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A fruitful approach towards neuromorphic computing is to mimic mechanisms of the brain in physical devices,
which has led to successful replication of neuronlike dynamics and learning in the past. However, there remains a
large set of neural self-organization mechanisms whose role for neuromorphic computing has yet to be explored.
One such mechanism is homeostatic plasticity, which has recently been proposed to play a key role in shaping
network dynamics and correlations. Here, we study—from a statistical-physics point of view—the emergent
collective dynamics in a homeostatically regulated neuromorphic device that emulates a network of excitatory
and inhibitory leaky integrate-and-fire neurons. Importantly, homeostatic plasticity is only active during the
training stage and results in a heterogeneous weight distribution that we fix during the analysis stage. We verify
the theoretical prediction that reducing the external input in a homeostatically regulated neural network increases
temporal correlations, measuring autocorrelation times exceeding 500 ms, despite single-neuron timescales of
only 20 ms, both in experiments on neuromorphic hardware and in computer simulations. However, unlike
theoretically predicted near-critical fluctuations, we find that temporal correlations can originate from an
emergent bistability. We identify this bistability as a fluctuation-induced stochastic switching between metastable
active and quiescent states in the vicinity of a nonequilibrium phase transition. Our results thereby constitute a
complementary mechanism for emergent autocorrelations in networks of spiking neurons with implications for
future developments in neuromorphic computing.

DOI: 10.1103/PhysRevResearch.5.033035

I. INTRODUCTION

Neuromorphic computing covers a variety of brain-
inspired computers, devices, and models that function
fundamentally differently from common von Neumann archi-
tectures [1,2]. For instance, one can emulate the dynamics of
neuron membrane potentials and synaptic currents in analog
electronic circuits [3–7]. In general, the hardware-specific
information processing and storage call for hand-in-hand de-
velopment of hardware and corresponding algorithms, which
can be guided by modern artificial intelligence and neuro-
science likewise [8]. A complementary approach is to build
customizable, large-scale neuromorphic architectures that can
implement brain-inspired plasticity for self-organization, for
instance, BrainScaleS [9] or Loihi [10]. These devices can
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exhibit diverse emergent population dynamics that depend on,
among other things, model parameters, plasticity, or network
architecture and that may be useful for future developments
in neuromorphic computing. For instance, emergent tem-
poral correlations imply information integration over time
that can be important for understanding sequential-input-like
language, i.e., integrating syllables into words, words into sen-
tences, and sentences into meaning [11–13]. Understanding
emergent timescales in neural networks is thus among the
basic prerequisites for designing recurrent neural language
processing models from scratch.

Recent theoretical and experimental results have empha-
sized the importance of homeostatic plasticity to shape the
timescales of neural population dynamics [14–16]. Home-
ostatic plasticity is a negative feedback that adapts local
neural properties to achieve a stable firing rate [17–19].
For homeostatically regulated excitable systems, one can
prove analytically that lowering the input strength induces
an increase in the recurrent coupling and hence increases
the autocorrelation time through close-to-critical fluctuations
[14,15]. These predictions are consistent with experiments
on monocular deprivation, where partial reduction of input
initially disrupts population activity before homeostatic plas-
ticity tunes cortical networks back towards criticality [16].
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Moreover, they provide a potential explanation for the exper-
imentally observed increase in autocorrelation time along the
hierarchical anatomy of the cortex [11,20–24]: Timescales are
shorter in primary sensory regions and longer in higher-order
cortical regions. In the context of neuromorphic comput-
ing, homeostatic plasticity was shown to serve as a guiding
principle to tune neuromorphic hardware for optimal task
performance [25].

However, empirical observations of large, emergent auto-
correlations seem to contradict prior theoretical predictions
for networks of excitatory-inhibitory (E-I) leaky integrate-
and-fire (LIF) neurons. While empirical estimates of neural
autocorrelation times range from O(10 ms) to O(1 s) [11,20–
24,26–29], early theories and models of networks of LIF
neurons in an E-I balanced state [30,31] predict almost van-
ishing mean correlations. Instead, more recent reassessments
find conditions under which larger correlations can emerge
[32–35] (see also Refs. [36,37] for overviews). Focusing on
temporal correlations, recent developments in dynamic mean-
field theory [34,38,39] reveal parameter ranges with larger
emergent autocorrelation times. However, these autocorrela-
tion times are still on the order of characteristic times of the
membrane potential or synaptic current, which are typically
O(10 ms), and thus distinctively below the ones observed
experimentally.

In this paper, we study emergent collective dynamics and
autocorrelation times in networks of excitatory and inhibitory
LIF neurons emulated on the BrainScaleS neuromorphic sys-
tem. This system provides large flexibility for programmable
plasticity rules [9] and hence allows for homeostatic plas-
ticity during a training phase. We verify that training with
reduced external input strength induces increasing autocor-
relation times in the test phase that can be more than 20
times larger than the decay time of the membrane potential
of individual units. Since we are using the BrainScaleS-2
single chip, which is limited to 512 neurons, we complement
our experiments with a numerical finite-size scaling analysis
that reveals progressively larger autocorrelation times with
increasing system size. Surprisingly, we find that in our setup,
autocorrelations are not generated by close-to-critical fluctu-
ations [14], but originate from an emergent bistability in the
population firing rate. To explain this bistability, we derive
a simple mean-field theory for driven excitable systems that
reveals a fluctuation-induced switching between a metastable
active phase and a quiescent phase, reminiscent of so-called
up and down states in brain networks [40–43]. We finish with
a discussion of how emergent bistability can affect biological
and artificial neural networks, as well as other finite sys-
tems with an absorbing-to-active transition that are driven by
external noise.

II. MODEL AND METHODS

To study emergent collective dynamics in homeostatic neu-
romorphic devices, we combine experiments on an actual
neuromorphic device (BrainScaleS-2), computer simulations,
and a phenomenological mean-field theory. In this section,
we first describe the basic ingredients of the neuromorphic
hardware under consideration (Sec. II A), formulate a math-
ematical model that can be implemented on this hardware

(Sec. II B), build a computer simulation that reproduces the
resulting dynamics (Sec. II C), and define relevant observables
to study population dynamics (Sec. II D).

A. Neuromorphic hardware

BrainScaleS-2 [5,9,44] is a mixed-signal neuromorphic
architecture that allows one to emulate networks of up to
512 LIF neurons [Fig. 1(b)]. The term emulation is used
to clearly distinguish between this physical implementation,
where each observable has a measurable counterpart on the
neuromorphic chip, and standard software simulations on con-
ventional hardware (see below). In particular, neurons are
implemented as electrical circuits that emulate LIF dynamics
in a time-continuous and parallel manner. The system further
consists of an array of 256 × 512 physically implemented
current-based synapses that support near-arbitrary topologies.
Their dynamics emulate leaky currents and feature coupling
strengths wi j with a precision of 6 bits, i.e., 64 discrete values,
which limits synaptic weights to integers in the range [0,63].
More technical details are provided in Appendix A. Due to
the analog implementation, time constants are determined by
the electrical components on the substrate and are rendered
approximately a factor 1000 times faster than the ones of
their biological archetype. Within this paper, all referenced
timescales are converted to the equivalent biological time
domain unless otherwise stated.

