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ABSTRACT: Markov state models are widely used to describe and analyze
protein dynamics based on molecular dynamics simulations, specifically to
extract functionally relevant characteristic time scales and motions.
Particularly for larger biomolecules such as proteins, however, insufficient
sampling is a notorious concern and often the source of large uncertainties
that are difficult to quantify. Furthermore, there are several other sources of
uncertainty, such as choice of the number of Markov states and lag time,
choice and parameters of dimension reduction preprocessing step, and
uncertainty due to the limited number of observed transitions; the latter is
often estimated via a Bayesian approach. Here, we quantified and ranked all
of these uncertainties for four small globular test proteins. We found that the
largest uncertainty is due to insufficient sampling and initially increases with the total trajectory length T up to a critical tipping
point, after which it decreases as T1/ , thus providing guidelines for how much sampling is required for given accuracy. We also
found that single long trajectories yielded better sampling accuracy than many shorter trajectories starting from the same structure.
In comparison, the remaining sources of the above uncertainties are generally smaller by a factor of about 5, rendering them less of a
concern but certainly not negligible. Importantly, the Bayes uncertainty, commonly used as the only uncertainty estimate, captures
only a relatively small part of the true uncertainty, which is thus often drastically underestimated.

■ INTRODUCTION
Markov state models (MSMs) are widely used as coarse-grained
models of the conformational dynamics of biological macro-
molecules such as proteins.1−6 They rest on a partitioning of the
configurational space of a fully atomistic description of the
molecular dynamics (MD) into discrete states and transition
rates between these states.1,2 Often, but not necessarily, these
states describe conformations or conformational substates.7

Typically, MSMs are constructed from atomistic MD simu-
lations.8−10 Their main purpose is to provide an analytic
description and to access long time scales otherwise not
accessible to unbiased MD simulations, e.g., to unravel kinetic
pathways and to estimate characteristic time scales of protein
folding,11−14 of ligand binding,15,16 and of self-assembly.17

However, to compute sufficiently long (or sufficiently many)
unbiased MD trajectories for MSMs of proteins to converge is
quite challenging despite impressive computational and
algorithmic advances18 as well as increasingly efficient sampling
protocols.19−23 Obviously, conformations that belong to the
equilibrium ensemble but are not visited by the MD trajectories
will also bemissing in the derivedMarkovmodel. However, even
for those conformations that are visited, the number of
transitions between these may be small, and hence, transition
rate estimates may be inaccurate. These shortcomings�
collectively often referred to as insufficient sampling or sampling
problem�are generally assumed to be the main sources of
MSM uncertainties.24,25

Bayesian approaches serve to quantify part of the sampling
uncertainties. To this end, sample MSMs are drawn from the
Bayesian posterior probability distribution p(P|C) usingMarkov
chainMonte Carlo (MCMC)methods.26,27 Here,C is the count
matrix for all transitions between Markov states observed in the
MD trajectories, and P is theMSM transition probability matrix.
However, this posterior distribution only captures uncertainties
due to small transition counts between knownMarkov states but
misses uncertainties due to other sources. Unseen conforma-
tions, discretization errors, memory effects, or the impact of
parameter choices during MSM construction steps such as
dimension reduction or transition counting all induce
uncertainties that are not captured by the Bayesian approach.
How large are these uncertainties and, consequently, how

much do Bayesian error estimates underestimate the true error
under realistic simulation conditions and for typical simulation
systems? Recently, Noe ́ et al. have addressed uncertainties
arising from the limited number of counted transitions27 and, in
particular, correlations between these transitions and suggested
methods to obtain uncorrelated transition counts C from
discrete trajectories to enhance the accuracy of the Bayesian
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uncertainty estimates.28 However, other uncertainties, which are
not captured by the Bayesian posterior distribution, typically
also contribute to the total uncertainty but have, to our best
knowledge, so far not been systematically quantified.
Here, we address these questions empirically by estimating

