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Perturbed epigenetic transcriptional regulation in AML with IDH
mutations causes increased susceptibility to NK cells
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Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30–40%
of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for
AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221,
using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional
regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition,
hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer
(NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data
from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion,
this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized
immunotherapy.
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INTRODUCTION
Acute myeloid leukemia (AML) is a poor prognosis disease with
recurrent genetic alterations, including somatic mutations and
chromosomal alterations defining clinical subtypes [1]. Mutations in
isocitrate dehydrogenase (IDH) 1 or 2 are present in approximately
20% of AML patients. Both IDH1 and IDH2 catalyze the production
of α-ketoglutarate (α-KG). However, when mutated the oncometa-
bolite (R) enantiomer of 2-hydroxyglutarate (R)-2HG or 2-HG is
produced instead, which competitively inhibits α-KG-dependent
enzymes, including members of the ten-eleven-translocation (TET)
family of 5-methylcytosine hydroxylases, lysine histone demethy-
lases, and prolyl hydroxylases [2, 3]. TET2 regulates the transition
from DNA methylation (5mC) to hydroxymethylation (5hmC).
As a consequence of such TET2 inhibition, AML blast cells that
harbor IDH1 or IDH2 mutations display a global loss of 5hmC and a
differentiation arrest that contributes to leukemogenesis [4, 5].
Inhibitors of mutated IDH1 and IDH2 have recently been

developed for AML treatment. Enasidenib (AG-221) is an inhibitor
of mutated IDH2, which induces differentiation [6–8]. AG-221 is
efficient as a single-drug treatment with response rates of 30–40%
[9–11]. Recently, Wang et al. showed that gene expression

signatures associated with stemness are associated with primary
resistance to IDHi, whereas the selection of resistant mutations
plays a role in acquired resistance to the drugs [12]. In addition,
most patients relapse, and the increased overall survival is less
than a year [8, 9]. Thus, despite the new treatment strategies that
AG-221 offers, the efficacy needs to be improved and additional
treatment modalities are required.
Natural Killer (NK) cells are immune cells with an innate ability

to recognize and kill malignantly transformed cells, including AML
[13, 14]. Upon activation, NK cells degranulate to release cytotoxic
molecules such as perforin and granzyme B, which can directly
induce target cell death. Furthermore, activated NK cells produce
pro-inflammatory cytokines such as Interferon-γ (IFN-γ) and Tumor
Necrosis Factor-α (TNF-α) that stimulate other parts of the immune
system [15, 16]. Activation and subsequent response of an NK cell
towards a target cell is regulated by an intricate balance of
signals from both activating and inhibitory receptors. Activating
receptors recognize stress-induced ligands, whereas inhibitory
receptors mainly recognize different subtypes of HLA class I
molecules present on the target cell surface. Down-regulation or
loss of HLA class I expression is commonly observed in cancer and
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can result in strong NK cell activation and subsequent effector
responses, referred to as 'missing-self' recognition [17, 18].
Previous studies have shown that NK cells can prevent relapse

and induce remission in patients with poor prognosis AML or MDS
[19, 20]. However, only subgroups of patients respond to NK cell
therapy [21]. Thus, knowledge of how to select suitable patients is
essential for successful treatment.
In this study, we characterized transcriptional and epigenetic

alterations resulting from IDH mutations and investigated the
effects of IDHi. Moreover, we demonstrate that IDH mutated AML
cells trigger elevated NK cell-mediated responses. Our data
suggest that adoptive NK cell-based immunotherapy can be a
treatment option for IDH mutated AML patients.

MATERIALS AND METHODS
Cell culture
The AML TF-1 cell lines overexpressing mutated IDH2R140Q or IDH2WT were
kindly provided by Agios Pharmaceuticals [6]. PBMCs were obtained from
healthy donors in accordance with existing ethical permits (2006/229-31/3)
using high-density gradient centrifugation. Upon thawing, NK cells were
purified from PBMCs by magnet-assisted negative depletion using an NK cell
isolation kit (Miltenyi). Before use, PBMCs and NK cells were overnight
cultured in RPMI 1640 medium (Gibco) supplemented with 10% FBS (Gibco)
and 1000 IU/mL IL-2 (Peprotech) at 37 °C in 5% CO2. For more information
see Supplementary Materials and Methods.