Homeostatic plasticity is implemented on chip by a spe-
cialized, freely programmable processor unit: the plasticity
processing unit (PPU) [5]. The PPU is able to update the
synaptic weights of 128 synapses in parallel. To measure local
spike rates relevant for our plasticity rule (see below), we
draw on dedicated circuits within each neuron that count the
number of emitted spikes.

The system comes with specialized accelerators for the
drawing of random numbers [45]. These facilitate an on-chip
generation of Poisson-distributed input spikes as well as the
efficient implementation of the stochastic homeostatic regula-
tion without additional communication bottlenecks. The only
remaining communication with the host system consists of the
transfer of instructions for configuring the BrainScaleS-2 sys-
tem at the beginning and the readout of the result at the end of
an experiment [46,47], making the hardware implementation
very fast.

The neuromorphic chip is subject to variations both in
space and in time: First, the analog implementation causes
temporal noise within the model dynamics, and second,
the production process necessarily leads to small variations
across electrical components. The latter variations can, how-
ever, be mitigated by exploiting the configurability of the
BrainScaleS-2 system by resorting to calibration routines
[47], thereby reducing the parameter spread across neurons
(see Appendix B). The remaining variability of parame-
ters can be quantified by their mean and standard deviation
(Table I).

B. Neural network model

As a minimal model of biological spiking neurons, we
consider a recurrent network of N = 512 (unless otherwise
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(a) (c) (e)

(f) (g)(d)(b)

FIG. 1. Reducing the input strength to homeostatically regulated networks of E-I LIF neurons strengthens recurrent connections. (a) Il-
lustration of a random network topology with 80% excitatory (blue triangles) and 20% inhibitory (red circles) neurons. (b) Image of the
BrainScaleS-2 neuromorphic chip. Image taken from Ref. [46]. (c) Homeostatic plasticity regulates the population rate ν close to a target value
(dashed line). (d) For a broad range of external input rates, ν approximates the target rate. (e) The stochastic homeostatic regulation leads to
heterogeneous weight distributions for both inhibitory and excitatory synapses. The counts of excitatory weights exceed the inhibitory ones by
a factor of 4 due to the imposed E-I ratio. (f) The effective connectivity, defined as the percentage of nonzero recurrent synapses (ci jw

rec
i j �= 0),

does not saturate at its maximum (dashed line) for decreasing input strengths. (g) However, the mean weight increases to compensate for a
reduction of input.

stated) LIF neurons coupled to an input layer consisting of
N/2 Poisson sources [Fig. 1(a)]. The model is built to reflect
the architecture of BrainScaleS-2. Each LIF neuron integrates
spikes from, on average, K rec = 100 recurrent neurons of the
network and from, on average, Kext external neurons of the

TABLE I. Model parameters. All parameters are given in the
equivalent biological time domain. The errors indicate the standard
deviation.

Parameter Symbol Value

Membrane capacitance Cm (2.4 ± 0.2) pF
Threshold potential uthresh (741 ± 06) mV
Leak potential uleak (458 ± 43) mV
Reset potential ureset (324 ± 06) mV
Membrane time constant τm (21.5 ± 1.5) ms
Excitatory synaptic time constant τ s,exc (5.3 ± 0.3) ms
Inhibitory synaptic time constant τ s,inh (5.4 ± 0.2) ms
Synaptic delay τ d (1.0 ± 0.1) ms
Refractory period τ ref 2.0 ms
Excitatory weight scaling factor γ exc (0.57 ± 0.10) nA
Inhibitory weight scaling factor γ inh (0.67 ± 0.10) nA
Number of recurrent synapses per neuron K rec 100
Number of neurons N 512
Input weight win 17
Learning rate λ 0.468 75
Target rate ν∗ 10 Hz
Update probability p 2.3%
Number of updates n 1000
External rate νext 10 Hz
Static experiment duration T 100 s

input layer that will be varied to adjust the strength of external
input. The physical connection between neurons i and j is
randomly realized, ci j = {−1, 0, 1}, and further weighted by
an integer-valued coupling weight wi j ∈ [0, 63]. Neurons can
be either excitatory or inhibitory, which is reflected in the
sign of ci j for a given neuron j for all outgoing coupling
synapses. Also, in analogy with cortical networks [48], 20%
of the neurons in both the network and the input layer are
inhibitory. While the recurrent neurons are LIF neurons, input
sources generate spikes independently as a Poisson process
with rate νext = 10 Hz, which amounts to an average input rate
per recurrent neuron of h = νextKext.

The dynamics of a recurrent LIF neuron i is modeled by a
leaky membrane potential ui(t ) given by

τm
i u̇i(t ) = uleak

i − ui(t ) + RiIi(t ), (1)

where τm
i = Cm

i Ri is the membrane time constant with the
membrane capacitance Cm

i as well as the resistance Ri, and
uleak

i is the leak potential. Similarly, Ii(t ) denotes a leaky
synaptic current which is described by

τ s
i İi(t ) = −Ii(t ) + γi

∑
j

ci jwi j

∑
k

δ
(
t − t k

j − τ d
)
, (2)

where τ s
i is the synaptic time constant, γi is a scale factor,

wi j are dimensionless coupling weights between neurons i and
j (which covers recurrent and external presynaptic neurons),
and

∑
k δ(t − t k

j − τ d ) is the spike train of neuron j that ar-
rives at neuron i with past spike times t k

j and synaptic time
delay τ d. Spikes are generated once a neuron’s membrane
potential crosses a threshold, i.e., ui(t ) > uthres

i , after which
the membrane potential is reset to ureset

i , where it remains for
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the duration of the refractory period τ ref . Explicit parameters
were motivated by neurophysiology but are subject to hard-
ware constraints (cf. Table I).

While external coupling weights are fixed to win
i j = 17,

recurrent couplings are initialized at wrec
i j = 0 and subject

to homeostatic plasticity during a training phase to regulate
the single-neuron firing rate around a target of ν∗ = 10 Hz.
More specifically, we implement homeostatic plasticity as an
iterative, stochastic update of all realized (ci j �= 0) recurrent
weights wrec

i j . Each iteration consists of a 5s time window for
which we record the firing rate νi of each individual neuron.
In between iterations, we stochastically update each recurrent
weight wrec

i j independently with probability p by an amount

�wi j = λ(ν∗ − ν j ), (3)

which depends only on the local information of the post-
synaptic neuron i and where λp sets the timescale of the
homeostasis. While our results in the main text are obtained
with probabilistic weight changes in order to overcome arti-
facts from the limited precision of wi j (see Appendix C for
the effect of p and λ), we obtain similar results when instead
updating each weight by �wi j plus integer rounding noise
(see Supplemental Material [49]). To preserve the effective
sign of excitatory and inhibitory weights, wi j are restricted to
positive values and saturate at zero. Besides this, the proposed
simple update scheme does not distinguish between excitatory
and inhibitory couplings. After the homeostatic update, the
network dynamics are evolved for about 1 s in order to allow
the network activity to re-equilibrate before assessing νi for
the next update. Importantly, we only employ homeostatic
plasticity during the training stage of our experiment. All
correlation analyses are evaluated on spike data from a testing
phase (typically T = 100 s) with fixed synaptic weights.