these additional MSM uncertainties for several typical proteins
using an extensive series of increasing sample sizes, the number
of used trajectories, and cross-validations. To this aim, we first
identified a total of seven sources of uncertainty within state-of-
the-art and widely used MSM construction pipelines.6,29 The
first is due to missed conformations; four more considered types
of uncertainties are induced by somewhat arbitrary parameter
choices, such asMSM lag time τMSM, number of Markov states k,
tICA lag time τtICA, and dimension reduction variance cutoff vc.
We further considered the uncertainty induced by the stochastic
element of the construction pipeline inherent to k-means
clustering and finally the statistical uncertainty arising from the
limited number of transitions between conformational states
observed in the trajectory. The latter is often assumed to be the
dominant source of uncertainty and usually quantified by the
Bayesian posterior p(P|C)13,16,27 or bootstrapping techni-
ques.14,15,30 To quantify these uncertainties, we focused on the
longest relaxation time scales of the MSMs as these often
describe biologically relevant processes but also because these
are assumed most sensitive to the above sources of uncertainty.
As prototypic examples and test systems, we chose four small

macromolecules, (1) the human Pin1WWdomain (PinWW), a
small protein module with 35 residues (PDB: 2F21),31 (2) the
homeodomain of mouse hepatocyte nuclear factor 6 (HNFHD)
with 50 residues (PDB: 1S7E),32 (3) the XPC-binding domain
of protein hHR23B (XPCB) with 72 residues (PDB: 1PVE),33

and (4) the protein neuronal nitric oxide synthase (nNOS) with
112 residues (PDB: 1QAU).34 These proteins have in common
the fact that they are single domain, have no prosthetic groups,
and cover different topologies as well as the size range of typical
small globular proteins. They are also chosen to be small enough
that our extensive sampling can be assumed to provide accurate
uncertainty estimates.

■ METHODS
MD Simulations. For the main analysis of this study, we

performed 288 1 μs long MD simulations each for Pin WW,
HNF HD, XPBC, and nNOS. Additionally, five 32 μs long MD
simulations were performed for Pin WW to compare sampling
strategies.
All simulations were performed using the GROMACS 2018

software package35 with the AMBER99SB-ILDN force field36 and
TIP4P-EW water model.37 Starting structures for all simulations
were taken from the PDB,38 entries 2F21,31 1S7E,32 1PVE,33

and 1QAU34 and placed in a triclinic simulation box which is
larger than the protein by 1.5 nm in all directions. Solvent and
ions (Na+ and Cl−) were added, establishing a salt concentration
of 0.15 mol L−1 and neutralizing the overall system charge.
Energy minimization was performed using GROMACS steepest
descent until convergence to machine precision (single
precision, ≤5 × 104 steps). Subsequently two equilibration
runs were performed for 0.5 (NVT) and 1 ns (NPT) at an
integration time step of 2 fs, followed by the actual production
runs with a length of 1 μs (NPT, 32 μs for the long simulations)
at an integration time step of 4 fs using virtual sites. A velocity
rescaling thermostat39 was applied at T = 300 K with
temperature coupling constant τT = 0.1 ps. Isotropic pressure
coupling was applied at p = 1 bar with pressure coupling

constant τp = 1 ps using Berendsen pressure coupling40 during
equilibration and Parrinello−Rahman pressure coupling41 in the
production run. All bond lengths were constrained using the
SETTLE algorithm42 for the solvent and LINCS43 for the solute,
with a LINCS order of 4 during energy minimization and
equilibration and a LINCS order of 6 in the production run. Van
der Waals forces were cut off at 1 nm. Coulomb forces were
calculated using the particle mesh Ewald method (PME)44 with
a real-space cutoff of 1 nm, a PME order of 4, and a Fourier grid
spacing of 1.2 Å. In the production runs, coordinates were
recorded every 10 ps.
MSMConstruction. All MSMs were constructed from these

