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Searching for ductile superconducting Heusler X2YZ
compounds
Noah Hoffmann 1, Tiago F. T. Cerqueira 2, Pedro Borlido2, Antonio Sanna 3, Jonathan Schmidt 1 and Miguel A. L. Marques 1✉

Heusler compounds attract a great deal of attention from researchers thanks to a wealth of interesting properties, among which is
superconductivity. Here we perform an extensive study of the superconducting and elastic properties of the cubic (full-)Heusler
family using a mixture of ab initio methods, as well as interpretable and predictive machine-learning models. By analyzing the
statistical distributions of these properties and comparing them to anti-perovskites, we recognize universal behaviors that should
be common to all conventional superconductors while others turn out to be specific to the material family. In total, we discover a
total of eight hypothetical materials with critical temperatures above 10 K to be compared with the current record of Tc= 4.7 K in
this family. Furthermore, we expect most of these materials to be highly ductile, making them potential candidates for the
manufacture of wires and tapes for superconducting magnets.
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INTRODUCTION
The image of a superconductor (likely a YBaCuO ceramic)
immersed in liquid nitrogen and levitating over an array of
magnets is undoubtedly familiar to anyone who has ever
witnessed a science demonstration. These ceramics still hold the
record for the highest superconducting transition temperature (Tc)
at ambient pressure (at around 133 K for HgBa2Ca2Cu3O1+x

1), but
other materials with high-Tc have been found in the past
decades2, e.g., MgB2 (Tc= 39 K3), fullerides such as Cs3C60
(Tc= 38 K4), thin films of FeSe (Tc > 100 K5), etc. More recently,
hydrides with exceptionally high critical temperatures were also
discovered, but at very high pressure6.
In spite of these remarkable advances, to this day, niobium-

containing materials discovered in the 1950s and 1960s are still
the go-to choice for commercial applications7, the most relevant
of which are niobium-titanium (Nb–Ti) alloys. Notably, this
happens in spite of their maximum critical temperature of 9.8 K
at 24 percent by weight of Ti8, which pales in comparison with the
previous examples. Nb3Sn is another commercial superconductor,
presenting not only a higher critical temperature of 18.5 K but,
more importantly, a larger critical field of 30 T9. Because of this, it
finds use in applications requiring much larger operating
magnetic fields than those attainable by Nb–Ti alloys. The
prototypical example of this is the operating electromagnets of
the International Thermonuclear Experimental Reactor (ITER),
where Nb–Ti wirings are supplemented with Nb3Sn inner
windings.
Looking at metrics like critical fields and temperatures alone, it

is hard to understand why Nb–Ti has not been entirely replaced by
Nb3Sn (nor by any other high-Tc superconductor) as the industry
standard. It is true that these two properties are necessary for a
‘good’ superconductor, but they are not sufficient from an
engineering point-of-view, as a more critical aspect is the ability
to draw material into continuous wire or tape several kilometers
long with consistent fabrication quality. This, generally speaking,
translates into a need for ductile materials. For example, although
Nb3Sn is used in devices, the manufacture of wires is complicated

due to its brittleness and requires complex production methods
leading to higher fabrication costs7. Higher-temperature super-
conductors, such as MgB2 or ceramics, are even more brittle than
Nb3Sn, leading to even more complex manufacturing problems.
Several requirements come to mind in the search for new

superconductors that can replace Nb–Ti alloys in commercial
applications—ductility, lower density to accommodate easier
transportation, higher critical field, no Nb, which is considered a
critical raw material by the European Union10, and compatibility
with available production methods. Broadly speaking, these
conditions point toward intermetallic compounds (as the presence
of non-metallic elements often leads to brittle materials) and first-
or second-row metallic elements (where superconductivity is
usually driven by the conventional electron-phonon mechanism).
These systems can be treated in a straightforward manner by
modern ab initio techniques: electron-phonon superconductivity
is well understood2 and several electronic structure packages
implementing some form of Eliashberg theory for the calculation
of critical temperatures exist. Mechanical properties such as
ductility, trivially treated at the macroscopic level, are harder to
translate in terms of atomic calculations, but nonetheless, some
models are available11. Finally, machine-learning methods can be
used to accelerate the calculations and to help in the interpreta-
tion of the results12,13.
Studying all intermetallic prototypes is, at the moment,

untractable, and thus we will focus on a specific family of
compounds, namely the (full-)Heuslers. Named after Fritz Heusler,
these are a large class of intermetallic compounds which
crystallize in a face-centered cubic structure and have X2YZ
composition, where X and Y are transition metals, and Z is a main
group metal14. Heuslers possess a wide range of compositions and
tunable material properties, making them an ideal family to search
for ductile superconductors. They have been researched in areas
as diverse as thermal conductivity15, thermoelectricity16–18,
topological insulators19,20 and magnetism21–23.
The first superconducting Heusler compounds, found by