TT-seq, RNA-seq, and DNA methylation and
hydroxymethylation analysis
TT-seq experiments were performed in biological duplicates (Spearman
correlations between replicates >0.98). A complete TT-seq step-by-step
protocol can be found in the protocols.io repository [22]. Reads that did
not map to the ribosomal DNA (rDNA) were aligned to the GRCh38
genome assembly (Human Genome Reference Consortium) using STAR
2.6.0c [23]. Annotation of enhancer RNAs (eRNAs) was done as described
[24] with few modifications, see Supplementary Materials and Methods.
DNA methylation and hydroxymethylation assays were performed using

an Infinium EPIC array (Illumina) at NXT-Dx (Diagenode). Genomic DNA was
subjected to bisulfite (BS)-treatment and oxidative BS (oxBS)-treatment
using the EZ-96 DNA Methylation Kit (Zymo Research) according to
Illumina’s recommended deamination protocol. For more information
see Supplementary Materials and Methods.

Phenotyping by flow cytometry
To evaluate HLA class I surface protein expression and intensity, tumor cells
were labeledwith anti-human fluorescently-conjugated antibodies. Zombie NIR
Fixable Viability kit (Biolegend) was used to discriminate between live and dead
cells. All cells were acquired on an LSR II Fortessa instrument (BD Biosciences).

Degranulation, cytokine production, and cytotoxicity assay
Overnight IL-2 activated PBMCs were co-cultured with target cells at
an effector to target (E:T) cell ratio of 10:1. To measure degranulation, anti-
CD107a-BV785 (LAMP-1) (Biolegend) was added before initiating the co-
culture experiment. The NK cell cytotoxicity assay was performed in a similar
way to what we have previously described [25]. For more information
see Supplementary Materials and Methods.

RESULTS
AG-221 treatment increases 5hmC at enhancer sites in
IDH2R140Q AML
We used the AML cell line TF-1, overexpressing mutant R140Q or
wild type (WT) IDH2 as a model system [6, 26, 27]. TF-1 IDH2R140Q
cells produced 2-HG (Fig. S1A), demonstrating that our model
resembles primary AML cells with IDH mutations. Similar to AML
patients with IDH mutations [4, 5], the TF-1 IDH2R140Q cells
displayed a hypermethylated DNA profile, consisting of 141406
hypermethylated sites and 65615 hypomethylated sites (Fig. S1B).
Consistent with the TET2 inhibitory function of IDH2R140Q, the
5hmC levels were reduced in IDH2R140Q (Fig. S1C), and three

times as many sites lost 5hmC (2156 sites) compared to gained
5hmC (664 sites) (Fig. S1D). Analyzing the genomic location of the
lost and gained 5hmC sites, we found that both lost and gained
5hmC sites were enriched in enhancers and gene bodies and
depleted in promoters (Fig. S1E). Moreover, the de-regulated
5hmC sites were enriched in distal (4kbp) regions from CpG
islands, called Open seas, whereas CpG islands and their vicinity
(CpG shores, up to 2kbp) were depleted for changed 5hmC
(Figure S1F). The changes for 5hmC and 5mC displayed an anti-
correlative pattern (r=−0.737) (Fig. S1G). This is in agreement
with previous studies showing that de-regulated 5mC and 5hmC
in AML blasts with IDH mutations are enriched for enhancer
regions [26, 28].
To analyze the molecular drug response, TF-1 IDH2R140Q cells

were incubated with AG-221. A reduction of the oncometabolite
2-HG levels and an increased 5hmC were detected after 4 and
7 days of AG-221 treatment (Fig. S1H, I). The 2156 sites that had
decreased 5hmC levels in TF-1 IDH2R140Q re-gained their 5hmC
levels after 4 and 7 days of AG-221 incubation (Fig. 1A and
Fig. S1J). Similar to the steady state (Fig. S1E), enhancers and gene
bodies were enriched for sites with gained 5hmC, while promoters
were depleted (Fig. 1B). Accordingly, CpG islands were depleted
and Open Seas were enriched for gained 5hmC (Fig. S1K). The
sites that gained 5hmC after AG-221 treatment displayed a
corresponding reduction in 5mC (r=−0.848 and r=−0.815, at 4
and 7 days) (Fig. 1C). In addition, the 664 sites that gained 5hmC
levels in TF-1 IDH2R140Q compared to TF-1 IDH2WT displayed a
decreased 5hmC after 4 and 7 days of AG-221 treatment (Fig. S1L).
Together these results suggest that AG-221 restored the 5hmC
levels at both gained and lost sites in TF-1 IDH2R140Q cells,
including enhancers.

