
            

PAPER • OPEN ACCESS

Data-driven reconstruction of stochastic dynamical
equations based on statistical moments
To cite this article: Farnik Nikakhtar et al 2023 New J. Phys. 25 083025

 

View the article online for updates and enhancements.

You may also like
The Clebsch-Gordan coefficients and
isoscalar factors of the graded unitary
group SU(m/n)
Jin-Quan Chen, Xuan-Gen Chen and Mei-
Juan Gao

-

Random statistics of OPE coefficients and
Euclidean wormholes
Alexandre Belin and Jan de Boer

-

Series extension: predicting approximate
series coefficients from a finite number of
exact coefficients
Anthony J Guttmann

-

This content was downloaded from IP address 134.76.223.157 on 30/11/2023 at 11:49

https://doi.org/10.1088/1367-2630/acec63
/article/10.1088/0305-4470/16/2/001
/article/10.1088/0305-4470/16/2/001
/article/10.1088/0305-4470/16/2/001
/article/10.1088/1361-6382/ac1082
/article/10.1088/1361-6382/ac1082
/article/10.1088/1751-8113/49/41/415002
/article/10.1088/1751-8113/49/41/415002
/article/10.1088/1751-8113/49/41/415002


New J. Phys. 25 (2023) 083025 https://doi.org/10.1088/1367-2630/acec63

OPEN ACCESS

RECEIVED

18 May 2023

REVISED

18 July 2023

ACCEPTED FOR PUBLICATION

1 August 2023

PUBLISHED

11 August 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Data-driven reconstruction of stochastic dynamical equations
based on statistical moments
Farnik Nikakhtar1,∗, Laya Parkavousi2, Muhammad Sahimi3, M Reza Rahimi Tabar4,5, Ulrike Feudel5,∗

and Klaus Lehnertz6,7,8,∗
1 Department of Physics, Yale University, New Haven, CT 06511, United States of America
2 Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
3 Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA
90089-1211, United States of America

4 Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
5 Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany
6 Department of Epileptology, University of Bonn Medical Centre, Venusberg Campus 1, 53127 Bonn, Germany
7 Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
8 Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
∗ Authors to whom any correspondence should be addressed.

E-mail: farnik.nikakhtar@yale.edu, ulrike.feudel@uni-oldenburg.de and klaus.lehnertz@ukbonn.de

Keywords: reconstruction of stochastic dynamical equations, Kramers–Moyal coefficients, time series analysis, statistical moments

Abstract
Stochastic processes are encountered in many contexts, ranging from generation sizes of bacterial
colonies and service times in a queueing system to displacements of Brownian particles and
frequency fluctuations in an electrical power grid. If such processes are Markov, then their
probability distribution is governed by the Kramers–Moyal (KM) equation, a partial differential
equation that involves an infinite number of coefficients, which depend on the state variable. The
KM coefficients must be evaluated based on measured time series for a data-driven reconstruction
of the governing equations for the stochastic dynamics. We present an accurate method of
computing the KM coefficients, which relies on computing the coefficients’ conditional moments
based on the statistical moments of the time series. The method’s advantages over state-of-the-art
approaches are demonstrated by investigating prototypical one-dimensional stochastic processes
with well-known properties.

1. Introduction

The analysis of time series reflecting the dynamics of complex systems, ranging from physics via engineering
to medicine and the neurosciences, needs to be based on assessing the interactions and strengths of random
forces operating within the systems. Modeling of such systems and time series has been pursued for
decades [1–5]. Time series with a finite Markov–Einstein scale can be modeled by a data-driven
reconstruction of the governing equations, leading to stochastic differential equations (SDEs). These consist
of deterministic and stochastic terms, with the latter corresponding to the fluctuating behavior of the
measured time series. As described below, the parameters of the SDE, known as Kramers–Moyal (KM)
coefficients, are estimated directly from the measured data [3–5].

Not only does the modeling aim to understand the physics of the system and to extract as much
information from the data as possible, but it also aims to make probabilistic predictions, namely to address
the question: given the state of a system at time t, what is the probability of finding it in a particular state at
time t+ τ ? If the state of a system at time t depends statistically only on its state at the previous time step, but
not on earlier ones, then the stochastic process represents a Markov process. A given time series may be
considered as Markov above the Markov–Einstein scale, which can be estimated directly from observations
via some statistical tests [3–5].

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/acec63
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acec63&domain=pdf&date_stamp=2023-8-11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3641-4366
https://orcid.org/0000-0002-8009-542X
https://orcid.org/0000-0002-5529-8559
mailto:farnik.nikakhtar@yale.edu
mailto:ulrike.feudel@uni-oldenburg.de
mailto:klaus.lehnertz@ukbonn.de


New J. Phys. 25 (2023) 083025 F Nikakhtar et al

It is known that the probability distributions—both marginal and conditional—of Markov processes are
governed by a first-order partial differential equation in time and an infinite series of derivatives with respect
to the state variable x. The equation is known as the KM equation [1, 2] and is given by

∂

∂t
p(x, t|x0, t0) =

∞∑
l=0

(
− ∂

∂x

)l{
D(l)(x, t)p(x, t|x0, t0)

}
, (1)

subject to the initial condition p(x, t0|x0, t0) = δ(x− x0). Here, D(l)(x, t) are the conditional moments of the
probability density functions of the transition rates, which—if all known—can identify the probability
distribution of the transition rates. They are the aforementioned KM coefficients and are given by

D(l)(x, t) = lim
τ→0

1

l!