Ishikawa et al. in 198224, were of the form Pd2REPb, where RE is
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a rare earth metal. Shortly after, in 1983, Wernick et al. discovered
superconductivity in Ni-based systems25. Since then, several
Heusler compounds have been found to be superconduct-
ing24,26–34. This even includes compounds with a coexisting
magnetic and superconducting state, e.g., Pd2YbSn35 or Pd2ErSn31.
Up to now, the record Tc belongs to Pd2YSn with 4.7 K25, followed
by Au2ScAl with 4.4 K28. Unfortunately, the elastic properties of
full-Heuslers, even though extensively studied in theory works, are
much less explored experimentally (see ref. 36 and references
therein), being somewhat easier to find information on the half-
Heusler family36–38.
Here, we perform an extensive study of the superconducting

and elastic properties of Heusler materials. These are then
compared to a very different family of compounds, specifically
the anti-perovskites that some of us studied recently39. This is
interesting, as many anti-perovskites are also superconducting but
contain a non-metallic element (such as C, O, N, etc.). This
comparison then allows us to discern between properties specific
to the Heusler family from behavior generally present in all
electron-phonon-driven superconductors.
The remainder of the work is divided as follows. First, we discuss

the two steps of high-throughput calculations (one for the full-
Heuslers near the convex hull of stability and another for the
remaining full-Heuslers within 200 meV/atom of the hull),
accompanied by a general discussion of the distribution of relevant
properties (e.g., λ;ωlog, or Tc). Due to the number of meta-stable
materials, the second step was accelerated with the machine-
learning models trained with the results from the first step. For the
materials with the best-performing critical temperatures, mechan-
ical properties were calculated in an attempt to find those most
likely to be ductile. Lastly, we perform a detailed analysis of the
materials that we considered to be the best overall. A flowchart
showing these various steps is shown in Supplementary Fig. 1.

RESULTS AND DISCUSSION
High throughput
There are several high-throughput studies of the thermodynamic
stability (and other properties) of Heusler compounds40,41, and
ground-state calculations for essentially all compounds of this family
can be found in several databases42–44. Our present analysis begins
with the dataset of ref. 44 from which we selected all compounds
that are metallic and that lie on (or very close to) the convex hull of
stability, as calculated with the PBE exchange-correlation functional.
In order to avoid problems associated with magnetism and
superconductivity, only materials with a non-magnetic ground state
were considered. This selection resulted in a total of 565 materials,
with the full list given as Supplementary Information.

For these systems, the phonon dispersion curves were
calculated, which resulted in further removing several entries
due to the presence of imaginary modes, resulting in 502 entries.
Finally, for the remaining dynamically stable systems, we
calculated the electron-phonon mass enhancement parameter,
λ, and the logarithm averaged phonon frequency, ωlog. From
these, the critical temperature, Tc, using McMillan’s formula45, as
well as Allen-Dynes’ modified formula46, was computed using a
constant value of μ*= 0.1, as detailed in “Methods”. For materials
with a McMillan temperature higher than 1 K, we also computed
the critical temperature using the isotropic Eliashberg equation47.
All these values can be found in the Supplementary Information.
At this point, we must notice that several structures that the

harmonic approximation at 0 K and 0 GPa predicts to be
dynamically unstable are known to be synthesizable at room
conditions due to anharmonic and entropic effects. This occurs in
several superconducting Heuslers, as reported in Supplementary
Table I. Discarding structures with imaginary frequencies may
certainly lead to missing some superconductors, but the
computational cost associated with including higher-order effects
makes the calculations prohibitive for a high-throughput search.
As such, at present, we ignore these effects and hope they can be
addressed in future work.
With respect to the different approaches for calculating Tc, we

see that both McMillan’s and Allen-Dynes’ underestimate the
critical values with respect to the Eliashberg one, although these
are nonetheless strongly correlated (see Supplementary Fig. 2).
Given that the former two values are considerably simpler to
obtain, they are a good quantity to use in high-throughput studies
and as input for machine-learning studies. In the following, to
avoid confusion and without loss of generality, we thus give
preference to TMcMillan

c in the discussion of distributions and only
refer to the other values in more specific cases.
Histograms for the resulting values of λ;ωlog and TMcMillan

c
obtained with the 4×4×4 set of parameters (see “Methods”) are
presented in Fig. 1.
The parameter λ follows an asymmetric distribution akin to a