MD trajectories in several processing steps as follows using
PyEMMA 2 software.10 Only the Cartesian coordinates of Cα-
atoms were considered.
First, we computed a time-lagged independent component

analysis (tICA)45,46 to project the trajectory onto the slowest
collective motions, which has been shown to provide dimension
reductions that result in particularly accurate MSMs46,47 and for
which criteria for insufficient sampling have recently been
obtained.48 After projecting, the tICs were rescaled with their
respective eigenvalues, such that Euclidean distances in the
projection correspond to kinetic distances.49 The two required
parameters, lag time τtICA and variance cutoff vc, were both used
in our systematic parameter scan.
Second, k-means++ clustering50,51 was performed on the

obtained tICA projections, which has been shown to be among
the best choices of clustering algorithms for constructing MSMs
from MD trajectories52 and is widely used.10,11,25,53−55

Third, transition counts were estimated from the discrete
trajectories using a sliding window counting scheme with
correction for statistical inefficiencies,28 as recommended in
PyEMMA 2 for use with Bayesian transition probability
estimates.10 Transition counts ci→j(τMSM) depend on the MSM
lag time τMSM and form a count matrix C (τMSM). The lag time
τMSM was included within our systematic parameter scan.
Fourth, transition probabilities pi→j were estimated using the

Bayesian posterior probability distribution p(P|C) ∝ p(C|P)
p(P) ∝ pi j i i j

c 1i j under the constraints of detailed

balance.27 The sparse prior p pP( ) i j i i j
1= was chosen

to enforce P to have the same sparsity pattern as C,27 i.e.,
transitions that where observed neither in forward nor in
backward direction have zero probability. Using MCMC
sampling, 100 sample MSMs were drawn from this posterior
distribution to obtain Bayes uncertainty estimates.
MSMs were constructed for 10 separate trajectory sets for

total lengths T = 1, 2, 4, 8, and 16 μs, 9 sets for T = 32 μs, and 4
sets for T = 64 μs, each with all combinations of the parameters
listed in Table 1. For single trajectory sampling, five different
trajectories were used for all T = 1, 2, 4, 8, 16, and 32 μs. Every

Table 1. MSM Parameters

molecule
tICA lag τtICA

[ns]
variance cutoff

vc
number of

Markov states k
MSM lag
τMSM [ns]

Pin WW 0.15, 0.21,
0.27, 0.33

0.85, 0.90,
0.95, 0.99

1500, 2200,
2800, 3500

15, 22, 28,
35

HNF
HD

0.5, 1.5, 2.5 0.50, 0.65,
0.80

100, 250, 400 1.0, 2.5, 4.0

Fas 1 1.0, 2.5, 4.0 0.5, 0.7, 0.9 250, 500, 750 3.5, 5.0, 6.5
XPCB 0.5, 1.5, 2.5 0.50, 0.65,

0.80
100, 250, 400 1.0, 2.5, 4.0
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MSM construction was repeated five times with different
random seeds.
Our particular choices for τtICA, vc, k, and τMSM were based on

three criteria. First, the longest time scale of MSMs constructed
from single 1 μs trajectories does not show a strong correlation
with the parameter. Second, MSM estimation does not
repeatedly crash within PyEMMA due to the occupancy of
Markov states approaching zero. Third, the longest time scales of
the 100 sample MSMs resemble a log−normal distribution in
nearly all cases.
Uncertainty Estimates. The uncertainty of the MSMs was

estimated using a hierarchical scheme as follows. First, the
Bayesian uncertainty estimate σB = σ(t′) was calculated from the
100 sample MSMs as the standard deviation of their longest
logarithmic time scales t′ = log10 t = log10(−τMSM/ln λ).29 For all
other uncertainty estimates, the 100 sample MSMs were
represented by their mean longest logarithmic time scales tB =
⟨t′⟩. In some cases, the 100 t′ distribution was heavy-tailed,
reaching time scales >104 s. In these cases, the MCMC sampling
was considered to not be converged and therefore excluded from
analysis. These cases were detected using a Shapiro−Wilk
normality test56 on the longest and second longest logarithmic
time scales with Wcrit = 0.95.
Second, to estimate the uncertainty σRS due to the stochastic

element of k-means, five MSMs were constructed with identical
parameters and input trajectories but different random seeds.
The uncertainty was calculated as the weighted standard
deviation t t t( ) ( ) /( )RS B B

