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Recently, integrated photonic circuits have brought new capabilities to electron microscopy and been
used to demonstrate efficient electron phase modulation and electron-photon correlations. Here, we quanti-
tatively analyze the feasibility of high-fidelity and high-purity quantum state heralding using a free electron
and a photonic integrated circuit with parametric coupling, and propose schemes to shape useful electron
and photonic states in different application scenarios. Adopting a dissipative quantum electrodynamics
treatment, we formulate a framework for the coupling of free electrons to waveguide spatial-temporal
modes. To avoid multimode-coupling-induced state decoherence, we show that with proper waveguide
design, the interaction can be reduced to a single-mode coupling to a quasi-TM00 mode. In the single-mode
coupling limit, we go beyond the conventional state ladder treatment, and show that the electron-photon
energy correlations within the ladder subspace can still lead to a fundamental purity and fidelity limit on
complex optical and electron state preparations through heralding schemes. We propose applications that
use this underlying correlation to their advantage, but also show that the imposed limitations for gen-
eral applications can be overcome by using photonic integrated circuits with an experimentally feasible
interaction length, showing its promise as a platform for free-electron quantum optics.

DOI: 10.1103/PRXQuantum.4.020351

Quantum coherent coupling between distinct physical
systems harnesses the advantages and strengths of the
different systems in order to better explore new phenom-
ena and potentially develop novel quantum technologies
[1,2]. Photonic links [3] are most commonly used to con-
nect different systems due to the potential for long-range
transmission through optical fibers and robustness to deco-
herence from thermal environments, and have been real-
ized in systems ranging from superconducting qubits [4,5],
solid-state spins [6,7], ultracoherent mechanics [8,9], and
atomic systems [10–14], where each offers unique features
and advantages to be utilized in a hybrid quantum sys-
tem. One key aspect of all these systems is the ability to
enact high-fidelity quantum control of the interaction with
well-defined optical modes.
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In the field of electron microscopy, interactions between
free electrons and photons have been widely explored
in both stimulated [15–27] and spontaneous processes
[17,28–30] enhanced by phase-matched interactions and
optical resonances [31–36]. There have also been many
proposals that explore the unique quantum properties of
electron-photon states [37–41]. However, it is still an open
question whether high-fidelity quantum control of this
hybrid quantum system can be realized.

High-fidelity quantum control requires high coupling
strength between free electrons and optical vacuum fields,
and low dissipation to keep decoherence at a minimum.
The interaction mechanisms and their coupling strengths
differ substantially between different physical platforms,
which can be categorized into metallic [21] and dielec-
tric structures [19,20,24,25,31,35,42,43]. For nanopho-
tonic particles, the short attosecond-long interaction time
promotes the use of dissipative materials, such as plas-
monic structures [44]. The collective electronic response
amplifies the interaction, while at the same time bringing
retardation and dissipation, which is not ideal for quan-
tum coherent manipulation of electrons with optical states.
On the other hand, transparent dielectrics, for which the
coupling is enhanced by an extended interaction length,
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offer a paradigm shift in free-electron quantum optics
due to their low optical dissipation and practically instant
electronic response. Instead of enhancing the interaction
by lossy media, optical modes supported by dielectric
structures interact with the free electron by a geometric
effect through the relativistic field retardation [45], which
results in a purely parametric interaction ideally suited for
high-fidelity quantum control.

Photonic integrated circuits have only entered the pic-
ture very recently [35,46], and have several advantages for
free-electron quantum optical experiments. Firstly, inte-
grated photonics enables exquisite control of the opti-
cal properties of waveguides [47,48]. The nearly loss-
less guided modes [49] and high-efficiency output fiber
coupling [50] facilitate coupling to both on-chip [6–9]
and fiber-coupled quantum systems [4,11–14]. Additional
capabilities are provided by well-established on-chip opti-
cal elements such as tunable beam splitters and phase
shifters [51], spectral filters [52], and photon counters [53],
which offer high-fidelity optical state manipulation and
characterization [54]. With the versatile on-chip structures
and demonstrated efficient electron phase modulation [35]
and electron-photon correlation [46], we propose heralding
schemes to shape useful electron [40] and optical states
[39,41,55] in various application scenarios with photonic
integrated circuits.

To transfer the aforementioned advantages to the sce-
nario of generating high-quality quantum states through
electron-photon interaction, high-ideality coupling to a
single well-defined optical mode [56] is required. How-
ever, due to the complex waveguide structures, para-
sitic couplings to auxiliary spatial modes cause deco-
herence of the system, see Fig. 1(a). We quantitatively
investigate this limitation in a realistic experimental sce-
nario, and show that with a single-mode waveguide,
larger gap distance, and long interaction length, near-
unity coupling ideality and strong coupling [37,57] can
be achieved to the waveguide quasi-TM00 spatial-temporal
mode.

Further, we show that even in the limit of single-mode
interaction, there is still a state subspace correlation that
imposes a fundamental limit to the state fidelity and purity.
To address the electron-photon interaction in the conven-
tional quantum optics description, a synthetic ladder-state
space [23,37–41] is usually used, shown in Fig. 1(b).
This treatment greatly eases the analysis of the interac-
tion between two systems that are actually continuum
systems. However, within the subspace of a ladder level,
energy conservation enforces strong correlation between
the electron energy loss and the frequency of the pho-
ton created. When one neglects the underlying correlation,
information loss occurs. This process can be character-
ized by the state purity, that captures both the distance to
a pure quantum state, and the degree of electron-photon
entanglement through Rényi-2 entropy [58]. Here, we
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FIG. 1. (a) Illustration of the electron-photon inelastic scatter-
ing process mediated by a dielectric waveguide. In an electron
microscope, when the high-energy electron passes by a dielectric
waveguide structure with a given dielectric permittivity distribu-
tion ε(x, y, z), the material dielectric dipoles exert a backaction
field (force) on the electron, resulting in correlated electron
energy loss and optical emission in both the guided waveguide
modes and nonguided bulk modes. High-ideality coupling to
a low-loss waveguide mode is required for high-fidelity state
preparation and interaction with other quantum systems through
optical links. (b) Synthetic electron-photon state ladder of the
pair-state generation through Ŝe-ph. Within each ladder state, there
is an underlying subspace that still maintains correlation between
electron energy and photon frequencies. For any two optical fre-
quency components (shown in dark red), the correlated electron
energy states (shown in dark blue) are only partially degen-
erate. This correlation can lead to new types of applications,
but generally leads to degradation of fidelity and purity of the
interaction.

propose applications that exploit this underlying corre-
lation to their advantage, e.g., imprinting electron wave
functions onto optical states, and later examine the state
fidelity and purity in quantum state heralding schemes. We
find that electrons in particlelike states with high purity are
required to generate pure heralded states, and the purity
limits are greatly reduced with experimentally feasible
interaction length using photonic integrated circuits.
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The paper is organized as follows: Sec. I establishes
the theoretical formalism for describing electron-photon
spontaneous scattering processes with dielectric media,
different parameter regimes, and the underlying state cor-
relations within the energy ladders. Section II studies
the interaction in a photonic integrated circuit structure,
defines the spatial-temporal modes and provides guide-
lines to achieve single-mode coupling. Section III inves-
tigates optical state heralding in wavelike and particlelike
regimes, shows corresponding applications and quantita-
tive analysis of the correlation-induced state heralding
fidelity and purity limit. Section IV investigates elec-
tron state heralding schemes, optical mode matching,
and down-conversion schemes, and the state purity limit.
Section V summarizes the paper, discussing the theo-
retical limitations of our analysis and the experimental
constraints.

I. ELECTRON-PHOTON INTERACTIONS WITH
DIELECTRIC MEDIA

The interaction between free electrons and optical
modes at a dielectric surface can be understood in a micro-
scopic picture as follows: when an electron passes near
the surface of a dielectric structure, the electric field of
the flying electron polarizes the dipoles in the structure
[see Fig. 1(a)]. As a result, these dipoles generate oscillat-
ing electromagnetic fields that cause backaction Coulomb
forces on the electron, which change the electron energy.
In the conventional quantum optical modal decomposition
picture commonly used in the cavity quantum electro-
dynamics (QED) community, this can be interpreted as
the interaction between the free electrons and the optical
vacuum fields of the modes supported by the dielectric
structure [59].

Here, we formulate the problem as the interac-
tion between propagating free electrons and one sin-
gle interaction-specific optical spatial mode Â(r,ω) (see
Appendix A for the QED details and the field profile)
at frequencies ω in the continuum, instead of predeter-
mined discrete optical modes of the dielectric structure (see
Appendix C for its correspondence to modal decomposi-
tion), with the scattering matrix [37,56] in the interaction
picture

Ŝe-ph = eiχ̂ exp
[∫

dωgωb̂†
ωâω − h.c.

]
, (1)

where the phase operator χ̂ acts only on the electron
degrees of freedom (ignored in the remaining discussion),
and is associated with the Aharonov-Bohm effect of the
vector potential [60]. Continuum photon ladder opera-
tors âω and electron operators b̂ω characterize the energy
exchanges between the electron and the optical field at a

given optical frequency ω in an energy-conserving man-
ner. The interaction with the vacuum optical fields results
in transitions into lower electron energy states with energy
differences of �ω. We define the electron-photon cou-
pling strength at a given photon energy �ω in terms of
the vacuum coupling strength gω as �(ω) = |gω|2 [17].
The phase-matching condition gives the vacuum coupling
strength a finite bandwidth. In the limit where �(ω) � 1,
�(ω) is equivalent to the electron energy-loss probabil-
ity per unit optical frequency of dielectric media mea-
sured in electron energy-loss spectroscopy (EELS), and
can be derived classically in a simplified picture (see
Appendix B). To simplify the discussion here, we also
assume a pointlike transverse distribution for the elec-
tron (see Appendix A for the discussion on the transverse
effect), and the vacuum coupling strength gω is derived at
a corresponding transverse position R0.

The interaction with the optical continuum, as opposed
to the conventional discrete energy-ladder levels illustrated
in Fig. 1(b), results in a continuum electron-photon pair
state

|ψe,ψph〉 = exp
(

−
∫

dω|gω|2
2

)

×

⎛
⎜⎝∑

N

(
− ∫ dωg∗

ωb̂ωâ†
ω

)N

N !

∫
dEψ(E)|E〉|0〉

⎞
⎟⎠,

(2)

where ψ(E) is the electron wave function in the energy
domain. We show in Fig. 2 that depending on the size
of the electron wavepacket [61–63], the electron-photon
interaction can be categorized into three regimes. The
classical regime has been explored [39,55], and is acces-
sible through laser modulation schemes [23,40,64–66].
Some electron microscopes equipped with a monochroma-
tor fall into the wavelike regime[33,67], while others with
longer interaction length [46] are in an intermediate wave-
particle-like regime. The simplified electron-photon ladder
picture is only partially valid in both cases.

In the wave-particle-like regime, the ladder state

|ψe,ψph〉N ∝ ∫
dEψ(E)

(∫
dωg∗

ωb̂ωâ†
ω

)N
|E〉|0〉 maintains

a correlation between electron energies E and photon
frequencies ω. To go back to the simplified ladder pic-
ture, one traces out, e.g., the continuum electron states
within each ladder as ρ̂ph,N = TrE

[|ψe,ψph〉N 〈ψe,ψph|N
]
,

which results in a degradation of the optical state purity
P = Tr

[
ρ̂2

ph,N

]
. To reduce the degree of correlation and

reach the particlelike regime, a narrower phase-matching
bandwidth relative to the electron energy uncertainty is
generally required.

We show in the latter half of this paper that in the case
of photonic integrated circuits, the prolonged interaction
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FIG. 2. Illustration of different parameter regimes of electron-photon interactions. The electron (blue) and photon (red or orange)
spatial waveforms as a function of T = t − z/ve, where z is the longitudinal coordinate, are shown in the upper panels, and the
corresponding energy (frequency) domain picture is shown in the lower panels. The frequency bandwidth of the generated photon is
determined by the phase-matching mechanism, and two of the frequency components (ω1, ω2), together with their correlated electron
states, are shown in both the spatial and energy domain representations to illustrate the qualitative differences between different regimes.
The arrows in the panels indicate the direction of the scattering processes. (a) Wavelike regime where distinguishable electron states
are generated from the emission of photons with the corresponding frequencies. As a result, the optical frequency components cannot
be coherently combined to form a single-mode field. Therefore, this regime is accompanied by mixed optical ladder states ρph,N , and
incoherent photon emission. (b) Particlelike regime where the photon emission at different frequencies generates indistinguishable
electron states. The optical state space is sufficiently decoupled from the electron state space, and can be described as a single-mode
field. This regime has pure optical ladder states ρph,N , where the synthetic electron-photon state ladder is a valid approximation. (c)
Classical regime where different photon sidebands of the electron overlap well, and classical optical field emission with nonzero 〈Â〉
is achieved. In the spatial representation, the classical waves are plotted orange to distinguish it from the quantum counter parts in the
other regimes.

length can help reduce the phase-matching bandwidth and
lower the energy correlation for a single waveguide mode,
pushing the system parameters well into the particlelike
regime. However, the complex dielectric environment gen-
erally results in multimode electron-photon interactions,
e.g., through parasitic coupling to other optical mode fami-
lies and other nonguided spatial modes supported by open-
ended dielectric substrates. The effective phase-matching
bandwidth of the multimode coupling is generally large,
and the corresponding electron-photon correlation cannot
be suppressed by a longer interaction length. Therefore, we
first quantitatively analyze how to effectively constrain the
interaction to the single-mode case.

It is generally hard to design and fabricate waveguide
structures that achieve 100% spatial overlap between a
waveguide mode and the electron optical emission over the
full optical frequency range. Therefore, instead of mode-
matching, our strategy to achieve single-mode interaction
is to exploit a combination of effects, which are results of
the phase-matching mechanism.

