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ABSTRACT
The functionality of many polymeric materials depends on their glass transition temperatures (T g). In computer simulations, T g is often
calculated from the gradual change in macroscopic properties. Precise determination of this change depends on the fitting protocols. We
previously proposed a robust data-driven approach to determine T g from the molecular dynamics simulation data of a coarse-grained semi-
flexible polymer model. In contrast to the global macroscopic properties, our method relies on high-resolution microscopic details. Here, we
demonstrate the generality of our approach by using various dimensionality reduction and clustering methods and apply it to an atomistic
model of acrylic polymers. Our study reveals the explicit contribution of the side chain and backbone residues in influencing the determination
of the glass transition temperature.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0151156

I. INTRODUCTION

Most polymeric materials in application are used in their glassy
state. Therefore, functionality and the applicability of these materi-
als depend on the glass transition temperature, T g . This necessitates
an accurate prediction of T g to better control the properties of
the material for specific applications. The static properties, such
as radial distribution function and structure factor, do not show
any notable change around T g ; in contrast, the dynamic proper-
ties, such as viscosity and relaxation time, substantially increase in
a super-Arrhenius manner.1–4 Experimentally, T g of polymer melts
is calculated from the change in heat capacity using differential
scanning calorimetry (DSC),5 thermal expansion coefficient using
thermomechanical analysis (TMA),6 or viscoelastic behavior of
polymers using dynamic mechanical analysis (DMC).7 However, the
experimentally relevant cooling rates are inaccessible in computer
simulations, and this leads to ambiguity while connecting compu-
tational models of polymeric materials to experimentally observed
properties. Computationally, T g is determined from changes in

the macroscopic properties such as specific volume, density, or
energy. The reliable predictions of T g are challenging, particu-
larly for systems where these changes occur gradually.8–12 Recent
studies have shown attempts to define T g based on the changes
in molecular structures of polymeric materials. For example, by
quantifying the changes in specific dihedral angles and transitions
between states defined by those angles.10,13 Baker et al.14 have
observed that the glass transition temperatures for polymer melts
with different chain lengths can be collapsed on a master curve
using the local intra-chain conformational dynamics with packing.
Machine learning (ML) methods hold great promise to automa-
tize the determination of structural properties of the glassy systems
that can reflect the changes in T g from molecular dynamics (MD)
simulation data, but their application for polymeric materials is
limited.10,15,16 Iwaoka and Takano15 applied principal component
analysis (PCA)17 to Cartesian coordinates of short polymer chains
in a melt. They showed a change in eigenvalue distributions before
and after glass transition and connected this change to approximate
conformational entropy differences.
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Recently, we proposed a new unsupervised machine-learning
approach to estimate T g from molecular dynamics simulation
trajectories.18 Our data-driven methodology takes into account
the structural information of individual chains and makes use of
high-resolution information obtained from molecular dynamics
simulations. By combining principal component analysis17 and a
density-based clustering algorithm (DBSCAN),19 we identified T g at
the asymptotic limit even from relatively short-time trajectories. The
PCA captured the change in nature of the fluctuations in the system:
from conformational fluctuation above T g to localized rearrange-
ments below T g . Our method was introduced on a coarse-grained
model of polymer melts containing weakly semiflexible polymer
chains.20 In this work, we extend it and show the generality of our
approach by using nonlinear dimensionality reduction, agglomer-
ative hierarchical clustering21 and apply it to other glass-forming
liquids.

Here, we analyze the simulation trajectories of all-atom acrylic
polymers22 found in acrylic paints: poly(methyl methacrylate)
(PMMA), poly(ethyl acrylate) (PEA), and poly(n-butyl acrylate)
(PnBA); see Fig. 1. The glass transition temperatures for acrylic poly-
mers are close to room temperature, i.e., 333–387 K23–26 for PMMA,
249 K27 or 231 K28 for PEA, and 223 K25 for PnBA. This proximity to
room temperature is relevant for both, the stability of a painting and
the applicability during the painting process. However, it also means
that the paints can suffer from crack formation at low tempera-
tures while becoming sticky at high temperatures. Consequently, the
temperature has a significant impact on the degradation of acrylics.
As our analysis relies on the microscopic observables, we explicitly
investigate the role of the side chain and backbone atoms in deter-
mining the glass transition temperature. Extending our approach to
another nonlinear multi-dimensional scaling approach enables us to
apply it to a very small number of observations per temperature,
which is the case for simulation data obtained with, e.g., continuous
cooling protocols.9 Here, we employ agglomerative clustering that
requires minimum prior knowledge about the system and hyperpa-
rameter tuning. Overall, with various dimensionality reduction and
clustering techniques, the generality of our approach is tested for
these acrylic polymer melts.