K(l)(x, t, τ)

τ
, (2)

with K(l)(x, t, τ) defined as

K(l)(x, t, τ) =

ˆ
dx ′(x ′ − x)lp(x ′, t+ τ |x, t)

=
〈
[x(t+ τ)− x(t)]l

∣∣∣
x(t)=x

〉
, (3)

and with ⟨· · · ⟩ denoting averaging over the conditional distribution. State-of-the-art procedures for
estimating the conditional moments K(l)(x, t, τ) and, henceforth, the KM coefficients involve
histogram-based [5] and kernel-based regression [6–8] as well as the maximum likelihood method [9–11],
with the first two methods estimating the conditional probability distribution function (PDF) p(x ′, t+ τ |x, t)
for given x and x′ in order to calculate the average in equation (3). Other methods are the unbiased
estimation method [12] and the statistical inference approach [13]; see also [14] for double kernel-based
regression for unevenly sampled time series.

In general, estimating the conditional PDF using the histogram-based regression with a fixed binning,
given the time series with finite number of data points, will lead to a sparse matrix (for p(x ′, t+ τ |x, t)) and,
therefore, will not provide reliable results for KM coefficients. Furthermore, the kernel-based regression
requires an a priori selection of the kernel and its band-width to compute the conditional moments, which
represents the method’s main obstacle for yielding accurate results. In addition to such limitations, due to the
sparsity of the matrix of conditional PDFs, such procedures (histogram/kernel) are applicable in one and
rarely in two dimensions [3, 15, 16]. On the other hand, similar to other optimization problems, maximum
likelihood estimates can be sensitive to the choice of the starting values and are computationally expensive. To
overcome such limitations, we introduce in this paper a new approach, the moments method, for computing
the KM coefficients using the short-time correlation functions and statistical moments of time series.

2. Estimation of KM conditional moments using statistical moments

If yl(t) = [x(t+ τ)− x(t)]l represents the lth increments of x(t), and assuming that the conditional moments
in equation (3) can be approximated by an l′-order polynomial (see the discussion below for the choice of l′),
one can write

K(l)(x, t, τ) =
〈
yl(t, τ)

∣∣∣x(t) = x
〉

= ϕ0 +ϕ1x+ϕ2x
2 +ϕ3x

3 + · · ·+ϕl ′x
l ′ , (4)

where we omitted the dependence of ϕi on t and τ to simplify notation. We find that the coefficients
ϕ0, ϕ1, . . . ,ϕl ′ are the solution of a system of linear equations (see appendix A)

⟨yl⟩
⟨xyl⟩
...

⟨xl ′yl⟩

=


1 ⟨x⟩ ⟨x2⟩ · · · ⟨xl ′⟩
⟨x⟩ ⟨x2⟩ ⟨x3⟩ · · · ⟨xl ′+1⟩
...

...
...

...
...

⟨xl ′⟩ ⟨xl ′+1⟩ ⟨xl ′+2⟩ · · · ⟨x2l ′⟩



ϕ0

ϕ1

...
ϕl ′

 , (5)

where ⟨xk⟩ is the statistical moment of x(t) of order k. The left-hand side of equation (5) involves terms such
as ⟨xi (x(t+ τ)− x(t))l⟩, which require the estimation of short-time correlation functions of ⟨xi x(t+ τ)j⟩
and of statistical moments of ⟨xi+j⟩. Therefore, to compute the KM coefficients, it is necessary to have
knowledge about the short-time correlation functions and statistical moments of a time series. By solving the
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matrix equation for ϕ0, ϕ1, . . ., and ϕl ′ , the conditional moments and the KM coefficients of order l are
determined by [cf equation (2)]

D(l)(x, t) = lim
τ→0

1

l!

1

τ
⟨[x(t+ τ)− x(t)]l|x(t) = x⟩

= lim
τ→0

1

l!

1

τ

[
ϕ0 +ϕ1x+ · · ·+ϕl ′x

l ′
]
. (6)

The ϕ coefficients are a function of the time lag τ . These coefficients are estimated (ϕ̃) for different time lags
τ = (1,2,3, . . .)d t and a linear regression is performed for the first four time lags. The slopes of the linear
regressions are the ϕ coefficient. Here, d t is the sampling interval of the time series x(t). For a non-stationary
process, the moments matrix on the right hand side and the vector on the left hand side of equation (5) will
be time-dependent, implying that the coefficients ϕi can also depend explicitly on time (see appendix B, also
for a validation of our method from an analytical perspective).

For a given time series, the order of the polynomial l′ is selected based on resolving of x2l
′
p(x), especially

at the tails of p(x). By ‘resolving’, we mean that for large values of x, given a sufficient number of data points,
estimates of x2l

′
p(x) will be reliable. Polynomials of higher orders l′ require a larger amount of data points in

order to safely estimate the statistical moments ⟨x2l ′⟩. For a given number of data points n, increasing l′

beyond some upper bound l ′c will no longer resolve x
2l ′p(x) and, therefore, one should stop the expansion in

powers of x at order l ′c . In appendix C, we determine numerically the upper order of the moments, l ′c , for the
three examples presented in the following.

The proposed method is also applicable to any non-polynomial KM coefficients, such as fractional or
sinusoidal functions. Examples of non-polynomial expressions in equation (3) include the
host-immune-tumor model (also known as dynamical model of cancer growth) and the
Kuramoto–Sakaguchi phase oscillator model with higher-order interactions [17], to name but a few.

