterns and potentially
cause stampedes56,57; they can be adapted to sports analytics where
HiddenMarkovmodels have alreadybeenused to identify drive events
and defensive assignments in basketball58,59 or “hot hands” in darts60;
they could elucidate leader-follower dynamics in animal societies and
help us better understandwhen andwhyanimals follow the exampleof
others61,62; and they could be applied to GPS data from subsistence
foragers63,64, cell phone users65,66 or migratory animals67–69 to infer
modes of (collective) search,movement and spaceuse across different
spatial and temporal scales.

In summary, our work mechanistically links individual-level social
information use to collective dynamics in naturalistic interactions.
Through behavioral and computational analyses, we have demon-
strated how group incentives can improve collective performance by
reducing individually beneficial, but collectively costly, exploitation of
social information. Maybe most importantly, this work showcases a
way of studying human behavior that goes beyond the often highly
constrained experiments of psychology, economics, and cognitive
science, moving towards a science of unconstrained behavior that
dynamically unfolds in naturalistic and socially interactive
environments.

Methods
The study was approved by the Institutional Review Board of theMPIB
(number: A 2022-06). The preregistration document can be accessed
here: https://osf.io/5r736/29.

Participants
160 participants were recruited from the Max Planck Institute for
Human Development (MPIB) recruitment pool and invited in anon-
ymous groups of four to the behavioral laboratory at the MPIB in
Berlin, Germany (63 identified as male, 97 as female; Mage = 28.5,
SDage = 6.4 years; all were proficient in German and most came from
Western, educated, industrialized, rich, and democratic societies70,71).
Fourty additional participants were recruited for an individual control
condition (14 identified as male, 26 as female; Mage = 29.8, SDage = 5.7
years). Participants signed an informed consent form prior to
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participation and received a basepayment of€18 plus a bonus of €0.01
per coin (depending on incentive condition, see below), earning on
average €23.09 ±0.71 (SD) for a total time of about one hour. The
experimenter was blinded to the aim of the study and the hypotheses.

Procedure
Participants started with an in-game tutorial to familiarize them-
selves with the keys and virtual environment (see Supplementary
Movie 2). Participants then completed the task in groups of four,
interacting live in a 3D immersive game environment. Group mem-
bers were seated in the same room; opaque desk divider panels
ensured that they could not observe each other’s screen and mice
with silent buttons prevented them fromhearingwhenothers clicked
on coins during the coin collection mini-game. Over four rounds
lasting twelve minutes each, participants controlled avatars in the
virtual world (a square 90m× 90m "castle courtyard") and searched
for resources ("coins") hidden under-ground (Fig. 1a; Supplementary
Movie 1). At the beginning of each round, a fixed number (see section
below) of non-overlapping circular resource patches ("coin fields")
with a radius of r = 3 meters was randomly placed across the arena.
Participants used keyboard buttons to freely navigate through the
virtual environment and detect resource patches with a metal
detector. Participants could only move their avatar forward, turn
right or turn left using the "W", "A" and "D" keys, respectively. All
other keys were deactivated.

When individuals encountered a patch, their metal detector
lighted up and they could start collecting coins by clicking on coin
symbols appearing at different locations on the screen (Fig. 1b). New
coins appeared at a fixed interval of 2 s and stayed on the screen until
collected (this interval was chosen as pilots showed that all partici-
pants were able to collect coins within two seconds). This simple "mini
game" ensured that participants stayed engaged throughout the
experiment without introducing additional sources of variation in
performance. Participants continued collecting coins at a patch (and,
therefore, could not move) until it was depleted. After that, the patch
disappeared and a newpatchcontaining the samenumber of coinswas
generated at a random location in the environment (ensuring that it
did not overlap with any existing patch or participant). This means the
number of patches and, therefore, the task structure remained con-
stant within each round avoiding any effects of resource depletion or
diminishing returns.

In addition to an individual exploration of the environment, par-
ticipants could also observe the behavior of others and freely decide to
join players who have successfully discovered a resource patch. Ava-
tars in the virtual environment performed a diggingmovement using a
shovel to indicate that they were currently extracting coins (right
avatar in Fig. 1a). If multiple players simultaneously collected coins
from the same patch, each player extracted coins at the same rate of
one coin every two seconds and coins, therefore, disappeared from a
patch at a rate proportional to the number of extracting players. This
means there was exploitative, but not interference, competition
among players. Participants were only informed about the total num-
ber of coins collected (individually or collectively, depending on
condition) after each round, but did not receive any additional feed-
back during rounds.

