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Abstract

Quantifying animal behavior is a crucial aspect of the ongoing neuroscientific endeavor to under-
stand the brain, since it is a prerequisite for studying how neural computations relate to behavioral
outputs. One method for obtaining an objective yet detailed description of an animal’s uncon-
strained and therefore natural behavior is given by estimating its pose, i.e. the collective positions
and orientations of all individual body parts in space at a given moment in time. While various
approaches have been proposed for estimating the pose of a freely-moving animal, so far, studies
relying on video cameras for recording the required behavioral data have neglected reconstruct-
ing the actual skeleton of an animal and only considered inferring the positions of anatomical
landmarks located on its body surface. Additionally, many approaches lack incorporating mech-
anistic knowledge of an animal’s anatomy, which leaves room for improving the resulting pose
reconstruction accuracy. Consequently, methods for quantifying skeletal animal poses during free
motion sequences are desirable tools for future neuroscientific studies.

The work presented in this thesis tackles the problem of inferring skeletal poses from recorded
video data of freely-moving animal subjects via a constrained animal pose estimation framework,
which enables reconstructing underlying three-dimensional joint positions from observable surface
markers while enforcing anatomical and temporal constraints. Anatomical constraints are imple-
mented via a realistic skeleton model, which accounts for physiological joint angle limits, bone
lengths and body symmetry. Besides, the realistic skeleton model allows for learning individual
skeleton anatomies directly from recorded video data of behaving animals, taking into account
subject-specific differences with respect to bone lengths and body-symmetry. Furthermore, to
ensure that reconstructed joint positions follow smooth motion trajectories, the proposed animal
pose estimation framework also enforces temporal constraints. Particularly, temporal constraints
are implemented via an underlying state space model, which allows for deploying a Bayesian
smoother for inferring bone rotations as well as an expectation-maximization algorithm for learn-
ing the unknown probabilistic hyper-parameters of the state space model.

The proposed animal pose estimation framework is evaluated and tested with respect to its
reconstruction accuracy and usability for quantifying a range of different behaviors. By comparing
learned skeleton anatomies with ground truth data obtained via magnetic resonance imaging, it
is shown that the framework offers the opportunity to learn three-dimensional joint positions and
bone lengths solely from two-dimensional video data. Besides, to test whether poses of freely-
moving animals are accurately inferred, independently measured paw positions are obtained using
a frustrated total internal reflection imaging system and compared to their reconstructed counter-
parts, while the effects of the enforced anatomical and temporal constraints are analyzed. This
analysis shows the advantages of constrained over unconstrained animal pose estimation, since
enforcing constraints reduces errors with respect to reconstructed paw positions and orientations.
Furthermore, to assess if the proposed pose estimation framework is capable of accurately quanti-
fying common behaviors, periodic gait cycles are analyzed based on reconstructed skeletal poses,
which shows that enforcing constraints is essential for successfully extracting characteristic move-
ment patterns from recorded video data. Finally, the proposed pose estimation framework is also
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used to quantify complex gap-crossing behaviors, where animals jump over gaps of various dis-
tances. This analysis shows that reconstructing skeletal poses enables computing characteristic
movement patterns during jumping and correlating skeletal kinematic quantities with each other
as well as the jumped distances.

In summary, this thesis proposes an animal pose estimation framework, which allows for re-
constructing anatomically-plausible as well as time-consistent three-dimensional skeletal poses of
freely-moving animals from two-dimensional video data. To achieve this, anatomical and temporal
constraints are implemented into the proposed pose reconstruction framework, which transpired
to be essential for obtaining accurate pose reconstruction results. Consequently, this thesis con-
tains analyses, which demonstrate the importance of the implemented constraints in the context
of animal pose estimation.
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Kurzfassung