C. Computer simulation

For comparison and finite-size scaling analysis, we use ad-
ditional computer simulations where we employ the PYTHON

simulation package BRIAN2 [50]. This package generates from
the differential equations (1) and (2) a discrete-time Euler
integration scheme together with full control over all system
parameters. We use these simulations to (i) cross-validate
the results from the neuromorphic chip (see Supplemental
Material) and (ii) analyze how changing system sizes, N =
{256, 512, 768, 1024}, beyond the hardware-limiting con-
straints, affect our conclusion. The integration time step is
set to �t = 50 µs to approach the time-continuous nature of
the BrainScaleS-2 system. To closely mimic the emulated
networks, we draw the individual neuron parameters from
Gaussian distributions specified by the measured parameter
variability of the neuromorphic chip (Table I). In addition, in-
dependent temporal noise with standard deviation σ

√
2 ∗ τm

i ,
with σ = 2 mV, is added to Eq. (1).

D. Observables

The main observables we consider are derived from the in-
stantaneous population firing rate ν(t ), defined as the number

of network spikes within a time bin �t

ν(t ) = 1

N�t

N∑
i=1

Si∑
k=1

∫ t+�t

t
δ
(
t − t k

i

)
, (4)

where t k
i are the spike times of neuron i, Si is the number of

spikes emitted by neuron i, and �t = 5 ms.
From a time series ν(t ), we calculate the stationary auto-

correlation function

C(t ′) = Cov[ν(t + t ′)ν(t )]

Var[ν(t )]
, (5)

where t ′ are multiples of �t . From the decay of the autocor-
relation function it is possible to derive the timescale(s) of
temporal correlations. In our case, we found the autocorrela-
tion function to be described by a single exponential decay,
C(t ′) = e−t ′/τAC , and extracted a single autocorrelation time
τAC by fit routines.

To estimate statistical errors, we average over 50 indepen-
dent experiments.

III. RESULTS

A. Homeostatically regulated neuromorphic hardware
compensates lack of external input by strengthening

recurrent connections

To begin, we verify that the experimental setup—
the neuromorphic chip with homeostatic regulation during
development—reaches a stationary dynamical state with firing
rates sufficiently close to the target rate. Starting from the ini-
tial condition of zero recurrent weights (wrec

i j = 0), we observe
for our chosen parameters a transient relaxation behavior that
reaches a stationary firing rate after about 200 update iter-
ations, independent of the external input rate h [Fig. 1(c)].
Note that for this representation, the firing rate is evaluated
over an interval of T = 100 s between iterations, and further
averaged over 50 network realizations. One can see that for
larger values of h (blue curve) the relaxation is smoother than
for lower values of h (red curve). The stationary firing rates are
close to the target rate ν∗ = 10 Hz [Fig. 1(d)]; however, there
is a systematic h dependence that presumably originates from
the firing rate being a nonlinear function of the mean coupling,
ν(〈w〉), as observed in mean-field calculations of E-I networks
[34]. Since we find consistent results for reference computer
simulations (see Supplemental Material), we conclude that
the experimental setup reliably self-organizes into a stationary
dynamics state with neuron firing rates sufficiently close to the
target rate.

We next investigate how homeostatically regulated E-I
networks compensate a reduction of external input with a
strengthening of recurrent connections [Figs. 1(e)–1(g)]. In
particular, we find that the histograms of both inhibitory as
well as excitatory recurrent coupling weights become flatter
with decreasing h, indicating strong heterogeneity [Fig. 1(e)].
Interestingly, the effective connectivity—the fraction of all
physical K rec recurrent weights that are not zero—does not
reach its maximum theoretical value of K rec/N = 100/512 ≈
20% [Fig. 1(f)]. Instead, it even decreases for low h, which is
likely a consequence of the strong variability of rates between
iterations [cf. Fig. 1(c)] that results in large weight changes
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(a) (b) (c) (d)

FIG. 2. Reducing the input strength increases autocorrelation of the network rate through emergent bistability. (a) For low input rates h,
the population activity exhibits exponentially shaped autocorrelations C(t ′) with autocorrelation times τAC significantly exceeding the largest
single-neuron timescale. (b) In this regime, the distribution P(ν ) of the population rate ν shows a bimodal trend. (c) The associated phases of
high and low ν can be fitted by a two-state HMM. (d) Based on the transition rates of this HMM, an equivalent timescale τHM can be estimated
which coincides with τAC for low h.

for the given plasticity rule and does not affect our main
conclusions (see Supplemental Material for a milder plasticity
rule).

More important is the observation that, as shown in
Fig. 1(g), the mean coupling weights wrec increase almost
linearly with decreasing input rate. A fit of the form

〈wrec〉(h) = α − βh, (6)

where 〈·〉 stands for the average across synaptic connec-
tions over either excitatory or inhibitory populations, yields
α ≈ 22.75 and β ≈ 14.23 for excitatory weights or α ≈ 26.1
and β ≈ 16.7 for inhibitory weights. Hence a reduction in
input rate clearly strengthens the recurrent connections in
homeostatically regulated E-I networks consistent with the
theoretical consideration that the loss of external input needs
to be compensated by recurrent activity generation in order to
maintain a constant firing rate [14].

In addition to supporting general theoretical arguments,
our setup allows us to investigate how our homeostatic self-
organization affects the interplay between excitatory and
inhibitory neurons. In fact, it is quite surprising that the
mean coupling weights for excitatory and inhibitory weights
are so similar [Fig. 1(g)], i.e., 〈wrec

inh〉 ≈ 〈wrec
exc〉, given that

each neuron receives four times more input from excitatory
than from inhibitory neurons. Naively, this implies strong
excitation dominance in contrast to the expected inhibi-
tion dominance required for asynchronous irregular activity
[30,51] to reproduce experimental single-neuron statistics
[52–55]. This outcome can, however, be explained by our
symmetric plasticity rule that does not distinguish between ex-
citatory and inhibitory synapses and thereby fosters solutions
with 〈wrec

inh〉 ≈ 〈wrec
exc〉. For small networks with homogeneous

weights (see Appendix D), the condition wrec
inh ≈ wrec

exc turns
out to be in the vicinity of a phase transition between regular
(high firing) and irregular (low firing) dynamics. Reducing h
makes this transition more abrupt and closer to wrec

inh = wrec
exc,

implying that homeostatic plasticity regulates E-I networks
towards a regular-to-irregular transition when decreasing the
external input rate.