Before we demonstrate advantages of the proposed method over state-of-the-art approaches, we briefly
discuss the truncation of the KM equation (1) to rate the number of KM coefficients that should be derived
in case of an unknown process. The KM equation offers three possibilities: (i) truncating the expansion at
l= 1 represents a deterministic process; (ii) truncating at l= 2 results in the Fokker–Planck equation for
diffusion processes; and (iii) including all terms up to l→∞. Checking the condition D(l)(x, t) = 0 for l⩾ 3
in a given time series is not a straightforward task as it requires knowledge of the KM conditional moments
K(l)(x, t, τ) in powers of the sampling time τ . Lehnertz et al have shown that for a process to be classified as
diffusive, the condition K(4)(x, t, τ)≃ 3(K(2)(x, t, τ))2 must be satisfied [18]. If this holds, then the first two
KM coefficients are sufficient to describe the measured stochasticity of the time series. Otherwise, the
dynamics can be approximated using a jump-diffusion process which requires knowledge of the KM
coefficients of orders 1, 2, 4, and 6 [5, 24].

In what follows, we reconstruct one-dimensional stochastic dynamical equations from three prototypical
stochastic processes with well-known properties, of which two examples represent diffusion processes and
the third one is a jump-diffusion process.

We generated synthetic time series by a numerical simulation of the corresponding dynamical equations
using the adaptive integration method for Itô SDEs [19, 20]. Then, we estimated the KM coefficients
D(l)(x, t) of the time series using four methods, namely histogram-based and kernel-based regressions,
maximum likelihood estimation, and the moments methods proposed in this paper. For each example, the
standard error of the mean of KM coefficients was computed based on 100 realizations of the applied noises
and with n= 106 data points. The mean-squared error (MSE) of the estimated as well as the coefficient of
determination (R2 score) between estimated and actual values for the drift and diffusion coefficients (the
first two KM coefficients) and the jump parameters, i.e. amplitude and jump-rate, are reported in table 1.
Example 1: Diffusion processes: Ornstein–Uhlenbeck process. The Pawula theorem [21] states that the KM
expansion can be truncated at l= 2 if D(4)(x, t) vanishes. The KM equation then reduces to the
Fokker–Planck equation, with the state variable x(t) describing the diffusion process. In that case, x(t) will be
governed by the Langevin equation which (using the Itô description) has the following form:

dx= D(1)(x, t)d t+
√
2D(2)(x, t)dW(t) , (7)

where D(1)(x, t) and D(2)(x, t) are the drift and diffusion coefficients, respectively. {W(t), t⩾ 0} is a scalar
Wiener process.

We consider the Langevin equation (7) with D(1)(x) =−x, D(2)(x) = 1, and integrate it with d t= 0.01 to
generate synthetic time series. Our findings for D(1)(x) and D(2)(x) are shown in figure 1. For the linear
process considered, the MSEs of D(1)(x) and D(2)(x) estimated with the moments method are smaller (with

3
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Figure 1. Upper panel: excerpt of an exemplary time series of an Ornstein–Uhlenbeck process (equation (7)) with drift and
diffusion coefficients D(1)(x) =−x and D(2)(x) = 1. Lower panels: theoretical (dashed lines) and estimated drift coefficients
using histogram-based and kernel-based regressions, maximum likelihood estimation (MLE), and the proposed moments
method. We used the best-tuned values (minimumMSE and maximum R2 score) for the number of bins and band-width for
histogram-based and the kernel-based regressions, which we determined to beM= 45 and h≃ 0.3 (with a Gaussian kernel). We
chose the order of polynomials for estimating the drift and diffusion coefficients to be l ′ = 3 and l ′ = 4, respectively (cf
appendix C). Error bars are the standard error of the mean, estimated from 100 realizations of synthetic time series.

R2 closer to unity) than the respective values estimated with the other methods (table 1). For an analytical
solution of equation (5) for the coefficients ϕi and the KM coefficients, as well as for the condition to stop
increasing the order of moments, see appendices B and C.
Example 2: Diffusion processes: the noisy genetic model. As a second example from the family of diffusion
processes, we consider a nonlinear multiplicative process, namely, the noisy genetic model in the context of
population genetics [22], which exhibits a noise-induced transition from unimodal to bimodal PDFs with
increasing noise intensity. The noisy genetic model is described as a one-variable diffusive SDE [23] (see
appendix D)

dx= [α− x+β0x(1− x)]d t+σx(1− x)dW(t) , (8)

where x ∈ [0,1], and α ∈ (0,1) stands for the mutation rate. Here, β0 denotes the gene selection factor and,
independent of α and β0, the deterministic part of the dynamical system (8) has only one equilibrium point
in the corresponding interval, which is stable. Moreover, the intensity σ is a real constant.