Die Quantifizierung von tierischen Bewegungsmustern ist ein Grundpfeiler fortwährender neuro-
wissenschaftlicher Bestrebungen das Gehirn zu verstehen, da es eine Grundvoraussetzung für die
Erforschung der wechselseitigen Beziehung zwischen neuronaler Aktivität und Tierverhalten dar-
stellt. Eine verbreitete Methode zur objektiven und detaillierten Beschreibung von unbeschränkten
und daher natürlichen Bewegungsmustern eines Tieres ist die Schätzung der Körperhaltung, wel-
che die kollektiven Positionen und Ausrichtungen aller einzelnen Körperteile im Raum zu einem
bestimmten Zeitpunkt beinhaltet. Zwar existieren verschiedene Ansätze für die Schätzung der
Körperhaltung eines sich frei bewegenden Tieres, doch haben Studien, bei denen Videokame-
ras für die Auzeichnung der erforderlichen Verhaltensdaten verwenden werden, bisher die Re-
konstruktion des eigentlichen Skeletts vernachlässigt und sich lediglich mit der Berechnung von
Positionen anatomischer Merkmale auf der Körperoberfläche des Tieres befasst. Darüber hinaus
mangelt es vielen Ansätzen an der expliziten Miteinbeziehung von mechanistischem Wissen über
die Anatomie eines Tieres, was die Genauigkeit von Körperhaltungsrekonstruktionen negativ be-
einträchtigen kann. Folglich sind Methoden zur objektiven sowie detaillierten Quantifizierung tieri-
scher Skelett-Konfigurationen wünschenswerte Werkzeuge für zukünftige neurowissenschaftliche
Studien.

Die in dieser Dissertation vorgestellten Inhalte liefern einen Lösungsvorschlag für das Pro-
blem die Skelett-Konfigurationen von sich frei bewegenden Tieren auf Basis von aufgezeichneten
Videodaten zu berechnen. Dafür wird ein entsprechender Algorithmus vorgeschlagen, welcher
es ermöglicht, dreidimensionale Gelenkpositionen aus beobachtbaren Oberflächen-Markierungen
zu rekonstruieren und dabei anatomische und zeitliche Beschränkungen berücksichtigt. Anatomi-
sche Beschränkungen werden durch die Einbeziehung eines realistischen Skelett-Modells erfasst,
welches physiologische Gelenkwinkelgrenzen, Knochenlängen und Körpersymmetrien beinhal-
tet. Darüber hinaus ermöglicht die Verwendung eines realistischen Skelett-Modells das Erlernen
individueller Skelette auf Basis von aufgezeichneten Videodaten von sich frei bewegender Tie-
re, wobei subjektspezifische Unterschiede in Bezug auf Knochenlängen und Körpersymmetrie
berücksichtigt werden. Um sicherzustellen, dass die rekonstruierten Gelenkpositionen kontinu-
ierlichen Bewegungstrajektorien folgen, erzwingt der Algorithmus auch zeitliche Beschränkungen.
Diese werden über ein Zustandsraummodell implementiert, welches die Rekonstruktion von Skelett-
Konfigurationen durch die Bestimmung von Knochenrotationen mittels eines Bayesschen Filter-
beziehungsweise Glättungs-Algorithmus ermöglicht. Darüber hinaus erlaubt dieses Vorgehen eben-
falls das Erlernen der unbekannten probabilistischen Hyper-Parameter des Zustandsraummodells
mittels eines Erwartungs-Maximierungs-Algorithmus.