B. Homeostatically regulated neuromorphic hardware with low
external input generates large autocorrelation times

through emergent bistability

Next, we verify the theoretical prediction [14] that a
homeostatically regulated system exhibits an increased au-
tocorrelation to compensate for a decreasing external input
(Fig. 2). For this, we consider a network after homeostatic
development with fixed weights and evaluate the autocor-
relation function of the population firing rate ν(t ) over an
interval of T = 100 s. Indeed, the autocorrelation functions,
C(t ′), show increasingly long tails with decreasing input rate
h [Fig. 2(a)]. Moreover, they are well described by exponential
decays, C(t ′) = e−t ′/τAC , with increasing autocorrelation times
τAC for decreasing h [Fig. 2(a) inset]. While this general trend
has been reported for much smaller neuromorphic systems
before [25], the inset of Fig. 2(a) reveals the emergence of
two distinct regimes. For h > 0.8 kHz, we find autocorrelation
times to saturate with increasing h, suggesting that the uncor-
related Poisson input successfully decorrelates already weakly
correlated activity, giving rise to an input-driven regime. In
contrast, for h < 0.8 kHz, we find an apparent divergence of
τAC with decreasing h, such that this regime is characterized
by dominant recurrent activation compensating for the lacking
input, which results in increasing autocorrelation times for
decreasing h, giving rise to a recurrent-driven regime.

Surprisingly, we observe that the autocorrelations originate
from a bistable population rate [Figs. 2(b)–2(d)]. Specifically,
the distribution P(ν) changes from unimodal for higher input
strengths to bimodal for lower input strengths [Fig. 2(b)].
The latter suggests that the population rate starts to alter-
nate between two distinct states. Indeed, close inspection of
the time evolution of ν(t ) reveals that for decreasing input
strength the population rate switches between a low-rate state
and a high-rate state [Fig. 2(c)], resembling up and down
states in cortical networks [40–43]. Such a switching behavior
is reminiscent of a Markov jump process between states of
high and low firing rates [56], specifically a two-state hidden
Markov model (HMM) [57]. We fitted a two-state HMM to
the stationary population rate (discretized in steps of �t) and
obtained a 2 × 2 Markov matrix. Since the rate is stationary,
the first eigenvalue is 1, i.e., λ1 = 1, and the second eigenvalue

033035-5



BENJAMIN CRAMER et al. PHYSICAL REVIEW RESEARCH 5, 033035 (2023)

(a) (b)

FIG. 3. Finite-size scaling of homeostatically regulated E-I
networks with LIF neurons from computer simulations. (a) Auto-
correlation time τAC as a function of system size N for different
external input rates h. One can see a faster-than-power-law growth
for h < 0.8 kHz, while τAC seems to saturate on the order of the
dominant single-neuron timescale (dashed line) for h > 0.8 kHz.
(b) Distributions of the population firing rate in windows of 5 ms
for h = 0.7 kHz show that the bimodal shape remains for increasing
N . The barrier in between high- and low-firing states grows with N .

λ2 determines how quickly perturbations decay back to the
stationary solution. This is related to the autocorrelation time
as τHM = −�t/ ln (λ2). Indeed, the autocorrelation time of
the HMM correlates with the autocorrelation time measured
from the population rate for small input strengths, where the
population rate becomes bistable [Fig. 2(d)]. This is funda-
mentally different from the a priori expected close-to-critical
fluctuations [14], which would lead to scale-free avalanches
[58] for small h that we do not observe (see Appendix E).
We thus conclude that the emergent bistability is the under-
lying mechanism of the large autocorrelation times observed
in the population dynamics of homeostatically regulated E-I
networks of LIF neurons.

C. Computer simulations reveal an increasing dynamical
barrier of emergent bistability with system size

Since our neuromorphic hardware only supports networks
with up to 512 LIF neurons, we use computer simulations to
verify the experimental results for increasing network sizes.
In brief, we parametrize the simulations to match the exper-
imental setup and use the BRIAN2 PYTHON package to solve
the model (for details, see Sec. II). Indeed, we can reproduce
the experimental results with our software implementation:
We observe comparable bistable activity with similar auto-
correlation functions (see Supplemental Material). However,
while computer simulations in principle allow us to study any
system size, they are much less efficient than the neuromor-
phic emulation. It is worth noting that for our application,
i.e., homeostatically regulating a network of N = 512 LIF
neurons for 6000 s, the computer simulation on an Intel Xeon
E5-2630v4 (roughly 100 000 s at about 50 W) takes O(104)
more time and O(107) more energy compared with the cor-
responding emulation on BrainScaleS-2 (about 6 s at a power
budget of 100 mW).

Having established that the computer simulation repro-
duces the experimental results, we can study how the
measured autocorrelation time τAC depends on the network
size N [Fig. 3(a)]. Due to the large computational efforts,
we focus on four representative input strengths: a low input

strength (h = 0.7 kHz) where we observe bistable activity in
the experiment, two medium input strengths (h = 0.8 kHz and
h = 0.9 kHz) near the onset of bistability, and a high input
strength (h = 1.0 kHz) where the network does not exhibit
bistability. Only for h = 0.7 kHz do we observe an exponen-
tial increase in autocorrelation time with system size. Instead,
at h = 0.8 kHz the autocorrelation time appears to grow as a
power law, while for even larger values of h the τAC start to
saturate on the order of the dominant single-neuron timescale
(dashed line). Our numerical results further corroborate the
classification into two distinct regimes: A recurrent-driven
regime for low input strength with large emergent autocor-
relations and an input-driven regime for high input strength
with vanishing autocorrelations.

To further investigate the origin of the emergent autocor-
relations, we study the shape of the probability distribution
of local population rates ν(t ) as a function of network size
[Fig. 3(b)]. We observe that for low input strength, the bi-
modal distribution becomes more pronounced with increasing
suppression of intermediate population-rate values. One can
relate the suppression of intermediate rates to a dynamical
barrier by interpreting the time course of the instantaneous
population rates as a trajectory of the dynamical system in the
potential V (ν) = − ln P(ν). This barrier would be analogous
to the activation energy in an Arrhenius-type equation, i.e.,
r ∝ e−�V/T , such that for a given level of fluctuation T the
rate r to transition between low- and high-firing-rate regimes
is lowered for increasing barriers �V . Since the height of this
dynamical barrier increases with N , this explains the increas-
ing autocorrelation time with system size.