To quantitatively account for the infinite number of
interacting spatial optical modes, it is generally impractical

to use the conventional modal decomposition method [21].
Instead, as is mentioned before, we combine all the possi-
ble coupling contributions from different modes into one
single interaction-specific spatial mode, following a three-
dimensional QED treatment [68]. This formalism, derived
using the fluctuation-dissipation theorem, was previously
used when analyzing electron energy-loss probabilities
with dissipative materials [17] that exhibit a delayed mate-
rial response, which is the dominant contribution to the
main electron energy-loss channels. The dielectric mate-
rials we study here are transparent in the optical frequency
bands of interest. In this sense, we can set Im{ε(r,ω)} →
0, which corresponds to an instantaneous dielectric dipole
response and further simplifies the analysis. For materi-
als with sufficiently low absorption, which are used for
integrated waveguides designed to guide optical fields, the
interaction is purely contributed from the relativistic field
retardation effect [45] and prohibits energy and momen-
tum transfer to the material, avoiding loss of coherence.
It is in this sense that the whole process of an elec-
tron interacting with dielectric waveguide is parametric in
nature.
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II. COUPLING IDEALITY

In this section, we show how to achieve ideal single-
mode electron-photon coupling with photonic integrated
circuits. As an example, here we quantitatively investigate
the electron-photon coupling mediated by an integrated
Si3N4 waveguide embedded in a silica substrate without
top cladding (the bottom silicon substrate is not consid-
ered), shown in Fig. 3(a). This type of structure has been
used in recent investigations of both stimulated phase-
matched interactions [35] and spontaneous inelastic scat-
tering [46] between free electrons and the evanescent field
of a photonic-chip-based optical microresonator, and fea-
tures ultralow material-limited loss of 0.15 dB/m [49]. We
calculate the electron-photon vacuum coupling strength
(numerical details in Appendix D) and plot it in Figs. 3(b)
and 3(c) as a function of electron velocity for optical wave-
lengths ranging from 780 nm to 2.5 µm (where all relevant
material properties are well known), which covers most of
the frequency bands that are of general interest.

Under the optimal phase-matching condition, the inter-
action strength of the waveguide transverse modes scales
quadratically with respect to the interaction length since
they co-propagate with the electron, in contrast to the linear
relation of bulk modes. In reality, waveguide-mode phase
velocity differs at different optical frequencies. Through the
phase-matching mechanism, linear chromatic dispersion
limits the coupling bandwidths to scale inversely propor-
tional to the interaction length. With prolonged interaction
length, coupling strengths to different waveguide trans-
verse mode families are isolated in optical frequencies,
and exhibit peak features shown in Figs. 3(b) and 3(c).
Dispersion-free systems are generally feasible in higher
dimensions and have been realized in specially structured
photonic lattices [69–71], where the optical modes of
interest are generally unguided. In integrated photonics,

advances in dispersion engineering have enabled waveg-
uide designs that tailor the modal dispersion [48,72],
promising dispersion-free quadratic coupling enhancement
over a broad frequency range. In our study, we focus
on translation-invariant straight waveguides, which exhibit
chromatic dispersion determined by the waveguide mate-
rials and geometry.

The waveguide mode families have finite coupling
bandwidths and are well isolated from each other. We
therefore define discrete spatial-temporal optical modes
âm ∝ ∫

dωgm,ωâω associated with different waveguide
mode families from the optical continuum based on the
vacuum coupling strengths gm,ω of the interaction (details
see Appendix C). The coupling strength of a given mode
family âm,

|gm|2 =
∫

dω|gω,m|2, (3)

scales linearly with interaction length and inversely with
chromatic dispersion. We quantitatively evaluate the cou-
pling strengths |gm|2 to different spatial-temporal modes
âm based on the fitted interaction strength |gm,ω|2 from
the simulation results. As an example, for the quasi-TM00
mode of the 800-nm-wide waveguide shown in Fig. 3(c),
for an electron-waveguide gap of 100 nm, a strong cou-
pling strength [37,57] of |gTM00 |2 ∼ 1 can be achieved
with 200 µm of interaction length at an electron velocity
of ve/c = 0.65 (a kinetic energy of 160 keV). A 100-nm
gap and a 100-µm length of electron-beam propagation is
experimentally feasible and demonstrated in Ref. [46] with
a gradient d|gTM00 |2/dz ∼ 5 mm−1.

Using the procedure described in the previous paragraph,
we quantitatively investigate the influence of competing
waveguide modes for a given waveguide configuration,
and how one can approach unity coupling ideality by a
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FIG. 3. (a) Illustration of the waveguide structure studied, consisting of a Si3N4 waveguide embedded in a silica substrate. The
free electron passes by the top surface of the waveguide and generates correlated optical emission. (b),(c) Electron-photon coupling
strength �(ω) spectrum for different waveguide geometries and electron positioning. The coupling spectrum is plotted as a function of
both electron velocity ve and optical frequency ω. The waveguides have a thickness of 650 nm, and widths of (b) 2.1 µm and (c) 800
nm. Coupling to different waveguide mode families appears as multiple coupling bands, and their phase-matching bandwidth is kept
constant for better visualization. (d) Total coupling strength of TM00 mode versus nonconditional and conditional coupling idealities
(I and I∗, respectively), as a function of gap distance between the electron beam and the waveguide surface, with 800-nm waveguide
width, 100-µm interaction length, and ve/c = 0.65 electron velocity.

020351-5



GUANHAO HUANG et al. PRX QUANTUM 4, 020351 (2023)

proper choice of waveguide geometry and material, and
electron-beam positioning and velocity. Since the lowest-
order TM00 mode is generally the most strongly coupled
and is the most spectrally isolated mode, we target unity
coupling ideality, defined by the coupling fraction

I ≡ |gTM00 |2/
∫

dω|gω|2, (4)

to the TM00 mode.
From the numerical result shown in Figs. 3(b) and 3(c),

we find that reduced waveguide cross section (to single-
mode dimension) enhances the mode index contrast, and
results in more spectrally isolated fundamental modes.
With a better frequency isolation, the evanescent field of
the coupled higher-order modes decay much faster than
that of the fundamental mode in the near field, as a result
of their higher optical frequencies. Therefore, one can
enhance the ideality by increasing the gap distance to the
waveguide surface, with 1 − I decreasing exponentially
with gap distance (details in Appendix D).

In addition to coupling to higher-order waveguide mode
families, one can also identify a rising background in the
high velocity region. It can be attributed to strong cou-
pling to the substrate modes in the Cherenkov regime
(v � 0.7c), where the charged particle velocity exceeds the
phase velocity of light in dielectric media (here: silica). In
Appendix E, we quantify the contribution of the substrate
bulk modes. This contribution can be suppressed by either
choosing an electron velocity well below the Cherenkov
regime of the substrate, or by using a low index material as
the substrate (e.g., by suspending the structure in vacuum).

Here, we quantitatively analyze the coupling idealities
in different application scenarios, and show the results in
Fig. 3(d). First, we consider state heralding applications,
e.g., heralded single-photon sources by photon-energy loss
selection with EELS. We assume an initial electron state
with a fitted 0.6-eV Voigt zero-loss-peak (ZLP) profile,
and show that by conditioning on the first energy-loss
sideband, one can easily achieve more than 99% condi-
tional coupling ideality I∗ to the TM00 mode outside the
Cherenkov regime (ve � 0.7c) with a single-mode waveg-
uide and the electron beam positioned � 100 nm above
the surface (details in Appendix D). For a general appli-
cation that is sensitive to the full optical spectrum, we
show that more than 95% nonconditional coupling ide-
ality I can be achieved with the electron beam placed
� 300 nm above the surface, limited by the parasitic cou-
pling to the higher-order waveguide modes. This is not
a fundamental limitation, as one can always increase the
gap distance from the waveguide surface to achieve higher
ideality, at the expense of reduced coupling strength. This
trade-off is also illustrated in Fig. 3(d), where the total
coupling strength |gTM00 |2 is plotted against the coupling
ideality. However, this effect can generally be compensated

with longer interaction length L. As a result, given a fixed
waveguide geometry and a target total coupling strength,
the deviation from unity is given by 1 − I ∝ L−1.

In the special case where the waveguide loops and
forms a resonator, the result of the open-ended waveg-
uide studied here can equally apply (see Appendix F).
In most scenarios, where the electron longitudinal spatial
wave function is shorter than the cavity round-trip length,
or in the frequency-domain picture where the electron
zero-loss-peak (ZLP) width is broader than the cavity free-
spectral-range, there is no difference in terms of coupling
ideality between a straight waveguide and a resonator. The
physical picture is that when the emitted optical pulse does
not interact with the electron a second time, the emis-
sion is only determined by the local structure around the
electron, and any nonlocal emission enhancement, e.g.,
Purcell effect [73] in atom-cavity systems, is absent. In
the case of a resonator, the pulse will circulate multiple
times and exit the cavity as a pulse train, and exhibit in the
frequency domain as a comb structure, as was shown in
Refs. [32,33,46].

Note that the experimentally measured ZLP width con-
sists of a coherent energy spread of a single-electron wave
function, e.g., inherited from the driving laser pulses in
the cold-field electron emission process, and also an inco-
herent broadening due to, e.g., the statistical imprecision
of the electron acceleration voltage and the measurement
instrument. In this paper, we mostly use ZLP width to refer
to the coherent energy width, unless otherwise specified.

Generally, residual coupling to the higher-order modes
can be further mitigated with heralding schemes. As an
example, one can place a bandpass spectral filter [52]
around the frequency band of the target mode. Upon con-
ditioning on photon-absence events at the dark port of
the filter, one can further approach unity ideality, and be
eventually limited by the background bulk contribution.
As long as the velocity is far from the Cherenkov regime
of the substrate material, we estimate this contribution to
be far less than 1%. With near-unity coupling ideality, the
fidelity and purity of the interaction will be limited to the
correlation between electron energy and the optical fre-
quency components of a single spatial-temporal optical
mode within the ladder-state space. In the following sec-
tions, we discuss this fundamental limitation in the cases
of state heralding schemes.

III. SHAPING OPTICAL STATES FROM
MEASUREMENT ON ELECTRON ENERGY

In this section, we consider the case of heralding a gen-
eral optical state by measuring the electron energy. To
simplify the discussion here and capture the main fea-
tures of the physics considered, we assume coupling to
a single spatial-temporal optical mode with I = 1, and a
coherent electron wavefunction ψ(E) prepared before the
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interaction. The effect of electron sideband overlaps (with
expression shown in Appendix G) is not considered since
they can be efficiently eliminated experimentally and are
thus not a fundamental limitation.

We first investigate the consequences of electron-photon
correlation in the state subspace in some general state-
preparation schemes. We consider a projection M̂ =
|Ec〉〈Ec| on the electron’s first photon sideband (general
case in Appendix G). This results in a pure single-photon
optical state with frequency components φω ∝ g∗

ωψ(Ec +
�ω), a product between the electron wave function and
the vacuum coupling strength. This reflects the fact that
the electron energy loss is intrinsically correlated with the
frequency of the photon created. The strength of the cor-
relation depends on the initial energy uncertainty of the
electron, which determines how well the photon frequency
components can be distinguished by measurements of the
electron state. In a stark contrast, we see in the next section
that this is not the case for the electron state heralded by
photon counting, since in the no-recoil limit the frequency
of the photon created does not depend on the energy of
the electron. In this section, we consider two regimes of
interest: the wavelike regime (Sec. A) that exploits the

correlation to its advantage, and the particlelike regime
(Sec. B) that aims for high-purity state heralding.

A. Wavelike regime

In the wavelike regime, the electron ZLP width is
much narrower than the phase-matching bandwidth, as
shown in Fig. 4(a), where the electron behaves more
wavelike to different optical frequency components. This
regime exploits the strong correlation in the subspace
between electron energy and optical frequency. This is
compatible with the experimentally achieved [67] 4-meV
ZLP width using a monochromator [33] combined with
the recently demonstrated approximately 100-meV phase-
matching bandwidth [46]. In this regime, we show the
expression for the heralded single-photon Fock state as

|ψph〉 ∝
∫

dωψ(Ec + �ω)â†
ω|0〉. (5)

In this scenario, ignoring the waveguide dispersion dur-
ing propagation, as well as electron energy dispersion,
we effectively imprint the electron spatial wave func-
tion ψ̃(T = t − z/ve) onto the optical waveform φ(T) of
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FIG. 4. (a),(b) Shaping optical waveforms by measuring electron energy. In the limit of (a) strong correlation with narrow zero-
loss-peak (ZLP, blue) and wide phase-matching bandwidth (red), heralding results in printing electron wave function onto the optical
waveform. In the limit of (b) weak correlation with wide ZLP and narrow phase-matching bandwidth, the heralded optical waveform is
determined by waveguide routing and material dispersion. (c),(d) Optical state heralding schematics where electron wave functions in
time [ψ(T)] and energy [ψ(E)] domains are drawn before and after interaction stages (marked by red crosses). (c) Scheme for electron-
mediated self-mode-matched optical interferometer with nonclassical states, enables measurement of interferometer imbalance to the
order of optical wavelength, and electron wave-function tomography. (d) Scheme for heralding a general optical state by measuring
electron energy, consisting of one stage for pair-state preparation with Ŝe-ph and one stage for measurement basis selection with ŜPINEM.
(e),(f) Investigation of subspace correlation-induced degradation of fidelity and purity of different Fock-state components as a function
of interaction length.
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the generated single-photon Fock state of spatial-temporal
mode â ∝ ∫

dωψ∗(Ec + �ω)âω, with

φ(T) = ψ̃(T)eiωcT, (6)

with a center frequency ωc = Ec/� matching the condi-
tioned electron energy Ec. Therefore, by shaping the elec-
tron wave function (e.g., precompression into THz pulse
trains) and conditioning on a specific sideband energy, one
can transfer the arbitrarily shaped electron spatial wave
function to the optical waveform at a desired optical fre-
quency. As for higher-order conditional Fock states |N 〉,
they cannot be addressed into the N -photon excitation of
a single spatial-temporal mode (see Appendix G) because
the optical frequency components are highly correlated,
but in any photon-counting scheme, the optical profile is
still shaped as |φ(T)|2 and contains N photons.

We illustrate in Fig. 4(c) an application example in this
regime. When an electron passes through two waveguides,
and is then measured at the first photon sideband on the
detector (single-photon excitation), the measurement does
not resolve in which waveguide the photons are created.
In this scenario, the measurement creates a spatial entan-
glement of photon excitation in the two spatially separated
waveguides,

Ŝ ∝
∫

dωψ(Ec + �ω)
(

â†
1,ω + eiω	tâ†

2,ω

)
(7)

with naturally mode-matched waveform φ(T) and a con-
trolled phase depending on the effective delay 	t from the
electron trajectory, essential for generating path-entangled
NOON states [74]. If we interfere the two entangled
modes with a balanced beam splitter, there is coherent
quantum inference between the two waveguide excitations
(see Appendix J). In this way, we effectively construct
an optical interferometer with a nonclassical optical state
mediated by free electrons, with output differential photon
flux

f (t) ∝ Re
[
ψ̃(t)ψ̃∗(t +	t)eiωc	t] . (8)

Notice that due to the nature of broadband optical cou-
pling, when conditioning on different electron energy Ec,
we are effectively scanning the probing optical frequency
of the interferometer ωc, enabling accurate extraction of
the time imbalance 	t to the order of only a few optical
cycles. When sweeping the optical path-length difference
to induce mode mismatch, one can also retrieve electron
spectra density based on interference visibility, similar to
what was realized in matter interferometers [75]. The elec-
tron wave function can also be reconstructed through spec-
tral shearing interferometry [76], answering an important
question that is both fundamental and practical: how much
of the measured electron energy uncertainty is quantum
coherent [63].