2
B B

2
B

2
B

2
B

2= =
of the five tB. For all subsequent uncertainty estimates, the five
MSMs were represented by their weighted mean

t t t /( )RS B B
2

B B
2

B
2= =

Third, uncertainties due to limited sampling, parameter
choice, and total uncertainty were estimated. Sampling
uncertainty σsampling was estimated as the weighted standard
deviation t( )sampling RS

trajs
RS

2= of MSMs constructed from
different trajectory sets of equalTwith identical parameters. The
uncertainty of choosing a particular parameter, e.g., k, was
estimated as the weighted standard deviation t( )k

k
RS

s
RS

2= of
MSMs constructed with different k but identical other
parameters and from the same trajectory set. The total
uncertainty was estimated as the weighted standard deviation

t( )tot RS
all

RS
2= of all MSMs for given T, including all different

parameter choices and input trajectories. It does not correspond
to the sum of the other uncertainties. The latter estimate is likely
the most accurate; however, because only one estimate for each
T and for each protein is obtained, no confidence interval can be
provided.

■ RESULTS AND DISCUSSION
Comparing Sources of Uncertainty. For each of the four

test proteins Pin WW, HNF HD, XPBC, and nNOS, we
generated 288 trajectories of length 1 μs each. From these, a total
of 104,789 MSMs were constructed using different amounts of
sampling and different choices for the construction parameters
mentioned in the Introduction. All uncertainties were estimated
from these MSMs as described in the Methods section. Briefly,
Bayes uncertainties were estimated from standard deviations of
logarithmic time scales of a sample of MSMs drawn from the
posterior probability distribution. Similarly, random-seed

uncertainties were calculated from five repeats of the MSM
construction with different random seeds. Parameter-choice
uncertainties were estimated from MSMs which differ in the
particular parameter but share all other parameters and their
respective input trajectories. Similarly, sampling uncertainties
were calculated from MSMs constructed from different
trajectories but sharing all parameters. Total uncertainties
were estimated from all available MSMs and thus are not simply
the (squared) sum of the above uncertainty contributions.
Figure 1 shows the obtained estimates for uncertainties of the

longest time scales. The error bars indicate the 66% confidence

interval of the above distributions. As can be seen, in most
cases�but not all�the source of the largest uncertainty is
limited sampling. The total uncertainty is within the error bars of
the sampling uncertainty in 17 out of a total of 28 cases (≈61%).
In contrast, the Bayesian estimate significantly underestimates
the total uncertainty. There are three exceptions where the
choice of the number of Markov states caused the largest
uncertainty (HNFHD at total trajectory lengths of 32 and 64 μs
and XPCB at 64 μs). This unexpected result will receive closer
attention further below.
Overall, these results suggest that in most cases, limited

sampling contributes most to the total uncertainty and should
generally provide good uncertainty estimates. However, because
many different sets of input trajectories are required, this
estimate is generally computationally expensive and still tends to
underestimate the true uncertainty. For this reason, the Bayesian