The 3D virtual environment imposed a limited, first-person, field
of view (108∘ horizontal and 76∘ vertical FOV) as well as realistic spatial
constraints (maximum movement speed of 2m/s) creating natural
trade-offs between individual exploration of the environment and
social informationuse20,22. The experimentwas implemented using the
Unity72 game engine (version 2020.3.2173,IL2CPP backend, built-in
rendering pipeline, post-Processing Stack v2 3.1.1) using the Netcode
for GameObjects library (version 1.0.0) with a Unity Transport layer.
The four instances for participants were connected to a local Windows
Server running a Server Build of the experiment with a tick rate of

25Hz. Player movement was handled client-side. The Unity source
code as well as built executives necessary to reproduce and run the
experiment are stored on GitHub: https://github.com/
DominikDeffner/VirtualCollectiveForaging.

Experimental design
The experiment followed a 2 × 2 design (Fig. 1c). Groups ofparticipants
were either incentivized on the individual or group level (between-
subjects factor). In the “Individual Incentives” condition, participants’
reward payment depended solely on their own amount of coins col-
lected. In the "Group Incentives" condition, participants were rewar-
ded based on the average number of coins collected across all four
groupmembers. As a second (within-subjects) factor, wemanipulated
the resource distribution: The same number of coin resources was
either concentrated in fewbut richpatches ("Concentrated" condition;
5 patches with 48 coins each) or distributed among many but poor
patches ("Distributed" condition; 15 patches with 16 coins each). Par-
ticipants experienced each resource distribution twice and all possible
permutations of presentation order were realized for both incentive
conditions. The resource distribution for each round was announced
prior to the start of each round andwas also indicated by the colour of
the walls enclosing the arena. Participants in the individual foraging
condition searched for coins on their own with the same resource
distributions and were paid depending on the number of coins
collected.

Data
At a sampling interval of 25Hz, we recorded participants’ (1) X- and Y-
coordinates, (2) orientation vector, (3) velocity, (4) coin count, and (5)
whether they were extracting or not. From this raw data, we con-
structed movement trajectories of all players and computed the full
visual social information available at each point in time through basic
triangulation (Supplementary Movie 3; see GitHub repository for
complete data-processing scripts: https://github.com/
DominikDeffner/VirtualCollectiveForaging). Moreover, we recorded
(1) when a player arrived at a patch, (2) when a player extracted a coin,
(3) when a patch was depleted, and (4) when and where a new patch
was generated. For each event involving a player,we recorded the time
stamp and ID of the player. Data from 2 out of 160 total rounds were
omitted due to technical errors in analyses relying on fine-grained
visibility and movement data (i.e., scrounging analysis and Social
Hidden Markov Decision Model).

Behavioral analyses
Temporal dynamics of success. To quantify how participants’ per-
formance changes over time, we used a multilevel model with Ber-
noulli likelihood to predict whether players are currently exploiting a
patch on a 1 s resolution. In addition to intercepts for each experi-
mental condition and individual- and group-specific offsets, we used
time (minute in round) as an ordered categorical (or monotonic)
predictor, which also varied by condition. Instead of imposing a par-
ticular functional form (e.g., a line), this approach only assumes that
performance changes monotonically over time (i.e., either constantly
increases or decreases) and lets the model estimate the size of the
steps in which success probabilities change15,74:

PðEÞetij = logit�1ðαij +β
MAX
ij

Xet�1

m=0

δm
ij Þ: ð2Þ

The probability that players are exploiting in a specific minute of a
round, indicated by et, is composed of the intercept for each incentive
condition i and environment j and the total effect of experimental time
multiplied by a sum of δ-parameters which represent the additional
effect of each increment in time (all δs together sum to 1).
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Scrounging analysis. To infer behavioral scrounging rates, we com-
puted conditional probabilities for players to join a patch where they
observed at least one exploiting group member. We first computed at
which patches players observed an exploiting groupmember and then
modeled the proportion of those patches that players actually joined
using a binomial likelihood function. In addition to condition-specific
intercepts, we implemented individual- and group-level random
effects. This also allowed us to use estimated individual-level scroun-
ging rates (compared to other group members) to predict success in
both environments within the same model propagating the full range
of uncertainty (Fig. 2d; top).