B. Particlelike regime

In the particlelike regime, typically associated with a
long interaction length, the phase-matching bandwidth
is very narrow compared to the electron energy uncer-
tainty and the coupling strength becomes large, as shown
in Fig. 4(b). Without on-chip electron guiding structures
[36,77], we expect the longest interaction length to be lim-
ited to 1 mm with |gTM00 |2 ∼ 5 given beam divergence
angle approximately 0.2 mrad [78] with a 100-nm gap. The
electron behaves more particlelike in this regime, and can
hardly distinguish different optical frequency components,
therefore, the spatial-temporal optical modes defined in
Sec. II can be correctly applied. In this limit, the subspace
correlation can be greatly suppressed. When condition-
ing on the N th energy sideband, we can simplify the
state to photon excitations of an electron-measurement-
independent spatial-temporal mode â ∝ ∫

dωgωâω as

|ψph〉 ∝
(∫

dωg∗
ωâ†

ω

)N

|0〉, (9)

φ(T) ∝
∫

dzŨ∗
z (z, T), (10)

where the optical waveform φ(T) is connected to the
Fourier transform of the optical mode profile Ũz(z, T) =
FTω [Uz(z,ω)] along the electron propagation trajectory,
determined by waveguide routing, and is generally much
longer than the spatial extent of the electron wave func-
tion. For the case that includes propagation dispersion see
Appendix I. Since the electron travels in a straight path, by
using a tailormade waveguide structure with proper disper-
sion and routing, most types of optical waveforms can be
generated. The center frequency of the optical excitation
is not determined by the conditioned electron energy, but
can be easily tuned by selecting the appropriate electron
velocity, evident in the results shown in Figs. 3(b) and 3(c).

In the following, we restrict ourselves to the regime
of long interaction length, since it is most versatile for
heralding more complex optical states with higher pho-
ton numbers, and the ladder-subspace correlation is weaker
due to narrow phase-matching bandwidth. Heralding opti-
cal states by measuring electron energies has been explored
[39,41,55], and here we show an example on how to gener-
ate highly complex optical states, with the scheme shown
in Fig. 4(d). The scheme consists of two stages, the first
stage entangles the free electron with the waveguide mode,
and the second stage selects the effective measurement
basis for the electron energy. Specifically, the first stage of
the interaction is the same pair-state generation [46] dis-
cussed in previous sections. While direct conditioning on
the electron energy measurement generates optical Fock
states, in order to generate more general optical states, one
can select a more general measurement basis by having a
second stage to apply a unitary transformation Û on the
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electron state before the measurement. Starting from the
physical measurement basis 〈M |, with the correct unitary
transformation Û, the desired measurement basis 〈M |Û can
be generated. If an arbitrary measurement basis can be con-
structed, an arbitrary quantum state can be heralded. Such
a scheme exploits the time-reversal symmetry in quan-
tum mechanics, and has been used to demonstrate optical
super-resolving phase measurement using only classical
lasers [79].

In the illustrated case, shown in Fig. 4(d), we apply
a standard photon-induced near-field electron-microscopy
(PINEM) operation [35]

ŜPINEM(g,ω) = exp
(

gb̂†
ω − h.c.

)
(11)

at the same optical frequency (served as the phase ref-
erence for any follow-up optical state characterization)
before detection, which effectively transforms the mea-
surement basis from 〈Ec| to 〈Ec|ŜPINEM = ∑

N cN 〈Ec +
N�ω| with Bessel coefficients cN . Upon heralding, the
generated optical state is

|ψph〉 ∝
∑

N

c−(Ec/�ω+N )gN

√
N !

|N 〉 (12)

with coefficients modified by the selected electron mea-
surement basis. Following this scheme, if at the second
stage we select a more general measurement basis by mod-
ulating the electron with an optical waveform consisting
of multiple harmonics [80] of the base optical frequency
Ŝ = ∏

n ŜPINEM(gn, nω), one can in principle generate any
general optical state, e.g., cat and GKP state [41]. Note that
in the no-recoil limit, any operation on the electron wave
function commutes with the entangling operation Ŝe-ph.
Therefore, it does not matter if the operation is applied
postentanglement or preentanglement.

Until here, we restrict ourselves to state generation in the
ideal scenario where electron and photon are completely
disentangled in the subspace of the synthetic electron-
photon energy ladder. However, as is discussed in the
theory section, there are still correlations between elec-
tron energy and optical frequency within the subspace.
When tracing out the subspace continuum states, this leads
to a degradation of state purity P = Tr

[
ρ̂2
]

and fidelity
F = ∣∣〈ψprepared|ψtarget〉

∣∣2 of the synthesized quantum state
ρ̂. We analyze these effects in our state heralding scheme
(expressions for P and F derived in Appendix G, cal-
culated using Monte Carlo sampling due to high dimen-
sionality). We first stress that when conditioning on an
electron energy with perfect energy resolution, the purity
of the state is always unity, and we define the state
fidelity in that limit. However, the relative heralding band-
width γ = 	E/	EZLP determines the heralding rate, and
is lower bounded by the experimental energy resolution.

At finite bandwidth, it always results in finite purity of the
state. We illustrate this effect at different relative heralding
bandwidths in Appendix G.

We assume a ZLP width 	EZLP = 0.6 eV with fitted
Voigt lineshape from experimental data [46]. Given a rel-
ative heralding bandwidth γ = 1, we show in Figs. 4(e)
and 4(f) both the purity P of the state and the fidelity F
compared to the target state. As the purity is only a function
of the occupancy at different Fock-state components, we
plot only the scheme- and state-independent purity at these
components. Due to more scrambled correlations between
electron energy and photon frequency at higher ladder-
state subspace |ψe, N 〉, their purity is lower, with impurity
1 − P ∝ √

N . We also see that fidelity and purity increase
with longer interaction distance L, with 1 − F ∝ L−4 and
1 − P ∝ L−2. This scaling is expected from the narrower
phase-matching bandwidth at longer interaction length,
and aligns well with the prolonged interaction targeted by
the photonic integrated circuits. To help the readers grasp
the inverse quadratic scaling to interaction length, we point
out that for relatively short interaction length at 10 µm
[35], the state purity is < 90% for Fock-state components
|3〉 and above, but for an interaction length at 100 µm
[46], the state purity > 98% even for |10〉, with fidelity
exceeding 99.9%.

Note that any contribution from the experimental uncer-
tainty of electron energy will lead to degradation of the
electron state purity, and also increase the relative herald-
ing bandwidth. Therefore, the experimentally measured
ZLP width approximately 0.6 eV [81] can only serve as the
upper bound of the quantum coherent energy uncertainty.
Experimentally, the coherent energy uncertainty can be at
least lower bounded at approximately 0.1 eV by the mea-
sured single-electron pulse duration [82], which is in fact
still far from the Fourier limit. In the limiting case when
the electron energy density matrix is completely incoher-
ent, P → 0. Furthermore, as the experimentally measured
purity of the heralded optical state through Wigner tomog-
raphy [83] scales as 1 − P ∝ 	E−2

coherent, the purity char-
acterization can also serve as a probe of the coherence
property of the free electron. Even though the coherent
electron energy width is hard to determine experimen-
tally, it is fundamentally determined by the electron field-
emission mechanism that generates the electron pulse. We
can conclude that in order to be quantum coherent, the fre-
quency spread of the heralded optical state must be much
smaller than that of the laser pulses used in the electron
field emission.

IV. SHAPING ELECTRON STATES FROM
OPTICAL DETECTION

Here we consider the reciprocal operation of the previ-
ous section, which is to generate complex electron energy
superposition state by conditioning on photon counting.
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This procedure enables generation of a much broader set
of electron states not accessible by conventional PINEM-
type phase modulation, e.g., direct amplitude modulation
of electron wave function. Note that with the no-recoil
approximation, here the heralded spatial-temporal elec-
tron wave function is not shaped by the optical detection
and maintains the original waveform, in sharp contrast
to heralding optical state by measuring electron energy.
Therefore, the fidelity F of the heralded electron wave
function does not depend on interaction length, but the
state purity still does.

In Fig. 5(a) we illustrate a similar scheme to that
shown in the previous section to generate complex elec-
tron states with multiple stages of operations but on the
optical side. The principle is the same, a pair state is gen-
erated, then we select an effective measurement basis on
the optical side to project the electron state into the desired
form. As an example, before the detection, one can use
a displacement operation D̂(α), realized by a high-ratio
on-chip beam splitter [84], to modify the effective pho-
ton number counting [85,86] measurement basis from 〈N |
to 〈N |D̂(α) = ∑

N ′ cN ′ 〈N ′|. Based on a photon-counting
record, a conditional electron state is prepared at

|ψe〉 ∝
∫

dEψ(E)
∑

N

cN gN

√
N !

|E − N�ω〉. (13)
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FIG. 5. (a) Scheme for heralding an arbitrary electron state by
optical detection, consisting of one stage for pair-state prepara-
tion with Ŝe-ph and one stage for measurement basis selection
with on-chip optical operations. (b) Scheme to convert the orig-
inal THz-broad optical excitation to a MHz-broad microwave
excitation, with frequency width limited by the linewidth of
the optical cavity, using a χ2 optical-to-microwave transducer.
The narrow-linewidth down-converted microwave excitation is
useful for interacting with GHz-frequency quantum systems
at low temperatures. (c) Investigation of subspace correlation-
induced degradation of purity of different electron ladder-state
components |N 〉 as a function of interaction length.

In the special case of the coherent-state measurement basis
〈α|, which can also be constructed by simultaneously
detecting both orthogonal optical quadratures in a homo-
dyne setting (derivation see Appendix K), the heralding
operation is equivalent to applying a direct density mod-
ulation exp

(
2|gα∗| cos(ω

v
z + θα)

)
on the electron wave

function. In the limit of large modulation depth |gα∗| � 1,
the width of the electron wave function is compressed
down to 	z ∼ 1.7v

ω
√

|gα∗| . The magnitude of pulse compres-

sion is similar to what is possible with PINEM-type inter-
action, but without the additional dispersive propagation
with modulation-depth-dependent distance [21].

The projection into a sharply density modulated electron
wave function by measuring in the basis of optical coherent
states can be understood intuitively. Since classical coher-
ent optical excitation can only be generated by pointlike
electrons, the measurement of coherent states serves as
a position measurement of the electrons, projecting them
into the possible periodic positions that would give the cor-
rect classical phase of the measured optical coherent state.
But since the coherent states are not completely orthogo-
nal to each other, the uncertainty of the projected electron
position is determined by the magnitude of the measured
field amplitude |α|.

One can also prepare even parity electron energy state
to halve the spatial modulation period, useful for gener-
ating coherent second harmonic optical emission [55], by
applying conditional optical parity operation P̂(P) using
two-level systems [6,87,88] or photon-number-resolving
counting [89], which modifies the measurement basis to
cat states 〈catα| ∝ 〈α| + 〈−α|. Higher harmonic spatial
modulation can be generated by detecting in higher-order
cat-state basis.

On the optical side, most unitary operations or state
characterizations require mode matching to a reference
spatial-temporal optical mode, which is difficult to achieve
for the emitted THz broad optical pulses. Here we dis-
cuss two options that are experimentally feasible. The first
option is to reshape the emitted optical spatial-temporal
profile through frequency filtering, e.g., using an on-chip
photonic crystal filter cavity [6]. When the frequency width
is narrow enough to be resolved by the detector, one can
choose a continuous-wave local oscillator and gate on the
detector time sequence [90] synchronized with the electron
pulses. To prevent any loss of information that may lead
to the degradation of state purity, one needs to collect all
the optical excitations rejected from the filter and condition
on a zero-count event from the dark port. At a single-
photon level of optical emission, the relative heralding
rate is determined by the filtered optical bandwidth versus
the original optical phase-matching bandwidth. Therefore,
such a frequency-filtering scheme does limit the heralding
rate significantly due to the large phase-matching band-
width (e.g., 1-THz width at 1-cm interaction length). The
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second option is to directly mode match with a specifically
shaped reference optical pulse. Such pulse shaping with
individual control at all the frequency components is gen-
erally hard in straight waveguides, and therefore requires
the use of optical resonators in place of waveguides as was
recently demonstrated [46]. The reference optical mode
can then be generated in an identical resonator [91], e.g., as
a dissipative Kerr soliton [92] or an electro-optic frequency
comb [93] with control over each individual frequency
component [72,94]. The time gating resolution required on
the optical detection would then be relaxed to the optical
cavity life time, which can be achieved at the level of 20
ns [49] for materials and structures studied in the current
paper. In integrated photonics, cavity life time approaching
1 µs is also demonstrated [95–97].

Optical resonators offer the unique advantage of the
concentrated optical density of states due to their narrow
optical linewidth. We show a frequency-conversion exam-
ple in Fig. 5(b) (details of the scheme see Appendix L)
to exploit this advantage of optical resonators to convert
the THz-broad optical excitation from the electron-photon
interaction to a MHz-broad microwave excitation using a
χ2 optical-to-microwave converter [98,99]. Using a struc-
tured local oscillator pump field, the conversion effectively
serves as a multimode demodulation of the entangled pho-
tons. The frequency width of the microwave photon is
determined by the linewidth of the optical cavity mediating
the electron-photon interaction. Compared to the original
THz-broad optical excitation, this frequency conversion
is particularly useful to bridge interactions of eV-broad
free electrons with quantum systems at GHz frequen-
cies, e.g., superconducting qubits, electron-spin qubits,
and mechanical oscillators. Generally, with the coupling
to well-controlled two-level systems in the strong cou-
pling regime, any photon measurement basis can be con-
structed [100]. As arbitrary quantum state synthesis of
microwave photons was experimentally demonstrated in
superconducting qubit systems [101], we can construct
an arbitrary measurement basis 〈ψ | = 〈0|Û by applying
the unitary operation Û on the converted microwave field
and then conditioning on the microwave ground state 〈0|
with photon-number-resolving measurement [102] using a
superconducting qubit, promising arbitrary electron-state
generation. Optical-to-microwave converters and super-
conducting qubits mostly require mK temperatures due
to their GHz frequencies, and usually operate in a dilu-
tion refrigerator. Therefore, optical excitations need to
be guided out of the electron microscope through optical
fibers, stressing the importance of high-efficiency fiber-to-
chip couplings [50].