Poisson distribution but with a slower decaying tail for large
values. With a mean value of 0.30, most Heuslers must be
considered to have weak electron-phonon coupling. We found a
few compounds with larger values of λ > 1; however, these are
typically due to a strong softening of a phonon mode, indicating a
possible dynamical instability of the structure. Compared to the
anti-perovskites (mean λ= 0.36), on average, the Heuslers have a
smaller value of λ. This can be explained by the presence of first-
row non-metallic elements in the anti-perovskites (like C, N, or O)
that have the tendency to form strong covalent bonds.
The distribution of ωlog is almost symmetric, a fact translated by

the proximity of the mean and median values (190 and 192 K,

Fig. 1 Histograms of the calculated properties. Histograms of the calculated values (with a 4×4×4 q-point grid) of a the electron-phonon
mass enhancement parameter λ, b the averaged phonon frequency ωlog (in K), and c the superconducting transition temperature Tc (in K;
calculated with the McMillan formula). The blue curves are for Heuslers in our training set, and the green curves are for the anti-perovskites
contained in the training set of ref. 39.
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respectively), as well as the reduced value of the skewness (0.20). The
anti-perovskites show a comparable distribution, at least in
qualitative terms. It is also quite symmetric but shifted toward
higher values of the frequency range (ωlog mean of 234 K, median of
230 K). Given the presence of light elements in the stable anti-
perovskites and therefore higher overall phonon frequencies, this
was to be expected.
Due to the interplay of factors involved in these two quantities

(λ and ωlog), they present a loose inverse proportionality relation2

(see Supplementary Fig. 3). This makes increasing the critical
temperature a challenging job since it implies the simultaneous
maximization of both parameters. On average, the increased λ of
the anti-perovskites with respect to the Heuslers compensates the
reduction in ωlog, meaning that these materials lie in a higher
Pareto front of the ðλ;ωlogÞ diagram, and therefore tend to have
slightly higher critical temperatures.
Regardless, as seen in Fig. 1, the majority of materials for both

families lie in the region below 1 K. Of the handful of outliers with
temperatures above 2 K, we find 8 Heusler with TEliashberg

c above
5 K. The highest of these is Nb2ReRu for which TEliashbergc ¼ 9:9 K
(TMcMillan

c ¼ 8:3 K).

Machine learning
The calculations of the previous section are limited to a very thin
range of thermodynamic stability. However, meta-stable phases are
known to be synthesizable, making them of potential technological
interest. Due to the number of materials in this energy range, we
opted to accelerate the search by using machine-learning models
to screen more efficiently the composition space.
With the data from the electron-phonon calculations, we

trained two machine-learning models in an attempt to classify
and understand the larger set of materials further from the hull.
Our dataset, although large for superconductor standards, is small
for the typical use case of machine-learning methods. With this in
mind, we chose two models: Operon48, a framework for symbolic
regression, and the model agnostic supervised local explanations
(MAPLE)49. Besides performing well for smaller datasets, these
models have the added benefit of providing some interpretability
from the learned model. In the following, we discuss the results
from each of the machine-learning models.

Symbolic regression (Operon model). To build an analytical
expression for the target properties as a function of the features
via symbolic regression, we allowed for the following operators:
multiplication, division, a constant, log; ffip

; ^2 and exp. The
resulting formulas for each set are presented in Supplementary
Tables VI and VII.
For ωlog the training of the model yielded the formula

ωlog ¼ c0 þ c1 � ColX e
�c2 �ColX

V
(1)

in four out of the ten different runs, with all runs combined
returning a mean absolute cross-validation error of 39.4 K. This
formula presents a rather simple dependence on just two quantities:
the unit cell volume, V, and the periodic table column of element X,
ColX. The inverse proportionality on V can be understood since large
cell volumes usually translate into large atomic radii and therefore
larger atomic masses (thus reducing phonon frequencies). As for the
column number, a dependence on this quantity is expected from
the empirical Matthias’ rules50, modulating a change in number of
valence electrons uncorrelated to changes in atomic volumes and
masses. It is however curious to notice that Operon finds element X
to have a comparatively higher importance than the remaining
elements. Equation (1) has a saddle point for ColX= 1/c2, which for
c2 ≈ 0.2 (close to the value obtained from all Operon regressions
giving this formula) gives a preference for group 5 for atom X.
For the electron-phonon mass enhancement parameter, the