Social Hidden Markov Decision Model
We used a computational approach to study how different social and
asocial cues impact participants’ decisions to use social information
and switch between behavioral states across different conditions.
Inspired by tools and concepts from animal movement ecology30,31,75,
we developed a Social Hidden Markov Decision Model. A Hidden
Markov model is a doubly stochastic time-series model with an
observation process and an underlying state process (Fig. 1d). It
resembles afinitemixturemodelwith several outcome variableswhere
the identity of the underlying distributions is controlled by a Markov
chain76. The model uses time series of “state-dependent variables” (on
aone-second resolution) to probabilistically assign each timepoint per
participant to one of a fixed number of latent behavioral states. Par-
ticipants can be in three different states: individual exploration, social
relocation and exploitation77. Since exploitation is observed, our only
hidden states are individual exploration and social relocation and the
model estimates parameters of thedistributions that characterize both
states. Additionally, our Social Hidden Markov Decision Model simul-
taneously infers the transition probabilities between both latent
behavioral states and we included time-dependent (social and asocial)
“state predictors” that influence such transitions.

State-dependent variables. We used three state-dependent variables
to infer the latent states from the data: (1) participants' turning angles
(change in movement direction in radians between successive time
points; social relocation is expected to be characterized by directed
movement, i.e., small turning angles), (2) the (smallest) change in
distance to visible exploiting player(s) (social relocation marked by a
large reduction in distance to observed exploiting players) and (3) the
(smallest) relative bearing (angle between orientation vector and
vector connecting focal player to each other player; social relocation
marked by consistent orientation towards other player, i.e., small
relative bearing). Supplementary Figure 7, top three rows, illustrates
the state-dependent variables for one exemplary time series with
orange bars representing periods identified by the model as social
information use through the Viterbi algorithm78,79. To model the
turning angles, we used the vonMises distribution which is commonly
used in directional statistics for continuous circular data. It is a (more
tractable) close approximation of the Wrapped normal distribution80.
For change in distance and relative bearings, we used normal and log-
normal likelihoods, respectively.

State predictors. To quantify how experimental conditions and
situational factors modify each participant’s probability to stop
exploring independently and switch to social relocation at each time
point t, we used four state predictors (Supplementary Fig. 7, bottom
four rows): (1) a binary visibility indicator (V = 1 if any exploiting
player is currently in field of view, V = 0 otherwise), (2) the (z-stan-
dardized) distance to the closest visible exploiting player D, (3) the
number of other players extracting at the closest visible patch N
(coded such that N = 0 represents the default where only one player
is exploiting) and (4) the (z-standardized) time since the last coin
extraction T. All state predictors were estimated for each incentive

condition i and environment j (Eq. (1)). Note that Dt and Nt are mul-
tiplied by Vt in Eq. (1) to “switch on” the effects of distance and player
number only for times when participants actually observed (an)
exploiting player(s), i.e., when Vt = 1. All predictor weights were
estimated in a fully hierarchical Bayesian framework with random-
effect terms accounting for the covariance of decision weights
among both individuals and groups while also allowing those cov-
ariances to differ among experimental conditions (omitted from Eq.
(1) for the sake of readability).

Time-varying state predictors. Moreover, we augmented these mul-
tilevelmodels by estimating time-varying parameters through ordered
categorical (monotonic) effects and describe how social decision-
making dynamics unfold over time. As one example (other state pre-
dictors are constructed equivalently), the effect of patch distance on
the probability to switch to social relocation in a specific minute of a
round et is composed of the total effect of time times the sum of δ-
parameters which represent the additional effect of each increment in
time:

β
et
Dij

= βDMAX
ij

Xet�1

m=0

δDm
ij
: ð3Þ

Note we only included individual- and group-specific offsets for the
average effect of each state predictor over time.

Forward and Viterbi algorithms. To efficiently compute the (log)
marginal likelihood, i.e., the joint distribution of each data sequence
summing over all possible state sequences, we used the forward
algorithm, which calculates this likelihood recursively [see30,75,76,78, for
more technical introductions]. After model fitting, we used the
dynamic-programmingViterbi algorithm to obtain themost likely state
sequence given the observations and estimated parameters30,76,78. This
reconstruction of the underlying state sequence helps visualizing the
results of the fitted models and ensuring that the state-dependent
distributions can be connected to psychologically meaningful pro-
cesses. We only explicitly modeled times at which players potentially
could use social information, i.e., times when they were allowed to
move and at least one group member was currently collecting coins
(white segments in Supplementary Fig. 7). This means we omitted all
times (1) when players themselves were exploiting a patch (dark gray
segments in Supplementary Fig. 7) and (2)whenno groupmemberwas
exploiting (light grey segments in Supplementary Fig. 7), because in
both cases we know the state of a player. To ensure a proper latent
state sequence, we set a player’s state to individual exploration after
both types of omissions.