Note that due to multiple stages, usually the opti-
cal measurement event will occur after the electron
detection due to the high electron velocity. However, a
delayed measurement on the optics side does not impair
our scheme, as the measurement operators on the two

parties commute [103]. Therefore, no real-time action is
required.

Here, we show the full-bandwidth state purity (expres-
sions derived in Appendix H) as a function of interaction
length in Fig. 5(c). As expected, it follows the same 1 −
P ∝ L−2

√
N scaling, and favors longer interaction length.

We point out again that for a relatively short interaction
length at 10 µm, the electron ladder |10〉 state purity is
50%, but for an interaction length at 200 µm, the state
purity reaches 99%. Note that the state purity is completely
determined by the electron-photon interaction, and does
not depend on specific schemes, e.g., optical-to-microwave
conversion.

Here, a lower purity of the initial electron state will
also result in purity degradation of the heralded elec-
tron wavefunction, similar to the case of heralded opti-
cal state discussed in the previous section. However,
effects like heralded density modulation is robust as
the electron position projections are always valid given
optical measurement records even with mixed electron
states.

V. DISCUSSION

We analyze fundamental limits of integrated photonic
circuits as a platform for synthesizing high-quality quan-
tum states with free electrons. We show that near-unity
coupling ideality to the target TM00 spatial-temporal
waveguide mode can be achieved by suppressing parasitic
couplings through the control of electron-beam position-
ing, velocity, and waveguide design. We also investigate
the underlying correlation between electron energy and
photon frequency in the energy ladder subspace, and the
induced fundamental limitation as a trade-off between
heralding rate and state purity. We find that particlelike
electrons with coherent energy uncertainty are required
to generate pure heralded states, and the purity limit can
be greatly relaxed with experimentally feasible interac-
tion length with integrated waveguides. We also show that
these correlations can be exploited to shape the optical
waveforms, e.g., to map the electron wave function to
optical domain and construct an effective optical interfer-
ometer mediated by free electrons. However, the spatial
sensitivity of such an interferometer remains at the optical-
wavelength scale, and does not inherit the superior spatial
sensitivity of electron waves. It is still an open ques-
tion whether phase-object-induced electron phases can
be transferred to the optical domain, accumulate and be
detected optically, which is relevant for quantum enhanced
phase-object imaging applications [104,105]. The maxi-
mum feasible coupling strength |gTM00 |2 can also be fur-
ther enhanced through waveguide dispersion engineering
[48], with the trade-off of lower state purity due to larger
phase-matching bandwidth.
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Note that in our discussion we omit detailed analysis
on some experimental limitations, e.g., finite detection effi-
ciencies, primarily on the optical side. The heralded optical
state is robust given the high energy of the electrons, but
the heralded electron-state purity is therefore most sensi-
tive to the optical detector efficiencies and other limiting
factors, such as optical mode matching. We anticipate that
there are schemes or parameter regimes that are less prone
to detection inefficiencies. We also restrict our discussion
mostly to the interaction picture, except that the electron
and optical waveforms are defined in the Schrödinger pic-
ture. We remind the reader that in the Schrödinger picture,
though not the main focus of the paper, long-distance
propagation significantly modifies the electron and opti-
cal density profile |ψ̃(T)|2 and |φ(T)|2, leading to effects
like electron [23,64–66,106] and optical [107] pulse com-
pression. Moreover, in the no-recoil limit, all the electron
operations commute with each other. This approximation,
though practically valid for few-photon single-chip inter-
actions, limits the controllable degrees of freedom of the
heralded optical states to the order of the harmonics of
the PINEM field used to shape the electron wave function
[80]. In the platform of Si3N4 microresonators, efficient
generation of second [108] and third [109,110] harmon-
ics are supported with estimated maximum |g2| ∼ 100
and |g3| ∼ 10, offering a total of 8 degrees of freedom
on the heralded optical state. The Si3N4 integrated pho-
tonics platform also provides an ultrawide transparency
window from 400 nm to 4.5 µm [111], supporting at
most ten harmonic components with an externally driven
optical source. Beyond the no-recoil limit [106], elec-
tron energy transitions significantly modify the velocity
due to energy dispersion. When interaction regions are
far apart, the recoil effect results in an energy-dependent
phase accumulation between different stages (for details
see Appendix M). The recoil effect can be safely neglected
in the discussion of few-photon single-chip interaction,
but could be important for a wider range of experimental
schemes [23,40,55,112,113], e.g., when multiple chips are
involved with significant separation distance. Furthermore,
our analysis is purely in the framework of macroscopic
QED [68], where electrons interact with the medium-
assisted electromagnetic fields. In optical media like the
Si3N4 material we discuss here, optical phonons typi-
cally exist and result in Raman scattering of optical fields
[114]. But, due to their short spatial extent and low energy
[115,116], we do not consider their contribution in long-
distance phase-matched interaction with the high-energy
free electrons. The same reasoning also excludes higher
electron energy-loss process, e.g., valence and inner-shell
ionization around 50 eV [117].

Our analysis and results indicate that the photonic inte-
grated circuit platform is ideal for free-electron quantum
optics with manageable limitations, and promise a pathway
to high-fidelity and high-purity quantum state heralding,

entanglement of free electrons with other quantum sys-
tems, and quantum enhanced sensing and imaging.
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APPENDIX A: QED DETAILS

We consider an electron beam with a narrow momentum
spread around wave vector k0 and assume that the pho-
ton energies involved in the interaction are much smaller

than the electron relativistic energy E0 = c
√

c2m2 + �2k2
0

(i.e., the no-recoil regime). In the velocity gauge, the
Hamiltonian is described as [55,118]

Ĥ = Ĥel + Ĥph + Ĥint,

Ĥel =
∑

k

[E0 + �v · (k − k0)]ĉ
†
kĉk,

Ĥph =
∫

dω
∫

d3r�ωf̂†(r,ω) · f̂(r,ω),

Ĥint = −
∫

d3rĴ(r) · Â(r),

where we define the electron current operator Ĵ(r) =
(−ev/V)

∑
k,q eiq·rĉ†

kĉk+q using the Fermionic ladder
operators ĉk and the relativistic electron group veloc-
ity v = �c2k0/E0, and a linear electron energy dis-
persion is assumed. The vector potential Â(r, t) =∫ dω

2π Â(r,ω)eiωt + h.c. is associated with the noise cur-
rent operator ĵnoise(r,ω) through the quantized three-
dimensional Maxwell equation [68] and has a formal
solution

Â(r,ω) = −4π
∫

d3r′G(r, r′,ω) · ĵnoise(r′,ω),

where G(r, r′,ω) is the dyadic Green function (Green
tensor) of the classical problem satisfying the equation

∇ × ∇ × G(r, r′,ω)− ω2

c2 ε(r,ω)G(r, r′,ω)

= −μ0δ(r − r′),

which describes the field response at r to a point current
excitation at r′. Since we are dealing with nonmagnetic
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materials, we assume a relative permeability μ(r) = 1.
The noise operator is bosonic and is chosen to be

ĵnoise(r,ω) = ω
√

�ε0Im{ε(r,ω)}f̂(r,ω)

in order to satisfy the fluctuation-dissipation theorem
due to dissipative material, with bosonic ladder operators
f̂(r,ω) satisfying commutation relation

[
f̂i(r,ω), f̂i′(r′,ω′)

]
= δi,i′δ(r − r′)δ(ω − ω′). Note that in the limiting case of
a dispersive material (assumed in this study, characterized
by its instantaneous electronic response) Im{ε(r,ω)} → 0.
However, this imposes no problem for our formalism,
which is shown to correctly reduce to the mode decom-
position method used in the quantized vacuum field [119]
due to Kramers-Kronig relations.

When projecting to the direction of the electron trajec-
tory ẑ with transverse coordinate R0, the scattering matrix
is shown to be

Ŝ = eiχ̂ Û,

Û = exp

⎧⎨
⎩
⎡
⎣ −ie

2π�V2/3

∑
k,q⊥

∫
dω
∫

d3reiq⊥·Re−iωz/ve

Âz(r,ω)ĉ†
kĉk+q⊥−(ω/v)ẑ

⎤
⎦− h.c.

⎫⎬
⎭ ,

where q⊥ is the transverse component of the exchanged
electron wave vector. We can further simplify the expres-
sion by disregarding the phase operator χ̂ and assuming
a point electron distribution over the transverse direction,
and obtain

Û = exp
[∫

dωgωb̂†
ωâω − h.c.

]
,

where continuum photon and electron operators are intro-
duced

âω = − ie
2π�gω

∫
dze−iωz/ve Âz(R0, z,ω),

b̂ω =
∑

kz

ĉ†
kz

ĉkz+ω/v ,

with vacuum coupling strength gω associated with the
EELS probability studied in this paper

|gω|2 = �(R0,ω) = 4e2

�

∫∫
dzdz′,

Re{ieiω(z−z′)/vGzz(R0, z; R0, z′;ω)}.

The operators are defined in this way so that the quantum
optical commutation relations are preserved [âω, â†

ω′] =

δ(ω − ω′), and can be easily proven using the identity

∑
i′′

∫
d3r′′Im{ε(r′′,ω)}Gi,i′′(r, r′′,ω)G∗

i′,i′′(r
′, r′′,ω)

= − 1
ε0ω2 Im{Gi,i′(r, r′,ω)}.

Note that âω contains contributions from all the spatial
modes at ω, and is not a specific predefined spatial mode
âω,m, which is frequently used in cavity QED systems.

To find the spatial mode function of âω, we use the fol-
lowing relations [120] for an arbitrary set of orthogonal
basis âi,ω

âi,ω =
∫

d3rVi(r,ω) · f̂(r,ω),

f̂(r,ω) =
∑

i

V†
i (r,ω)âi,ω,

where the weight functions obeys the following normaliza-
tion condition:

∫
d3rVi(r,ω) · V†

j (r,ω) = δi,j .

From here, we can re-express the field operator in terms of
the set of orthogonal basis as

Â(r,ω) = −4πω
∫

d3r′√
�ε0Im{ε(r′,ω)}G(r, r′,ω)

·
∑

i

V†
i (r

′,ω)âi,ω.

By choosing one of the spatial modes âi=0,ω as our mode
of interest âω with the weight function

Vâω(r,ω) = −2ieω
gω

√
ε0

�

∫
dze−iωz/ve

∫
d3r′√Im{ε(r′,ω)}ẑ · G(R0, z; r′;ω),

we can find the mode function of this optical mode as

Ââω(r,ω) = 2π

√
�

2ωε0
Uâω(r,ω)âω,

Uâω(r) = −4e
g∗
ω

√
2ε0ω

�

∫
dzeiωz/veIm[G(r; R0, z;ω) · ẑ],

which is a mode specifically defined for this interaction.
This mode construction corresponds to a linear transfor-
mation of the original structure-supported optical spa-
tial modes, such that only one principle optical mode is
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involved in the interaction, while all the other transformed
modes are dark and invisible to the electron. It is in this
way advantageous to use this formalism to account for the
infinite number of spatial modes of the optical structure
that the electron couples to. In the limit of unity coupling
ideality, this mode function converges to the one of the
waveguide modes. If the electron transverse spread is sig-
nificant, the EELS probability is shown [121] to be an
average over the transverse electron wave function

�(ω) =
∫

d2R|ψ⊥(R)|2�(R,ω).

However, this type of averaging is not quantum coherent.
At different transverse positions, the coupling coefficients
are different. Therefore, we have to modify the scattering
matrix to

Ŝ = exp
[∫

dωd2Rgω(R)b̂†
ω|R〉〈R|âω − h.c.

]
.

If the part of the longitudinal optical field that overlaps
with the electron transverse wave function has consider-
able inhomogeneity, then the different transverse position
components of the electron will be entangled with differ-
ent longitudinal electron-photon pair states, characterized
by their different coupling strengths. Therefore, informa-
tion loss occurs when tracing out the transverse degrees of
freedom of the electron, leading to state purity degrada-
tion. Since nm-scale electron beam focuses are routinely
used in electron microscopes, this is not a significant limi-
tation for near-field coupling to optical waveguides which
have a typical decay length of approximately 100 nm.

APPENDIX B: EQUIVALENCE TO THE
CLASSICAL RESULT

The electron energy loss at a dielectric surface can be
interpreted classically in a microscopic picture [122], see
Fig. 1: if an electron passes near the surface of a dielec-
tric structure, the dipoles in the structures are polarized
(equivalently classical current), induced by the electric
field from the flying electron, and generates a backaction
field E(re(t), t) to the electron at re(t) that induces electron
energy loss. The total energy loss can be expressed in time
domain and frequency domain as

	E = e
∫

dtv · E(re(t), t) =
∫

�ωdω�(ω),

where the frequency-domain energy-loss function �(ω) is
expressed as

�(ω) = e
π�ω

∫
dtRe

[
e−iωtv · E(re(t),ω)

]
,

which can be easily verified if one plugs it back into
the energy-loss expression and the correct time integral

is retrieved. Notice that here E(re(t),ω) is not the direct
Fourier transform of E(re(t), t). The Fourier transform
applies only on the time dependence of the electric field
function not explicitly depending on the electron trajectory
function re(t). The frequency-domain components depend
explicitly on the current induced from a given electron
trajectory, but do not take into account the sampling of
the field at different position re(t) at different time t. This
ensures that the total energy loss is consistent, but ren-
ders the formalism nonlocal. This treatment is consistent
with the quantum formalism when the electron is decom-
posed into perfect momentum states where the wavepacket
length is infinite, as one could see from the fact that even
though the electron interacts only with the structure locally,
the resulting energy-loss spectrum will show, e.g., discrete
mode structure (a nonlocal property). This is the result
of this particular Fourier-expansion procedure, but when
considering the electron in terms of wavepackets this treat-
ment is valid. It has been shown [121] that a full quantum
treatment gives exactly the same EELS result.

Using the no-recoil approximation, which assumes that
the radiation of electron into the surrounding substrates
does not change the trajectory re(t) of the electron sig-
nificantly, we can directly calculate the induced electric
field E(re(t), t) from the electron current j(r, t) through the
Green tensor of the whole dielectric structure,

E(r,ω) = −4π iω
∫

d3r′G(r, r′,ω) · j(r′,ω),

where the Green tensor G(r, r′,ω) is the elementary solu-
tion of the full Maxwell equation

∇ × ∇ × G(r, r′,ω)− ω2

c2 ε(r,ω)G(r, r′,ω)

= −μ0δ(r − r′)

with a point current at position r′ in frequency domain.
A flying electron is equivalent to a broadband evanes-
cent source, and here we consider an electron beam at
ẑ direction at transverse coordinate R0, for which the
frequency-domain electron current density is

j(r,ω) = −eẑδ(R − R0)eiω(z−z0)/v.