The paper is organized as follows: In Sec. II, we present
the methods and simulation details. The results obtained from

FIG. 1. Chemical structure of the polymers used in this study. Only the selected
carbon atoms in the backbone (yellow) and side chain (blue) are used in the cal-
culation of T g for (a) poly(methyl methacrylate), (b) poly(ethyl acrylate), and (c)
poly (n-butyl acrylate). In our model, each polymer chain is composed of n = 15
monomers.

different methods are given in Sec. III. In Sec. IV, we provide an
overall discussion of the methods. Finally, we conclude our results
in Sec. V.

II. METHODS AND SIMULATION DETAILS
A. Simulation details and data preparation
1. Atomistic simulations

Molecular dynamics simulations of bulk homopolymers
(PMMA, PEA, and PnBA) were presented in Ref. 22. They were
performed using the general Amber force field29 with Gromacs
2019 software.30,31 The isotactic 15-mer polymer chains were con-
structed with AmberTools,32 and nch = 100 polymer chains were
placed randomly in a box with initial dimensions 9 × 9 × 9 nm3

using Packmol.33 Each system was minimized for 1000 steps by
using the steepest descent algorithm. Following the minimization,
we equilibrated for 200 ps using the NVT (constant number of par-
ticles, volume, and temperature) at 600 K. We further equilibrated
the system with NPT (constant number of particles, pressure, and
temperature) ensemble for 10 ns to maintain temperature (600 K)
and pressure (1 bar), respectively. After this short equilibration at
600 K, the temperature was decreased to 100 K using a cooling rate of
20 K/ns to calculate the glass transition temperature and obtain cor-
rect polymer density at each temperature. The coordinates of the
system at temperature intervals of 50 K were saved and further
equilibrated for 10 ns using NPT ensemble to study the temperature-
dependent properties of the polymers. Atomic coordinates were
saved every 100 ps for the trajectory analysis resulting in 100 frames
per temperature. Further information on the simulation details is
given in Ref. 22.

2. Input data
To identify the liquid-to-glass transition from the simulation

trajectories, we extract information from each individual chain inde-
pendently. As possible descriptors, we use sets of internal pairwise
distances. To retain the information about conformational fluctu-
ations of individual polymer chains of 15-mers, we choose three
different sets of descriptors—all pairwise distances between (a) the
backbone C-atoms (C2, C3) (bb-bb), (b) side chain C-atoms (C5,
C6 for PMMA; C5, C7 for PEA; C5, C9 for PnBA) (sc-sc), and (c)
the backbone C-atoms (C2) and the end side chain C-atoms (C6
for PMMA; C7 for PEA; and C9 for PnBA) (bb-sc). A snapshot of
selected carbon atoms is given in Fig. 1. The yellow beads corre-
spond to the backbone atoms (C2, C3), and blue beads, to the side
chain atoms (C5, C6/C7/C9) for each monomer.

We extract this information from 100 snapshots of each NPT
run (we get similar results using NVT simulations) of simulation
trajectories at 11 temperatures in the range 100–600 K for each
chain independently. In this way, for each chain in the melt, we con-
struct the data matrix Xch ∈ RM×L, where ch = 1, . . . , nch is a chain
index, nch is a number of chains in the melt, M is the number of
simulation snapshots/frames, and L is the number of descriptors:
all pairwise distances between side chains C-atoms (sc-sc), back-
bone C-atoms (bb-bb), and backbone side chain (bb-sc) separately
(for our systems here, the length of descriptors L = 435 for all three
cases).
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B. Data-driven identification of T g

We have recently developed a data-driven protocol18 to cal-
culate T g described below. The analysis workflow consists of two
independent methods: (I) using combined information from all
temperatures [Fig. 2(a)] or (II) individual information from each
temperature [Fig. 2(b)].

1. Dimensionality reduction
For both methods I and II, we first perform a dimensional-

ity reduction once the possible sets of the internal descriptors are
defined (as described in Sec. II). In the original paper,18 we used
(PCA),17 which identifies linearly uncorrelated subsets of the data
space containing most of the variance of the original data. PCA has
been successfully used to characterize different physical phenom-
ena, i.e., the phase transition in conserved Ising spin systems,34,35

secondary structure prediction of proteins,36 shape fluctuation in
DNA,37 and glass transition temperature prediction in polymer
melts.15,18 Here, PCA is applied on the internal pairwise distances’
matrix Xch of a randomly selected single chain. Before applying PCA,
Xch is standardized column wise, i.e., it is mean free, and standard
deviation is equal to one. First, the covariance matrix Cch = XT