Die daraus resultierenden rekonstruierten Skelett-Konfigurationen werden im Zuge dieser Dis-
sertation auf ihre Genauigkeit hin bewertet sowie auf ihre Verwendbarkeit hinsichtlich der Quan-
tifizierung von verschiedenen Verhaltensweisen hin getestet. Durch den Vergleich von erlern-
ten Skeletten mit aus der Magnetresonanztomographie gewonnenen Daten wird gezeigt, dass
der vorgeschlagene Algorithmus die Möglichkeit bietet, dreidimensionale Gelenkpositionen so-
wie Knochenlängen allein aus zweidimensionalen Videodaten zu berechnen. Um die Genauigkeit
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der berechneten Skelett-Konfigurationen von sich frei bewegenden Tieren zu testen, werden Pfo-
tenpositionen mittels eines Bildgebungsverfahrens, welches auf dem Konzept der verhinderten
totalen Reflektion basiert, gemessen und mit ihren rekonstruierten Gegenstücken verglichen, wo-
bei die Auswirkungen der erzwungenen anatomischen und zeitlichen Beschränkungen analysiert
werden. Diese Analyse zeigt die Vorteile der beschränkten gegenüber der unbeschränkten Be-
rechnung von Skelett-Konfigurationen, da die Einbeziehung von Beschränkungen die Fehler in
Bezug auf die rekonstruierten Pfotenpositionen und -orientierungen verringert. Um zu beurteilen,
ob der vorgeschlagene Algorithmus in der Lage ist, gängige Verhaltensweisen genau zu quan-
tifizieren, werden außerdem periodische Gangzyklen auf der Grundlage rekonstruierter Skelett-
Konfigurationen analysiert. Diese Analyse zeigt, dass das Erzwingen der anatomischen und zeit-
lichen Beschränkungen eine wesentliche Voraussetzung für die erfolgreiche Extraktion von cha-
rakteristischen Bewegungsmustern aus aufgezeichneten Videodaten ist. Schließlich werden auch
komplexere Verhaltensweisen quantifiziert, bei denen Tiere über Lücken unterschiedlicher Länge
springen müssen. Diese Analyse zeigt, dass die Rekonstruktion von Skelett-Konfigurationen die
Berechnung von charakteristischen Bewegungsmustern während des Springens und von Korre-
lationen zwischen kinematischer Metriken untereinander sowie mit den gesprungenen Distanzen
ermöglicht.

Zusammenfassend wird in dieser Dissertation ein Algorithmus zur Schätzung von Skelett-
Konfigurationen vorgestellt, welcher anatomisch plausible sowie zeitlich konsistente Gelenkpo-
sitionen und Knochenorientierungen von sich frei bewegenden Tieren liefert. Um dies zu errei-
chen, werden anatomische und zeitliche Beschränkungen in den Algorithms implementiert, die
sich als wesentlicher Bestandteil für die Erzielung genauer Posenrekonstruktionsergebnisse er-
wiesen haben. Folglich enthält diese Arbeit Analysen, welche die Bedeutung der implementierten
Beschränkungen im Rahmen der Schätzung von tierischen Skelett-Konfigurationen hervorhebt.
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Chapter 1

Introduction

1.1 Motivation and background

A major goal of neuroscientific research is to gain mechanistic knowledge about the brain by
studying how neural activity gives rise to the behavior of animals and vice versa [1–3]. While this
requires accurate measurements of neural data to obtain insights into the computations performed
by the brain, it is equally important to correctly quantify animal behavior to determine how neu-
ral computations relate to behavioral outputs [1–8]. In the past, simultaneously analyzing brain
activity and animal behavior has already led to insights into neural circuits and mechanisms, e.g.
when it was discovered that the isolated activity of specific neurons is highly correlated with the
spatial position of an animal [9, 10]. Since it is hypothesized that the identification of fine-grained
behavioral motifs will lead to an even richer understanding about the functionality and implemen-
tation of neural circuits, deploying robust and accurate approaches for extracting both, behavioral
as well as neural data, is crucial for future neuroscientific research [2, 3, 11]. Thus, to perpetually
advance the limits of neuroscientific research it is key to continuously develop new and perma-
nently improve existing measuring techniques in order to overcome the shortcomings of currently
predominant methods [1,3,6]. With the intention of contributing to this endeavor the contents pre-
sented in this thesis are aimed at pushing the limits of what is currently possible in the realm of
quantifying neuroscientific data.

1.1.1 Quantifying neural activity

Electrophysiology is regarded as the gold standard for studying the brain, since it allows for mea-
suring neural activity via microelectrodes, which yields ground truth voltage traces of individual
neurons [12, 13]. Penetrating the membrane of a neuron with an electrode allows for recording
the local voltages inside the cell. This process is a direct measure of the cell’s neuronal activity
and can even be achived in fully awake animals [14]. Since each recorded neuron requires a sin-
gle electrode and establishing a sealed connection between the electrode and the cell is usually
a manual and labor-intensive task with relatively low success rates [12], using this technique to
simultaneously measure the activity of a large amount of neurons is challenging. However, simul-
taneously recording the activity of an entire ensemble of neurons can be achieved, for instance, by
using entire arrays of microelectrodes [15]. The costs of obtaining voltage traces via those arrays
are given by comparably imprecise recordings, since the placement of the respective arrays is
usually less targeted. As a consequence the individual electrodes are not necessarily penetrat-
ing neurons directly, which causes extracellular background noise to be recorded as well when
micoelectrode arrays are used [15].