From here, one can express the frequency-domain loss rate
in terms of Green function as

�(ω) = 4e2

�

∫
dzdz′Re

[
ieiω(z−z′)

v Gzz(R0, z; R0, z′;ω)
]

,

which coincides with the result from a full QED treat-
ment. One should keep in mind that the Green tensor here
has two contributions, one from vacuum G0 when there
is no structure around, and the other component from the
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backaction field Gind that is induced from the dielectric
dipoles. Only the backaction field Gind contributes to elec-
tron energy loss, because electron does not emit in vacuum
so the contribution from the vacuum G0 vanishes in the
integral.

APPENDIX C: CORRESPONDENCE TO MODAL
DECOMPOSITION

The correspondence between the three-dimensional
macroscopic quantization method in a dispersive material
with the conventional quantum optics quantization proce-
dure using modal decomposition has been demonstrated
for the one-dimensional case [119]. Here, we show the
correspondence with the quantum optical formalism used
in Ref. [35]. To account for all the spatial modes at a
given frequency ω, the quantization of vector potential is
chosen as

Â(r,ω) = −4πω
∫

d3r′√
�ε0Im{ε(r′,ω)}G(r, r′,ω)

· f̂(r′,ω)

to fulfill the canonical field commutation relations. How-
ever, in vacuum or lossless media, the modal decomposi-
tion method [123] is often used instead, with

Â(r, t) =
∑

m

√
�

2ωmε0
Um(r)âωm,me−iωmt + h.c.,

where the profile function Um(r) of each mode defined in
a frequency window 	ωm satisfies the wave equation

∇ × ∇ × Um(r)− ω2

c2 ε(r,ωm)Um(r) = 0,

with normalization condition∫
d3rε(r,ωm)Um(r) · U∗

n(r) = δm,n.

From here, one can easily find the correspondence between
the spatial mode ladder operators âω,m and the bosonic
ladder operators f̂(r′,ω) as

âωm,m = −4π
∫
	ωm

dω
∫∫

d3rd3r′

×
√

2ω2ωmIm{ε(r′,ω)}ε0ε(r,ω)U∗
m(r)

· G(r, r′,ω) · f̂(r′,ω),

with their vacuum coupling strength to the electron as [46]

gωm,m(R0) = −i

√
e2

2ε0�ωm

∫
dze−iωmz/veUm,z(R0, z).

In this formalism, we can rewrite the scattering matrix in
its modal decomposition form

Ŝ = eiχ̂ exp
[∫

dωgωb̂†
ωâω − h.c.

]

= eiχ̂ ′
exp

[∑
m

gωm,mb̂†
ωm

âωm,m − h.c.

]
,

where the optical mode operators âωm,m are no longer con-
tinuum mode operators and now satisfy [âωm,m, â†

ωn,n] =
δm,n.

In the case of an optical cavity, the optical modes
are well-defined bosonic modes. As long as the electron
energy resolution does not resolve frequency components
of the optical mode, the treatment is valid. For an open
waveguide, the modes that are coupled to the electron are
instead traveling modes in a continuum [124]. This is the
most general case and can include the open cavity modes
as well. The vacuum coupling strength of a continuum
frequency mode in a spatial mode family is

gω,m(R0) = −i

√
e2

2ε0�ω

∫
dze−iωz/ve Ũm,z(R0, z,ω),

where the profile function Ũm(r,ω) satisfies the wave
equation as well, but with normalization condition

∫
d3rε(r,ω)Ũm(r,ω) · Ũ∗

n(r,ω′) = δm,nδ(ω,ω′).

Index m here represents different spatial mode families.
However, when the electron energy resolution does not
resolve the frequency structure of the coupling strength
to any given mode family, as in the weak correlation
regime discussed in the paper, one can still define the
corresponding noncontinuous operators for different mode
families,

âm =
∫

dωφ∗
m(ω)âω,

âω =
∑

m

φm(ω)âm,

where φm(ω) is the Fourier component of the temporal
field profile functions [125,126]

φm(r, t) = i
∫

dω

√
�ω

2ε0
φm(ω)Ũm(r,ω)e−iωt,

Ê(r, t) =
∑

m

φm(r, t)âm + h.c.
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of the defined mode families. It is a complete orthogonal
set of functions on ω,

∫
dωφm(ω)φ

∗
n (ω) = δm,n,

∑
m

φm(ω)φ
∗
m(ω

′) = δ(ω − ω′)

found through the Gramm-Schmit orthonormalization pro-
cedure, such that the commutation relation [âm, â†

n] = δm,n
is satisfied for these field operators in the context of quan-
tum field theory, introduced to avoid using operator-valued
distributions. One can therefore rewrite the scattering
matrix in the new mode family field operator basis

Ŝ = eiχ̂ exp

[∑
m

gmb̂†
mâm − h.c.

]
,

where gm = ∫
dωgωφm(ω). The total coupling strength

would be |gm|2 = ∫∫
dωdω′gωg∗

ω′φm(ω)φ
∗
m(ω

′). Here,
when the frequency bands of different mode fami-
lies with non-negligible coupling strength gω are suffi-
ciently separated, we choose the profile function φm(ω) =
Iω∈	ωmg∗

ω/g
∗
m, where	ωm is the frequency window within

which we define the field operator for the correspond-
ing mode family, and |gm|2 = ∫

	ωm
dω|gω|2. Note that

when the coupling to bulk modes is significant, one has
to use the coupling strength gω,m from the conventional
modal decomposition method instead of the Green func-
tion method to quantitatively isolate the coupling to a mode
family from background bulk mode contributions.

The cavity-mode decomposition is actually the narrow-
band approximation of the Gramm-Schmit orthonormal-
ization procedure, where φm(ω) is strongly peaked around

the mode center frequency, since all optical modes, though
narrow, still have a finite linewidth due to the coupling to
outside channels (e.g., bus waveguide and cavity losses).
The profile function can be found through the input-output
formalism [127] of an optical cavity âm, assuming unity
coupling efficiency to the bus waveguide mode âout with
coupling rate κ , which results in a profile function of
φm(ω) ∝

√
κ

− κ
2 +i(ωm−ω) , where the bus waveguide is part of

the resonator and forms the continuum modes in frequency
domain.

APPENDIX D: COMSOL SIMULATION DETAILS

Since all the physical quantities we are interested in can
be related to the Green tensor of the classical Maxwell
equation given the dielectric structure of interest, we
numerically solve the relevant Green tensor component
Gzz(r, r′,ω) of an infinitely long optical waveguide with
finite-element method (FEM). The spatial map of the imag-
inary part of the Green function is illustrated in Fig. 6.
The Green function can be understood intuitively as the
Fourier component of the optical field at frequency ω that
is excited at position r by the propagating electron at posi-
tion r′, whereas the phase-matching condition determines
whether this field constructively or destructively builds up
at a given electron velocity.

The Green tensor solution of Maxwell equation is not
directly supported in COMSOL, but can be retrieved by
frequency-domain study with the rf module. The waveg-
uide is an air-cladded Si3N4 slab embedded in SiO2 sub-
strate with different geometries mentioned in the main
text. Perfect matching layers at boundaries are used to
prevent boundary reflections and in turn allow us to sim-
ulate an infinitely long waveguide. In order to solve for

WG

sidefront

top

AirAir

WGWG

1 µm0.02

–0.02

0.00

FIG. 6. Spatial pattern of Im[Gzz(r, r0,ω)] for the case of a Si3N4 waveguide embedded in a silica substrate. In addition to emission
into the substrate and free space, some guided modes in the waveguide are also excited by the oscillating electric current dipole, and
forms a beating spatial pattern amongst guided modes along the waveguide direction.
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the Green function G(r, r′,ω), a point oscillating electric
current dipole J(ω) = p(ω)δ(r − r0) is placed above the
waveguide surface at position r0 (typically 100 nm or 300
nm). COMSOL solves for the electric field, which relates to
the Green tensor as

E(r,ω) = −4π iωG(r, r0,ω) · p(ω)

and thus if one wishes to retrieve the Gzz component one
needs to orient the electric dipole p = p ẑ along the z direc-
tion ẑ, and look at the electric field z component Ez, such
that

Gzz(r, r′,ω) = Ez(r,ω)
−4π iωp(r′,ω)

.

The results are illustrated in Fig. 6. The imaginary part of
the Green function can be thought of as the spatial pat-
tern of electron emission in the waveguide (or surrounding
substrates) before the application of phase-matching con-
dition. Given the electron velocity, the application of phase
matching

Uâω(r) ∝
∫

dzeiωz/veIm[G(r; R0, z;ω) · ẑ],

retrieves the field function of the excited optical mode. The
Green function along the electron trajectory is shown in
Fig. 7(a), where one can clearly see the bulk mode con-
tribution near the dipole position, and spatial beatings of
different waveguide modes under some conditions.

With the optimal phase-matching condition, the cou-
pling strength at a given optical frequency (or a discrete

(a) (b)

µ

FIG. 7. (a) Examples of the Green function Im[Gzz(r, r0,ω)]
along the trajectory of the electron at different optical frequen-
cies, and (b) the corresponding vacuum coupling strength at
different electron velocities, for a 50-µm interaction length. The
spatial beating of many mode families is visible in the Green
functions, and also in the coupling strength. The coupling to
different mode families is phase matched at different electron
velocities at a given optical frequency. When the electron veloc-
ity is in the Cherenkov regime (v � 0.7c), the energy loss is
eventually dominated by the substrate loss.

cavity mode) scales quadratically with the interaction
length, a unique feature of guided modes co-propagating
with the flying electron. For the spatial modes in the
substrate bulk, the excited field is localized around the
electron position. Without the benefit of constructive inter-
ference from co-propagation with the flying electron, their
intensity only scales linearly with respect to interaction
length.

The total coupling strength is related to the Green func-
tion through a spatial Fourier transform, and shown in
Fig. 7(b), where one can identify several prominent peaks,
mainly contributed from the waveguide modes, and a ris-
ing background in the Cherenkov regime (v � 0.7c) of the
silica substrate due to the enhanced bulk mode coupling.
The Blackman window is used to eliminate the ripples
from the Fourier transform due to finite simulation length,
and shapes each coupling bands to a near-Gaussian shape
for easier fitting of the coupling strength with a Gaus-
sian function. The center velocity of the peaks corresponds
to the optical mode phase velocity, and the bandwidth is
determined by the interaction length. To improve visual-
ization, we set the interaction length to 30 wavelengths to
keep the bandwidths at different optical frequencies uni-
form. By sweeping the optical frequency in the simulation
across the range where we have access to material permit-
tivity, one retrieves the two-dimensional maps shown in
Fig. 8.

With a multimode waveguide, shown in Figs. 8(a)
and 8(b), the effective mode index difference between
the fundamental mode and higher-order modes is rela-
tively weak at the same optical frequency, which leads to
multimode electron-photon interaction within a given fre-
quency band. When the waveguide cross section is reduced
(referred to as single-mode waveguide), shown in Fig. 8(c),
one can enhance the mode index contrast. As a result, the
mode frequency spacing is increased, such that the cou-
pled fundamental modes are better isolated. Since most
TEMs have an energy resolution around 0.5 eV (120 THz
in optical frequency), it is important to create a large fre-
quency spacing between the phase-matched optical modes
so that the interaction with individual modes can be energy
resolved.

The difference between multimode and single-mode
waveguides in fiber optics is usually quantified by a V
number, a normalized frequency parameter, which deter-
mines the number of modes of a step-index fiber, as

V = 2πr
λ

√
n2

1 − n2
2,

where r is the radial size of the core, n1 is the core
material index and n2 is the cladding material index. For
our single-mode waveguide dimension, the single-mode
guiding criteria V < 2.4 is satisfied. When used in the

020351-17



GUANHAO HUANG et al. PRX QUANTUM 4, 020351 (2023)

TM00
TM01

TM00
TM012100 nm 2100 nm
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(a) (b) (c) (d)

FIG. 8. Electron-photon coupling spectrum with 50-µm interaction length for different waveguide geometries and electron posi-
tioning. The coupling spectrum is plotted as a function of both electron velocity ve and optical frequency ω. The waveguides have a
thickness of 650 nm, and widths of (a),(b) 2.1 µm and (c),(d) 800 nm, and are embedded in a silica substrate. Coupling to different
waveguide mode families appears as multiple coupling bands. Coupling ideality to the target TM00 mode is improved by changing the
electron-beam transverse position from waveguide edge (100 nm from surface) (a) to waveguide center (b), from multimode waveg-
uide (b) to single-mode waveguide (c), and moving further away (300 nm from the surface) (d) from the waveguide surface. The
waveguide widths and the relative positions of the electron beam are also labeled at the lower right corner of the panels.

fiber-optic applications, such a criterion is very impor-
tant for single-mode guiding. Here, our design goal is to
increase the mode-frequency spacing between mode fam-
ilies. Therefore, we use it only as a guiding principle, not
as a strict criterion.

The evanescent field of the coupled higher-order modes
decay faster than that of the coupled fundamental mode,
as a result of the higher optical frequency. In Fig. 8(d), we
show that one can further enhance the coupling contrast

0.630 0.665 0.700
ve/c

10−4

10−3

10−2

10−1

100
1 − I∗

0.630 0.665 0.700
ve/c

10−2

10−1

100
1 − I

WG1
WG2
WG2∗

(b) (c)

(a)

150 200 250 300 350 400
ω/2π (THz)

0.0
0.2
0.4
0.6
0.8
1.0

coupling strength (arb. units)

FIG. 9. (a) An example fitting of the coupling spectrum to
extract the coupling idealities. Calculated coupling ideality devi-
ations from unity with (b) sideband-conditioned (1 − I∗) and
(c) nonconditional (1 − I ), shown with different waveguide and
electron configurations (WG1, 2.1 µm width; WG2, 800 nm
width; WG2*, electron beam 200 nm further away from the
waveguide surface), as a function of electron velocity.

between fundamental mode and higher-order modes by
placing the electron beam further away (200 nm) from
the waveguide surface. In this way, the interaction expo-
nentially favors the fundamental mode, at the expense of
weaker interaction strength |gTM00 |2, which can be com-
pensated for with a longer interaction length (5 times
longer for the shown example).

As discussed in the main text, the Cherenkov radiation
contributes as a rising background in the high velocity
region. In Appendix E, we isolate the contribution of the
substrate bulk modes.