D. Mean-field theory of emergent bistability from
fluctuation-induced switching between metastable

active and quiescent states

To qualitatively explain how bistability can emerge in a
recurrent network with heterogeneous weights, we construct
a simple mean-field theory based on the time evolution of a
fraction of active neurons at a given time t , ρ(t ), which can
be considered a proxy of the population rate ν(t ) up to some
factor. Let us consider a general mean-field ansatz

ρ̇(t ) = −τMFρ(t ) + h(1 − ρ(t )) + (1 − ρ(t ))

× [ω1ρ(t ) + ω2ρ
2(t ) + · · · ], (7)

where the first term describes the spontaneous decay of activ-
ity in the absence of inputs with some characteristic timescale
τMF, the term proportional to h represents external input that
can only activate inactive neurons [hence the (1 − ρ) factor],
and the last term represents the gain function that describes
recurrent activations, expanded in a power series of the ac-
tivity. Here, the coefficients of expansion (ω1, ω2, . . .) are an
effective representation of the full coupling matrix wrec

i j (with
ω1 being proportional to the mean synaptic strength). The
mean-field equation can be rewritten in a more compact form
by grouping-up terms with different powers of the activity,

ρ̇(t ) = h − aρ(t ) − bρ2(t ) + · · · , (8)

where a = τMF + h − ω1 and b = ω1 − ω2 > 0 to ensure
stability. It is important to notice that this mean-field
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equation assumes infinitely large network sizes, N → ∞, for
which additional noise terms vanish.

To describe finite networks, one needs to introduce an
additional stochastic term to the mean-field equation (8) that
accounts for demographic fluctuations. Demographic fluc-
tuations are characteristic of systems with an absorbing or
quiescent state [59], where fluctuations of the total number of
active units around some mean Nρ(t ) are expected to have a
standard deviation that scales with

√
Nρ(t ) as a consequence

of the central-limit theorem. For the fraction of active nodes
in a finite network, we then obtain to leading order in system
size

ρ̇(t ) = h − aρ(t ) − bρ2(t ) +
√

ρ(t )/Nη(t ), (9)

where η(t ) is Gaussian white noise with zero mean and vari-
ance σ 2. This (Ito-)Langevin equation can be expressed as
a Fokker-Planck equation, with the steady-state solution [60]
(see also Supplemental Material)

P(ρ) = N exp

{
−2N

σ 2
V (ρ)

}
, (10)

a normalization constant N , and the potential

V (ρ) =
(

σ 2

2N
− h

)
ln ρ + aρ + b

2
ρ2. (11)

This potential V (ρ) either can have a single (formally di-
verging) minimum at ρ = 0 (unimodal activity distribution)
or can have two local minima (bistable activity distribution).
The condition for extrema of the potential V implies that a
bistable solution occurs when a2 − 4b( σ 2

2N − h) > 0. With the
additional conditions for a positive density, i.e., ρ > 0, as well
as a positive slope at ρ = 0, i.e., ρ2 d2V

dρ2 (0) = ( σ 2

2N − h) > 0,
we expect to observe bistable dynamics for

a < −2

√
b

(
σ 2

2N
− h

)
< 0. (12)

To incorporate the effect of training recurrent weights with
homeostatic regulation, we recall our empirically obtained
anticorrelation, 〈w〉 = α − βh, upon homeostatic training
[Fig. 1(g)]. In our mean-field theory, Eq. (8), we assume this to
dominantly affect a = τMF + h − ω1 ≈ τMF − α + h(1 + β )
and make the common assumption that b = ω1 − ω2 is con-
stant up to higher-order effects. Inserting a into Eq. (12),
we find that—for suitable parameters—lowering h can indeed
induce a transition from a unimodal to a bimodal potential
(Fig. 4).

The h-dependent transition from unimodal to bimodal can
be visualized by numerically evaluating the mean-field model
[Fig. 4(b)]. The numerical integration of Eq. (9) is straight-
forward [61] but needs special care to avoid running into the
domain of negative numbers due to numerical imprecisions
(see Appendix F). The resulting trajectories show typical de-
mographic fluctuations for higher inputs and bistable activity
for lower input. Since the involved parameters are not easily
related in an explicit way to the experiment, this theoretical
result is a qualitative explanation of the observed effect, and
all parameters are in arbitrary units.

Our mean-field theory implies that emergent bistable pop-
ulation activity can be rationalized as a fluctuation-induced

(a) (b)

FIG. 4. Mean-field theory of emergent bistability upon reducing
input to homeostatically regulated recurrent network. Our mean-field
theory describes the temporal evolution of the fraction of active
neurons, ρ, with metastable solutions given by the minimum of the
potential, Eq. (11). (a) For suitable parameters (τMF = 10, α = 30,
β = 15, b = 25, σ = 50, N = 512), the potential exhibits a single
minimum for large h but two minima for small h. (b) Numeric eval-
uation of the corresponding stochastic mean-field equation (�t =
10−7) shows fluctuating dynamics for large h and emergent bista-
bility for low h.

switching between a metastable active phase and a quiescent
phase. For a system with an absorbing-to-active nonequi-
librium phase transition for vanishing input, we find that
finite-size fluctuations are responsible for a metastable active
state (high rate) and external fluctuations lead to a metastable
quiescent state (low rate). To transit from one state to another,
the system needs to overcome a dynamical barrier, where the
transition from high to low rate requires demographic noise,
whereas the transition from low to high rate requires external
noise.

IV. DISCUSSION

In summary, we showed that networks of E-I LIF neurons
with homeostatic regulation during training can self-organize
for low external input into a dynamical regime with stochastic
switching between states of high population firing rate (up
state) and states of low population firing rate (down state).
Stochastic switching is the result of an emergent bistability,
where a dynamical barrier between two metastable states (up
and down) can be crossed due to fluctuations: finite-size ac-
tivity fluctuations to cross from up to down and external-noise
fluctuations to cross from down to up. The crossing rate de-
creases with the barrier height, similar to classical nucleation
rates decreasing for a larger free-energy barrier [62–64], and
we showed numerically that the barrier height increases with
system size. Finally, a reduced crossing rate implies an in-
creased autocorrelation time, which we demonstrated for both
neuromorphic hardware and numerical simulations. Our find-
ings of large emergent autocorrelation times in networks of
spiking neurons complement recent observations in networks
regulated by spike-timing-dependent plasticity [25] or trained
to perform working-memory tasks [65].

Importantly, the stochastically switching population activ-
ity that we observe does not require an active adaptation
mechanism: The emergent bistability was recorded in the
testing phase after turning off homeostatic plasticity. While
plasticity was necessary to shape the weight distribution, it is
not relevant for the stochastic switching between metastable-
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active (high rate) and metastable-absorbing (low rate) states.
Our basic mechanism of a dynamical barrier that separates
two metastable fixed points is consistent with previous ob-
servations of perturbation-induced state switching in spiking
neural networks [66–68]. Here, we do not require additional,
strong external perturbations, because we can control the
height of the dynamical barrier and thereby observe the state
switching induced by the available, weak external input during
finite-time recordings. Importantly, the stochastic switching
observed here is different from adaptation-based mechanisms,
such as adaptation currents [69], or depletion of synaptic
utility [70,71].