Figure 1. Comparison of uncertainties in the longest relaxation times
from different sources for four different proteins (colors). Mean
uncertainties are denoted by circles. The error bars represent the central
66% of the observed distributions, not the error of the mean. Total
trajectory lengths used to construct the MSMs are indicated by color
saturation and are slightly horizontally displaced for clarity. The
standard deviation of logarithmic time scales translates to a factor
describing the time scale uncertainty in linear space, e.g., a factor of 2
means that 68% of the time scales lie within twice and half the given
value. This factor is shown on the right y-axis.
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estimate is frequently used as a substitute. One of the main
findings of this study is that, unfortunately, the Bayesian estimate
turns out to be one of the smallest contributions to the total
uncertainty and thus tends to drastically underestimate the true
uncertainty. In fact, the uncertainties of most other sources, e.g.,
the choice of the number of Markov states, are generally similar
or even larger and will therefore be studied subsequently in more
detail.
Before analyzing the individual sources of uncertainty in

detail, Figure 2 shows the mean and the median uncertainty

(gray and black curves, respectively) of each source for all four
test proteins (colors) and for different total trajectory lengths. As
can be seen, the average sampling uncertainty dominates and is
larger than all other contributions by a factor of about 5. The
median uncertainties follow a similar trend. In both cases, the
uncertainties due to the choice of tICA lag time and the Bayes
estimate tend to be the smallest. In particular, we were surprised
to see that the inevitable uncertainty due to choice of random
seed for the k-means clustering is similar to or larger than the
widely used Bayes estimate.
Uncertainty Scaling with Total Trajectory Length.

Having established that limited sampling is the source of the
largest uncertainty, Figure 3 shows, for each protein, how this
uncertainty changes with the total trajectory length T. As can be
seen, for sufficiently large T, the uncertainty decreases T1/
(black lines) for each protein, whereas for smaller T, the
uncertainty increases with T. For Pin WW, the decrease already

starts at T < 1 μs (data not shown), whereas for the larger
proteins (to the right), this tipping point is between 4 and 8 μs.
This trend supports the expectation that larger proteins require
more sampling and also shows that the T1/ behavior that is
expected for sufficient sampling is indeed reached for all four test
proteins. Larger or more conformationally diverse proteins,
therefore, are likely out of reach even for massive sampling.
We attribute the above scaling behavior to a tug-of-war

between two contributions to the sampling uncertainty,
unexplored states, and low counts for transitions between
explored states. For small T, the protein has explored only a
small fraction of all states and, importantly, has explored
different states in different trajectory sets. Therefore, the
uncertainty due to unexplored states dominates. For increasing
T, more different sets of states are explored within different
trajectory sets, and thus, the sampling uncertainty increases.
Eventually, most conformations are explored within each
trajectory set such that the rate of increase with T becomes
smaller. At the tipping point, the uncertainty due to the number
of transition counts, which decreases T1/ , starts to
dominate.
To test this scenario, we analyzed tICA projections of 1 μs

trajectories. At this trajectory length, one would expect that for
Pin WW, the majority of states is already explored, in contrast to
the other three proteins. Indeed, projections of each Pin WW
trajectory onto a common tICA subspace cover nearly identical
regions, whereas much less overlap is seen for the other three
proteins (data in Supporting Information).
Comparing Sampling Strategies. So far, we have focused

on one particular sampling strategy. Specifically, we increased
the total trajectory length T by spawning additional 1 μs
trajectories, all starting from the same structure. Using Pin WW
as an example, we next investigated how different sampling
strategies affect the individual uncertainties. To this end, Figure
4 compares this sampling strategy (blue, same data as shown in

Figure 1) with a different one (purple) for which sampling is
increased by prolonging a single trajectory. Due to the large
computational effort involved, we restricted this analysis to T ≤
32 μs. Overall, most uncertainties are rather similar for the two
sampling strategies. The largest differences are seen for the
sampling uncertainty. First, markedly higher accuracy is
achieved for T ≥ 8 μs by single-trajectory sampling as compared
to multitrajectory sampling (e.g., differing by more than a factor
of 3 forT = 32 μs); second, the tipping point is shifted to largerT
= 2 μs for single-trajectory sampling.