We now quantitatively evaluate the coupling ideality to
the TM00 mode as a function of electron velocity. We fit
the coupling spectra with Gaussian functions, illustrated
in Fig. 9(a), and calculate the conditional and noncondi-
tional idealities as a function of electron velocities, shown
in Figs. 9(b) and 9(c).

APPENDIX E: SUBSTRATE AND THIN-FILM
LOSSES

Though not discussed in the main text, there are dif-
ferent scalings of �(ω) for bulk substrate (∝ L), thin film
(∝ L log L), and guided modes (∝ L2). We show their cou-
pling spectrum characteristics in Fig. 10 with an electron
100 nm above the dielectric surface. It is shown that for a
given frequency component ω, the quadratic scaling of a
guided mode will dominate the interaction. However, for
a waveguide structure with linear dispersion [e.g., the one
shown in Fig. 10(a)], the phase-matching condition will
enforce a linear scaling of the total deposited quanta into
one particular waveguide mode. But due to relatively weak
dispersion of the waveguide modes, the coupling contribu-
tion from the waveguide modes dominates over substrate
losses, where the latter accounts for far less than 1% of the
total coupling strength over a 0.6-eV band with electron
velocity ve/c ≤ 0.6. For unpatterned thin films, the total
photon emission is 70% lower than for a waveguide, and
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(a) (b) (c)

FIG. 10. Electron energy-loss spectrum for a 50-µm interaction distance with (a) waveguides, (b) silica substrate, and (c) Si3N4 thin
film on silica substrate. Notice that for a waveguide the scaling is quadratic with respect to distance and more structured, whereas for
substrate and thin film the scaling is mostly linear and the emission is more broadband. The interaction with the waveguide mode will
prevail over substrate and thin film over an interaction length of just a few wavelengths. The dashed gray lines are a guide to the eye
showing Cherenkov regime boundaries for silica and Si3N4.

the emission is less structured and hard to collect. Note that
due to the presence of chromatic dispersion, the total cou-
pling strengths of different spatial-temporal optical modes
are linearly dependent on distance. Therefore, the ratio of
different coupling contributions is distance independent,
and depends only on waveguide dispersion and routing,
and e-beam positioning.

APPENDIX F: INTERACTION WITH OPTICAL
RESONATORS

We discussed only results for open-ended waveguides
so far. However, there have been experiments [35,46] that
use optical resonators with a discrete set of well-defined
frequency modes instead of a continuum of frequency
modes in the case of a waveguide. These well-defined
modes in state-of-the-art resonators typically have optical
linewidths of tens of MHz [49], and it is therefore difficult
to resolve their Green functions by sweeping the optical
frequencies in FEM simulations. Nonetheless, their Green
functions can be easily related to the one of the open-ended
optical waveguides by their optical susceptibility function
χ(ω) = 2

π
F

1+4(ω−ω0)2/κ2 enforced by the resonator periodic
boundary conditions, describing an optical resonance with
center frequency ω and Finesse F = 	νFSR

κ
, where the cav-

ity free-spectral-range (FSR) is used. One can retrieve the
resonator Green function G(ω) by separating the open
waveguide Green function into contributions from differ-
ent cavity modes [with mode field function Um(r), details
see Appendix C]

Gm(r, r′,ω) = Um(r′)
∫

d3r′′ε(r′′,ω)U∗
m(r

′′)G(r, r′′,ω),

and multiplying the resonance susceptibilities G(ω) =∑
m Gm(ω)χm(ω). For a closed-loop resonator structure,

the resulting interaction strength �(ω) will have a narrow-
linewidth comblike structure [46] instead in frequency
space, compared to the continuum case of an open-ended

waveguide, with the peak intensity enhanced by a factor
of 2F

π
.

A comparison between a waveguide and a resonator
coupling to free electrons (� and �r, respectively) is illus-
trated in Fig. 11. The comblike structure in the electron
energy-loss spectrum results from the spectral property of
the resonator that is nonlocal with respect to the interac-
tion region, and is only accessible since the interaction

ω

Γ

ω

Γ
r
× π

/
2F

e−Le Lcav(a)

(b) (c)

FIG. 11. Comparison between free electron coupling to
waveguides versus resonators. (a) Illustration of electron-photon
interaction mediated by an optical cavity. An optical pulse is first
generated inside the cavity. Then the pulse circulates inside the
cavity and couples out as a pulse train with repetition rate of FSR
and an exponential decaying envelope. (b) Coupling spectrum
for the pulse inside the resonator, indistinguishable to the one
generated inside a waveguide with the same geometry. (c) Cou-
pling spectrum for the out-coupled pulse trains, now exhibits a
comblike feature with frequency spacing matching the resonator
FSR, peak width matching the pulse-train envelope, and comb
envelope matching the spectral components of each individual
pulse.
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is analyzed in the electron energy basis, whose state is
also nonlocal in nature. However, in order to access these
comblike features in an EELS experiment, the electron-
cavity characteristic interaction time (determined by the
measured electron ZLP) has to be longer than the round-
trip time of the resonator, thus satisfying the energy-time
uncertainty principle. Nonetheless, the comblike structure
can always be accessed from the optical side with a mea-
surement time longer than the round-trip time, as was
shown in Ref. [46].

There is also no difference in the total coupling strength
in a given mode family for the open waveguide case
and the resonator case, as long as the the phase-matching
bandwidth 	ν is much larger than 	νFSR. The total inter-
action strength |gm|2 of a mode family will be considerably
altered by the resonator structure when the phase-matching
bandwidth 	ν is on the frequency scale of one FSR. The
minimum number of modes inside the phase-matching
bandwidth can be estimated with N ∼ 1

|ng−neff| (for com-
mon dielectric materials approximately 5–20), so in order
to access the regime where the phase-matching bandwidth
is smaller than the FSR, one requires |ng − neff| > 1, which
is generally very difficult to achieve with structures using
only dielectric materials. However, with common dielec-
tric structures and careful mode dispersion engineering,
the regime N = O(1) where the resonance structure has
a small impact is accessible.

The motivation of using a resonator instead of an open
waveguide is that the optical resonance frequencies are
more passively stable, and the wavepackets generated
from each resonator mode are generally much longer than
the optical pulse length enforced by the phase-matching
bandwidth from an open waveguide, and have energy
density enhanced by the cavity finesse at resonant fre-
quencies. Therefore, resonators have advantages in exper-
iments where optical excitation needs to interfere with
a reference local oscillator, and good mode matching is
required. Resonators also provide advantages in experi-
ments where optical frequency filtering is required, since
the optical density of the excitation is concentrated in
frequency. We show a frequency conversion example in
Appendix L to exploit this advantage of optical resonators
to convert THz broad optical excitation to MHz broad opti-
cal or microwave excitation, useful to bridge interactions
with superconducting qubits, mechanical oscillators and
long-life-time optical qubits.

APPENDIX G: PURITY AND FIDELITY OF
HERALDED OPTICAL QUANTUM STATES

In this section, we derive the heralded optical states by
measuring electron energy, and calculate the state fidelity
and purity. The optical state generated when there is no
sideband overlap (not a fundamental limit), and when con-
ditioning on a narrow bandwidth around an energy slice

Ec ∼ N�ω is

|ψph〉 =
∫ ∏N

k=1 dωkg∗
ωk
ψ
(
E + �(

∑
k ωk)

)
â†
ωk |0〉√∫ ∏N

k=1 dωk|gωk |2|ψ
(
E + �(

∑
k ωk)

) |2(N !)2
.

As one can see, the coefficient is a product between the
electron wave function and the coupling coefficient. This
reflects on the fact that the electron energy distribution
is correlated with the frequency at which the photon is
created. One will see later that this is not the case for
conditional electron states, since in the no-recoil limit the
frequency of the photon does not depend on the energy of
the electron.

In the first limit when electron ZLP is much nar-
rower than phase-matching bandwidth, we can simplify the
expression to

|ψph〉 =
∫ ∏N

k=1 dωkψ
(
E + �(

∑
k ωk)

)
â†
ωk |0〉√∫ ∏N

k=1 dωk|ψ
(
E + �(

∑
k ωk)

) |2(N !)2
.

for single-photon states. The frequency components of the
generated state are directly linked to φ(ω) ∝ ψ(Ec + �ω).
Ignoring the waveguide dispersion during propagation, we
have the optical waveform

φ(T = t − z‖/v) = ψ̃(T)eiωcT,

where it has a center frequency determined by the con-
ditional electron energy, and an envelope profile that is
exactly the time-domain electron spatial profile ψ̃(T).
Therefore, by shaping electron wave functions and condi-
tioning on the selected sideband energy, one can transfer
the electron spatial wave function to the optical wave-
form of the photonic state at a desired optical frequency.
For readers familiar with optical spontaneous parametric
down-conversion, a similar technique is also used in her-
alded single-photon sources [128] to imprint the waveform
of the pump field onto the signal field.

For conditional multiphoton optical states, as one can
immediately see from the expression, since the elec-
tron wave function generally cannot be factorized to N
components ψ(E + �(

∑
k ωk) �= ∏

k F(E,ωk), the condi-
tional state can not be addressed into a Fock state of a
well-defined spatial-temporal mode, but since high phase-
matching bandwidth usually comes with low g, we restrict
ourselves to single-photon states in this limit.

We define the fidelity of the heralded single-photon state
as

F =
∣∣∣〈ψ ′

ph|ψph〉
∣∣∣2

=
∣∣∫ dωgω|ψ(E + �ω)|2∣∣2(∫

dω|gω|2|ψ(E + �ω)|2) (∫ dω|ψ(E + �ω)|2) .
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For the case of long propagation, we usually end up with very narrow phase-matching bandwidth and high interaction g.
In this case, when conditioning on the N th energy sideband, we can simplify the expression to

|ψph〉 =
∫ ∏N

k=1 dωkg∗
ωk

â†
ωk |0〉√∫ ∏N

k=1 dωk|gωk |2(N !)2
,

where it is a well-defined N -photon Fock state with mode profile φ(t) (see Appendix I), which is determined by both the
waveguide routing and the material dispersion. To this end, one can adapt the electron positioning and velocity to shape
the optical waveform.

We define the fidelity to this state as

F =
∣∣∣〈ψ ′

ph|ψph〉
∣∣∣2 =

∣∣∣∫ ∏N
k=1 dωk|gωk |2ψ

(
E + �(

∑
k ωk)

)∣∣∣2(∫ ∏N
k=1 dωk|gωk |2

) (∫ ∏N
k=1 dωk|gωk |2|ψ

(
E + �(

∑
k ωk)

) |2) .

With more electron operation stages, we can select the electron measurement basis. After the pair-state generation, if we
pass the electron through, e.g., a PINEM interaction stage characterized by the scattering matrix S(α), by conditioning
on the energy sideband |E〉, we are effectively measuring under the basis S†(α)|E〉 = ∑

i c∗
i |Ei〉. Formally, we write down

the conditional optical state as

|ψph〉 ∝
∑

N

cN gN

√
N !

|N 〉,

ρ̂ph = 〈E|S(α)ρ̂S†(α)|E〉,
where |g|2 = ∫

dω|gω|2. This effectively projects the optical state into a more general state other than Fock states if one
directly measures the electron energy after the pair-state preparation. For these general states, the corresponding heralded
state fidelity is an average of all the involved Fock states with a correct weight

F =
∣∣∣〈ψ ′

ph|ψph〉
∣∣∣2 =

∣∣∣∣∣∣∣∣
e−|g|2 ∑

N

|cN |2|g|2N

N !

∫ ∏N
k=1 dωk|gωk |2ψ

(
EN + �(

∑
k ωk)

)
√(∫ ∏N

k=1 dωk|gωk |2
) (∫ ∏N

k=1 dωk|gωk |2|ψ
(
EN + �(

∑
k ωk)

) |2)

∣∣∣∣∣∣∣∣

2

and the same kind of weighted averaging needs to be applied to the heralded state purity as well.
The single-photon state purity can be degraded by two main effects. First, spectral overlap between different sideband

orders. Second, relative bandwidth ratio between ZLP and phase-matching bandwidth. For higher-order Fock states, it
is further affected by the spectral distribution of the other optical mode families as well, e.g., the electron might not be
able to distinguish between a two-photon transition of the fundamental optical mode, and a single-photon transition of a
higher-order mode. Here, we categorize this case into the spectral overlap between electron sidebands.

First, let us investigate the purity degradation of the conditional photonic Fock state due to the sideband spectral overlap.
In the limit of narrow phase-matching bandwidth, the optical density matrix after detection at electron energy band 	E
electron energy event, is

ρ̂ph = 1∑
N
(
∫

dω|gω|2)N
N !

∫
	E dE|ψ(E + N�ω)|2

∫
	E

dE

(∑
N

(− ∫ dωg∗
ωâ†

ω)
N

N !

∏
ω

|0ω〉ψ(E + N�ω)

)

×
(∑

N

ψ∗(E + N�ω)
∏
ω

〈0ω| (−
∫

dωgωâω)N

N !

)
.

The purity of this state is

Tr
[
ρ̂2

ph

]
=
∑

N ,N ′
(
∫

dω|gω|2)N+N ′

N !N ′!
∫∫
	E dEdE′ψ(E + N�ω)ψ∗(E + N ′�ω)ψ∗(E′ + N�ω)ψ(E′ + N ′�ω)(∑

N
(
∫

dω|gω |2)N
N !

∫
	E dE|ψ(E + N�ω)|2

)2 .
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Then we investigate the effect of finite phase-matching bandwidth, and in the limit where there is no photon sideband
overlaps, the conditional single-photon Fock state is

ρ̂ph = 1∫∫
	E dEdω|gω|2|ψ(E + �ω)|2

∫
	E

dE
(∫

dωg∗
ωψ(E + �ω)â†

ω|0〉
)(∫

dωgωψ∗(E + �ω)〈0|âω
)

,

with corresponding state purity

Tr
[
ρ̂2

ph

]
=
∫∫
	E dEdE′dωdω′|gω|2|gω′ |2ψ(E + �ω)ψ∗(E + �ω′)ψ∗(E′ + �ω)ψ(E′ + �ω′)(∫∫

	E dEdω|gω|2|ψ(E + �ω)|2)2 .

In the limit of perfect electron energy resolution 	E → 0, Tr
[
ρ̂2

ph

]
→ 1. However, experimentally, either the ZLP con-

sists of a statistical uncertainty, or the conditioning window cannot be set arbitrarily small, due to its effect on the heralding
rate. As a result, the purity is limited by both the phase-matching bandwidth, and the relative heralding bandwidth.