De-regulated promoter and enhancer activity in AML with
IDH2 mutation
To investigate changes in gene expression, we performed RNA-
seq in TF-1 IDH2R140Q and TF-1 IDH2WT cells. In agreement with
the observed hypermethylation profile (Fig. S1B), a higher
proportion of the de-regulated genes were down-regulated
compared to the up-regulated (Fig. 2A and Table S1). Genes
involved in differentiation, development, myeloid cell activation,
and proliferation were down-regulated (Fig. S2A). Gene set
enrichment analysis (GSEA) showed that several immune response
gene sets were down-regulated, such as allograph rejection
(Fig. S2B). Furthermore, 90 long non-coding RNAs (lncRNAs) were
de-regulated by the IDH2R140Q mutation (Fig. S2C).
Since changes in 5hmC were particularly abundant in enhancers

(Fig. 1B), we further analyzed enhancer RNAs (eRNAs) to annotate
transcriptionally active enhancers as a proxy for enhancer activity
[29–32] (Fig. S2D). We used transient transcriptome sequencing
(TT-seq) to analyze newly synthesized eRNAs with high sensitivity
[24, 33]. We annotated 4998 putative eRNAs in TF-1 IDH2R140Q
and TF-1 IDH2WT cells. Differential expression analysis detected
244 de-regulated eRNAs in TF-1 IDH2R140Q (Fig. 2B). Motif search
analysis showed that the de-regulated enhancers were enriched in
binding sites for Homeobox transcription factors, c-Myc, ZEB2,
STAT5 and the AP-1 factor c-Jun (Fig. 2C). AP-1 has previously
been shown to be a key transcription factor for enhancer
regulation [29]. Transcriptional co-regulation between enhancers
and promoters was suggested by the transcription factor STAT5,
whose binding sites were enriched in the de-regulated enhancers
and GSEA showed that expression of STAT5 target genes was also
altered TF-1 IDH2R140Q (Fig. 2C and Fig. S2B). To further link
enhancer activity to the activation of target gene transcription,
differentially transcribed enhancers were associated with co-
regulated promoter transcription within a +/− 500 kbp window.
Using this strategy we identified 48 putative co-regulated
enhancer-promoter pairs (Table S2). For example, the expression
of Lysophosphatidylcholine acyltransferase 2 (LPCAT2) which is
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involved in the generation of Platelet-activating factor (PAF), was
elevated in TF-1 IDH2R140Q, along with increased activity at a
putative enhancer (Fig. 2D–F). Also, the mRNA expression of DLK1
that has been implicated in myelodysplastic syndrome [34] and
the Polycomb repressive complex 2 (PRC2) member JARID2 were
potentially de-regulated by nearby putative enhancers (Fig. 2E, F
and Fig. S2E). These results suggest that transcriptional de-
regulation at a set of promoters is linked to perturbed enhancer
activity in TF-1 IDH2R140Q cells.

AG-221 treatment induces a myeloid transcription factor
driven response at promoters and enhancers
The transcriptional response after 4 and 7 days of AG-221
treatment in TF-1 IDH2R140Q cells was analyzed by RNA-seq
and TT-seq. After 4 days, almost twice as many protein-coding
genes were up-regulated compared to down-regulated (Fig. 3A
and Table S3). Furthermore, after 7 days of AG-221 treatment,
more of the affected genes were up-regulated (Fig. 3B and
Table S4). Most of the up-regulated genes after 4 days of
treatment remained up-regulated after 7 days of treatment

(Fig. S3A). Even though most of the down-regulated 337 genes
in TF-1 IDH2R140Q cells are not re-activated by AG-221 treatment,
a significant gene set (16 genes) became up-regulated after 7 days
AG-221 incubation (Fig. 3C). The 5mC levels in CpG sites located in
the up-regulated 16 promoters were reversed after treatment
(Fig. S3B) but without statistically significant correlation between
changes in 5hmC and changes in gene transcription. As previously
described, the relation between 5hmC and gene expression is
complex and dependent on genomic location and cell type [35].
Transcription factor motif analysis indicated that the gene
transcription activation after 7 days of treatment was regulated
by interferon regulatory factors (IRF1–4, ISRE), ETS factors (PU.1,
ETS1, ETV1–2, EWS, SPIB) and the homeobox factor OCT6 (Fig. 3D).
Protein interaction network analysis showed that most of these
transcription factors interact with each other network (Fig. S3C).
Several of these motifs (PU.1, ETV1, EWS:ERG-fusion and SPIB)
were also enriched in down-regulated gene promoters in IDH
mutated patients, suggesting a re-activation of the transcription
factor network after AG-221 incubation (Table S5 and marked in
red in Fig. 3D). Moreover, some of the AG-221 re-activated
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transcription factors, Oct6 and EWS:ERG-fusion motifs were also
enriched in the repressed promoters in TF-1 IDH2R140Q cells
(Table S6 and marked in blue in Fig. 3D). Some of these
transcription factors are involved in myeloid development [36].
GSEA and GO-analysis of the up-regulated genes after 7 days of
AG-221 treatment confirmed the role of interferon gamma
response and induced myeloid differentiation (Figs. 3E, S3D–F).