chXch
∈ RL×L is calculated. Then, the pairs of eigenvalues λch,i and eigen-
vectors vch,i for i = 1, 2, 3, . . . , min (L, M) are found for Cch and
sorted in the decreasing order of λch,i. The original data Xch are
then projected X̃ch,i = Xchvch,i to the new orthogonal basis of princi-
pal components (PCs) formed by P leading eigenvectors vch,i, where

i = 1, . . . , P and P ≤ min (L, M) is the reduced number of dimen-
sions. For the index notations of the above equations, see Ref. 18.
The number of leading principal components (P) to project the
input data on is usually chosen to retain a specific amount of vari-
ance in the input data reflected by the magnitude of the respective
eigenvalues (e.g., see Fig. S4).

PCA is able to perform only linear mapping of the data to
a lower-dimensional space. To evaluate whether this linear pro-
jection is able to capture all of the important details, here, we
also used the recently introduced nonlinear dimensionality reduc-
tion method—cc_analysis38,39—that was successfully applied for the
analysis of protein data.40,41 It is a variant of multi-dimensional scal-
ing methods42 in which a dimensionality reduction is performed
by minimizing the loss function between the distances (or other
metrics) between data in original high- and target low-dimensional
spaces. The key feature of cc_analysis is that it minimizes the
differences between Pearson correlation coefficients43 of pairs of
high-dimensional datasets and the scalar product of the low-
dimensional vectors representing them [see Eq. (1)] projecting the
data into a unit sphere,

M−1

∑
i=1

M

∑
j=i+1
(ri j − xi ⋅ x j)

2
→ min. (1)

Here, rij is the correlation coefficient between configurations Xi and
Xj in the high-dimensional space (the rows of the matrix Xch), Xi

∈ RL, i, j = 1, . . . , M; xi ⋅ xj denotes the dot product of the unit

FIG. 2. Schematic representation of the workflow employed in the paper to determine glass transition temperature from combined (a, Method I) and individual (b, Method II)
temperature analyses. Both methods start with analysis of the simulations for a single chain and calculation of internal descriptors. Then, in Method I (a), the data from all
temperatures are combined, standardized, and followed by dimensionality reduction and clustering. This procedure is repeated for all chains in the melt. An inflection point of
averaged cluster indices is assumed to be the T g. In Method II (b), the data from each temperature are analyzed independently: standardized and followed by dimensionality
reduction. An inflection point of first eigenvalues (or participation ratio) averaged over all chains as a function of temperature is used as an indicator for T g.
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vectors xi and xj representing the data in the low-dimensional space
X̃ch. Importantly, similar to PCA, for deciding on the number of
required dimensions for low-dimensional projection of cc_analysis,
one can use the gap in the eigenvalues of the XchXT

ch ∈ R
M×M

matrix (please note the difference to the Cch of the PCA covari-
ance matrix, which is calculated column wise but will have the same
eigenvalues and eigenvectors up to normalization). The dependence
of the results on the number of dimensions for Method I using
both dimensionality reduction methods is discussed in the results
sections.

As a result of dimensionality reduction, each data point in the
latent projection corresponds to the configuration of one chain at a
given time and temperature.
2. Clustering

For Method I, after the dimensionality reduction using linear
or nonlinear methods, we perform clustering on the new lower-
dimensional projected space X̃ch ∈ RM×P for each polymer chain.
In our previous paper,18 we used a density-based spatial cluster-
ing of applications with noise (DBSCAN),19 which groups together
the data points that are close based on two hyperparameters: the
Euclidean distance to create a neighborhood and the minimum
number of points to form a dense region. The clustering perfor-
mance depends on the careful choice of the hyperparameters and
can produce any number of clusters. In this manuscript, instead
of DBSCAN, we use agglomerative clustering.21 For this clustering
method, the number of expected clusters is the main hyperparam-
eter. Since our dataset consists of either glassy or liquid states, our
natural choice for the number of clusters to find is 2. As other two
parameters, we used Euclidean distance as the metric and Ward link-
age.44 We use agglomerative clustering both on PCA and cc_analysis
space to observe the change from liquid to glassy states. As the
result of the clustering, each chain ch at each simulation frame and
temperature will get a cluster index (ID) ni, where ni is an integer
(i.e., ni ∈ {0, 1, . . . , ncluster − 1}, ncluster = 2 for agglomerative cluster-
ing in this work) for i = 1, 2, . . . , nchM, nch is the number of chains
and M is the number of frames. Subsequently, the matrix X̃ch ∈ RM×P

will be transformed to a vector X̃ch ∈ {ni∣ni = 0 or 1}M . In this work,
ni = 0 corresponds to the glassy state, whereas ni = 1 corresponds to
the liquid state.
3. Method I