There is a critical σ2
c such that for σ2 < σ2

c , the stationary solution of the corresponding Fokker–Planck
equation, ps(x), has only one extremum, namely a maximum. When σ2 > σ2

c , the stationary probability
distribution has three extrema, with x2 being a minimum and x1 and x3 each being a maximum. Therefore,
when σ2 < σ2

c , ps(x) is unimodal at σ2 = σ2
c , the probability distribution becomes flat, followed by a

transition to bimodal distribution functions for more intense noise.
We integrate equation (8) with d t= 0.01 to generate synthetic time series for σ2

1 < σ2
c , σ

2
3 > σ2

c , and
σ2
2 ≈ σ2

c . Our results for the drift and diffusion coefficients are summarized in figure 2. We find that for all
values of σ2, the MSEs corresponding to the proposed moments method are comparably smaller (with R2

closer to unity), as presented in table 1.
Example 3: Jump-diffusion process with a bistable potential. It has become evident that a non-vanishing
D(4)(x, t) is a signature of jump discontinuities in a time series [18, 24]. In this case, one needs the KM
coefficients of at least order six, D(6)(x, t), and in some other cases, up to order eight [5] to estimate jump
amplitude and rate, and the KM equation will contain all the terms up to l→∞ [24–34]. For non-vanishing
D(4)(x, t), one models a time series as a jump-diffusion process, which is given by a (Itô) dynamical
stochastic equation [5, 24]

dx(t) = D(1)(x, t)d t+
√
D(x, t)dW(t)+ ξ d J(t) , (9)

where {W(t), t⩾ 0} is a scalar Wiener process, D(1)(x, t) is the drift coefficient, D(x, t) is the diffusion
function, and J(t) is a Poisson jump process. The jump rate is λ(x) that can be state-dependent with size ξ,
which we assume to have some symmetric distribution with finite even-order statistical moments ⟨ξ2j⟩ for
j⩾ 1. For a jump-diffusion process (9), all functions and parameters can be determined based on measured
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Figure 2. Top to bottom: excerpts of exemplary time series of the noisy genetic model (equation (8)) as well as drift and diffusion
coefficients D(1)(x) = 1

2
− x+β0x(1− x) (with β0 = 3) and D(2)(x) = σ2x2(1− x)2 for σ2 < 2.84 (top), σ2 ≈ 2.84 (middle),

and σ2 > 2.84 (bottom). Theoretical (dashed lines) and the estimated drift and diffusion coefficients using the four methods. The
best-tuned values for the number of bins and for the kernel band-width wereM= 41 and h≃ 0.3 (with a Gaussian kernel). The
order of polynomials for estimating the drift and diffusion coefficients were l ′ = 3 and l ′ = 4, respectively (cf appendix C). Error
bars are the standard error of the mean (SEM) estimated from 100 realizations of the synthetic time series.

time series by estimating the KM conditional moments [5, 24] (see appendix E). For simplicity, we assume
that the jump size ξ has a Gaussian PDF with variance σ2

ξ . In that case, ⟨ξ2k+1⟩= 0 and ⟨ξ2k⟩= 2n!
2kk! ⟨ξ

2⟩k.
We consider a dynamical system with a cubic nonlinearity (D(1)(x, t) = x− x3) with additive white noise,

D(x, t) =
√
0.75, jump amplitude σ2

ξ = 1, and jump rate λ= 0.3. The deterministic part of the dynamics has
three fixed points at 0, one unstable fixed point, and±1 as stable ones. In figure 3, we show the numerical
values for both the reconstructed drift and diffusion coefficients, as well as jump amplitude and jump rate.
We find that the MSEs corresponding to the proposed moments method are comparably smaller, see table 1.
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Table 1.Mean squared errors (MSEs) of estimated and R2 scores between estimated and actual values of the drift and diffusion
coefficients, as well as jump rate and jump amplitude for the examples considered. Results are given for the histogram-based and the
kernel-based regressions, maximum likelihood estimation (MLE), and the proposed moments method. Since no theoretical expression
for the short-time propagator of p(x ′, t+ τ |x, t) is known for the jump-diffusion processes, MLE could not be applied. MSEs and R2

scores for the Ornstein–Uhlenbeck process were estimated in the interval x ∈ [−2,2], for the noisy genetic model in the interval
x ∈ [0.1,1], and for the jump-diffusion process in the interval x ∈ [−1.5,1.5].

Example
Drift coefficient
MSE/R2

Diffusion coeffi-
cient MSE/R2

Jump rate
MSE/R2

Jump amp-
litude MSE/R2 Method

Ornstein–
Uhlenbeck
process

0.2168/0.7133 0.0001/−17.2624 N/A N/A Histogram-
based

Ornstein–
Uhlenbeck
process

0.0106/0.9915 0.0001/−0.0623 N/A N/A Kernel-based

Ornstein–
Uhlenbeck
process

0.0001/0.9999 0.0001/−9.2731 N/A N/A MLE

Ornstein–
Uhlenbeck
process

0.0001/0.9999 0.0001/0.9999 N/A N/A Moments

Noisy genetic
model (σ < σc)

0.0567/0.4069 0.0003/0.3845 N/A N/A Histogram-
based

Noisy genetic
model (σ < σc)

0.0041/0.9708 0.0001/0.9739 N/A N/A Kernel-based

Noisy genetic
model (σ < σc)

0.0055/0.9474 0.0005/−3.3394 N/A N/A MLE

Noisy genetic
model (σ < σc)

0.0011/0.9921 0.0001/0.9865 N/A N/A Moments

Noisy genetic
model (σ ≃ σc)

0.0007/0.9949 0.0001/0.9931 N/A N/A Histogram-
based

Noisy genetic
model (σ ≃ σc)

0.0029/0.9784 0.0001/0.9712 N/A N/A Kernel-based

Noisy genetic
model (σ ≃ σc)

0.0684/−0.0221 0.0058/−0.6734 N/A N/A MLE

Noisy genetic
model (σ ≃ σc)