Several AG-221 induced gene sets were involved in EZH2 (PRC2)
targets (Fig. 3E). Polycomb repressive complex regulates and
represses genes that are involved in myeloid development [37].
Up-regulation of Polycomb targets, therefore, indicated induction
of myeloid differentiation.
Differential expression analysis of eRNAs detected 59 and 132

significantly up- and down-regulated eRNAs after 4 days of
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treatment and 41 and 46 significantly up- and down-regulated
eRNAs after 7 days (Fig. 4A, B). Similar to gene promoters, the
affected enhancer regions were enriched for ETS (e.g PU.1) and IRF
factors, and also for Myc and the AP-1 factors Fos and JunB
(Fig. 4C), consistent with the observed enrichment for Myc and
Jun binding sites in IDH2R140Q de-regulated enhancers (Fig. 2C).
Furthermore, the expression levels of such transcription factors
were also significantly affected by AG-221 treatment. The
expression levels of FOS, JUN, and ZEB2 were decreased by
IDH2R140Q (Fig. S4A) but reverted after AG-221 treatment (Fig. 4E
and Figure S4B). In contrast, the expression of the MYC oncogene
was increased in IDH2R140Q cells (Fig. S4C) and then decreased
after AG-221 (Fig. 4G). Also, an enhancer upstream of the FOS
gene became activated that may regulate FOS expression (Fig. 4D
and F). Fos/Jun transcription factor complexes have been shown
to positively regulate myeloid differentiation [38, 39]. This was in
line with the observed up-regulation of FOS that occurred during
myeloid differentiation, while MYC expression decreased with
differentiation (Fig. 4H).

Down-regulation of the HLA cluster in AML with IDH
mutations increases sensitivity to NK cell-mediated responses
and killing
Both the down-regulated GO-term “immune system process” and
the GSEA “Hallmark allograft rejection” (Fig. S2A, B) included HLA
genes. Therefore, we analyzed the expression of HLA genes in TF-1
IDH2R140Q and found that HLA genes were significantly enriched
among the down-regulated genes (P= 4.434e-15, Fisher’s exact
test). Further analysis of the IDH2R140Q transcriptional conse-
quence revealed a strong down-regulation of genes in the HLA
class I and II clusters in TF-1 IDH2R140Q (Fig. 5A, Table S7). We
confirmed this down-regulation of HLA class I and II clusters in a
large AML cohort [40] (Fig. 5B, Table S8). The AML cohort
displayed a strong hypermethylation profile in the IDH mutated
patients that include the HLA clusters (Fig. S5A). The hypermethy-
lated HLA genes corresponded to both HLA class I and class II
(Fig. 5C), showing strong hypermethylation both in promoters and
gene bodies (Figure S5B). Additionally, in the TF-1 IDH2R140Q cell
line, hypermethylation of HLA gene promoters could be observed
(Fig. S5C). Like the patient data, we also found HLA class I and
class II genes in hypermethylated HLA probes in the TF-1 mutant
cells (Fig. S5D).
The decreased HLA mRNA expression caused a reduction of

HLA class I molecules on the cell surface in TF-1 IDHR140Q
(Fig. 6A). When staining for specific HLA class I molecules, a
significantly decreased expression was observed for HLA-Bw4,
HLA-Bw6, and HLA-C, but not for HLA-E which together with
HLA-Bw4 was expressed at very low baseline levels in the TF1
IDH2WT cell line (Fig. S6A and S6B). HLA-A3 did not appear to be
expressed at all. As HLA class I molecules regulate NK cells, we
further analyzed whether TF-1 IDHR140Q cells would trigger a