Figure 2. Ranking of uncertainties for the longest relaxation times from
different sources. Blue, orange, green, and red circles denote
uncertainties for Pin WW, HNF HD, XPCB, and nNOS, respectively,
at different total trajectory lengths and the lines indicate mean (gray)
and median (black) uncertainties. Small horizontal displacements are
for visualization purposes only.

Figure 3.Change of sampling uncertainty with total trajectory lengthT.
Mean uncertainties are denoted by colored dots with error bars
representing 66% of the observed distributions. The solid black lines are

T1/ -fits to the uncertainties at and beyond their respective maxima.

Figure 4.Comparison of uncertainties in the longest relaxation times of
Pin WW for two different sampling strategies (blue and purple). For
explanation of error bars, slight horizontal displacements, and right y-
axis, see Figure 1.
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We attribute these differences to the fact that, for multi-
trajectory sampling, states close to the common starting
structure are visited more often than those visited later.
Accordingly, only a few transitions between the latter are
observed, which therefore dominate the sampling uncertainty.
This imbalance is much less pronounced for single-trajectory
sampling and decreases with increasing trajectory length, thus
explaining why the sampling uncertainty decreases faster with
increasing T for the single-trajectory sampling.
This imbalance also explains the above shift in the tipping

point. In particular, significant overlaps between different
trajectory sets occur at shorter T for multitrajectory sampling
than that for single-trajectory sampling. Therefore, for single-
trajectory sampling, the tug-of-war between unexplored states
and low transition counts is dominated by unexplored states for
longer T.
Systematic Error in Absolute Time Scales. So far, we

only reported on statistical uncertainties; next we will discuss
systematic contributions to the total uncertainty. To this end,
Figure 5 shows how the total trajectory length T affects the
longest MSM time scales. As can be seen for the proteins HNF
HD, XPCB, and nNOS, estimated time scales can be drastically
longer for longer T as compared to those for short T. For Pin
WW, in contrast, similar time scales are obtained for all T ∈ 1−
64 μs. Also, for XPCB and nNOS, time scales increase gradually
with T by almost 3 orders of magnitude. In contrast, for HNF
HD time scales, a sudden jump is observed at T = 8 μs, by even 5
orders of magnitude.
The gradual increase can be explained in terms of new

conformations being explored with increasing T, which
therefore tend to be connected by increasingly slower transitions
(data not shown). Indeed, no new conformations are explored
for Pin WW and, accordingly, no increase of time scales is
observed.
The occasional jump of the longest time scale, as seen for

HNF HD, can be explained in terms of a sudden increase of the
number of Markov states in the largest reversibly connected
subset. This sudden increase, in turn, is explained as follows.
Whereas new conformations are gradually explored with

increasing T already before the jump, for many of those, no
backward transitions are observed, and hence these are not yet
part of the reversibly connected subset. These would act as a sink
in the MSM and are therefore discarded.10 For T ≥ 8 μs,
backward transitions occur from sufficiently many of those
states, such that they become part of the largest reversibly
connected subset, hence suddenly increasing the longest time
scale.
Uncertainties Due to Parameter Choices. Next, we will

investigate the rare cases in which the source of the largest
uncertainty is not limited sampling. In these cases, as shown in
Figure 6, the choice of number of Markov states dominates the
total uncertainty for HNF HD at T ≥ 32 μs and XPCB at T = 64
μs. As can be seen, here, the absolute time scales increase with
the number of Markov states. The absolute time scales also
increase with MSM lag time, albeit to lesser extent (data not
shown).
Such a strong dependence is unphysical and can therefore

serve as a warning flag that the obtained MSMs are problematic.
Such dependence can be due to an inadequate parameter range
for the number of Markov states or inadequate preprocessing
parameters such as tICA lag time or dimension cutoff.57 In all
other cases, where no or only weak correlations between
parameters and the longest time scale were observed, limited
sampling was the dominant source of uncertainty.
Uncertainty in Shorter Time Scales. So far, we only