formula

λ ¼ c0 þ c1 � V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ColX DOSðEFÞ

p
(2)

appeared in six out of ten runs (and has a mean absolute cross-
validation error of 0.114). Independently of the training for ωlog a
direct dependency on the same quantities was found for λ. The
increasing behavior of λ with the density of states is a feature of
some models for λ (not necessarily with the sub-linear scaling) and
is thus expected. For example, assuming an Einstein solid, the
dependence λ∝DOS(EF) is obtained51.
Assuming the validity of these formulas for the Heusler family,

we can study the evolution of the Allen-Dynes critical tempera-
ture formula as a function of the parameters found by Operon
(see Fig. 2). Taking V and DOS(EF) at their mean values, the
maximum of Tc is reached for group 10, that contains Ni, Pd, and
Pt. This result is in line with previous experimental results, as most
known Heusler superconductors with a high Tc do contain Pd.

Random forests (MAPLE model). MAPLE is a random forest-based
model capable of accurate predictions while also providing some
form of local interpretability. Training the model to predict ωlog
yields an error of 34 K, better than the error of the Operon
formulas. To express the equivalence of the Y and the Z atoms, we
can double the data by exchanging their roles, which decreases
the error to 27 K. The features with higher weight are the unit-cell
volume and the column of the X atom. Additionally, the MAPLE
model shows a large weight for the total atomic mass of the
compound.
The models for λ have a similar error as the Operon formulas,

with a mean absolute cross-validation error of 0.11, regardless of
the data doubling procedure. The most important features here
are the density of states at the Fermi level, the unit-cell volume
and, again, the column of the X atom. Overall, the MAPLE analysis
is in agreement with the feature importance returned by the
Operon formulas.
With the trained MAPLE model, we are in a position to widen

our search of high-Tc Heuslers to materials slightly further from the
convex hull. This is interesting as some of these compounds, with
relatively small distances to the hull, might still be synthesizable
experimentally. Furthermore, extending the number of materials
studied gives us a better understanding of the superconductivity
of Heuslers and of the extreme values of Tc that are attainable in
this family. We therefore listed all compounds below 200
meV ⋅ atom−1 from the convex hull that MAPLE predicted to have
Tc larger than 1 K. As seen from the distribution of the distance to
the convex hull available in the Materials Project52, this threshold

Fig. 2 Plot of Tc(ColX) and λ(ColX) using the equations (2) and (1).
The values for DOS(EF) and the unit-cell volume were 2.66 (eV/states)
and 85 Å3, which are the mean values of all calculated systems. The
red dot indicates the maximum value of Tc.
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encompasses the large majority (90%) of the synthesized
materials, making it a suitable limit for our search. These 749
materials were then validated by calculating the electron-phonon
coupling using the 4×4×4 parameters (see “Methods”).
It turns out that the large majority of materials exhibit imaginary

frequencies and are dynamically unstable. In fact, this was the case
for 641 compounds out of the 749 compounds. A possible
explanation for this fact is that MAPLE is predicting materials with
very large values of λ that are often dynamically unstable. As
expected, the remaining 108 compounds have, on average, higher
values of Tc than the training set (see Supplementary Table IV),
with the appearance of a noticeable number of materials with
temperatures above 5 K and even 10 K.
This shift is also accompanied by a slight qualitative change in

the distribution of elements of high Tc materials (see Supplemen-
tary Figs. 5 and 6). In the initial training set, a broad distribution of
the chemical elements of the periodic table is observed, but with
the materials predicted by machine learning, these concentrate
around the earlier groups of the transition metals (Ti, V, Cr). The
dependence of the mean Tc is much stronger on the column than
on the row, in agreement with the results from the machine-
learning models. This behavior somewhat contrasts with the
distribution of the anti-perovskites, where the distribution is
broader, favoring light elements like H, Be and N.
All information regarding these materials is readily available in

the Supplementary Information.