stronger NK cell response compared to TF-1 IDH2WT cells. TF-1
mutant and WT cells were co-cultured overnight with IL-2
activated peripheral blood mononuclear cells (PBMCs) from
healthy donors. Degranulation, measured by CD107a expression,
and production of the pro-inflammatory cytokines IFN-γ and
TNF-α, among constituent NK cells were quantified. As a positive
control, the HLA class I deficient K562 cell line was used. TF-1
IDH2R140Q cells triggered enhanced NK cell degranulation
compared to TF-1 IDH2WT cells. Similarly, we could detect a
significant increase in IFN-γ and TNF-α production (Figs. 6B and
S6C). The observed increased sensitivity was confirmed with a
cytotoxicity assay, where overnight IL-2 activated NK cells more
efficiently lysed IDH2R140Q mutated cells compared to
IDH2WT cells at different E:T ratios (Fig. 6C). To link our
observations to specific inhibitory receptor – ligand interactions,
we further looked at the effector responses in different NK cell
subsets. Using a Boolean gating strategy, where subsets were
identified based on the expression of a single HLA class I binding
inhibitory receptor (single positive: SP), or by the absence of all
inhibitory HLA class I binding receptors that we stained for
(iNKR−), we observed an increased degranulation and cytokine
production in all investigated subsets (Fig. S6D). Because TF-1
cells expressed HLA class I molecules confined to the HLA-C1
group, while lacking the HLA-C2 variant, we performed a more
detailed sub analysis for the KIRD2DL1/DS1 and the KIR2DL2/
DS2/DL3 SP subsets together with the inhibitory receptor
negative subset. This analysis showed that KIR2DL2/DS2/DL3
SP NK cells that are controlled upon binding of HLA-C1, had a
higher degree of response compared to the other NK cell
subsets as measured by degranulation and IFN-γ production, but
not in TNF-α production, when co-cultured with TF-1 IDH2R140Q
instead of TF-1 IDH2WT cells (Fig. S6E).
To investigate the link between 2-HG levels and NK cell

sensitivity in a different cell model, we assessed HLA class I levels
in HL-60 and K562 leukemia cell lines after treatment with octyl-D-
2HG, a membrane-permeant precursor form of 2-HG. After 14 days
of treatment, we observed a significant down-regulation of HLA
class I in the HL-60 cells and no effect in the HLA class I negative
cell line K562 (Fig. 6D), demonstrating a 2-HG dependent
repression of HLA class I. Furthermore, HL-60 cells treated with
octyl-D-2HG induced an enhanced NK cell degranulation com-
pared to HL-60 vehicle-treated cells while no change in NK cell
degranulation was observed in the K562 cells used as a control
(Fig. 6E).
To further explore the importance of the HLA class I molecules

in regulating NK cell-mediated responses against TF-1 AML cells,
HLA class I overexpression was induced by pre-stimulating the
cells with IFN-γ 48 h prior to co-culture with NK cells. Indeed, this
resulted in an increase in cell surface expression of several HLA
class I molecules in both TF-1 IDH2R140Q and WT cells (Fig. 6F,
S6F and S6G). To investigate whether this would influence NK

Fig. 3 Expression profile of TF-1 IDH2R140Q mutant cells treated with AG-221. A Volcano plot of mRNA expression between TF-1
IDH2R140Q AG-221/DMSO treated cells during 4 days in total extracted RNA (n= 2). Plotted along the x-axis is the mean of log2 fold-change,
and along the y-axis is the negative logarithm of the adjusted p-values. Red denotes the 69 up-regulated protein-coding genes and the 35
(4 days) down-regulated protein-coding genes in the AG-221 versus DMSO treated TF-1 IDH2R140Q mutant cells (p-adj value < 0.05). Black
denotes non-significantly differentially expressed protein-coding genes. B Volcano plot of mRNA expression between TF-1 IDH2R140Q AG-
221/DMSO treated cells during 7 days in total extracted RNA (n= 2). Plotted along the x-axis is the mean of log2 fold-change, and along the
y-axis is the negative logarithm of the adjusted p-values. Red denotes the 207 up-regulated protein-coding genes and the 157 down-
regulated protein-coding genes in the AG-221 versus DMSO treated TF-1 IDH2R140Q mutant cells (p-adj value < 0.05). Black denotes non-
significantly differentially expressed protein-coding genes. C Venn diagram showing the overlap of down-regulated genes in TF-1 IDH2R140Q
compared to IDH2WT with up-regulated genes at 4 or 7 days of AG-221 treatment in TF-1 IDH2R140Q cells (***p-value < 0.001; hypergeometric
test P= 9.95e-06). DMotif analysis in promoters of up-regulated protein-coding genes in TF-1 IDH2R140Q cells treated with AG-221 for 7 days.
Percentage indicates the % of Targets Sequences with Motif. Common motifs with down-regulated genes in IDH mutated patients compared
to IDH WT (ClinSeq AML patients cohort) are framed in red and common motifs with down-regulated genes in TF-1 IDH2R140Q compared to
IDH2WT are framed in blue. E Gene set enrichment analysis (GSEA) plots comparing gene expression profiles between TF-1 IDH2R140Q
treated with AG-221 or DMSO for 7 days. Normalized enrichment score (NES).
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cell-mediated responses, we again performed co-cultures with
overnight IL-2 activated PBMCs. IFN-γ-stimulated TF-1 cells
triggered significantly lower levels of NK cell degranulation and
cytokine production compared to the non-stimulated TF-1
counterparts (Fig. 6G and Fig. S6H). Furthermore, this effect was