By utilizing calcium-sensitive fluorescent proteins combined with high-resolution microscopy, it
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is possible to overcome these limitations [16,17]. When such proteins are located within individual
neurons they bind calcium ions and, as a result, emit fluorescent light, which is detectable via
microscopes. Since neural activity is positively correlated to the local calcium concentration within
a cell, a high light intensity corresponds to a high neural activity [18]. Consequently, measuring
the neural activity of many neurons at the same time becomes feasible using this technique [19,
20]. For specific microscopic animals, like nematodes, whose organisms only encompass a few
hundred neurons in total [21], the technique of measuring neural activity via calcium-sensitive
fluorescent proteins can even be scaled up to such an extend that the ensemble of recorded
neurons represents the entire nervous system of the animal subject [22].

When larger and more complex animals, like rodents, are studied, recording brain activity be-
comes more challenging. Due to their larger brain sizes, neurons can be located more than a
thousand microns below the brain’s surface [23], causing microscopic imaging techniques to be
less efficient, e.g. due to increased light scattering [24,25]. Furthermore, compared to nematodes
the overall number of neurons in rodent brains is several magnitudes larger, which, so far, deems
measuring the entire neural activity of a rodent model organism an infeasible endeavor. Never-
theless, for rodents it is still possible to simultaneously record activity traces of dozens of neurons
using miniaturized microscopes, which are light-weight and only cause marginal restrictions to
an animal’s movement capabilities, such that neural activity can be measured while the animal is
showing unconstrained behaviors [26–28].

1.1.2 Quantifying animal behavior

While techniques for measuring the brain’s neural functions are well-established (Section 1.1.1),
methodological advances in the realm of quantifying unconstrained behavior have been compara-
bly sparse, such that, so far, accurately describing how a freely-moving animal is interacting with
its environment remains a less standardized procedure [1]. In fact, many different approaches for
estimating animal behavior have been proposed, ranging from inertial measurement units [29,30]
to radio-frequency identified tagging [31, 32] and videography with either normal [33–35] or time-
of-flight cameras [36–38]. Among these, the deployment of normal video cameras represents an
accurate, non-invasive, easy to use and cost-efficient option for monitoring a behaving animal.
Consequently, videography is regarded as a promising measuring technique for future develop-
ments in the area of behavior quantification [7].

One option for tracking and describing animal behavior via cameras is given by quantifying
an animal’s pose at any given time point with high spatial and temporal resolution. This yields
knowledge about the animal’s entire body posture, which, for instance, includes the positioning of
individual limbs as well as the direction in which the head is pointing [8].

However, a common challenge faced by all camera-based pose estimation approaches is the
elimination of ambiguities, which arise when three-dimensional poses are reconstructed from two-
dimensional images [39,40]. Since depth information is lost, when a scene with a behaving animal
is projected onto the sensor of a camera [41], many different three-dimensional poses can be con-
sistent with the two-dimensional pose, which is observed on the recorded image [40, 42]. While
using multiple cameras can limit the effect of such ambiguities and therefore allows for recon-
structing three-dimensional poses, e.g. via triangulation, it is not necessarily guaranteed that the
deployment of a multi-camera setup leads to accurate pose reconstructions, e.g. when individual
body parts are temporally occluded in all but one camera view [40]. In this scenario only a single
camera provides information about the entire body pose, which negates the benefits of using a
multi-camera setup since recovering the three-dimensional pose via mere triangulation becomes
infeasible. Furthermore, deploying an exceptionally high amount of cameras is cost-intensive and
introduces challenges on its own with respect to the logistics of capturing and storing the result-
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ing video data [43]. Additionally, low hardware requirements in the form of a limited amount of
used cameras are generally preferable, since measuring naturalistic animal behaviors is regarded
a long-term neuroscientific goal [3,7], which implies that respective studies have to be conducted
in the wild – outside of a perfectly controllable lab environment.