It is interesting to discuss more in depth the connec-
tion with the mechanism of self-organized bistability (SOB)
[72,73], which has recently been shown to be relevant for
collective brain dynamics [74]. This is a mechanism akin
to self-organized criticality (SOC) [73,75], where the system
self-organizes by means of a feedback loop between the level
of activity (overall firing rate) and the control parameter (the
mean synaptic weight) to the edge of a phase transition. In the
case of SOB this is a discontinuous phase transition. In the
present case, there is a similar feedback loop during training.
However, rather than acting on a global control parameter, this
feedback acts differentially for each synaptic weight, thereby
generating a broad weight distribution, which, for low external
input, tunes the system to a bistable state at the edge of
the transition between high and low firing rates. Due to this
bistability, in combination with external drive and finite-size
fluctuations, we observe stochastic switching in the test phase
(no homeostatic plasticity).

The here-identified mechanism of a stochastic state switch-
ing thereby presents an alternative perspective on so-called up
and down states. Up and down states are defined on the level
of a single-neuron membrane potential that switches between
states with higher membrane potential, resulting in spiking
responses, and those with lower membrane potential [40].
While some of the aforementioned models utilize adaptation
mechanisms to generate up and down states [70,72,74], we
here develop an alternative explanation: If neurons home-
ostatically regulate their firing rates, a decreasing external
input can result in emergent autocorrelations with potential
functional benefits [14,25] until a point where bistability can
emerge on the population level. As a result of such emergent
bistability, single neurons would switch between states of high
and low synaptic input, which could in turn cause up and
down states on the level of their membrane potentials. This
explanation is consistent with experimental observations of up
and down states in striatal neurons [40,41], which focused on
single-cell bistability, and in cortical slices [42] and neuronal
cultures [76], where up and down states were argued to be a
collective (network) effect, and agrees with observations of
bistability in networks of LIF neurons trained to store spa-
tiotemporal patterns [77]. Our results thereby provide paths
to test whether experimental observations of up and down
states are connected to emergent bistability from homeostatic
regulation.

Our simple mean-field theory implies that fluctuation-
induced stochastic switching could be a very general effect in
driven, finite systems with absorbing states. Examples of such
systems include collective dynamics in epidemic spread [78],

neural networks [58,79,80], ecosystems [81,82], and ultracold
Rydberg atomic gases [83]; catalytic reactions on surfaces
[84]; calcium dynamics in living cells [85]; or turbulence
in liquid crystals [86,87] and active nematics [88]. Indeed,
for some of these systems, stochastic switching has been
observed, e.g., as switching behavior in disease models [89]
or rate models of neural activity [90], for cellular automata
with long-range interactions [91], for CO oxidation [92–94],
or as phase separation in active matter [95,96]. Future work
could include generalizing our results to systems that can
be described by scalar fields, which is a common situation
in nonequilibrium statistical physics, and investigating under
what conditions one can observe (or avoid) stochastic switch-
ing on a macroscopic scale.

To ensure reproducibility, the code has been made freely
available [97].
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APPENDIX A: HARDWARE DETAILS

The connectivity on BrainScaleS-2 is physically repre-
sented by two arrays of synapses, each with a set of 256 × 256
synapses. Input spikes sl

i enter these arrays from the left via
synapse drivers and are forwarded to a whole row of synapses.
Each synapse within this row locally filters incoming events,
weights them according to a 6-bit weight, and eventually
transmits them to its home neuron. The neurons are arranged
in an additional row below the array of synapses. Emitted
neuronal spikes are injected back into the array via a flexible
on-chip spike router.
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FIG. 5. The connectivity on BrainScaleS-2 is physically rep-
resented by two arrays of synapses. The routing capabilities of
BrainScaleS-2 are utilized such that both arrays can be treated as
a larger virtual one. Input events sl

i enter this array together with
recurrent events t k

i (blue and gray) from the left via synapse drivers
(triangles). The latter forward the events to a whole row of synapses
(circles). Each synapse locally filters incoming events and trans-
mits either input events (red) or recurrent events (blue and gray) to
its home neuron. Sparsity is implemented by silencing out synapses
(black crosses). Homeostatic regulation is carried out by the on-chip
PPU by accessing neuronal firing rates νi to update synaptic weights
in a row-wise parallel manner.

In this paper, we exploit the routing capabilities of the
BrainScaleS-2 system to unify both synapse arrays to a virtual
array of size 256 × 512 (Fig. 5). The event filtering within
each synapse located between synapse driver i and neuron j is
used to transmit either the input events of spike source i or the
recurrent events of neuron i or i + 256, respectively. We map

our networks by configuring a random set of on average K rec

synapses per column of synapses to transmit recurrent events.
In addition, on average K in randomly chosen synapses relay
the input spike trains. All remaining synapses are configured
to transmit no events.

On BrainScaleS-2, the effect of each synapse, i.e., excita-
tory or inhibitory, is determined by the synapse drivers and
is therefore a row-wise property within the synapse array.
For our networks, we program 20% of the synapse drivers
(randomly selected) to be inhibitory.

The homeostatic plasticity is implemented on chip by
drawing on both PPUs [5]. To that end, the number of emit-
ted spikes is accessed and loaded into the single instruction
multiple data (SIMD) vector units of the PPUs for subse-
quent weight update calculations. Each vector unit allows us
to update a half row of synaptic weights (128 synapses) in
parallel. Calculations are performed with a precision of 8
bits in a fractional-saturation arithmetic. The random numbers
required to implement stochastic weight updates are directly
drawn in parallel on chip via dedicated accelerators.

APPENDIX B: CALIBRATION AND PARAMETRIZATION

The fabrication-induced device variations of the analog
neuromorphic substrate are mitigated by calibration routines.
Here, we utilize bisection methods to adjust the neurosynaptic
parameters inferred from recorded traces to desired targets
(Fig. 6). Afterwards, the resulting LIF neuron parameters are
measured, and their means as well as standard deviations
are used for the parametrization of the equivalent software
models. To align the impact of a single spike on all down-
stream neurons on hardware and in software, we characterize
the postsynaptic potential (PSP) height as a function of the
configured weight value wi j . In more detail, we obtained the

(a) (c) (e) (g)

(h)(f)(d)(b)

FIG. 6. Parameter distributions on the BrainScaleS-2 system. Calibration routines allow us to reduce the parameter spread between circuit
instances by drawing on the configurability of BrainScaleS-2. The calibration targets for (a) the leak potential uleak

i and (b) the threshold
potential uthres

i are chosen such that their distance is as high as possible. (c) The target for the reset potential is chosen to be slightly below
uleak

i . (d) The membrane time constants τm
i are calibrated to be larger than (e) the excitatory synaptic time constants τ s,exc

i and (f) the inhibitory
synaptic time constants τ s,inh

i . The latter are calibrated to coincide. Linear fits to measurements of the PSP height for various weight values wi j

allow us to estimate (g) the excitatory weight scaling factors γ exc
i as well as (h) the inhibitory weight scaling factor γ inh

i .
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FIG. 7. Parametrization of the homeostatic regulation.
The homeostatic regulation is parametrized by the update acceptance
probability p as well as the learning rate λ. Shown is the variance
of the firing rate of each neuron νi with respect to the target rate
ν∗,