not observed against the HLA class I negative cell line K562
(Fig. S6G, H). Subsequent cytotoxicity assays displayed a reduction
of NK cell-mediated killing of the IFN-y treated TF-1 cell lines
compared to the untreated counterpart, while the killing of K562
cells was unaffected by the stimulation (Fig. 6H).
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IDHi resistant patients retain a hypermethylated HLA gene
profile
Recently, Wang and colleagues [12] performed genome-wide DNA
methylation analyses to decipher clinical resistance to mutant IDH
inhibitors. We analyzed their data to check differentially methylated
probes in non-responders after treatment compared to patients at
baseline (no treatment) and found 8173 hypermethylated probes
and 13463 hypomethylated probes (Fig. 7A), showing increased
hypomethylation after treatment with IDH inhibitors in non-
responders. However, the hypermethylated HLA class I probes
retained their DNA methylation levels after IDHi treatment (Fig. 7B).

DISCUSSION
In our study, we present a novel concept proposing personalized
immunotherapy for AML patients, based on mutational, transcrip-
tional, and epigenetic profiling.

AG-221 treatment has been shown to induce differentiation of
IDH2 mutated AML cells [6, 9, 27, 41]. The myeloid differentiation
is tightly orchestrated by a network of transcription factors that
are essential for complete cell maturation [42]. We show that de-
regulated promoters and enhancers in IDH2R140Q AML cells are
enriched for specific transcription factors motifs that form an AML-
IDH subtype specific network, including RUNX, STAT5, OCT, IRF,
PU.1, AP-1 (FOS, JUN), ETS and MYC. Several of those transcription
factors are also included in other AML subtype networks, but the
combination of them is unique for the AML-IDH subtype [43].
Indeed, inhibition of STAT5 signaling in IDH mutated AML was
recently shown to enhance the differentiation response of IDHi
treatment [44]. Consistent with our results, Wilson et al. recently
showed that motifs for RUNX1, MYC, and PU.1 are enriched in IDH
mutation specific hypermethylated regions [26]. Several transcrip-
tion factors included in the AML-IDH network are either
transcriptionally repressed (FOS, ZEB2, JUN) or activated (MYC)

Fig. 4 Enhancer RNA transcription in TF-1 IDH2R140Q mutant cells treated with AG-221. A Volcano plot of enhancer RNA (eRNA)
expression between TF-1 IDH2R140Q treated with AG-221 or DMSO for 4 days in labeled extracted RNA (n= 2). Red denotes the 59 up-
regulated eRNAs and the 132 down-regulated eRNAs in the IDH2 mutant AG-221-treated versus DMSO-treated cells (p-adj value < 0.1). Black
denotes non-significantly differentially expressed eRNAs. B Volcano plot of enhancer RNA (eRNA) expression between TF-1 IDH2R140Q
treated with AG-221 or DMSO for 7 days in labeled extracted RNA (n= 2). Red denotes the 41 up-regulated eRNAs and the 46 down-regulated
eRNAs in the IDH2 mutant AG-221-treated versus DMSO-treated cells (p-adj value < 0.1). Black denotes non-significantly differentially
expressed eRNAs. CMotif analysis in eRNAs of de-regulated eRNAs in the TF-1 IDH2R140Q AG-221-treated versus DMSO-treated cells for 4 and
7 days. Percentage indicates the % of Targets Sequences with Motif. D Exemplary IGV genome browser view of TT-seq coverage with TF-1
IDH2R140 tracks treated with AG-221 in green or DMSO in blue for 4 or 7 days and transcript annotation at the FOS locus (hg38; chr14:
75,256,352-75,284,688). Due to the high expression of FOS, the TT-seq coverage is cut at 150 to allow for better visualization of the
surrounding eRNA signal. E FOS normalized mRNA counts in IDH2R140 mutant (IDH2MUT) cells treated with DMSO or AG-221 for 4 and
7 days. F FOS normalized eRNA counts in IDH2R140 mutant (IDH2MUT) cells treated with DMSO or AG-221 for 4 and 7 days. GMYC normalized
mRNA counts in IDH2R140 mutant (IDH2MUT) cells treated with DMSO or AG-221 for 4 and 7 days. The two replicates are indicated with
different colors. H Boxplot representing logarithmic RNA expression of FOS and MYC genes during normal granulocytic/monocytic
differentiation [55]. Hematopoietic stem cell (HSC), common myeloid progenitor (CMP), granulocyte-macrophage progenitor (GMP),
polymorphonuclear (PMN) mature granulocyte and monocyte (mono). **p-value < 0.01; ***p-value < 0.001.
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in TF-1 IDH2R140Q. AG-221 treatment rewires the transcription
factor network by reversing the perturbed transcription factor
expression of FOS, JUN, MYC, and ZEB2 and adjusting enhancer
and mRNA transcription. We have previously shown that
promoters of transcription factors are induced earlier in cellular

