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Abstract
Prior work has shown that internal representations of ar-
tificial neural networks can significantly predict brain re-
sponses elicited by unimodal stimuli (i.e. reading a book
chapter or viewing static images). However, the compu-
tational modeling of brain representations of naturalis-
tic video stimuli, such as movies or TV shows, still re-
mains underexplored. In this work, we present a promis-
ing approach for modeling vision-language brain repre-
sentations of video stimuli by a transformer-based model
that represents videos jointly through audio, text, and vi-
sion. We show that the joint representations of vision and
text information are better aligned with brain representa-
tions of subjects watching a popular TV show. We fur-
ther show that the incorporation of visual information im-
proves brain alignment across several regions that sup-
port language processing.
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works; fMRI; naturalistic video stimuli

Introduction
How do humans integrate the information of naturalistic video
stimuli across multiple modalities? Understanding the com-
plex vision-language representations of video stimuli requires
appropriate computational modeling. The impressive perfor-
mance of artificial neural networks in various tasks has en-
couraged neuroscientists to leverage their representations as
a rich source of stimulus features to model human brain rep-
resentations (Jain, Vo, Wehbe, & Huth, 2023). Previous work
has focused on predicting brain responses using the mod-
els trained on unimodal data, such as text, audio, or static
images when the same stimuli are presented (Toneva & We-
hbe, 2019; Vaidya, Jain, & Huth, 2022; Schrimpf et al., 2018).
Recently, researchers have begun aligning representations of
vision-language models (trained on images with captions) with
brain recordings of subjects viewing static real images, show-
ing that the information learned from one modality enhances
the alignment of the brain regions that support another modal-
ity (Wang, Kay, Naselaris, Tarr, & Wehbe, 2022; Reddy Oota,
Arora, Rowtula, Gupta, & Bapi, 2022).

In contrast to previous work that typically models brain rep-
resentations of participants observing unimodal stimuli, we in-
vestigate the alignment of model representations from a multi-
modal video transformer with brain recordings in a completely
multimodal task setting, namely subjects watching a TV show.
Perhaps closest to our work is the one by (Lahner et al., 2023)
which studies the correspondences between brain activities
and representations of deep neural networks when process-
ing short video clips. However, their models lack multimodal-
ity, thus failing to capture the multimodal features needed to
model the brain responses to video stimuli.

We instead propose to use MERLOT Reserve, one of the
state-of-art multimodal video transformer models, which pro-
vides strong contextualized representations of a given video
– jointly reasoning over video frames, text, and audio (Zellers

et al., 2022). It was pre-trained on 20 million YouTube videos
by learning to predict the correct snippet of text (and audio)
based on contextualized representations of a video.

Methods
Model. We use the ”base” MERLOT Reserve, which con-
sists of one 12-layer joint encoder with a hidden size of 768,
which combines the outputs of 3 independent unimodal en-
coders: a 12-layer image encoder, a 12-layer audio encoder,
a 4-layer text span encoder. In this work, we specifically focus
on vision-language representations and leave audio informa-
tion for future work. Thus we provide video frames and associ-
ated subtitles followed by a ’MASK’ token as the inputs. Each
video is split into a sequence of non-overlapping 5-second
segments in time, and each segment contains a video frame
and associated text spans (due to the model limitation, at most
three words are reserved for each frame). The model first en-
codes each modality in one segment independently using an
image encoder or text span encoder and then fuses all rep-
resentations for all modalities and segments using a joint en-
coder. We then extract the representations from the ’MASK’
token from every layer of the text span encoder and the joint
encoder. To evaluate the effect of the language-vision inte-
gration, we include a second condition in which we provide
correct subtitles but incorrect video frames from a video ran-
domly sampled from the video dataset (see below). Finally, we
include results from GPT-2 (Radford et al., 2019) encoding the
same text span of each segment, as an additional baseline.

Video data. We construct a video dataset consisting of 1075
35-second video clips from three episodes of the TV show
Friends. These videos are extracted from every three sec-
onds of each episode so that they could be directly mapped to
the timestamps when brain recordings are collected (see be-
low). For each video, the subtitles (namely, the inputs for the
text modality) were automatically transcribed using the Google
Speech-to-Text API given the associated audio.