√
〈(νi − ν∗)2〉, averaged over 100 experiments for an input rate

of h = 0.6 kHz. The configuration used within the experiments
presented in the main text is highlighted by the red star.

weight scaling factor γi in Eq. (2) by fitting the ideal solution
of Eq. (1)

ui(t ) = uleak + τm · τ s · γiwi j

Cm(τ s − τm )
�

(
t − t0

j

)

×
[

exp

(
− t − t0

j

τ s

)
− exp

(
− t − t0

j

τm

)]
, (B1)

to recordings of each neuron’s membrane potential ui(t ) in
response to a single stimulating event t0

j relayed over a single
synapse with weight wi j . To ensure stable fits, we fix all fit
parameters to the calibration target values except for the leak
potential uleak and our estimate of γiwi j that we call y. From
the linear fit y = γiwi j , we then obtain an estimate of γi for
excitatory and inhibitory weights, respectively [Figs. 6(g) and
6(h)]. All estimated parameters are summarized in Table I.

APPENDIX C: PARAMETRIZATION OF THE
HOMEOSTATIC REGULATION

The homeostatic regulation as given by Eq. (3) comes with
two independent parameters: the learning rate λ as well as
the update acceptance probability p. We obtained optimal
parameters by performing a grid search for h = 0.6 kHz and
assessing the variance of the firing rate of all neurons νi with
respect to the target rate ν∗, i.e.,

√
〈(νi − ν∗)2〉. For a broad

range of parameters, most of the LIF neurons emit spikes at a
rate resembling the target rate (Fig. 7). Only for high values
of λ and high values of p does the firing rate systematically
deviate due to the integer arithmetic used for weight update
calculations on the neuromorphic system.

Most notably, we also used the determined optimal param-
eters within our software simulations. This pursued strategy
renders extensive parameter sweeps in software superfluous
and moreover showcases the benefits of the accelerated analog
emulation of neurosynaptic dynamics due to the referenced
efficiency in terms of speed and power consumption.

APPENDIX D: PHASE DIAGRAMS OF NETWORKS
WITH HOMOGENEOUS AND STATIC WEIGHTS

To understand why we can observe fluctuating or bistable
dynamics in networks with homeostatically regulated weights
despite apparent excitation dominance (cf. Figs. 1 and 2), we
study here the phase diagram of comparable networks with
homogeneous and static weights. Due to small fluctuations
in the transition point for different realizations of small net-
works, we focus on a single network realization and split the
measurement into 200 blocks of length 30 s. To ensure spiking
activity even for low input strengths h, we initially increased
h for 5 s and subsequently let the networks equilibrate for
another 5 s.

We first perform a full sweep over the wexc-winh plane on
both a BrainScaleS-2 emulation and a corresponding software
simulation for three exemplary input strengths [Figs. 8(a)
and 8(b)]. While the overall trends of the firing rates in em-
ulation and simulation are quite comparable, the transition
from low to high firing rates is clearly shifted. We attribute
these remaining differences to (i) the fact that our simulations
do not capture correlations in the variability of parameters,
but instead implement uncorrelated Gaussian noise, and (ii)
additional saturation effects within the analog circuits of
BrainScaleS-2.

When we consider as a proxy for the transition between
high-firing phase and low-firing phase the line where ν ≈
10, we notice that this transition occurs for wexc ≈ (winh +
o)/s with o > 0 being an h-dependent offset [Figs. 8(c)
and 8(d)]. Hence this transition does not occur for a fixed
inhibition-excitation ratio, g = winh/wexc ≈ s − o/wexc. In-
stead, g depends nontrivially on the excitatory coupling as
well as on the parameters s and o, which further depend on
the input rate h and the specific choice of input coupling (see
Sec. II).

When we now interpret our symmetric homeostatic rule
to only allow identical couplings wexc = winh [Figs. 8(c) and
8(d), black dashed line], then homeostatic plasticity should
adjust the weights to the intersection between the transition
lines and the unit line. While this is strongly simplified, it
approximately recovers the range of resulting mean weights
that we find for the homeostatically regulated neuromorphic
chip (Fig. 1) and simulations (see Supplemental Material).

To characterize the dynamical phases of high and low firing
rates, we focus on the special cut plane of wexc = win = 17 on
the BrainScaleS-2 system. We record the mean neuron firing
rate, the integrated autocorrelation time, the network Fano fac-
tor, and the coefficient of variation (CV) of interspike intervals
as a function of the inhibition dominance, g = winh/wexc. The
integrated autocorrelation time is estimated from integrating
the autocorrelation function C(t ′); cf. Eq. (5). We follow the
common convention [98] to define τint = �t[ 1

2 + ∑lmax
l=1 C(l )],

where lmax is self-consistently obtained as the first l for which
l > 6 τint (l ). This reliably estimates the scale of temporal
correlations for fully sampled systems and did not become
unstable due to the typical oscillations in the autocorrelation
function observed for networks of LIF neurons. Since the
communication bottleneck of the hardware constrained long
samples for high firing rates, we partitioned each recording
into L = 200 chunks of size T = 30 s and estimated for each
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(a) (c)

(b) (d)

FIG. 8. Phase diagrams of networks with homogeneous and static weights. (a) The firing rates ν for three exemplary input rates h are
comparable between hardware (a) and software (b) implementations. However, there is a small shift of the transitions from high firing rates
ν to intermediate firing rates between both. For each value of the configured inhibitory weight winh, the firing rate is closest to 10 Hz for a
coinciding excitatory weight wexc

cross for both emulation (c) and simulation (d).

chunk the moments as averages, i.e., ν(t )l = 1
T

∑
t ν(t ) and

ν(t )ν(t + t ′)l = 1
T

∑
t ν(t )ν(t + t ′). To avoid finite-data bi-

ases [99], we then first obtained the best estimates of the
mean ν(t ) = 1

L

∑
l ν(t )l and analogously of the correlation

term, to then estimate the covariance as Cov[ν(t + t ′)ν(t )] =
ν(t )ν(t + t ′) − ν(t )

2
. Similarly, we estimate the network Fano

factor of the population rate as the ratio between variance and

mean, i.e., F = (ν2(t ) − ν(t )
2
)/ν(t ), and the CV as the av-

erage across neurons, i.e., CV = 1
N

∑
i

√
δt2

i − δt
2
i /δt i with

interspike intervals δt j
i of neuron i.