We use the data combined from simulations from all temper-
atures, resulting in the data matrix Xch = Xch(⋃T) ∈ R1100×435 for
each chain ch, ch = 1, . . . , nch. We perform the dimensionality reduc-
tion on Xch (linear or nonlinear) obtaining a new reduced projection
space X̃ch. We cluster this new space assigning a cluster index ni to
each configuration of the chain ch and obtaining a vector of cluster
indices X̃ch. Then, we repeat dimensionality reduction with subse-
quent clustering on each chain present in the system for a total of
100 chains. This implies that each chain will be represented as a
vector of 1100 cluster IDs (each 100 elements of this vector corre-
sponds to the chain’s configuration at the same temperature). Then,
we calculate average cluster indices ID(T) as a mean over cluster
IDs of all chains that were simulated at the same temperature. At
each temperature T, the average cluster index ID(T) is given as

ID(T) =
ncluster−1

∑
ni=0

niP(ni, T), (2)

where P(ni, T) is the probability distribution of cluster IDs for all nch
chains over all simulation frames at each T.

Finally, the sharp change in the average cluster IDs is used
to determine the glass transition temperature [see the schematic
in Fig. 2(a)]. To quantify the jump, we interpolate the data by a
hyperbolic tangent function,

g(T) = C(1 − tanh (sT − d))/2, (3)

where s and d are the fitting parameters and C is the gap between
the two states at T ≫ T g and T ≪ T g , respectively. The inflexion
point [a point in which g′′(T) = 0] defines T g and is estimated as
T g = Tinflextion = d/s.

4. Long time approximation with method I
With the aim to extrapolate glass transition temperature at the

long observation time limits, we calculate the average cluster indices
for different observation time windows Δt with equal intervals.
We choose kt different observation time windows Δt (kt = 9 with
Δt from 2 to 10 ns in this work). For each Δt, we have used Δt/tlag
consecutive frames with tlag = 100 ps. We fit the average cluster
ID values using Eq. (3) and calculate the inflexion points at differ-
ent Δt. Then, we observe the change in T g(Δt) as the inverse of
Δt. At relatively larger time windows, it follows a linear behavior
and an extrapolation of this linear behavior to 1/Δt → 0, i.e., infi-
nite observation time, allows us to estimate an asymptotic limit of
T g [T g(Δt →∞)] from a relatively short trajectory length.

5. Method II
In contrast to Method I, we analyze the data from each temper-

ature independently. In this case, Xch ∈ R2500×435. Here, we used the
atomic coordinates saved every 4 ps for the trajectory analysis result-
ing in 2500 frames per temperature. In this way, we do not provide
any information on individual chain conformations from different
temperatures to dimensionality reduction methods. We standard-
ize the data and perform PCA for each chain at each temperature
independently obtaining a set of eigenvalues λch,i(T), where ch is
a chain index, T is the temperature at which we performed PCA,
and i is the eigenvalue index (they all sorted in descending order
and i = 1 correspond to the highest eigenvalue), i = 1, . . . , L. Addi-
tionally, we calculate the participation ratio (PR) over the set of
eigenvalues defined at each temperature as

PRch(T) = (
L

∑
i=1

λch,i(T))
2

/
L

∑
i=1

λch,i(T)
2, (4)

where λch,i(T) are eigenvalues of PCA sorted in descending order.
PR can be viewed as the effective dimensionality of the data. It
reflects the decay rate of eigenvalues: faster decay results in a smaller
PR compared with a slower decay rate.

We repeat this analysis for all ch = 1, . . . , nch chains in the melt.
In Ref. 18, we observed that T g can also be determined from the
change in monotonic behavior of the first eigenvalue of PCA or the
participation ratio (PR) averaged over all chains as a function of
temperature:

λ1(T) =
1

nch

nch

∑
ch=1

λch,1(T), (5)
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PR(T) =
1

nch

nch

∑
ch=1

PRch(T). (6)

PR(T) is a more general measure than λ1(T) as it can be applied to
the data with different variances. In our case, we standardize the data
that allows us to average over the eigenvalues as well. Method II is
summarized in Fig. 1.