considered the longest time scale of the MSM; next we will
investigate the shorter (second to eighth-longest) time scales.
These time scales describe subsequently faster equilibration
processes for which sufficient sampling is reached at shorter T.
We selected Pin WW as an example here for which we obtained
the most comprehensive sampling.
As can be seen in Figure 7 (top)�and as expected from the

increasingly faster relaxation�generally, the sampling uncer-
tainty (light blue) decreases from the longest to the eighth-
longest time scale. In contrast, the MSM lag time uncertainty
(purple) increases, eventually surpassing the sampling un-
certainty. Comparison with all other sources of uncertainty
(gray) shows that limited sampling still remains the second-

Figure 5.Distributions of longest relaxation times over all MSMs for the four considered proteins (colors), including different input trajectory sets and
different construction parameters.

Figure 6.Correlation of absolute time scales with the number of Markov states k for HNFHD (orange) and XPCB (green) at different total trajectory
lengths T. The violins indicate the distributions of longest relaxation time scales of all MSMs for given total trajectory length T and the number of
Markov states k (indicated by color saturation).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00372
J. Chem. Theory Comput. 2023, 19, 5516−5524

5520

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00372?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00372?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


largest contribution. These trends are generally more
pronounced for shorter total trajectory lengths T.
As can be seen in Figure 7 (bottom), the absolute time scales

increase withMSM lag time. Again, such a dependence can serve
as a warning flag of inadequate parameter choice. Here, the
dependence is more pronounced for shorter time scales, whose
absolute lengths are close to the MSM lag times (shown as
horizontal lines in the lower part of Figure 7). Because the MSM
lag time limits the time resolution of the model, this observation
suggests that the faster processes described by the shorter time
scales are not resolved by our MSMs.
Taken together, our results suggest that for appropriate

choices of the MSM parameters, limited sampling is the
dominant source of uncertainty. Furthermore, the dependence
of a time scale on a particular parameter can flag possibly
inaccurate MSMs.

■ CONCLUSIONS
Using four typical globular proteins, we systematically quantified
different contributions to the uncertainty in MSMs constructed
from MD simulations with a particular focus on the largest
relaxation times that are often relevant for biomolecular
function. Our first main finding is that limited sampling is the
dominant source of uncertainty. This contribution arises from
both unseen conformations as well as low counts of conforma-
tional transitions. A noteworthy observation is that, although
this uncertainty initially increases with the total trajectory length
T, it eventually reaches a tipping point at a certain Ttp and then
decreases. For the four small to midsize proteins studied here,
the tipping point was indeed within the reach of extensive MD
simulations, such that a ubiquitous decrease of T1/ beyond
Ttp was observed. This scaling behavior, when observed, can
serve to estimate how much simulation time is required to reach
a desired accuracy. For our four test proteins, the location of the

tipping point Ttp is clearly determined by the size of the protein
and by the complexity of its dynamics. Notably, limited sampling
not only gives rise to large uncertainties but also can cause large
systematic errors. For example, and particularly for small T ≤
Ttp, time scales were often underestimated. For very long T ≫
Ttp, we expect this systematic error to decrease with the
uncertainty.
In a recent report, Suaŕez et al. performed a parameter grid

search and cross-validation of MSMs based on their longest time
scales (truncated VAMP-2 score) for model selection.58 Here,
too, average deviations between training and test scores
(resembling sampling uncertainty) appear to be larger than
the deviations between training scores of MSMs with different
parameters. Overall, although no quantitative analysis was
performed, these results appear to be consistent with our present
study.
Also recently, He et al. reported an MSM-based analysis of

protein−protein association from coarse-grained simulations.59

They estimated binding free energies for different T, the errors
of which appear to decrease T1/ . They also report that the
choice of the number of retained tICA dimensions caused only
small uncertainties in the equilibrium properties. Our results
extend these findings to relaxation time scales of protein
conformational dynamics from atomistic simulations.
It is worth noting that a single long trajectory yields better

sampling and, hence, improved accuracy than multiple shorter
trajectories of the same accumulated length started from the
same structure. This effect is particularly pronounced for
sampling the relevant long time scales. Of course, many
advanced sampling techniques have been developed,19,22,24,60−