We find that for the considered setup with an E-I input
layer, the transition from high firing rates to low firing rates
is reminiscent of a regular-to-irregular transition [Fig. 9(a)].
For the special choice wexc = win, the transition occurs at
g ≈ 1 for h → 0, where the dynamic phase in the inhibition-
dominated regime appears absorbing despite nonvanishing
input due to the small system size. In the vicinity of the h-
dependent transition, we observe peaks in the autocorrelation
time [Fig. 9(b)], which we expect to vanish due to the absorb-
ing state in the limit of h → 0 and N → ∞ [100]. We find
that the network Fano factor, estimated from the population
activity with �t = 5 ms [Fig. 9(c)], is zero in the regular
phase and low in the irregular phase, separated again by a
peak that shifts towards g = 1 with decreasing h and becomes
narrower. Last, we observe the average coefficient of variation
of single-neuron interspike intervals to change from CV ≈ 0
for g < 1, indicating regular spiking, to CV ≈ 1 above the
transition, indicating irregular spiking [Fig. 9(d)].

To illustrate the dynamic phases of regular and irregular
activity, we show distributions of population rates [Fig. 9(e)]
as well as spike raster plots and the time evolution of the
population rate [Fig. 9(f)]. For g = 17/17 = 1 we find all h

in a stable active state. For g = 20/17 ≈ 1.2, h = 0.3 kHz
is already in the quiescent state, while h = 0.5 kHz shows
strong variance between high rate and low rates that hinder
estimation of autocorrelation times, but all other h remain
mostly in the stable active state. For g = 26/17 ≈ 1.5, we
observe the highest autocorrelations for h = 0.7 kHz due to
strong fluctuation-driven excursions into the high-firing-rate
regime. Further increasing g also causes the other h to fall
into low-firing-rate states, where for small h the state appears
absorbing with practically no population activity following
upon the few external perturbations. Note that single points
of the phase diagrams cannot be directly compared with the
results after homeostatic regulation, which results in hetero-
geneous weight distributions [cf. Fig. 1(e)], because we here
fix wexc = win.

APPENDIX E: AVALANCHE ANALYSIS REVEALS

To verify that the autocorrelations we observe are not
a result of close-to-critical fluctuations, we investigate the
distribution of avalanche sizes. For (self-organized) critical
systems, one would expect avalanche sizes s to be scale free
[75,101], i.e., an avalanche-size distribution p(s) that can be
described by a power law.

Here, we follow the convention to estimate avalanches
from a time-discrete firing rate ν(t ) [58,102]. To constrain
the temporal bin size to causal activity propagation, we es-
timate the spike delay from the solution of the LIF equation,
Eq. (B1). More specifically, the peak of the excitatory post-
synaptic potential (EPSP) is an estimate of the maximal time
until a certain spike can causally induce a threshold crossing.
We obtain the peak time of the EPSP from the condition
du/dt = 0 in Eq. (B1), which together with the spike delay
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(a)

(e)

(f)

(b) (c) (d)

FIG. 9. Dynamics of networks with homogeneous and static weights. (a) The transitions from high firing rates ν to intermediate firing
rates occurs in the vicinity of g ≈ 1 for decreasing h. (b) The autocorrelation time τAC and (c) the Fano factor are estimated based on the
population activity obtained with a bin size of 5 ms and show peaks around the finite-size transition. (d) The average coefficient of variation
of single-neuron interspike intervals suggests regular spiking for small g and irregular spiking for large g. (e) Distributions of population rates
shown in (a) for slices of different g show the transition from regular firing at high rates to irregular firing at low rates. (f) Example snapshots
of spike raster plots and population rate for h = 0.7 kHz for different g.

yields

τ tot = τ d + τmτ s ln
(

τm

τ s

)
τm − τ s

. (E1)

Since τ tot sets an upper estimate of the causal delay, we
here set the bin size for avalanche detection to �t = τ tot/2 =
5 ms, in agreement with our previous time discretization. An
avalanche is then defined as the number of spikes in consecu-
tive nonempty bins in ν(t ), for which we measured L = 1000
chunks of size T = 100 s.

The resulting avalanche-size distributions do not show
power-law behavior as expected close to a nonequilibrium
phase transition (Fig. 10, data points). In fact, we can compare
the tails of the avalanche-size distribution with expectations
from a two-state HMM (dashed curves). For this, we as-
sume that for the HMM the state durations are exponentially
distributed (which we confirmed for low h, not shown). In-
troducing a lifetime T+ and a conditional average rate ν+

FIG. 10. The tail of the avalanche-size distribution from homeo-
statically regulated neuromorphic networks can be explained by the
timescales of a Hidden Markov Model (HMM). Empirical avalanche-
size distributions for different h in a log-binned representation do not
show a power-law shape. In contrast, the cutoff scale of their tails
coincides with estimates from the corresponding HMM.
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for the high-firing state, we can approximate large avalanche
sizes as s = ν+T+ with p(s) ∝ p(T+ = s/ν+). Since we do
not have an unbiased estimate of the fraction of avalanches
in the low-firing rate, we constrain the amplitude to align the
tails of corresponding distributions. The visual match between
distribution tails indicates that in all cases we observe an
exponential decay with a cutoff scale consistent with that of
a HMM. We thus conclude that the empirical avalanche-size
distributions show no sign of scale-free avalanches.

APPENDIX F: SIMULATION OF MEAN-FIELD MODEL

To simulate the time evolution of the mean-field model,
one needs to take special care to avoid negative densities from
numerical imprecisions that would render the multiplicative
noise imaginary [61]. In short, the steps involve first evaluat-
ing an exact solution of the noise and linear terms and then an
Euler integration of the remaining quadratic term. The precise
mean-field equation we solve is

ρ̇(t ) = h − (τMF − α + h[1 + β])ρ(t )

+ σ
√

ρ(t )/Nη(t ) − bρ2(t ). (F1)

This equation is decomposed into the linear term plus noise
(first line), for which one can obtain an analytical solution,
and the higher-order term (second line), which can be trivially
integrated.

For the square-root noise plus linear term, i.e., ρ̇(t ) =
h + aρ + σ̃

√
ρη, starting from ρ(t ) = ρ0 one knows that the

solution of the Fokker-Planck equation for time t + �t is
[103]

P(ρ, t + �t ) = λeλ(ρ0ω+ρ)

[
ρ

ρ0ω

]μ/2

Iμ(2λ
√

ρ0ρω), (F2)

where Iμ is the modified Bessel function of order μ, ω = ea�t ,
λ = 2a/σ 2(ω − 1), and μ = −1 + 2h/σ 2. Using a Taylor-
series expansion of the Bessel function, it was shown in
Ref. [61] that rewriting P(ρ, t + �t ) implies that the density
after �t can be simply drawn from the mixture

ρ∗ = Gamma[μ + 1 + Poisson[λρ0ω]]/λ. (F3)

We thus evolve ρ(t ) in discrete time steps �t in two steps
[61]: First, we generate from ρ0 = ρ(t ) the stochastic solution
ρ∗ using Eq. (F3). Second, we integrate the remaining term as
ρ(t + �t ) = ρ∗/(1 + ρ∗b�t ).

For the example we show in Fig. 4, we used �t = 10−7,
τ = 10, α = 19, β = 10, b = 12, σ = 40, and N = 512. For
further details we refer the reader to the available code [97].
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