Elastic constants and ductility
As the last step of our high-throughput analysis, we now turn to
the discussion of the ductility of the superconducting Heuslers.
For materials with Tc above 5 K, we computed the stiffness tensor
as described in “Methods”. From these, we performed the ductility
classification as described by Pugh’s and Pettifor’s criteria for both
anti-perovskites and Heuslers. The results can be seen in Figs. 3
and 4, and a complete list is presented in the Supplementary
Information. Vickers hardness, HV, was also estimated using the
model from ref. 53. Models of this type neglect important effects
such as grain size, dislocations, etc., which have a notorious effect
on hardness. Regardless, they seem to be accurate enough for the
present purposes, as we only use them as a comparative proxy for
the ductility of the material. Almost all of the materials are
classified as ductile using the previous criteria. In addition, most of

them also have large Poisson ratios, ν, and low HV, further hinting
at their ductility.
With respect to anisotropy, we find a rather large range of

values for the Zener ratio (A, see Sec. III), from around 0.2 to 4.3.
Some extreme cases occur for ZrAlNi2 (for which the extremely
low C44= 10 GPa, translates simultaneously into low Zener ratio,
shear modulus and Pugh’s ratio54) and LiBe2Pt (where all the
constants have comparable magnitudes, but the material still has
a comparatively low shear modulus). As for the perovskites,
considering the prevalence of elements that are associated with
strong covalent (and therefore highly directional) bonds, these are
expected to be brittler than the Heuslers, a fact corroborated by
the ductility diagram Fig. 3.

Individual entries
Starting from the high-throughput calculations, we selected the
‘best’ materials within ~50 meV ⋅ atom−1 from the convex hull for
further analysis. These were chosen on the basis of the
compromise between critical temperature and ductility. For these
materials, more accurate calculations were performed with tighter
convergence parameters (see “Methods”). In the following, we
discuss a couple of the selected materials, while the complete set
of electronic and phononic band structures, along with other
superconducting data, is given in the Supplementary Information.

V2TiMo. This compound has the merit badge of having the
highest critical temperature of the present work, with TEliashbergc ¼
19 K (TMcMillan

c ¼ 16 K) and Ehull= 52 meV ⋅ atom−1. However, we
must notice that this compound includes vanadium, which is
known to lead to strong spin fluctuations55 (not included in our
approach), resulting in a noticeable decrease in Tc.
Looking at the electronic band structure, shown in Fig. 5,

although the density of states near the Fermi level is large, it could
be slightly increased via hole doping. In turn, this is expected to
translate into a small increase of λ and therefore of Tc. This large
density of states is due to a series of almost parabolic bands which
interpenetrate close to the Fermi level, very similar in shape to
that of several other materials here, for example, Ti2NbRe.
In the phonon band structure, we find two notable peaks in the

density of states, one close to 170 cm−1 and the other one close to
230 cm−1. The former mostly results from V contributions, while
the latter is due to both Ti and V in almost equal value. Several
phonon branches with strong electron-phonon coupling strength
are observed, in particular associated with the two lowest acoustic
and optical modes at Γ as well as the lowest frequency modes at L.
In total, this gives rise to an electron-phonon mass enhancement

Fig. 3 Dispersion plot of the ductile/brittle classification accord-
ing to Petiffor’s and Pugh’s criteria. Green triangles and blue
squares represent anti-perovskites and Heuskers, respectively, with
Tc > 5 K and Ehull < 50 meV ⋅ atom−1. For reference, we also show the
calculated values for MgB2 (orange star) and Nb3Sn (pink penta-
gons). Gray squares represent entries from Materials Project52. Due
to the considerable error in the theoretical determination of the
elastic constants of Nb3Sn, we also show the experimental values
from ref. 76 as an empty pentagon.

Fig. 4 Dispersion plot of Tc vs normalized Cauchy pressure,
(C12− C44)/E. Green triangles and blue squares represent anti-
perovskites and Heuskers, respectively, with Tc > 5 K and Ehull < 50
meV ⋅ atom−1. For reference, we also show the experimental value
for Nb3Sn, shown as an empty pentagon.
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parameter of 1.2. Due to the low density of states at low
frequencies, the large λnq from these modes contribute only
moderately to α2F(ω) when compared with the aforementioned
two peaks. This results in ωlog reaching 189 K, which is not
particularly large when compared to, for example, Be2CoNi, but
larger than that of Ti2NbRe.
Elastically, V2TiMo lies comfortably in the ductile region

(G/B= 0.2 and (C12− C44)/E= 1.3). In spite of this, the small value
of C44= 21 GPa translates into a very small Zener ratio of 0.3, i.e., a
highly anisotropic elastic response under shear.