0.0001/0.9999 0.0001/0.9972 N/A N/A Moments

Noisy genetic
model (σ > σc)

0.0015/0.9891 0.0001/0.9962 N/A N/A Histogram-
based

Noisy genetic
model (σ > σc)

0.0091/0.9429 0.0003/0.9739 N/A N/A Kernel-based

Noisy genetic
model (σ > σc)

0.1322/−1.3872 0.0263/−0.8569 N/A N/A MLE

Noisy genetic
model (σ > σc)

0.0003/0.9977 0.0001/0.9959 N/A N/A Moments

Jump-diffusion
process

0.1684/−2.3667 0.0003/−0.0035 0.0199/−0.2823 0.0013/−0.3256 Histogram-
based

Jump-diffusion
process

0.0782/0.4234 0.0013/−1.0006 0.0032/−1.1983 0.0002/−0.3163 Kernel-based

Jump-diffusion
process

–/– –/– –/– –/– MLE

Jump-diffusion
process

0.0001/0.9999 0.0001/−0.5863 0.0057/−0.3062 0.0002/−0.3062 Moments

6
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Figure 3. Top: excerpt of an exemplary time series of a jump-diffusion process (equation (9)) with drift and diffusion coefficients
D(1)(x) = x− x3 and D(x) =

√
0.75≈ 0.866, and with jump amplitude σ2

ξ = 1 and jump rate λ= 0.3. Theoretical (dashed

lines) and estimated functions and parameters of the jump-diffusion model using the four methods are shown in the lower
panels. The best-tuned values for the number of bins and the kernel band-width wereM= 61 and h≃ 0.3 (with a Gaussian
kernel). We expanded the KM coefficients D(4)(x, t) and D(6)(x, t) with up to the fourth- and sixth-order polynomials (l ′ = 4
and l ′ = 6), respectively (cf appendix C). Error bars are the standard error of the mean, estimated from 100 realizations of the
synthetic time series. Note, that we do not report results for MLE here and in table 1, since a theoretical expression for the
short-time propagator p(x ′, t+ τ |x, t)—which is required for MLE—is not known for the jump-diffusion processes, in contrast
to the general Langevin equation [10].

3. Conclusions

We introduced a new method to estimate conditional averages of increments (x(t+ τ)− x(t))l, with
l= 0,1, . . ., that are needed for a data-driven reconstruction of stochastic dynamical equations from
experimental time series. The method consists of determining a conditional average in terms of statistical
moments of the measured time series. It replaces the estimation of the sparse conditional probability
distributions with solving a system of linear equations that has polynomial time complexity. Using three
paradigmatic linear and nonlinear stochastic processes, we demonstrated that MSEs (as well as coefficients of
determination of KM coefficients) estimated with the proposed method are smaller (larger) than the
respective values estimated with current state-of-the-art methods.

While the examples presented in this work focus on stationary moments, we acknowledge the potential
extension of our theoretical approaches to non-stationary processes (as discussed in appendix B). We note
that our method has not been implemented for non-stationary data at this stage. However, we are actively
working on proving the method’s applicability to time-dependent Fokker–Planck equations and expanding
its scope to non-stationary time series. We intend to provide further updates and findings in the near future.
As a final remark, we note that the proposed method is easily extendable to multivariate time series, which
will enable one to characterize pairwise, as well as higher-order interactions in the dynamics [17]. Our
moments method provides a way to rapidly and reliably estimate functions and parameters needed for a
reconstruction of dynamic equations of complex systems.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Appendix A. Proof of relation (5)

For two random variables y(t) and x(t) with joint probability density function p(y,x), the conditional
expectation of y(t), given that x(t) = x, is given by

⟨y(t)|x(t) = x⟩=
ˆ

yp(y|x)dy (A.1)

where p(y|x) is the conditional probability, which is obtained via p(x,y) and p(x) using Bayes’ theorem. In
particular, by setting yl(t) as (x(t+ τ)− x(t))l, the conditional KM moments will be given by

K(l)(x, t, τ) =
〈
[x(t+ τ)− x(t)]l

∣∣∣x(t) = x
〉
, (A.2)

7
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in accordance with equation (3) in the main text [1]. Let us assume that the conditional moments K(l)(x, t, τ)
have a functional form Al(x), whose parameters depend implicitly on l and the time-lag τ and time t. By
definition of conditional expectation and using Bayes’ theorem, we write

ˆ
yp(y|x)dy=

ˆ
y
p(y,x)

p(x)
dy= Al(x) (A.3)

for a given function Al(x), implying that

ˆ
yp(y,x)dy= p(x) ·Al(x). (A.4)

By integrating both sides of equation (A.4) over x, one finds,

ˆ
dx

ˆ
yp(y,x)dy=

ˆ
dyyp(y) =

ˆ
dxp(x) ·Al(x). (A.5)

Al(x) can have any functional form [17]. An extreme case for the time series is white noise, for which
K(l)(x, t, τ) will be a polynomial of order l.