As detailed in the preregistration from 12.07.2022 (https://osf.io/
5r736/29), we have tailored a general collective foraging agent-based
model27 to the precise design of this experiment; we used this
mechanistic model to generate synthetic data of the same format as
our experimental data with known sequences of latent states (indivi-
dual exploration and social relocation). We then confirmed that a
baseline version of our computational model was able to reliably infer
latent-state sequences on the level of single rounds. The preregistra-
tion document also contains further explanations of our modeling
approach29.

Collective visual-spatial dynamics model
Lastly, we investigated how the visual-spatial organization of groups
affected collective success across different timescales and how these
dynamics differed among incentive conditions and environments.
Specifically, we used a time-lagged Gaussian-process regressionmodel
with binomial likelihood to estimate how spatial and visual organiza-
tion at different times in the past t − τ (in steps of 5 seconds for up to
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threeminutes, i.e., t − 5s, t − 10 s,…, t − 180 s, as well as for each second
for up to half a minute, i.e., t − 1 s, t − 2 s,…, t − 30 s) predicted collec-
tive success (proportion of players exploiting) at time t. Gaussian
processes extend the multilevel approach to continuous categories
and estimate a unique parameter value for each category, while still
regarding time as a continuous dimension in which similar time lags
are expected to generate similar estimates74. The regressionweight for
a given time lag t − τ (for incentive condition i and environment j) is
composed of the average effect and a lag-specific offset for each
experimental condition:

βt�τ
ij = �βij +d

τ
ij : ð4Þ

The lag-specific offsets follow a multivariate Gaussian distribution,
separately for experimental conditions:

d1
ij

d2
ij

. . .

dτmax
ij

0
BBBBB@

1
CCCCCA

∼N

0

0

. . .

0

0
BBB@

1
CCCA ,Kij

2
6664

3
7775: ð5Þ

The vector of means is all zeros, so the average effect remains
unchanged, and Kij is the covariance matrix among time lags. We
estimated the parameters of a Radial basis function (or “squared-
exponential”) kernel that expresses how the covariance between dif-
ferent lags changes as the distance between them increases:

K
τxτy
ij = ηij expð�ρij

ðτy � τxÞ2
τ2max

Þ: ð6Þ

The covariance between time lags τx and τy equals the maximum
covariance ηij, which is reduced at rate ρij by the relative squared dis-
tance between τx and τy.

Model fitting
All models were fitted using Stan as a HamiltonianMonte Carlo engine
for Bayesian inference81, implemented in R v.4.0.3 through cmdstanr
version 0.5.382. We used within-chain parallelization with reduce_sum
to substantially reducemodel run times through parallel evaluation of
the likelihood. To reduce the risk of overfitting the data, we generally
usedweakly informative priors for all parameters. For state-dependent
distributions in the Social Hidden Markov Decision Model, we used
informative priors to incorporate knowledge about the nature of both
states which also helps avoid label-switching, a common issue in all
mixture models30,78. To optimize convergence, we implemented the
non-centered version of random effects using a Cholesky decom-
position of the correlation matrix74 with LKJ priors for correlations
matrices83. Visual inspection of traceplots and rank histograms84 sug-
gested good model convergence and no other pathological chain
behaviors, with convergence confirmed by the Gelman-Rubin
criterion85R̂≤ 1:01. All inferences are based on several hundred effec-
tive samples from the posterior86. Finally, we repeated our main
behavioral analyses using frequentist methods and fitted generalized
linear mixed models through lme4 version 1.1–34. See GitHub repo-
sitory for full model code and analysis scripts: https://github.com/
DominikDeffner/VirtualCollectiveForaging.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full experimental data are available on GitHub: https://github.
com/DominikDeffner/VirtualCollectiveForaging, and have been

archived within the Zenodo repository: https://doi.org/10.5281/
zenodo.1065033287.

Code availability
All relevant analysis code, the Unity source code as well as built
executives necessary to reproduce and run the experiment are stored
on GitHub: https://github.com/DominikDeffner/
VirtualCollectiveForaging, and have been archived within the Zenodo
repository: https://doi.org/10.5281/zenodo.10650332.
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