differentiation and activation than non-transcription factor pro-
moters [45]. Therefore, we speculate that the lack of transcrip-
tional adjustment on non-transcription factor promoters may be
due to 7 days of treatment being too short for a normalization of
all transcriptional features.
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A consequence of the disturbed epigenetic and transcriptional
regulation in IDH mutated AML cells is the down-regulation of HLA
class I gene expression that regulates NK cell activity [18, 46].
Indeed, IDH2R140Q mutated TF-1 cells triggered stronger NK cell
activation, as measured by degranulation and cytokine produc-
tion, and were more easily killed compared to the TF-1 IDH2WT
counterpart. In addition, exogenous octyl-D-2HG treatment of HL-
60 cells demonstrated that the 2-HG dependent down-regulation
of HLA class I is not TF-1 cell conditional.
The most studied inhibitory HLA class I-binding receptors are

the killer cell immunoglobulin-like receptor (KIR) family that binds
to classical HLA class I molecules (HLA-A, -B, and -C), the NKG2A
receptor that binds to the non-classical HLA class I molecules HLA-
E, and the LIR-1 receptor that can bind almost all HLA class I
molecules but with lower affinity compared to the aforemen-
tioned receptors [47]. As KIR receptors are stochastically expressed
by NK cells [48, 49], we performed a boolean gating-based
analysis. The aim of this analysis was to more closely investigate
the contribution of specific NK cell subsets and potentially link the
enhanced response observed against TF-1 cells carrying the
IDH2R140Q mutation to specific inhibitory receptor – HLA class I
interactions. Interestingly, this analysis revealed an increased
response from all studied subsets, including the iNKR- subset. It is
important to emphasize that this analysis did not account for all
inhibitory receptors and their cognate HLA class I molecules. For

example, interactions between NK cell receptor KIR2DL4 and HLA-
G have recently been reported to be of importance in human
breast cancer [50, 51], and neither KIR2DL4 nor HLA-G were
included in our panels. Furthermore, the NK cells used in this
study were derived from donors with an unknown KIR genotype,
where the influence of activating KIRs could not be determined.
The use of donors that only encode inhibitory KIR receptors,
referred to as KIR haplotype AA donors, would have been more
optimal for this type of analysis [47]. Nevertheless, the increased
response observed in all subsets could imply that factors beyond
reduced HLA class I expression contributes to the increased NK
cell sensitivity observed in IDH2 mutated TF-1 cells.
Despite potential contributions from other mechanisms such as

the above-mentioned up-regulation of activating ligands, a
subgroup analysis of our boolean gating strategy indicated that
the increased responsiveness was largest in an NK cell subset
where the cognate HLA class I ligand was down-regulated,
underscoring the importance of HLA class I in this context.
Furthermore, the increased response observed against TF-1
mutant cells could be completely reverted by pre-exposing them
to IFN-y, highlighting the potency of HLA class I in regulating NK
cells also in this model system. Hence, our data provide strong
evidence for that IDH2R140Q mutated AML cells are more
sensitive to NK cells compared to IDH2WT cells, and that reduced
HLA class I expression contributes to this sensitivity, but that