Let us consider Al(x) as a polynomial function of x of order l ′ ⩾ l. Therefore, we must determine l ′ + 1
free parameters, and we have

⟨y(t)|x(t) = x⟩= ϕ0 +ϕ1x+ϕ2x
2 +ϕ3x

3 + · · ·+ϕl ′x
l ′ , (A.6)

where we can choose yl ≡ yl(t, τ) = (x(t+ τ)− x(t))l for a given l. Using equation (A.4), one finds

ˆ
ylp(x,yl)dy= ϕ0p(x)+ϕ1xp(x)+ · · ·+ϕl ′x

l ′p(x). (A.7)

To determine the unknown coefficients ϕi, i = 0, . . . , l ′ in equation (A.7), we need l ′ + 1 independent
relations. For the first of our systems of equations, we integrate both sides of the above equation over variable
x to obtain

⟨yl⟩= ϕ0 +ϕ1⟨x⟩+ · · ·+ϕ ′
l ⟨xl

′
⟩. (A.8)

Multiplying equation (A.7) by x, x2, . . ., xl
′
and integrating over x, we obtain a system of linear equations


⟨yl⟩
⟨xyl⟩
...

⟨xl ′yl⟩

=


1 ⟨x⟩ ⟨x2⟩ · · · ⟨xl ′⟩
⟨x⟩ ⟨x2⟩ ⟨x3⟩ · · · ⟨xl ′+1⟩
...

...
...

...
...

⟨xl ′⟩ ⟨xl ′+1⟩ ⟨xl ′+2⟩ · · · ⟨x2l ′⟩



ϕ0

ϕ1

ϕ2

...
ϕl ′

 (A.9)

which proves the relation (5) in the main text.

Appendix B. Analytical solutions

Example 1: Stationary process, Ornstein–Uhlenbeck process.
As we mentioned in the main text in the first example, the Ornstein–Uhlenbeck (OU) process can be

written as a Langevin equation of the form

dx(t) =−θx(t)d t+µdW(t) , (B.1)

with drift and diffusion coefficients given by D(1)(x, t) =−θx, and
√
2D(2)(x, t) = µ. Here µ and θ are

positive constants. For θ > 0, the process (B.1) has a stationary probability distribution [5]. The mean of the
process can be set to zero and the covariance of x(t) and x(s) in the stationary state can be written as [5]

cov(x(t),x(s)) =
µ2

2θ
exp(−θ|t− s|). (B.2)

8



New J. Phys. 25 (2023) 083025 F Nikakhtar et al

The statistical moments of the OU process would be as follows

⟨xk⟩=

(k− 1)!!
(

µ2

2θ

)k/2
k even

0 k odd
. (B.3)

The double factorial is the product of all the integers from 1 up to k that have the same parity as k.
To demonstrate our moments method, let us assume that the conditional KM moments are a cubic

function of x, so by having the analytical form of the covariance and statistical moments, the matrix elements
of the system of the linear equations (equation (A.9)) can be determined as


⟨y⟩
⟨xy⟩
⟨x2y⟩
⟨x3y⟩

=


1 0 µ2

2θ 0

0 µ2

2θ 0 3(µ
2

2θ )
2

µ2

2θ 0 3(µ
2

2θ )
2 0

0 3(µ
2

2θ )
2 0 15(µ

2

2θ )
3



ϕ0

ϕ1

ϕ2

ϕ3

 . (B.4)

For the first order KMmoment (to obtain the drift coefficient), we set y≡ y1(t, τ) = x(t+ τ)− x(t), so the
vector in the lhs of equation (B.4) would be obtained as


0

µ2

2θ (e
−θτ − 1)
0

3(µ
2

2θ )
2(e−θτ − 1)

 . (B.5)

The solution for the parameters vector in this system of linear equations is


ϕ0

ϕ1

ϕ2

ϕ3

=


0

e−θτ − 1
0
0

 , (B.6)

which means K(1) = (e−θτ − 1)x(t), and the drift coefficient is

D(1)(x, t) = lim
τ→0

K(1)(x, t)

τ

= lim
τ→0

1

τ
(1− θτ − 1+O(τ 2)))x(t) =−θx(t). (B.7)

For the second KMmoment (to obtain the diffusion coefficient), we set y≡ y2(t, τ) = (x(t+ τ)− x(t))2,
so the vector in the lhs of equation (B.4) and the solution to the linear system would be as follows


µ2

θ (1− e−θτ )
0

µ2

2θ (4− 3e−θτ + 2e−2θτ )
0

 , (B.8)

and


ϕ0

ϕ1

ϕ2

ϕ3

=


µ2

θ (1− e−θτ )
0
0
0

 . (B.9)

Note that the moments matrix in the rhs of equation (B.4) is not a function of y and does not change.
Therefore, the diffusion coefficient is

9
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D(2)(x, t) =
1

2
lim
τ→0

K(2)(x, t)

τ

= lim
τ→0

1

2τ

µ2

θ
(1− 1+ θτ +O(τ 2))) =

µ2

2
. (B.10)

Example 2: Non-stationary process, Wiener process.
As an example of a non-stationary process, we consider the Wiener process whose derivative is a white

noise. It is known that the Wiener process has a vanishing drift and a constant diffusion coefficient which
equals to 1/2 [5]. The covariance of a Wiener process is

cov(x(t),x(s)) =min(t, s) , (B.11)

where min(t, s) is the minimum of two chosen times (t, s). With x(0) = 0 and t0 = 0 the statistical moments
of Wiener process are given by ⟨x2k+1⟩= 0 and

⟨x2k⟩= Γ(k+ 1/2)

Γ(1/2)
2ktk k= 1,2, . . . ,

where Γ(x) is the Euler gamma function. Here ⟨· · · ⟩ denotes ensemble averaging.
For the moments matrix we have