III. RESULTS
A. Method I: Analysis of combined temperatures
1. Results with PCA

We start our analysis for each of the three systems (PMMA,
PEA, and PnBA) by performing PCA on a randomly selected single
chain of the homopolymer using the input descriptors (sc-sc, bb-bb,
and bb-sc) over the 10 ns classical MD simulations concatenated for
all temperatures. In Fig. 3, we show the projection of the data onto
two leading principal components (PCs) for sc-sc descriptors. The
projections in the new PCA space can be viewed as linear combina-
tions of all input descriptors. Each point in the plot corresponds to
the chain’s conformation at a given temperature at each time. The
amount of variance explained by eigenvectors for PCA analysis is
given in supplementary material, Fig. S4). Even in two-dimensional
projection, we observe that for all three homopolymers, the low-
temperature states are concentrated in a small region on the PCA
projection (Fig. 3). We clustered the data using agglomerative clus-
tering, as described in Sec. II B. In the inset of Fig. 3, we plot the same
projection colored based on obtained cluster indices. The agglomer-
ative clustering groups the low temperature (T < T g) part into one
cluster with cluster ID = 0 (maroon color) and the liquid state to
cluster with ID = 1 (gray color).

To obtain a general estimate of the temperature at which the
separation between the liquid and the glassy states (characterized
by a change in cluster IDs) occurs, we perform PCA for each
chain separately, followed by agglomerative clustering and averag-
ing over obtained cluster IDs as a function of temperature as given

in Fig. 4(a). To quantify the jump, we use Eq. (3) for fitting the data
(detail in Sec. II B) and define the inflexion points as the glass tran-
sition temperatures. Figure S2 shows the results do not change after
applying DBSCAN instead of agglomerative clustering to the same
data as in Fig. 4(a). Comparing the obtained results for the three sys-
tems considered here we observe that T g decreases with increasing
the side chain length of the polymer, which is in good agreement
with the previous analysis22 and shown in Fig. 3. The methods of
predicting T g based on the macroscopic properties such as density or
volume are sensitive to the fitting protocols as the transition around
T g is not sharp. For example, when the same data were fitted with
a different fitting range, the estimated T g for PMMA was lower22

compared with the value we report in Fig. 4(c) or a similar model in
Ref. 10. A different choice of the fitting range leads to around 50 K
shift in T g value for PnBA system, see Fig. S1, suggesting that T g is
highly affected by the bilinear fitting uncertainties.

In Fig. 4(b), we plot T g values obtained for different input
descriptors bb-bb, sc-sc, and bb-sc as a function of the number
dimensions the data were projected on. The estimated T g values
averaged over different clustering results for each of the descriptors
are given in Table I. We do not see notable differences in T g values
when we compare side chain and backbone contributions. Since in
Method I the fluctuations of all the temperatures are scaled together,
the dominant contribution in fluctuation is expected to come from
the high-temperature states suggesting that both the side chain and
backbone fluctuate more at high temperatures compared with their
low-temperature states. However, the scenario changes completely
when we treat each temperature separately in Method II. This will
be discussed later in Sec. III B.

It is important to note here, as was already discussed in Ref. 22,
the experimental T g values for the considered polymers are lower
than our prediction due to the differences in the cooling rates acces-
sible to MD simulations and experiments (experiential rates are
much lower). Several studies have attempted to link those cooling
rates46 and proposed an adjustment to T g values for acrylic polymers
calculated from MD simulations.22 Our results agree well with the
previously calculated T g values (Table I) from simulations of acrylic

FIG. 3. Projections of a single chain over multiple time frames for (a) PMMA, (b) PEA, and (c) PnBA in the reduced PCA space determined using the sc-sc input descriptors.
Each point in the plot corresponds to the chain’s conformation at a given temperature at each time. Projections are colored varying from red to blue from high temperature to
low temperature. Note that the axis values in the PCA embedding do not correspond to any physical quantity. (Inset) The same projection is colored based on clustering IDs.
Gray and maroon colors represent cluster IDs 1 (liquid) and 0 (glass), respectively.
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FIG. 4. (a) Agglomerative clustering on the three-dimensional PCA projections for the three different polymers. Results are averaged over all chains, and the average cluster
index, ID(T), is plotted for each temperature. To quantify the jump, we interpolate the data by using Eq. (3). The fitting functions are given as the solid curves (fitting
parameters are listed in supplementary material, Table S1). The vertical lines correspond to the inflection points, i.e., the glass transition temperatures. T g decreases with
increasing the side chain lengths of the polymer melt. (b) The glass transition temperatures calculated for three different polymers as a function of the number of leading
PCs (P = 2, . . . , 9) used for clustering for different input descriptors: bb-bb, sc-sc, and bb-sc. (c) Glass transition temperatures from the bilinear fits of the low- and
high-temperature regions of the specific volume. The fitting is done by the pwlf package45 using the whole data as input and specifying one breakpoint. The error bars are
nonlinear standard errors associated with the piece-wise linear fitting.