Nb2TiW. With a lower TEliashbergc ¼ 11 K (TMcMillan
c ¼ 9 K), Nb2TiMo

also lies lower in the ductility hyperbole (G/B= 0.2 and (C12− C44)/
E= 1.0) with the advantage of being energetically more stable,
only 25 meV ⋅ atom−1 from the hull.
Its electronic structure (see Fig. 6) is remarkably similar to the

one of V2TiMo, showing essentially the same qualitative behavior.
The phonon band structure, on the other hand, differs, most
notably in the fact that the peak in the density of states due to the
contributions of W is shifted to lower frequencies from the peaks
of the other elements. Curiously this nonetheless leads to the
same value of ωlog as V2TiMo (187 K), but the lower electron-
phonon coupling strength leads to the lower λ of 0.8 and, in turn,
to the aforementioned lower critical temperature.

Nb2ReRu. Lower still in the ductility range lies Nb2ReRu, specifically
at G/B= 0.4 and (C12− C44)/E= 0.4. In spite of its position, this
material has the small advantage of presenting a much more

isotropic elastic response than the previous entries (A= 1).
Looking at the electronic band structure in Fig. 7, we see that the

Fermi level lies in the middle of a ‘ramp’ in the density of states.
Immediately below it lies a sparsely populated energy range due to
several band maxima in the neighborhood of the L point, which do
not contribute to the Fermi surface. Above the Fermi level, a
complicated landscape appears, which ultimately contributes to the
large peak circa 0.8 eV. Even if reaching this optimal position is
impractical, any level of electron doping would lead to an increase in
the density of states at the Fermi level.
The atomic contributions to the phononic band structure are well

differentiated, as seen from the corresponding density of states.
Below 150 cm−1, the largest contributions come from Ru and Re,
with Nb taking over above this point. The modes with the largest λnq
are those close to the L direction, which in spite of the very small
corresponding density of states, lead to the largest contributions to
α2F(ω). Because of this, the value of ωlog is low at 190 K and λ at 0.8 is
low compared to other top-performing Heusler. As such, we reach
the range of TEliashberg

c of 10 K (TMcMillan
c ¼ 8:3 K).

In conclusion, we performed a thorough analysis of the super-
conducting properties of the full Heusler X2YZ family. These results
were then compared to anti-perovskites. Distributions of values of
λ;ωlog, and Tc have similar shapes in these two families, hinting at
the universality of such distributions. Mean values, however, differ
due to the different chemistry of both families. As expected from the
Heusler family of intermetallics, we observed that the most favorable
elements for superconductivity are transition metals, while the anti-
perovskites favor the presence of lighter atoms (e.g., H, Be, N), which

Fig. 5 Calculated phonon dispersion curves and electronic band
structure for V2TiMo. Calculated a phonon dispersion curves (along
with atom-projected phonon density of states and Eliashberg
spectral function) and b electronic band structure (along with
density of states) for V2TiMo. Broadening in phonon band structure
represents the magnitude of the electron-phonon coupling
strength, λnq. Origin of the energy in electronic plots has been
shifted to the Fermi level.

Fig. 6 Calculated phonon dispersion curves and electronic band
structure for Nb2TiW. Calculated a phonon dispersion curves (along
with atom-projected phonon density of states and Eliashberg
spectral function) and b electronic band structure (along with
density of states) for Nb2TiW. Broadening in phonon band structure
represents the magnitude of the electron-phonon coupling
strength, λnq. Origin of the energy in electronic plots has been
shifted to the Fermi level.
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in turn correlates to higher average phonon frequencies.
As expected, the number of Heusler materials with a critical

temperature above 1 K is a small fraction of the total composition
space. Regardless, 22 materials were found with critical tempera-
tures above 5 K, and eight of the found materials have critical
temperatures above 10 K. This should be compared to the current
record of Tc= 4.7 K in this family. Furthermore, these materials are
expected to be ductile, making them promising for practical
applications for the generation of high magnetic fields.
We also show the usefulness of machine-learning models in the

interpretation and exploration of the data. Approaches such as
symbolic regression and random forests, which perform well for our
small datasets, allow us to understand our results and train
predictive models.
Further work to include materials in different structural prototypes

is now underway and will hopefully lead to more insight into the
distribution and the universality of superconducting properties
across compound space. Furthermore, increasing the size of the
superconducting datasets will lead to more general and accurate
machine-learning applications that have the potential to accelerate
research in this field.

METHODS
Crystal structure
The starting point for the present work is the crystal structure of
Heuslers. This prototype, with chemical composition X2YZ,
crystalizes in the Fm3m space group (number 225) with the X

atoms located at the Wyckoff position 8c(1/4, 1/4, 1/4), Y at
position 4a(0, 0, 0) and Z at 4b(1/2, 1/2, 1/2)56,57. To denote the
Heusler compounds, we use the notation X2YZ where Y is the
transition metal, and Z is the main group metal14.