For a general N -photon Fock state, the density matrix of the heralded state is

ρ̂ph = 1∫∫
	E dE

∏N
k=1 dωk|gωk |2|ψ

(
E + �(

∑
k ωk)

) |2(N !)2

∫
	E

dE

(∫ N∏
k=1

dωkg∗
ωk
ψ

(
E + �(

∑
k

ωk)

)
â†
ωk

|0〉
)

×
(∫ N∏

k=1

dωkgωkψ
∗
(

E + �(
∑

k

ωk)

)
〈0|âωk

)

with the corresponding state purity

Tr
[
ρ̂2

ph

]

=
∫∫
	E dEdE′∏N

i,j =1 dωidω′
j |gωi |2|gω′

j
|2ψ (E + �(

∑
i ωi)

)
ψ∗
(

E + �(
∑

j ω
′
j )
)
ψ∗ (E′ + �(

∑
i ωi)

)
ψ
(

E′ + �(
∑

j ω
′
j )
)

(∫∫
	E dE

∏N
i=1 dωi|gωi |2|ψ

(
E + �(

∑
i ωi)

) |2)2

To illustrate the impact of relative heralding bandwidth on state purity, we show the overall scaling of 1 − P ∝ γ 2

in the limit of small heralding bandwidth in Fig. 12. For a general state |ψph〉 = ∑
cN |N 〉, which consists of a coherent

superposition of different Fock states |N 〉, as discussed before in the state fidelity calculation, the purity is a |cN |2 weighted
average of each individual Fock state component, shown as

Tr
[
ρ̂2

ph

]
=
∑

N

|cN |4PN +
∑
N ,N ′

|cN |2|cN ′ |2PN ,N ′

PN ,N ′ =
⎛
⎝∫∫

	E
dEdE′

N∏
i=1

N ′∏
j =1

dωidω′
j |gωi |2|gω′

j
|2ψ

(
E + �(

∑
i

ωi − Nω)

)
ψ∗

⎛
⎝E + �(

∑
j

ω′
j − N ′ω)

⎞
⎠

× ψ∗
(

E′ + �(
∑

i

ωi − Nω)

)
ψ

⎛
⎝E′ + �(

∑
j

ω′
j − N ′ω)

⎞
⎠
⎞
⎠

×
(∫∫

	E
dE

N∏
i=1

dωi|gωi |2|ψ
(

E + �(
∑

i

ωi − Nω)

)
|2
)−1

×
⎛
⎝∫∫

	E
dE

N ′∏
j =1

dω′
j |gω′

j
|2|ψ

⎛
⎝E + �

⎛
⎝∑

j

ω′
j − N ′ω

⎞
⎠
⎞
⎠ |2

⎞
⎠

−1

,
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FIG. 12. Heralded optical state purity versus relative heralding
bandwidth at different Fock-state basis. Here we assume 20-µm
interaction length.

where PN is the purity of the N th Fock-state component,
PN ,N ′ is the purity of the off-diagonal terms, and ω is the
center frequency of the optical state.

APPENDIX H: PURITY OF HERALDED
ELECTRON STATE

In this section, we consider heralding schemes that gen-
erate complex electron states, and derive the expression of
purity of the heralded electron state by the optical mea-
surement. With multiple single-photon detectors, if one
conditions on a N -photon counting event, one projects the
electron into a corresponding energy state that loses an
equal amount of energy. However, these types of photon-
counting measurements cannot project the electron into a
coherent superposition of multiple sideband states. This is
the result of the chosen measurement operator a†a, whose
eigenstates are Fock states. However, one can select a mea-
surement basis to project the electron onto a more general
state. These operations require high detection efficiencies
(no information loss), which has to be considered care-
fully when applying optical elements, e.g., spectral filters.
The first simple method to change the measurement basis
would be to combine the signal with a strong local oscilla-
tor through a high-aspect-ratio beam splitter. This modifies
the detection from photon-number detection to field detec-
tion in the basis of displaced Fock states. With the ability
to mode match to an optical reference field, homodyne
types of detection can also be realized. In the setting where
the signal field is split and detected by two homodyne

in orthogonal quadratures, the measurement is effectively
under the coherent-state basis. More sophisticated opera-
tion can be done with an atomic system to provide arbitrary
measurement basis.

In the special case of measuring in coherent-state
basis |α〉 = ∑

N c∗
N |N 〉 = e−|α|2/2∑

N
αN√

N !
|N 〉 (scheme see

Appendix K), we can derive the effective modulation
applied on the electron wave function as

A(z) =
∑

N

cN gN

√
N !

eiN ω
v z

∝
∑

N

(gα∗eiωv z)N

N !
= egα∗eiωv z

,

which is effectively a direct density modulation of

|A(z)|2 ∝ e2|gα∗| cos( ωv z+θgα).

Now, we consider a general heralded electron state, with
the N th sideband density-matrix component as

ρ̂e = 1∫∫
	ω

dE
∏N

k=1 dωk|gωk |2|ψ
(
E + �(

∑
k ωk)

) |2

×
∫
	ω

N∏
k=1

dωk|gωk |2
(∫

dEψ(E)|E − �(
∑

k

ωk)〉
)

×
(∫

dEψ∗(E)〈E − �(
∑

k

ωk)|
)

.

Note that for each sideband component, the correspond-
ing electron wave function is not shaped by the optical
detection and maintains the original shape. This is in
sharp contrast to heralding optical state by measuring elec-
tron energies. The difference is that the electron energy
loss heavily depends on optical frequency, but the opti-
cal frequency does not depend on electron energy under
the no-recoil approximation. Therefore, any measurement
on the frequency of the created photons simply translates
the original electron energy state down by a correspond-
ing photon energy. Because of that, we do not define the
fidelity of the electron wave function in the limit of perfect
photon-frequency resolution.

We proceed to calculate the state purity of the N th
electron sideband component as

Tr
[
ρ̂2

e

]

=
∫∫
	ω

dEdE′∏N
i,j =1 dωidω′

j |gωi |2|gω′
j
|2ψ (E + �(

∑
i ωi)

)
ψ∗
(

E + �(
∑

j ω
′
j )
)
ψ∗ (E′ + �(

∑
i ωi)

)
ψ
(

E′ + �(
∑

j ω
′
j )
)

(∫∫
	ω

dE
∏N

i=1 dωi|gωi |2|ψ
(
E + �(

∑
i ωi)

) |2)2 ,
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where the same weighted average needs to be applied for
a general state with weights |cN |2, similar to the case of
heralded optical states.

APPENDIX I: OPTICAL WAVEFORM
GENERATED FROM THE ELECTRON-PHOTON

INTERACTION

In this section, we derive the waveform of the con-
ditional optical state when considering the waveguide
dispersion.

The composite quantum state after the electron-photon
interaction is

|ψ〉 = exp
(∫

dωgωb̂†
ωâω − h.c.

)
|ψe〉|0〉

= e−
∫

dω|gω |2
2 e− ∫ dωg∗

ω b̂ω â†
ωe
∫

dωgω b̂†
ω âω |ψe〉|0〉

= e−
∫

dω|gω |2
2 e− ∫ dωg∗

ω b̂ω â†
ω |ψe〉|0〉

= e−
∫

dω|gω |2
2

∑
N

(
− ∫ dωg∗

ωb̂ωâ†
ω

)N

N !
|ψe〉|0〉

when conditioned on the nth energy sideband of the elec-
tron state (with electron ZLP much wider than the coupling
bandwidth to the optical modes), the heralded optical
state is

|ψph〉 ∼
(

−
∫

dωg∗
ωâ†

ω

)N

|0〉.

When the interaction is dominated by the coupling to a sin-
gle optical mode family, one can generate the Fock state of

a well-defined spatial-temporal mode as

|ψph〉 ∼ (
â†

m

)N |0〉,

âm =
∫
	ωm

dωφm(ω)âω,

φm(ω) = g∗
ω,m

g∗
m

.

From these results, one can derive the temporal field profile
function of this spatial-temporal mode, as it may concern
experiments that require waveform shaping. Straight from
the definition, one gets

φm(r, t) ∝
∫∫

dzdωeiω(z/ve−t)Ũ∗
m,z(R0, z,ω)Ũm(r,ω).

When chromatic dispersion of the frequency modes is
ignored, one retrieves the waveform shown in the main
text. When dispersion is considered, one can further
remove the frequency dependence of the mode profile
functions by assuming an open waveguide (e.g., no sharp
frequency response in the phase-matched region) and up to
second-order dispersion β,

Ũm(r,ω) ≈ Ũm(r,ωm)ei(ω−ωm)r‖/vg eiβ(ω−ωm)2r‖/vg ,

where ωm is the center frequency of the pulse, selected so
that the phase velocity at ωm matches the electron velocity
v, vg � v is the corresponding group velocity, and r‖ is
the longitudinal coordinate along the waveguide trajectory.
One can then rewrite the expression as

φm(r, t) ∝
∫∫

dzdωei (ω−ωm)
v

(
z− v

vg (R‖(z)−r‖)−vt
)
eiβ (ω−ωm)2

vg (r‖−R‖(z))eiωm(z/ve−t)Ũ∗
m,z(R0, z,ωm)Ũm(r,ωm)

∝
∫

dze
i

(
z− v
vg (R‖(z)−r̃‖)

)2

4β(r‖−R‖(z))v2/vg
ei π4 sgn(β(r‖−R‖(z)))√
|β (r‖ − R‖(z)

) |eiωm(z/ve−t)Ũ∗
m,z(R0, z,ωm)Ũm(r,ωm)

∝
∫

dzK(z, r, t)Ũ
∗
m,z(R0, z,ωm)Ũm(r,ωm)e−iωmt

where r̃‖ ≡ r‖ − vgt is the waveform coordinate in the optical pulse frame with group velocity vg . Ũ
∗
m,z(R0, z,ωm) is

the mode envelope profile at wave vector ωm/v. The integral kernel

K(z, r, t) ≡ e
i

(
z− v
vg (R‖(z)−r̃‖)

)2

4β(r‖−R‖(z))v2/vg
ei π4 sgn(β(r‖−R‖(z)))√
|β (r‖ − R‖(z)

) |
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represents a phase scrambling around the waveform coor-
dinate r̃‖ with a bandwidth of approximately |β(r‖)v2/vg|,
due to the presence of second-order dispersion. One can get

physical intuition of the waveform in the limit of weak dis-
persion (β → 0), where one can approximate the integral
kernel with a Dirac delta function,

φm(r, t) ∝
∫

dzδ
(

z − v

vg

(
R‖(z)− r̃‖

))
Ũ

∗
m,z(R0, z,ωm)Ũm(r,ωm)e−iωmt ∝

∑
i

Ũ
∗
m,z(R0, zi,ωm)∣∣R‖∂z(zi)− vg

v

∣∣ Ũm(r,ωm)e−iωmt

where zi(r, t) : zi
v

− 1
vg

(
R‖(zi)− r̃‖

) = 0 are the spatial
z coordinates where the vacuum field contributes the most
through the phase-matching condition to the generated
field at r coordinate at time t. Therefore, the excited opti-
cal profile in the time domain is easily connected to the
envelope of the optical mode field profile Ũm,z(R0, z,ωm)

along the electron propagation direction, when the mode
dispersion is sufficiently weak. In the exact limit β = 0,
there can be unphysical scenarios when |R‖∂z(zi)− vg

v
| =

0, which corresponds to the infinite phase-matching band-
width. However, in physical materials, the phase-matching
bandwidth is always finite.

The mode dispersion during pulse propagation will
cause pulse shortening or broadening by shifting the phase
of different frequency components and leaving the ampli-
tude unchanged. This can be easily corrected and is not
a fundamental limit to construct an arbitrary waveform.
Therefore, one can structure any desired optical waveform
φ(r, t) by positioning the electron-beam trajectory on an
optical waveguide with a tailormade waveguide structure.

APPENDIX J: IMPRINTING ELECTRON WAVE
FUNCTION ONTO THE OPTICAL WAVEFORM IN

AN INTERFEROMETRIC FASHION

In the regime where the electron energy spread is much
narrower than the phase-matching bandwidth, the spatial-
temporal mode is defined completely by the electron wave
function, see Appendix G, with a phase contribution from
the coupling coefficient gωc=−Ec/(N�), where N is the side-
band order. Whenever an electron interacts with an optical
mode, and measured on the N th electron energy sideband
at the energy Ec, it is equivalent to apply an operator

Ŝ ∝ ψ(Ec + �ω)
(

eiθg â†
ω

)N
onto the optical state. When

the electron interacts with two waveguides in sequential
manner (identical geometry), the operator is

Ŝ ∝
∫

dωψ(E + �ω)
(

eiθg1 â†
1,ω + eiθg2 â†

2,ω

)N
,

where ai is the spatial-temporal mode on waveguide i =
1, 2, and the phase is determined by the the reference point

from both the optical side and the electron side. When the
two interaction regimes (positions of waveguides) are sep-
arated by a spatial distance that correspond to an electron
propagation time 	t, we have the following phase relation
of the coupling coefficients

e−iĤ0	tŜe-ph(gω)e−iĤ0	t = Ŝe-ph(gωeiω	t),

where Ĥ0 is the electron free-evolution Hamiltonian. If we
assume the optical phase references are set to 0, we can
rewrite the scattering as

Ŝ ∝
∫

dωψ(E + �ω)
(

â†
1,ω + eiω	tâ†

2,ω

)N
.

As one can see, this interaction projects the optical state
into a quantum coherent spatial superposition state of two
spatially separated waveguides. In the case that the two
waveguides are connected to a 50:50 beam splitter to form
an interferometer, the photon flux difference f (t) can be
expressed as

f (t) ∝ Re
[
ψ̃(t)ψ̃∗(t +	t)eiωc	t] ,

which forms an effective optical interferometer of the time
delay the electron experiences between two interaction
stages, but can also be induced by an external potential.
Here, to extract the delay time, one can simply look at the
photon-counting record at different electron energy records
Ec, which determines ωc. Therefore, compared to conven-
tional optical interferometry where one has to scan the
laser frequency over a very broad range to resolve length
difference to the order of a few wavelengths, here, we
exploit the very wide electron emission bandwidth to get
an accurate length difference, just by looking at different
electron energy records. Note that here the imprinted elec-
tron wave function provides only a profile function with
an effective optical delay (convenient for automatic mode
matching between the two arms), with its original fast-
evolving phase unobservable. Therefore, for a phase object
positioned between the two waveguides, the interferome-
ter sensitivity is on the optical wavelength scale, not on the
scale of the de Broglie wavelength of the electrons.
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APPENDIX K: OPTICAL DETECTION IN
COHERENT-STATE BASIS

The scheme to conduct optical detection in the coherent-
state basis is as follows: an arbitrary optical state |ψ〉 is
passed to the input port 1 of a 50:50 beam splitter ÛBS,
with two output ports 1 and 2. Each output port is passed
to a homodyne detection stage where orthogonal quadra-
tures are measured. This two-quadrature measurement is
then equivalent to projecting the input state into a coherent
state. In the following, we first briefly review the quadra-
ture projection in homodyne measurements, and then prove
this claim.