This causes a demand for appropriate pose estimation algorithms, yielding accurate results
based on a limited amount of video data, which is recorded from only a few video cameras. To ob-
tain algorithms with the desired robustness, deploying probabilistic instead of deterministic models
within the context of animal pose estimation is a viable option. Additionally, anatomical and tem-
poral constraints can be introduced to a pose estimation framework in order to boost its accuracy
and performance [6–8,42].

1.1.3 Constrained pose estimation

Taking into account mechanistic knowledge about the movement capabilities of an animal is one
option for reducing the number of ambiguities in a pose estimation framework, since many ani-
mals are physically limited in their range of motions by anatomical constraints [44]. Anatomical
constraints naturally exist in many animal species in the form of skeletons, which limit the amount
of possible bone configurations [42]. Anatomical skeletons consist of joints and bones, where
each bone is connected to a specific type of joint, which usually has between one and three rota-
tional degrees of freedom. This constrains rotational bone motions to stay within physiological joint
angle limits. A particular subset of anatomical constraints is given by spatial constraints, which de-
scribe the rigid nature of bones, i.e. each skeletal bone is a single entity of constant length, which
is attached to its respective joints and is only allowed to rotate and move as a whole [6, 8, 42].
Thus, the solution space for possible poses can be narrowed within a pose reconstruction frame-
work, since a fraction of otherwise valid poses can be rejected, when they fail to comply with the
enforced anatomical constraints. Consequentially, introducing anatomical constraints into a pose
estimation framework can improve the quality of reconstructed poses [6–8,42].

Another option for narrowing the solution space for possible poses is to enforce smooth tem-
poral transitions of individual body parts, such that they follow continous movement trajectories in
three-dimensional space [6, 8, 42]. At a given time point a single pose is always correlated with
the pose shortly before and after this particular time point. In fact, poses of two adjacent time
points become identical for an infinitesimally small time difference. Thus, given a reasonably high
sampling rate with respect to the recorded video data, the position of each reconstructed body
part should not change with an arbitrary high degree, such that poses at consecutive time points
remain similar. When reconstructing the pose of a given time point this principle allows for creating
temporal dependencies of body part positions, e.g. by processing pose information from past and
future time points. As a result, such an approach can increase pose reconstruction accuracy, e.g.
when body parts are occasionally occluded [6,8,42].

While implementing anatomical and temporal constraints into a pose estimation framework is
beneficial, it does not allow for assessing the probabilistic certainty of a reconstructed pose, i.e.
its overall likelihood given the recorded video data. In fact, for longer behavioral sequences the
occurrence of incorrectly estimated poses is expected at some point, e.g. due to measurement
noise or shortcomings of the reconstruction algorithm itself. When the pose reconstruction algo-
rithm is deterministic each reconstructed pose is a mere point estimate and the actual spectrum
of theoretically possible poses remains unknown. An alternative to this is to model poses via a
stochastic process, such that the underlying pose-encoding variables are drawn from a probability
density function, e.g. a multivariate normal distribution [8]. In this case inferring the free param-
eters of the probability density function, e.g. the mean and covariance matrix of a multivariate
normal distribution, is equivalent to reconstructing a whole range of poses, which are consistent
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with the measured video data. Deploying such a probabilistic model for pose estimation offers the
ability to assess the likelihood of a reconstructed pose [42], which causes probabilistic approaches
to be more informative and therefore more versatile compared to their deterministic counterparts.
For instance, having access to the likelihoods of reconstructed poses allows for excluding poses
with low probabilistic certainty, i.e. low likelihoods, from further neuroscientific analyses, which is
a useful asset whenever error tolerances are required to be minimal [42].

1.2 Related work

Endeavors to understand how animals change their body posture to move and interact with their
environment date back over a century [45–47]. However, with the recent dawning of machine
learning techniques, animal pose estimation capabilities have improved massively, whereas many
of the achieved advances were fueled by innovations in the field of human pose estimation [7,42].