Ground state
Distances to the convex hull within the Perdew-Burke-Ernzerhof
(PBE)58,59 approximation were recalculated with the convex hull of
ref. 44. We note that this hull is considerably larger than the one of
the Materials Project52. Furthermore, due to the recent updates to
the hull44, some of the compounds that were thermodynamic
stable at the beginning of the present work now have positive
distances to the convex hull. For completeness, we also present
distances to the hull calculated with the PBE for solids60,61 and
SCAN functionals62 in the Supplementary Information, following
the approach and the convex hull of ref. 63.

Electron-phonon
We employed essentially the same workflow and convergence
criteria as in our previous work on inverted perovskites39. In this
way, we could directly compare the two families, as well as
accumulate a consistent dataset of superconducting calculations.
In short, we performed calculations using QUANTUM ESPRESSO
version 6.8 using pseudopotentials from the PSEUDODOJO
project64, specifically the STRINGENT norm-conserving set. We
used the high plane-wave cutoff energy as specified in
PSEUDODOJO. Self-consistent ground-state calculations were
performed with a Gaussian smearing of 0.02 Ry until the energy
converged to 10−9 Ry. Geometry optimization was stopped when
the forces on the atoms were smaller than 10−4 Ry/bohr, stresses
smaller than 0.05 kbar, and when the difference of energy was
smaller than 10−5 Ry. The threshold for self-consistency in the
phonon calculations was set to 10−14 Ry. For the calculation of the
superconducting properties, we used the Perdew-Wang65 local-
density approximation. In contrast to ref. 39, we employed the
double δ-integration to obtain the Eliashberg function in order to
improve the accuracy of the calculations. To select the k- and q-
point meshes, we performed convergence tests for four materials
(see Table 1). The meaning of the columns is “3×3×3”: coarse k-
point grid 6x6x6, fine k-point grid 18×18×18, q-point grid 3×3×3;
“4×4×4”: coarse k-point grid 8×8×8, fine k-point grid 24×24×24, q-
point grid 4×4×4; “6×6×6”: coarse k-point grid 12×12×12, fine k-
point grid 36×36×36, q-point grid 6×6×6; “8×8×8”: coarse k-point
grid 16×16×16, fine k-point grid 48×48×48, q-point grid 8×8×8.
We can clearly see that the 8×8×8 are perfectly converged, while
with a 4×4×4 q-grid, one can already obtain a good approximation
to Tc. Actually, already with a 3×3×3, results are meaningful. As
such, we decided to use the 4×4×4 for the high-throughput
search and the 6×6×6 for the systems we discuss in more detail.

Superconductivity
The values of λ, ω2 and ωlog (in K) were used to calculate the
superconducting transition temperature using the McMillan

Fig. 7 Calculated phonon dispersion curves and electronic band
structure for Nb2ReRu. Calculated a phonon dispersion curves
(along with atom-projected phonon density of states and Eliashberg
spectral function) and b electronic band structure (along with
density of states) for Nb2ReRu. Broadening in phonon band
structure represents the magnitude of the electron-phonon
coupling strength, λnq. Origin of the energy in electronic plots has
been shifted to the Fermi level.

Table 1. Convergence of the transition temperature (obtained with
McMillan’s formula, in K) with respect to the calculation parameters.

Material 3×3×3 4×4×4 6×6×6 8×8×8

AlScAu2 3.51 4.06 4.16 4.15

BeSiOs2 1.77 2.69 1.82 1.82

LiPtBe2 3.53 6.48 4.33 4.31

RuReNb2 9.51 8.69 9.18 9.12

The label corresponds to the number of q-points used.
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formula45,66

TMcMillan
c ¼ ωlog

1:20
exp �1:04

1þ λ

λ� μ�ð1þ 0:62λÞ
� �

; (3)

and the Allen-Dynes modification46 to it:

TAllen�Dynes
c ¼ f 1f 2T

McMillan
c ; (4)

where the corrections factor are

f 1 ¼ 1þ λ

2:46ð1þ 3:8μ�Þ
� �3=2( )1=3

; (5a)

f 2 ¼ 1þ λ2ðω2=ωlog � 1Þ
λ2 þ 1:82ð1þ 6:3μ�Þω2=ωlog

� �2 : (5b)

We arbitrarily took the value of μ*= 0.10 for all materials
studied. We note that this procedure is well-defined for McMillan’s
and Allen-Dynes’ formulas but not for the Eliashberg equations.
Indeed, these depend on an extra parameter, the cutoff of the
Coulomb interaction, for which we took the (rather arbitrary) value
of 0.5 eV.