Fig. 6 Functional response of NK cells towards TF-1 IDH2R140Q compared to TF-1 IDH2WT cells. A Barplot showing geometric mean
fluorescence intensity (GMFI) of pan HLA class I molecules for TF-1 IDH2WT and TF-1 IDH2R140Q cell lines from three independent staining’s
(n= 3). B Barplots indicating the percent of NK cells within the PBMC compartment that stained positively for CD107a, IFN-γ, and TNF-α
expression against denoted target cells. NK cells were identified as being CD56 positive and CD3 negative. Data was obtained from 3
independent experiments (n= 13). Bars indicate mean. Error bars indicate SEM (C) Specific lysis of denoted target cells determined by a
Calcein-AM based cytotoxicity assay. The specific effector to target (E:T) ratios are specified on the x-axis. Each point at each indicated E:T ratio
represents the mean of 3 donors (n= 3) and each was performed in triplicates. D Barplot showing geometric mean fluorescence intensity
(GMFI) of pan HLA class I molecules for HL-60 and K562 cell lines treated with DMSO or octyl-D-2HG for 14 days (n= 3). E Barplots indicating
the percent of NK cells within the PBMC compartment that stained positively for CD107a against denoted target cells treated with DMSO or
octyl-D-2HG for 14 days. NK cells were identified as being CD56 positive and CD3 negative (n= 6). F Barplots showing geometric mean
fluorescence intensity (GMFI) of pan HLA class I molecules for TF-1 IDH2WT and TF-1 IDH2R140Q cell lines stimulated with or without 10 ng/
mL of IFN-γ Recombinant Human Protein for 48 h prior to staining. Results were obtained from two independent staining’s (n= 2). G Barplots
indicating the percent of NK cells within the PBMC compartment that stained positively for CD107a, IFN-γ and TNF-α expression against
denoted target cells that had either been or not been, stimulated with above mentioned dose of IFN-γ for 48 h prior to the assays. NK cells
were identified as being CD56 positive and CD3 negative. Data was obtained from two independent experiments (n= 10). Bars indicate mean.
Error bars indicate SEM. H Specific lysis of denoted target cells that had either been or not been, stimulated with above mentioned dose of
IFN-γ for 48 h prior to the assay determined by a Calcein-AM based cytotoxicity assay. The specific effector to target (E:T) ratios are specified
on the x-axis. Each point at each indicated E:T ratio represents the mean of 3 donors (n= 3) and each was performed in triplicates. Error bars
represent SEM. Paired or unpaired t-tests were performed for all paired or unpaired analysis in this figure respectively. When no statistical
significance is noted, it was either not possible to perform the test (due to low sample size), or because the result was non-significant.
*p-value < 0.5; **p-value < 0.01; ***p-value < 0.001.
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contribution from other mechanisms, such as up-regulation of
activating ligands or other today unknown factors, cannot be
excluded. Besides, in a recent early phase clinical trial, where NK
cells were adoptively infused to treat patients with high-risk MDS
or AML, three out of six responders carried IDH2 mutations, while
only one out of nine non-responders did [52]. Although this is a
small study cohort, it suggests that IDH mutations indeed entails
an increased susceptibility to NK cell-based immunotherapy.
The analyses performed on our AML patient cohort support a

role not only of IDH2, but also IDH1 mutations in HLA down-
regulation. Hence, IDH1 mutated AML patients may also benefit
from NK cell-based immunotherapy. Although our model is based
on the R140 mutation, the other IDH2 hotspot mutation, R172,
seems to result in a higher accumulation of 2-HG [53]. Indeed, it
would be interesting to more closely investigate the relationship
between 2-HG levels, TET-inhibition, and NK cell sensitivity.
Finally, our results revealed that the HLA class I cluster remains

hypermethylated in both mutant IDH1 and IDH2 patients resistant
to IDHi. This finding is suggestive of NK cell-mediated immu-
notherapy as a promising target option for patients with IDH
mutations, especially as a second therapeutic option in AG-221
resistant patients. The potential of NK cell-based immunotherapy
is independent of the response to the IDH2i AG-221.
In addition, other IDH mutated tumor histotypes presenting the

same transcriptional alterations may potentially lead to augmen-
ted susceptibly to NK cells, a particularly interesting one could be
gliomas as these often carry IDH mutations [54].
Overall, this data provides new insights into the biology of IDH-

mutated AML and opens up the potential for the development of
new approaches for treating AML patients in a more personalized
manner.
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