1 ⟨x⟩ ⟨x2⟩ ⟨x3⟩
⟨x⟩ ⟨x2⟩ ⟨x3⟩ ⟨x4⟩
⟨x2⟩ ⟨x3⟩ ⟨x4⟩ ⟨x5⟩
⟨x3⟩ ⟨x4⟩ ⟨x5⟩ ⟨x6⟩

=


1 0 t 0
0 t 0 3t2

t 0 3t2 0
0 3t2 0 15t3

 . (B.12)

To find the drift coefficient, we have to solve the following linear set of equations with
y≡ y1(t, τ) = (x(t+ τ)− x(t)):

⟨y⟩
⟨xy⟩
⟨x2y⟩
⟨x3y⟩

=


0
0
0
0

=


1 0 t 0
0 t 0 3t2

t 0 3t2 0
0 3t2 0 15t3



ϕ0

ϕ1

ϕ2

ϕ3

 , (B.13)

This gives us (ϕ0,ϕ1,ϕ2,ϕ3) = (0,0,0,0), and then D(1)(x, t) will be

D(1)(x, t) = lim
τ→0

K(1)(x, t)

τ
= 0. (B.14)

Similarly, to find the diffusion coefficient one has to solve the following set of linear equations with
y≡ y2(t, τ) = (x(t+ τ)− x(t))2:

⟨y⟩
⟨xy⟩
⟨x2y⟩
⟨x3y⟩

=


τ
0
tτ
0

=


1 0 t 0
0 t 0 3t2

t 0 3t2 0
0 3t2 0 15t3



ϕ0

ϕ1

ϕ2

ϕ3

 , (B.15)

This gives (ϕ0,ϕ1,ϕ2,ϕ3) = (τ,0,0,0). To compute higher-order covariances in the lhs of equation (B.15),
we have used Wick’s theorem [5]

⟨x(i)3x( j)⟩= 3⟨x(i)2⟩⟨x(i)x( j)⟩ (B.16)

⟨x(i)2x( j)2⟩= ⟨x(i)x(i)⟩⟨x( j)x( j)⟩+ 2⟨x(i)x( j)⟩2. (B.17)

Finally, the diffusion coefficient is given by

D(2)(x, t) =
1

2
lim
τ→0

K(2)(x, t)

τ
=

1

2
. (B.18)
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Appendix C. Stop-condition for the order of polynomials in the expansion of the KM
coefficients

As shown in relation (A.9), to estimate the KM coefficients with a polynomial of order l
′
one needs to

estimate statistical moments of x up to the order 2l ′. To study how such moments can be reliably estimated
from given time series (each with length nd t), one should ensure that the tails of xl p(x) (for l= 1,2, . . . ,2l ′)
are well resolved. In what follows, we show how one can check the reliability of the estimation of the tail of
the PDF for the three examples considered in the main text, where the drift and diffusion coefficients are
polynomials of orders 1, 2, and 3, respectively. For these examples, we need to estimate the statistical
moments at least up to the order of six. In figures C1–C3, we plot x2 p(x), . . ., x10 p(x), estimated from time
series of the three examples and for different nd t. For given nd t ∈ {10,100,1000,10 000}, we estimate the
error bars from 10 realizations of the generated time series for each example. As shown in figure C1, for
example 1 and with increasing nd t the tails of PDF of p(x) are well-resolved, rare events are detected, and
x2k p(x) possesses smaller error bars (in the size of symbols), particularly in the tails. Similar discussions are
valid for the other examples. We note that in the main text, the results have been reported from ensemble
averaging over 100 realizations of time series for each example.

In addition, in figures C4 and C5, we plot the statistical moments ⟨x2k⟩, with k= 1,2, . . . ,5 (from 10
realizations) for different nd t. Considering example 1, for nd t> 1000 the statistical moment ⟨x8⟩ and those
of higher orders are not approaching constant values up to nd t= 10 000. Therefore by considering the error
bars one can choose l ′ = 6.

For a given stationary time series, we can analyze the statistical moments ⟨x2k⟩ with varying numbers of
data points n. In this case, the error bars are calculated based on a number (e.g. 100) of randomly selected
data chunks, each consisting of n data points from the time series.

In summary, using the saturating behavior of ⟨x2k⟩ for different k with increasing nd t, one can decide in
a data-driven way that the KM coefficients can be approximated with a polynomial of order l ′c . In figure C6,
we plot the errors of estimations of ⟨x2k⟩, with k= 1,2, . . . ,5 (from 10 realizations) for different nd t for the
three examples. The errors decrease with nd t as 1/(nd t)γ , with γ ≃ 0.5.

Finally, we note that in cases where we have access to ground truth, we can provide specific details about
the minimum order of the polynomial regression. To determine the appropriate minimum order, it is
important to utilize a distance measure that allows us to select the minimum order without sacrificing
essential information required for accurate estimation of the KM coefficients. By reducing the polynomial
order, e.g. from 4 to 3, and subsequently to 2 and 1, we can assess the impact on the accuracy of coefficient
estimation. The choice of the distance measure depends on the specific context and analysis requirements.
The ultimate objective is to identify the minimum polynomial order that preserves the necessary information
for accurate estimation of the KM coefficients, while avoiding unnecessary complexity.