Elastic constants
In order to study the elastic response of the materials under study,
we computed the stiffness tensors via finite differences. Specifi-
cally, the elastic constants were obtained by computing the stress
of a sufficient set of deformed structures and fitting the resulting
values via Hooke’s law. This entire procedure was done as
implemented in the THERMO_PW package67. The underlying
calculations were done with QUANTUM ESPRESSO version 6.8 and
the Perdew-Wang local-density approximation to the exchange-
correlation potential65. We resorted to the corresponding STRIN-
GENT set of norm-conserving pseudopotentials from PSEUDO-
DOJO64, from which the largest recommended energy cut-offs
were chosen. To assure convergence with respect to the k-point
sampling68, a constant value of 12000 k-points per reciprocal
atom69 was used for all materials.
Due to the directional dependence of the elastic responses, an

averaging method is recommended for large-scale analysis.
Following the Materials Project, we resort to the Voigt-Reuss-
Hill70–72 average, i.e., the simple average of the higher and lower
limits of the response for polycrystalline materials. Anisotropy is
another relevant quantity to consider due to the correlation of the
different spatial responses with the appearance of failures, such as
cracks on crystals under stress. Since in this work, we are dealing
with cubic materials, the Zener ratio,

A ¼ 2C44

C11 � C12
; (6)

is a sufficient quantity to study this. The ratio of the Voigt and
Reuss shear moduli also provides a measure of this effect. Both of
these quantities are 1 for an isotropic solid, thus giving a simple
measure of the anisotropy. Vickers hardness, HV, was also
estimated using the model from ref. 53.
Because of its importance in all areas depending on metallurgy,

ductility is well understood at the macroscopic level. However,
from an atomistic point-of-view describing ductility is not trivial.
Several qualitative models exist based on the type of bonding, but
a more attractive approach is models based on elastic properties,
readily available from ab initio methods. According to Pugh54, the
ratio G/B (where G is the shear modulus and B the bulk modulus)
gives a measure of the brittleness of the material; the smaller the
ratio, the more ductile the material. Several works propose
different values for the ‘critical’ ratio defining the onset of
brittleness depending on the class of materials under study. The
typical value seen in the literature is 0.57, but due to the empirical

nature of the parameter, this value might not be general. A recent
work73 suggests the value 0.44 (Christensen’s criterion74) as a
more realistic threshold for Heuslers. Pettifor’s criteria75 measures
the ‘directionality’ of the bonds via the value of the Cauchy
pressure, C12− C44, commonly normalized to the Young’s
modulus, (C12− C44)/E. Negative values indicate directional bond-
ing associated with brittle behavior. These two criteria can then be
used to define a region of interest for ductility.

Machine learning
For each X2YZ entry, we use as input feature of the models a
mixture of structural and atomic properties. For the former, we
resorted to the volume of the unit cell (V), density of states at the
Fermi level (DOS(EF)) and total atomic weight of the compound
(Mtot), while for the latter, we used each atom’s charge (QΛ, where
Λ∈ {X, Y, Z}), row and column in the periodic table (RowΛ and
ColΛ), electronegativity (χΛ), relative atomic masses (mΛ=MΛ/Mtot)
and covalent radius (RΛ). As the atoms Y and Z are equivalent, they
were sorted by electronegativity, such that χY < χZ.
Instead of training directly for Tc, we targeted λ and ωlog

independently in an attempt to minimize errors. Due to the
relatively small size of the dataset, we used tenfold cross-
validation, randomly splitting the data into a training and
validation (in an 80:20 ratio) set. The models were trained in each
of the ten independent sets, with the mean of the errors on the
corresponding validation sets being the cross-validation error.
The several resulting formulas obtained for ωlog and λ for the
different training sets are presented in the Supplementary
Information.
For the symbolic regression with Operon, we allowed for the

following operators: multiplication, division, a constant, log; ffip
; ^2

and exp. In the following, we will only mention parameters, which
were changed, i.e., any unnamed parameters were left at the
default value. We used 100 local iterations, a population size of
2000, 5000 generations. The expression tree was limited to a
maximum depth of 10 and a maximum length of 6, and we
optimized the mean square error.
MAPLE was used with random forests, 300 estimators, 50%

maximum feature participation, a minimum of 10 samples per leaf
and a regularization of 0.001.
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