TABLE I. Comparison of T g values (in K) obtained with different methods.

MMA EA NBA

Specific volume fittinga 478 ± 8,22 526,10 524 ± 6b 416 ± 822 334 ± 1422

PCAc (sc-sc) 511 ± 4 447 ± 4 421 ± 6
PCA (bb-bb) 513 ± 5 453 ± 4 425 ± 5
PCA (bb-sc) 507 ± 4 450 ± 4 414 ± 5
cc_analysis (sc-sc) 521 ± 2 457 ± 1 422 ± 3
cc_analysis (bb-bb) 537 ± 1 465 ± 1 444 ± 2
cc_analysis (bb-sc) 520 ± 2 457 ± 1 421 ± 3
Δt →∞ 506 ± 5 430 ± 5 402 ± 2
aError values are nonlinear standard errors associated with the piece-wise linear fitting calculated using the Delta method.45

bThis study.
cThe error values are the standard deviations associated with the number of reduced dimensions used for clustering, detail in
Fig. 4(b).

polymers or coarse-grained bead-spring polymer model.18 Overall,
our result also shows a good qualitative agreement with the experi-
mental findings, where T g values decrease with increasing side chain
length.

One of the limitations of all-atom MD simulation is the short
time that can be accessed due to the large number of atoms. This
presents a challenge when calculating properties, such as glass tran-
sition temperatures, because the dynamics of the polymer melt are
slow. Therefore, a long equilibration (hundreds of nanoseconds) is
necessary. Here, the simulation data we have are only 10 ns for each
temperature, which is considered short for equilibration of macro-
scopic properties, such as specific volume (Fig. 3). In Sec. II, we
provide a method to extrapolate T g to long time limits from a rel-
atively short trajectory. We perform PCA followed by clustering at
nine different observation time windows Δt from 2 to 10 ns with 1 ns
interval and interpolate the data using Eq. (3). The inflexion point,
i.e., T g , is now calculated for different lengths of time, Δt, along
the trajectory. Taking into account, this finite-time effect, we found
a linear dependency of T g and Δt for the bead-spring entangled

polymer model that allows estimating an asymptotic limit of T g from
a relatively short trajectory length. We extended this approach to
acrylic polymers. In Fig. 5, we plot the inflection points at different
Δt values and find linear-type behavior at larger observation times.
Although the fitting uncertainty in the all-atom system is relatively
high compared with the CG model, one can still extrapolate the
T g values in the asymptotic limit within some error bars of the
fitting. The obtained values are T g ≈ 506 ± 5(K) for MMA, 430
± 5(K) for EA, and 402 ± 2(K); however, one requires longer sim-
ulation runs for reliable linear fitting. We can observe the linear
tendency to the lower T g values with an increase in simulation time,
nonetheless, obtained estimates are within the cooling step range.

2. Results with cc_analysis
In this section, we use cc_analysis for dimensionality reduction

instead of PCA to identify the glass transition. We apply it with the
same input descriptors (sc-sc, bb-bb, and bb-sc). The projections are
shown in Figs. 6(a)–6(c) for the three systems for sc-sc input descrip-
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FIG. 5. The inflexion points of the hyperbolic curve fitting at different observation time windows. Extrapolating to Δt →∞, we obtain T g ≈ 506 ± 5(K) for PMMA, 430 ± 5(K)
for PEA, and 402 ± 2(K) for PnBA system for sc-sc descriptor. The bb-bb descriptor overestimates the T g predictions.

tor. The state separation results are clearer than the PCA projections
[Figs. 3(a)–3(c)]. To quantify the jump in cluster ID, we use the same
procedure with Eq. (3) for fitting the data and observe that inflection
points, i.e., the glass transition temperatures, decrease on increasing

the side chain lengths of the polymer melt. The data are tabulated
in Table I. cc_analysis results are less sensitive to the choice of
dimensions [Fig. 6(e)] compared with PCA [Fig. 4(b)]. We observe
that the backbone descriptor systematically overestimates the

FIG. 6. Projections using cc_analysis of a single chain over multiple time frames (the same as in Fig. 3): (a) PMMA, (b) PEA, and (c) PnBA. Each point in the plot corresponds to
the chain’s conformation at a given temperature at each time. Projections are colored varying from red to blue from high temperatures to low temperatures. (d) Agglomerative
clustering on the cc_analysis projections for the three different polymers. Results are averaged over all chains, and the average cluster index ID(T) is plotted for each
temperature. The vertical lines correspond to the determined glass transition temperatures. (e) The glass transition temperatures were calculated for three different polymers
as a function of the number of leading cc-components used for clustering for different input descriptors: bb-bb, sc-sc, and bb-sc. (f) Projections of concatenated data from
all T for a single chain with only a single frame at each T in the new reduced space determined using cc_analysis.
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T g value. Moreover, it performs equally well with only a few
observations per temperature [Fig. 6(f)].