11
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Figure C1. Plots of x2 p(x), . . ., x10 p(x), estimated from time series of example 1 for different nd t. We estimate the error bars
from 10 realizations of the generated time series.
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Figure C2. Same as figure C1 but for example 2.
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Figure C3. Same as figure C1 but for example 3.
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Figure C4. Dependence of statistical moments ⟨x2k⟩, with k= 1,2, . . . ,5 on nd t from 10 realizations for various nd t for the three
examples of the main text. The middle panel is for example 2 with σ2

1 < σ2
c .

Figure C5. Same as figure C4 but for example 2 with σ2
2 ≈ σ2

c (left) and with σ2
3 > σ2

c (right).

Figure C6. Errors of estimations of ⟨x2k⟩, with k= 1,2, . . . ,5 (from 10 realizations) for different nd t, for the three examples.
Errors decrease with nd t as (red dashed line) 1/(nd t)γ , with γ ≃ 0.5.
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Appendix D. The noisy genetic model

We consider a haploid group x as our data and suppose that each haploid may have genes A or B. The simple
genotype selection model can be described as a one-variable deterministic differential equation [23]

dx

dt
= α− x+βx(1− x), (D.1)

where x is the ratio between the number of genes A and the total number of genes (A+B), so that x ∈ [0,1],
and α ∈ (0,1) stands for the mutation rate of gene B. Here, β denotes the gene selection factor, where β= 1
means that the selection is completely propitious to gene A haploid, whereas β =−1 implies that the
selection is completely propitious to gene B haploid. Independent of α and β, the dynamical system (D.1)
has only one equilibrium point in the corresponding interval given by

xs =
β− 1+

√
(β− 1)2 + 4αβ

2β
, (D.2)

which is stable. Now, consider the system (D.1) coupled to a noisy environment, with β fluctuating. We
assume that β(t) = β0 +ση, where η is a white noise with unit intensity and σ is a real constant. The
Langevin equation (noisy genetic model) is given by

dx= [α− x+β0x(1− x)]d t+σx(1− x)dW(t) , (D.3)

where dW(t) = η(t)d t andW(t) is a Wiener process. The noisy genetic model has two stationary points, that
can be obtained by solving the corresponding Fokker–Planck (FP) equation, one of which coincides with the
stationary point determined from the deterministic component (the drift coefficient) of the dynamics. The
stationary solution of the FP equation of the Langevin dynamics (D.3) for α= 1/2 is

ps(x) =
C

x(1− x)
exp

[
− 1

σ2

{
1

2x(1− x)
+β0 ln

(
1− x

x

)}]
, (D.4)

where C is a normalization constant.
There is a critical σ2

c in equation (D.4) such that for σ2 < σ2
c , the stationary solution of the FP equation,

ps(x), is unimodal, i.e. it has only one extremum, namely a maximum. At σ2 = σ2
c , the probability

distribution becomes flat, followed by a transition to a bimodal PDF for more intense noise. In fact, the
model expressed by equation (D.3) exhibits a noise-induced transition with changing σ. The critical σ2

c

depends on β0. In order to have a non-trivial drift (non-linear) in (D.3), we consider the case β0 ̸= 0, say
β0 = 3. The critical noise intensity in this case is σ2

c ≃ 2.84. For σ2 < σ2
c (we choose σ

2 = 1), x≈ 0.885 is the
only extremum, which is a maximum. For σ2 > σ2

c (we choose σ
2 = 5), the extrema are located at

x1 ≈ 0.023, x2 ≈ 0.435, and x3 ≈ 0.982, with x1 and x3 each being a maximum and x2 is the minimum.

Appendix E. Functions and parameters of the jump-diffusion process

For the jump-diffusion process, which is described by a dynamical stochastic equation (9) (in the main text),
all functions and parameters can be determined based on measured time series by estimating the KM
conditional moments [5, 24]:

K(1)(x, t) = D(1)(x, t)τ

K(2)(x, t) = [D(x, t)+λ(x, t)⟨ξ2⟩]τ

K( j)(x, t) = λ(x, t)⟨ξj⟩τ, for j> 2, (E.1)

where the KM conditional moments are K(l)(x, t, τ) = ⟨[x(t+ τ)− x(t)]l|x(t)=x⟩, as given in equation (3) in
the main text.

Using the last relation in equation (E.1) with j= 4 and j= 6, we first estimate the state-dependent
(Gaussian) jump amplitude σ2

ξ(x) and jump rate λ(x) via

σ2
ξ(x, t) =

M(6)(x, t)

5M(4)(x, t)
, λ(x, t) =

M(4)(x, t)

3σ4
ξ(x, t)

, (E.2)

whereM(l)(x, t) = limτ→0
K(l)(x,t,τ)

τ . We remind that D(l)(x, t) is related toM(l)(x, t) as
D(l)(x, t) =M(l)(x, t)/l!.
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Once the jump components σ2
ξ(x, t) and λ(x, t) are identified, the second moment

M(2)(x, t) = D(x, t)+λ(x, t)⟨ξ2⟩ identifies the diffusion function D(x, t), while the first moment yields the
estimate for the drift function D(1)(x, t); see equation (E.1). In practice, we can also define the averaged jump
amplitude and jump rate as σ2

ξ =
1
Nr

∑Nr

k=1σ
2
ξ(xk) and λ= 1

Nr

∑Nr

k=1λ(xk), where Nr is the number of data
points in some range of the state variable over which the coefficients are being evaluated. For stationary
processes, we estimate the diffusion coefficient D(x) from the relationM(2)(x)≃ D(x)+σ2

ξ λ [5]. We note
that the jump rate per unit of time will be λunit time(x) = λ(x)d t.
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