Homodyne detection is conducted by interfering the
signal field with a strong local oscillator field |A〉 at a bal-
anced beam splitter, and the differential photon number at
the two output ports is measured. It has been shown in
Ref. [129] that this type of detection can be simplified as
a quadrature-state projection, where there is a unique map-
ping x = m/

√
2|A| between the differential photon number

m and the measured quadrature state |x〉p . The mapping
requires the photon-number variance of the local oscillator
field |A〉 to be much bigger than that of the optical state
|ψ〉.

Therefore, the scheme effectively states that two orthog-
onal quadrature projections |x1〉p ⊗ |x2〉p at the two output
ports of a beam splitter projects the input state into a coher-
ent state |α〉. We prove it by expressing a quadrature state
as a function of creation operators acting on the vacuum
state [130], as in

|x〉p = e−x2/2

π1/4 e− â†2
2 +√

2xâ† |0〉.

We also use the following relations:

Û†
BSâ†

1ÛBS = â†
1 + iâ†

2√
2

, Û†
BSâ†

2ÛBS = iâ†
1 + â†

2√
2

.

Given the measurement results that the output ports are
states |x1〉p and |x2〉p , and a vacuum state |02〉 at the sec-
ond input port, the conditional state at the first input port
will be

|ψc〉 = 〈02|Û†
BS|x1〉p |x2〉p = 〈02|Û†

BS
e−(x1+x2)

2/2

π1/2

× e− â†
1

2+â†
2

2

2 +√
2(x1â†

1+x2â†
2)ÛBSÛ†

BS|01〉|02〉

= e−(x1+x2)
2/2

π1/2 〈02|e−iâ†
1a†

2+(x1+ix2)â
†
1+(ix1+x2)â

†
2 |01〉|02〉

= e−(x1+x2)
2/2

π1/2 e(x1+ix2)â
†
1 |01〉 = π−1/2D̂(x1 + ix2)|01〉

= π−1/2|α1 = x1 + ix2〉.

The factor of π−1/2 comes from the overcompleteness of
the coherent-state basis, as in

1 = 〈02|Û†
BS

(∫
dx1dx2|x1〉p〈x1|p |x2〉p〈x2|p

)
ÛBS|02〉

=
∫

dx1dx2π
−1|α1 = x1 + ix2〉〈α1 = x1 + ix2| = 1.

As one can see, the conditioning of a coherent state comes
from the cancelation of second-order term â†2 due to the
even splitting ratio of the beam splitter and a correct phase
relation. If this requirement is not met, it will result in a
squeezed coherent state as the conditional state, e.g., for a
beam splitter with a transmission of η,

|ψc〉 = e−(x1+x2)
2/2

π1/2 e
(2η−1)â†

1
2

2 +√
2(

√
ηx1+i

√
1−ηx2)â

†
1 |01〉.

APPENDIX L: FREQUENCY CONVERSION
USING RESONATOR STRUCTURES

As discussed in the previous section, optical resonators
provide unique advantages over straight waveguides in
terms of the concentrated optical density. Here we show an
example scheme to use on-chip ring-resonator structures to
convert the THz-broad optical excitation from the electron-
photon interaction to a MHz-broad optical and electrical
excitation, limited by the optical resonator linewidth. Here
we define the spatial-temporal mode for the optical excita-
tion of a resonator as â† = ∫

dω
∑

i φi(ω)â
†
ω, where each

φi(ω) is a Lorentzian centered around ωi + ωm with ωi
the pump center frequency. We also define the microwave
excitation as ĉ† ∝ ∫

dωφ(ω)ĉ†
ω, centered around ωm. In the

ideal case that all the optical azimuthal modes are identi-
cal in their frequency components, we have φi(ω + ωi) =
φ(ω).

Near-unity efficiency optical to microwave conversion
is demonstrated in χ2-type materials [98,99]. We assume
a ring-structure optical resonator (conversion ring) with a
strong χ2 nonlinearity and a relatively high optical qual-
ity factor, with identical cavity azimuthal modes of two
orthogonal polarizations (e.g., TE and TM fundamental
modes) with approximately the same FSR, and a frequency
spacing approximately ωm between these two mode fami-
lies that matches the microwave mode frequency ωm. Prac-
tically, the frequency matching is only required between
a few optical resonances, since the electron-photon opti-
cal excitation from a ring resonator can occupy only 5–20
azimuthal modes. We use this resonator for frequency
down-conversion of the broadband photon excitation â†

at frequencies ωi + ωm from the electron-photon inter-
action, with a specially structured local-oscillator pump
at frequencies ωi. We further assume that there are two
more rings on the chip, with matched optical frequen-
cies of the modes of interest. We use one of the rings for
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electron-photon interaction, where the photon excitation is
generated on the TM polarization at frequencies ωi + ωm
(signal field). This ring should be designed with the high-
est quality factor possible, since its linewidth determines
the microwave linewidth φ(ω), and should be narrower
than the linewidth of the conversion ring. We use the other
ring for generating or filtering a structured cw optical pump
on the TE polarization with frequencies ωi (LO field).
We combine LO and signal field through a polarization
beam splitter, and send them into the conversion ring for
frequency down-conversion.

In principle, the signal field and LO field does not have
to be orthogonal in polarization to enable efficient and low-
noise frequency conversion. The orthogonal polarizations
considered here are intended to prevent spectral leakage of
the LO field to the signal mode, even though they can be
sufficiently separated in frequency.

When the conversion ring is pumped by the LO
field with cooperativity C = 1 in each pump-field mode
pairs, the signal frequency component φi(ω) at the
azimuthal mode at frequency ωi + ωm is converted to a
microwave photon at frequency ωm with frequency compo-
nent φ(ω) and conversion efficiency η = 100%. When all
the azimuthal modes of the conversion ring convert their
signal field components down to the same microwave fre-
quency ωm with unity efficiencies, the original signal pulse
with THz-broad frequency components from the electron-
photon interaction will be converted to a single microwave

mode excitation at frequency ωm with frequency width
down to MHz with a unity efficiency, and at the same time
generate a pump field photon with THz-broad frequency
component due to the energy conservation.

Here, we formally analyze this conversion process. We
define the scattering matrix of the conversion process with
a multimode three-wave mixing operator

ŜTWM = e
∑

i
∫
βi(ω,ωi)âω+ωi ĉ†

ω d̂†
ωi−h.c.,

where ωi is the frequency of each cw pump comb tooth,
and βi the coupling constant amplified by the pump field.
The coupling constant βi(ω,ωi) contains the conversion
frequency response of each pump-signal mode pair, includ-
ing effects, e.g., phase-matching, cavity responses of the
signal and pump field, and microwave cavity response.
The operators are the signal field annihilation âω, the
microwave field creation operator ĉ†

ω, and the pump field
operator d̂†

ωi = ∑
Nωi

|Nωi + 1〉〈Nωi |, which is specially
defined high up in the photon ladder, similar to the elec-
tron ladder operator in the no-recoil limit, that represents
the addition of a photon to the classical coherent pump
field |αi〉 with frequency ωi. In the single-mode conver-
sion case, d̂† can be ignored. However, in the multimode
conversion considered here, neglecting d̂† leads to nonuni-
tary operations. Under such an operation, the state of the
system changes to

ŜTWM|ψph,ψm,ψpump〉 = ŜTWMF(â†)|0a, 0c,αi〉 = F(ŜTWMâ†Ŝ†
TWM)ŜTWM|0a, 0c,αi〉 = F(ŜTWMâ†Ŝ†

TWM)|0a, 0c,αi〉
ŜTWMâ†Ŝ†

TWM =
∑

i

φi(ω + ωi) sin(|βi(ω,ωi)|)eiθi d̂†
ωi

ĉ†
ω +

∑
i

φi(ω) cos(|βi(ω − ωi,ωi)|)â†
ω,

where â† = ∫
dω
∑

i φi(ω)â
†
ω is used, θi = arg[βi(ω,ωi)],

and also |ψph〉 = F(â†)|0a〉. In the ideal case where φi(ω +
ωi) = φ(ω)Gi is separated to the cavity density of states
φ(ω) and the electron-photon phase-matching coefficient
Gi at signal mode i, with unity cooperativity βi(ω,ωi) =
π/2 at every pump-signal mode pair over the frequency
components of interest, the state is simplified to

|ψm,ψpump〉 = F(ĉ†d̂†)|0c,αi〉,

where

ĉ† =
∫

dω
√∑

i

|Gi|2φ(ω)ĉ†
ω,

d̂† =
∑

i

Gi√∑
i |Gi|2

eiθi b̂†
ωi

.

Since the pump field is a strong coherent field and main-
tains a unity overlap with a photon-added state, we can
trace out the pump-field state space, and arrive at

|ψm〉 = F(ĉ†)|0c〉,

where the state of the signal field |ψph〉 = F(â†)|0a〉 is
transferred to the microwave field, with frequency com-
ponents limited by the signal cavity density of states ∝
φ(ω).

Practically, the amplitude and frequency components
of the LO field has to be specifically shaped, but since
the optical excitation from the electron-photon interaction
can occupy only 5–20 optical modes with the maximum
interaction length achievable with a racetrack resonator
geometry, it is possible to shape a reasonably accurate
LO field with a soliton [92] or an electro-optic comb [93]
source and a frequency shaper [94].
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There are currently two types of main-stream optical-
to-microwave converters [3]. One type uses χ2 optical
nonlinearity to directly convert signals from the optical
domain to the microwave domain, as is considered here.
The other type [131] uses a mechanical oscillator as an
intermediate stage to first convert the optical signal to a
mechanical signal using optomechanical couplings, and
then from the mechanical signal to a microwave signal
using electromechanical couplings. Both types of sys-
tems have shown near-unity conversion efficiency and
low added noise, but the mechanical one suffers from the
low-conversion bandwidth typically at kHz level [not pos-
sible to achieve βi(ω,ωi) ∼ π/2 over the cavity bandwidth
approximately MHz], limited by the electromechanical
and optomechanical coupling rates. Therefore, we con-
sider only χ2-type optical-to-microwave converters for our
scheme since they offer broadband transductions, essen-
tial to convert all the frequency components of the optical
excitation to the microwave domain. For realistic lithium-
niobate ring resonators with 50-µm radius, the microwave
frequency at 4 GHz, with optical and microwave cavity
linewidths at κph/m/2π ∼ 10 MHz, the estimated required
pump power to reach Ci = 1 is reasonable at Pi ∼ 100 µW
[132].

Similar types of schemes can also down-convert the
signal to an optical excitation with MHz linewidth. But
generally, a relatively uniform mode spacing over multi-
ple azimuthal modes at optical frequency scale is harder to
design for triply resonant schemes.

APPENDIX M: BEYOND NO-RECOIL
APPROXIMATION

In the no-recoil limit, the coupling coefficient gω is not
energy dependent, as is the case for the scenarios we dis-
cuss in the current study. However, the recoil effect will
be significant with multistage operations with sufficient
spatial separation, where the effect of electron energy-
momentum dispersion kicks in.

Here, we consider two stages separated by distance
	L, with near-point-like interaction regions. The coupling
coefficient for the first stage is

g1,ω ∝
∫

dze−iωv zU1,z(z),

where U1,z(z) is the optical mode function along ẑ direc-
tion. At the first stage the recoil effect does not play a
significant role yet. However, at the second stage that is	L
away, the electron energy dispersion �k =

√
E2/c2 − m2c2

changes the phase-matching integral of the off-diagonal

element |E + �ω〉〈E| to

g2,ω(	E = E − E0) ∝
∫

dze−i
(
ω
v −2π

(
2	E
�ω +1

)
1

zT

)
zU2,z(z)

≈ ei2π
(

2	E
�ω +1

)
	L
zT

∫
dze−iωv zU2,z(z),

where now the coupling coefficient accumulates an energy-

dependent phase ei2π( 2	E
�ω +1) 	L

zT . Here zT = 4πmv3γ 3/�ω2

is the Talbot distance [133] and γ is the Lorentz fac-
tor. 	E is the distance to the original center electron
energy E0, which is the reference point of the disper-
sion quadratic expansion. In the case of v/c ∼ 0.65 and
ω ∼ 2π × 2 × 1014 Hz, zT ∼ 1 m. For the largest pho-
ton number |N = 10〉 discussed in the current paper, and
a typical photonic chip length 	L ∼ 5 mm, the phase
accumulation is θ = 0.1 × 2π , therefore negligible in our
discussion. We anticipate the effect to dominate, e.g., when
two photonic chips are involved and with sufficient separa-
tion 	L ∼ 1 m. When that is indeed the case, we can still
use the scattering matrix with the no-recoil approximation
(used in the current paper) at the second stage, but add a
propagation matrix

Ŝprop =
∫

dE exp
[−i	L(E − E0)

2

2�mv3γ 3

]
|E〉〈E|,

to account for the recoil-induced phase accumulation of
different energy components when arriving at the second
stage. The phases accumulate differently between different
energy components due to their different group velocities,
and therefore there is an effective timing difference of their
arrival at the second stage, which is treated as a point
interaction with no-recoil approximation. This is consis-
tent with the literature that uses Schrödinger equations to
solve for the wave-function evolution between two inter-
action stages [40], and can also explain effects observed in
double-PINEM-type experiment [23].

However, our assumption of pointlike interaction will
break down when a single interaction is sufficiently long,
e.g., L > 10 cm, and with transitions involving Fock states
|N > 10〉. Then a single scattering matrix including the
recoil effect has to be used to account for the dispersive
phase accumulation during the interaction, as

˜̂Se-ph = exp
[∫

dωgω
˜̂b†

ωâω − h.c.
]

,

where the modified electron energy lowering operator is

˜̂bω =
∫

dE|E〉〈E + �ω|
∫

dzei
(
ω
v −2π

( 2(E−E0)
�ω +1

)
1

zT

)
zU∗

z (z)∫
dzeiωv zU∗

z (z)

and the no-recoil coupling coefficient gω is used. For
nonguided electron beam with divergence angle around
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0.2 mrad, and an electron-surface gap 100 nm, the longest
propagation on chip is restricted to about 1 mm. To achieve
long enough distance such that recoil effect kicks in, an
on-chip electron guiding structure [36,77] is required.
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