B. Method II: Analysis of individual temperatures
In this section, we use Method II as described in Sec. II B where

we perform PCA on single polymer chains at different tempera-
tures independently and use averaged eigenvalues [Eq. (5)] and the
participation ratio [Eq. (6)] as described in Sec. II B to determine
T g [see schematic Fig. 2(b)]. With this method, the information on
single chain conformations from different temperatures is not acces-
sible to the dimensionality reduction method, rather we investigate
whether the data-driven protocol itself can distinguish different
temperature inputs. Examples of resulting projections with sc-sc
input descriptors for three of the systems are shown in Fig. S5 in
supplementary material. We observe a change from the completely
random distribution of points in the projection at high temperatures
to a more “clustered” projection around the glass transition temper-
ature. Similar behavior is also observed for the bead-spring polymer
model near T g .18 Below T g , only small random fluctuations domi-
nate the behavior of the chain, and as a result, the projections look
scattered. Here, we would like to emphasize that due to the standard-
ization of the data, those fluctuations at different temperatures have

FIG. 7. Analysis of each temperature independently. (a) The magnitude of the
first eigenvalues and (b) the participation ratios for PMMA, PEA, and PnBA poly-
mers. We used the side chain distances as input features to PCA, and the results
are averaged over all chains. Around T g, the monotonic behavior of either PR
or the first eigenvalue changes, and the temperature at which the change occurs
decreases on increasing side chain length.

the same magnitude, resulting in visually similar projections below
and above T g in Fig. S5.

The magnitude of the PCA eigenvalues can be used to quan-
tify the observed behavior. In general, for independently projected
data, this magnitude does not have a uniform value, but in our
case, all distances are standardized. As a result, we could average
the first eigenvalue, λ1(T), across all projections [see Fig. 7(a)].
As more general criteria, we plot the participation ratio, PR(T),
for the three systems in Fig. 7(b). We observe a non-monotonic
behavior for all the systems on lowering the temperature. We argue
that the change in PR(T) [or λ1(T)] is connected with a change
in nature of the fluctuations in the system: from local configura-
tional rearrangements above T g to only local rearrangements along
the chain below T g . As a result, more dimensions are required for
the random motion description below T g . With this analysis, we
also confirm that the point at which the sudden change occurs
(i.e., T g) shifts toward lower values on increasing side chain length
(Fig. 7).

Previously, we showed that the results obtained with Method I
did not depend on the choice of descriptors, i.e., the atoms chosen
for the analysis. However, the backbone diffuses slower than the side
chains (Fig. S3); hence, different descriptors can play a role in this

FIG. 8. Analysis of each temperature independently using only the backbone dis-
tances as input features to PCA. (a) The magnitude of the first eigenvalues, and
(b) the participation ratios for PMMA, PEA, and PnBA polymers. The results are
averaged over all chains. The plots suggest that it is essential to include the
contributions from side chains to get the correct nature of T g.
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method where each temperature is treated independently. There-
fore, we repeat the same analysis using Method II with the bb-bb
input descriptors for all three systems. Remarkably, the projections
do not show “clustering” around T g (Fig. S6) as well as there are no
clear changes in λ1(T) and PR(T) (Fig. 8). Thus, our result sug-
gests that the side chains play an important role in determining
T g compared with the backbone contribution. Such difference is
more prominent for PnBA system that has the longest side chain.
As mentioned in Sec. II B, eigenvalues of cc_analysis and PCA are
the same (up to normalization); hence, we show results of Method II
only with PCA.

In our combined temperature analysis, we do not see notable
differences in T g values when we compare side chain and backbone
contribution. Since fluctuations of all the temperatures are scaled
together in the combined temperature analysis, the dominant con-
tribution is expected to come from the high-temperature states. On
the contrary, here, each temperature is considered separately, result-
ing in the explicit role of the side chain and backbone contribution
to T g .

IV. DISCUSSION
Both methods have their advantages and drawbacks that we

would like to summarize shortly, but at the same time, they comple-
ment each other. In contrast to Method II, Method I is performed
on concatenated data from all temperatures; as a result, there are no
eigenvalues/eigenvectors associated with a specific temperature.