Brain data. We use the brain recordings of 6 subjects when
watching the same episodes from the Courtois Friends TV
show fMRI dataset (Boyle, Pinsard, & et al., 2020). The
recordings are sampled at a repetition time (TR) of 1.49 sec-
onds for one session, and at every TR, the activity level of
each voxel in a subject’s brain is recorded. Because the
videos are extracted from every three seconds (roughly equal
to 2∗1.49) of an episode, we can map the offset of videos to
the TR at which the last segment of a video is presented. We
concatenate the brain’s representation of all videos, which re-
sults in a matrix Y ∈R1075×Vi , where Vi is the number of voxels
in the fMRI recordings for participant i.

Model-brain alignment. We build an encoding model from
the models’ representations of the ’MASK’ token and then
predict the brain matrix of each participant viewing a video
segment. Each voxel value in the brain matrix is estimated
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from the inputs using a linear function regularized by the ridge
penalty. We train the encoding model through six-fold cross-
validation, where the parameters are selected with nested
cross-validation. We then evaluate the encoding model based
on the voxel-based mean Pearson correlation scores between
fMRI predictions for held-out data and actual values. We fi-
nally perform a permutation test on fMRI predictions and re-
port the mean correlations of significantly predicted voxels.

Figure 1: Pearson correlation of brain alignment over signifi-
cantly predicted voxels across the whole brain.

Results
We first investigate whether the joint representation of text and
vision information from the MERLOT Reserve model can bet-
ter align with the brain responses of subjects viewing video
stimuli. We present this contrast (red vs. green) for the
significantly predicted voxels throughout the brain in Figure
1. We observe that the vision-language representations from
the joint encoder are better aligned with brain representa-
tions throughout the early to late layers (layers 3-10), suggest-
ing that these layers encode brain-related properties of video
stimuli beyond that provided by the modality-specific encoder.
We further show that these vision-language joint represen-
tations also outperform a text-only representation (Fig1, red
vs. orange) obtained from another popular text-only language
model–GPT-2–that has been shown to significantly predict
fMRI recordings that contain language information (Schrimpf
et al., 2021; Goldstein et al., 2022).

What is the reason for the superior performance of the joint
encoder over the text encoder in predicting brain represen-
tations of video stimuli? We hypothesize that some improve-
ments arise from a better understanding of the language infor-
mation enriched by the vision modality. Nonetheless, it is plau-
sible that these gains are the result of the in-depth processing
of text information alone, since the text encoder has only 4
layers, while the joint encoder has 12 layers. We thus con-
struct experiments in two conditions to study this possibility
a) when text and correct video frames are provided; b) when
text and incorrect video frames are provided. We present the
contrast for the significantly predicted voxels across the lan-

guage regions, computed over all layers. In Figure 2 (red
vs. blue), we observe that the incorporation of correct video
frames greatly improves the prediction of brain activity across
the regions in the language network (Fedorenko, Hsieh, Nieto-
Castanon, Whitfield-Gabrieli, & Kanwisher, 2010). The im-
provement cannot be due to the further processing of text-
specific information in the joint encoder since the depth of text
input processing is the same in both conditions and is unlikely
to be due to vision-only information since these regions are
known to support language processing.

To identify the language regions where the incorporation
of visual information significantly improves alignment, we
conduct an ROI-level Wilcoxon signed-rank test (p-value <
0.05). We observe that significant differences are found be-
tween the two conditions in the Angular Gyrus (AG) region,
which is thought to be responsible for multimodal integration
(Farahibozorg, Henson, Woollams, & Hauk, 2022). We further
observe significant differences in the bilateral Posterolateral
Temporal Lobe (PTL), which are thought to support the pro-
cessing of word-level (Hickok & Poeppel, 2007) and multi-word
semantics (Toneva, Mitchell, & Wehbe, 2022). One possibil-
ity is that the incorporation of visual information enhances the
representation of text-related information, but may not neces-
sarily integrate with it in a brain-like way. For instance, the text
provided to the model may not fully capture the brain’s rich
language representation of video stimuli, and vision informa-
tion may complement it such that the resulting representation
is more in line with the brain’s language processing regions.
This possibility should be further explored in future work.

Figure 2: Pearson correlation brain alignment over the signifi-
cantly predicted voxels across the language regions, comput-
ing over all 12 layers of the joint encoder.

Conclusion This work expands the exciting line of work that
aligns brain activity with artificial neural networks in a fully mul-
timodal setting. We hope to further understand the promise
of joint representations obtained from the MERLOT Reserve
model as valuable resources for studying the brain represen-
tations of video stimuli.
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