64 which generally provide better sampling efficiency even for
very complex biomolecules. Nevertheless, the above two simple
sampling strategies are still widely used,13,58,65−71 and a more
systematic comparison of these advanced methods is clearly
required, although beyond the scope of this article.
Of course, because calculating many trajectories scales much

better on parallel computers, it may still be preferable. Also, it is
clearly preferable to start these from independent structures,
which, however, are rarely available. Rather, the typical situation
is that only one experimental structure is available such that
generating largely independent structures would require addi-
tional computational effort. For a fair comparison, this effort
would have to be taken into account, too.
A recent study by Bacci et al. reported that MSMs can

generally recover correct equilibrium distributions from multi-
ple short simulations all started from a small region in phase
space,72 resembling multiple trajectories from a common
starting structure. Our results additionally suggest that MSMs
can also recover dominant relaxation time scales, i.e., kinetics,
from such trajectories. Contrary to Bacci et al., we found that
applying detailed-balance constraints does not compromise that
ability (data not shown). We refrained from a more in-depth
analysis, as it would further distract us from our main focus.
The second main result is that the widely used Bayesian

estimate for MSM uncertainties captures only a small part of the
total relaxation time uncertainty and therefore bears the risk of
drastically overestimating the achieved accuracy. More realistic
uncertainty estimates and validations are obtained using
simulation series of increasing trajectory lengths or number.
The price to pay is more computational cost as only a small part
of the trajectories will serve the MSM construction. One might
be tempted to construct an MSM on all available trajectories for

Figure 7. Faster time scales of Pin WW MSMs and their, respective,
uncertainties. (a) Sampling uncertainty and MSM lag time uncertainty
are denoted by light blue and purple triangles, respectively, for the
longest to eighth-longest time scale. Other uncertainties are
represented by gray lines. For explanation of error bars, slight
horizontal displacements, and right y-axis, see Figure 1. (b) Violins
depict the distributions of longest to eighth-longest absolute time
scales. Here, higher-saturation violins correspond to MSMs with longer
MSM lag times, and every violin contains MSMs of all total trajectory
lengths T ∈ 1−64 μs. The four MSM lag times used are shown as
horizontal lines.
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which, however, no reliable error estimate would be obtained.
Furthermore, this MSM is not guaranteed to be more accurate.
Other contributions to MSM uncertainties can arise from the

particular parameter choice in a conventional MSM con-
struction pipeline, especially the number of Markov states, the
amount of dimension reduction, and the MSM lag time. We
observed that the uncertainties due to each of these parameters
show a plateau within an appropriate parameter range, in which
case their contribution to the total uncertainty is generally small,
albeit not negligible. It follows that large variations of MSM
relaxation times with one of these parameters can flag inaccurate
MSM.
Of course, other sources of MSM uncertainties exist that have

not been discussed here. Themost obvious example is the choice
of different elements of the MSM construction pipeline, for
which here we have chosen the widely used methods
implemented in PyEMMA 210 to exclusively construct microstate
models. One could, for example, choose a different clustering
algorithm (Ward’s method, k-centers, ...),52 or exchange (parts
of) the construction pipeline with a neural network,73,74 or
additionally coarse-grain the MSM (using PCCA75) to obtain
more comprehensible macrostate models at the cost of
accuracy.29 Also, the underlying MD simulation method suffers
from inaccuracies, e.g., due to the choice of force field or starting
structure. Quantifying the effect of these clearly deserves future
study.
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