Method I requires following the same chain over all temper-
atures, meaning it would not allow us to compare the data of the
same systems with independently generated configurations from
different simulation runs (as typically done for the glass-forming
liquids simulations), whereas Method II does not have this limita-
tion as each chain is analyzed independently at each temperature.
One more important consequence of such an independent applica-
tion is that one can test the simulation results after each cooling step.
After observing the non-monotonic behavior in λ1(T) or PR(T), no
further simulations at lower temperatures are required, in contrast
to Method I or the conventional bilinear fitting. However, Method
II requires relatively long NVT/NPT simulation runs at each tem-
perature for a certain time and cannot be applied to continuous
cooling simulations in contrast to Method I, which in combination
with, e.g., cc_analysis, can be used having only one snapshot per
temperature.

Note that we performed PCA on a single polymer chain, fol-
lowed by taking an average over all chains in the system. Performing
PCA on 100 chains combined, we only observe the same Gaussian-
like distribution within fluctuations, resulting from different chains,
which is essentially independent of the temperatures [Fig. S7(a)].
This result is similar to the observation that the radius of gyration
(Rg) or end-to-end distance (Re) distributions over all the chains are
independent of temperature22 [Figs. S7(b) and S7(c)].

The value of T g from Method II can be defined only within
the cooling step range (e.g., between 400 and 450 K for PEA sys-
tem), whereas Method I allows for more precise prediction as well
as extrapolations to the long time limits. To check the influence of
the cooling step range, we performed additional simulations with the
smaller temperature gap (25 K instead of 50 K) for PnBA system and
obtained the same T g (Fig. S8).

Naturally, both methods are sensitive to the input descriptors
(as shown in Fig. 8) as well as parameters [but in this case, we
show that the results are robust for a big range of parameters, e.g.,
Fig. 4(b)]. Compared with the projections shown in Ref. 18, the
separation between glassy and liquid states in two-dimensional pro-
jection (Fig. 3) is not as clear for the considered system. In the
general case, it can be either due to the analysis routine (choice of
descriptors, dimensionality of the projection, dimensionality reduc-
tion algorithms, and clustering parameters) or due to internal prop-
erties of the considered polymers. In the latter case, the choice of the
clustering method, which takes the number of clusters as input para-
meters, might not be optimal and require a deeper understanding
of the considered system. Nonetheless, for considered systems, both
clustering algorithms with completely different input hyperparame-
ters (agglomerative and DBSCAN) show a sharp change in average
cluster indices around T g (see Fig. S2).

Our analysis shows that the internal degrees of freedom in the
polymer chains help to employ the intra-monomer distances within
a single polymer chain as an input descriptor. In the future, we plan
to check our analysis with different sets of input descriptors (includ-
ing those that can account for intermolecular interactions explic-
itly) such as local bond orientation order parameters,47 softness,48

dihedral angles,10 local chemical environment descriptors,49,50 etc.

V. CONCLUSIONS
In summary, we extend and validate our recently developed

data-driven approach to determine the glass transition tempera-
ture from all-atom and coarse-grained molecular dynamics simula-
tion data. Our approach utilizes high-resolution microscopic details
available from simulations and considers conformational fluctua-
tions of polymer melts over time at the level of individual chains.
Here, we apply it to all-atom simulations of acrylic homopolymers
of different side chain lengths. Our result qualitatively agrees well
with those of other experimental studies where T g values decrease
with the growing length of the polymer side chains. By using differ-
ent dimensionality reduction methods and clustering algorithms, we
show the generality of our approach, which can be applied to a wide
variety of systems ranging from coarse-grained polymer models to
all-atom systems and, therefore, is robust. Finally, we provide a way
to quantify the role of the side chain and backbone in determining
the glass transition.

This method could be applied to other systems with “soft”
glass transitions such as organic light-emitting diodes where precise
prediction of T g is debatable.

SUPPLEMENTARY MATERIAL

The supplementary material contains plots for determining
glass transition temperatures from the bilinear fits with different fit-
ting ranges (Fig. S1); glass transition temperature determined using
another clustering method (DBSCAN) (Fig. S2); comparison of the
diffusion values for center of mass, backbone atoms, and side chain
atoms of the polymer chains (Fig. S3); fitting parameters of g(T)
used to calculate T g shown in Fig. 4(a) (Table S1); explained variance
ratio for PCA (Fig. S4); temperature dependent PCA projections of
one selected chain with pairwise distances between all side chains
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(Fig. S5) and backbone (Fig. S6) atoms; PCA projections of all
chains (Fig. S7); and glass transition temperatures obtained with
our methods for the simulations with additional cooling steps
(Fig. S8).
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