1.2.1 Human pose estimation

A common approach in human pose estimation is to use a pseudo-skeleton model, which allows
for describing a complex human pose in a rather low-dimensional space [40, 48]. For instance,
the two-dimensional pose of a human has been reconstructed by modeling the individual body
parts, i.e. the head, torso, arms and legs, via pictorial structures [49] even prior to the beginning of
the so-called deep learning revolution in 2012 [50]. In this model formulation, the reconstruction
of human poses relies on minimizing an energy function, which penalizes mismatches between
reconstructed and observed poses as well as deformations of spring-like connections between
individual body parts [51]. While combining the concept of pictorial structures with strong body
part detectors led to further improvements regarding the reconstruction of human poses [52, 53],
the focus of the research field shifted more to deep neural networks after their first utilization in
this context [54]. Particularly, the availability of steadily increasing computational power in com-
bination with large amounts of training data made convolutional neural networks (CNN) [55, 56] a
popular tool used for estimating human poses. As a consequence of this development estimating
body postures of multiple humans in images has been achieved by performing the detection of
individual humans and the reconstruction of their poses in a joint operation instead of executing
both computations independently from each other [57,58].

Further improvements were made by not only focusing on the locations of individual body parts
but also on their orientations via two-dimensional vector fields, so-called part affinity fields, which
additionally indicate the direction in which a detected body part is pointing [59]. This allowed for
not only reconstructing the body postures of multiple humans but also the pose of their feet, hands
and faces in real time from raw image data [60,61].

While the previously mentioned work on human pose estimation is primarily aimed at recon-
structing two-dimensional poses based on images from a single camera, three-dimensional poses
can be obtained via triangulation, when two-dimensional poses are accurately estimated from a
set of images recorded with several synchronized and calibrated cameras. Alternatively, three-
dimensional human poses have also been obtained by reconstructing the entire human shape,
i.e. the visible surface area of a human, rather than only considering individual body parts or
distinct anatomical features thereof [40]. Based on full three-dimensional body scans as well as
motion capture data of three-dimensional surface marker trajectories, three-dimensional human
poses and shapes have been reconstructed, while the resulting surface meshes were modeled
as a function of an underlying three-dimensional skeleton model [62]. Subsequent improvements
with respect to the estimation accuracy of three-dimensional human poses and shapes have been
achieved via a skinned multi-person linear (SMPL) model, such that especially the reconstruction
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quality of the visible surface area could be enhanced [63]. Here, the improved reconstruction ca-
pabilities were primarily fueled by increasing the number of full body scans to several thousands
and additionally introducing linear dependencies between the reconstructed surface mesh and the
rotation matrices, which determine the bone orientations of the underlying skeleton model. Com-
bining this approach with a CNN-based two-dimensional human pose estimation framework even
allowed for reconstructing three-dimensional human poses from a single image [64].

1.2.2 Animal pose estimation

Recent improvements in the field of human pose estimation were primarily driven by the existence
of large data sets [7] containing up to several million annotated images of humans in different
poses, contexts and environments, sometimes even accompanied by ground truth data on three-
dimensional surface marker trajectories acquired via motion capture [65–67]. While efforts have
been made to also generate large data sets for a range of different animal species [68–71], they
are still comparably rare [42]. Furthermore, the wide variety in form and shape, which can be
found within the animal realm, renders generating a universal data set for animal pose estimation a
rather challenging task [7]. Additionally, this circumstance also complicates the direct deployment
of tools developed for pose estimation in humans for the same task in animals without adjusting
them accordingly [42].

A proposed solution for circumventing the issue of comparably small training data sets with
respect to animal poses, is the usage of synthetically-generated data [72–74]. Nevertheless,
even without relying on synthetic data, using human pose estimation schemes as a first starting
point has proven to be effective to also enhance animal pose reconstructing capabilities [7, 42].
Particularly, the deployment of CNN architectures, which were originally designed for human pose
estimation, in combination with so-called transfer learning improved the level of detail and accuracy
to which animal poses can be reconstructed. In this context transfer learning describes the process
of initially training a neural network on a task different from its final purpose and subsequently
training it on the task it is actually intended for [7, 75]. Using this approach, reconstructing two-
dimensional animal poses has been achieved based on comparably little training data [76]. While
the resulting time spans needed for inferring respective poses are comparably long, it has been
shown that they can be shortened at the cost of accuracy [77]. The resulting challenge of balancing
inference speed against accuracy has been addressed as well [78], allowing for robust yet efficient
two-dimensional animal pose estimation.

However, research on reconstructing three-dimensional animal poses has also been fruitful.
For instance, equivalently to human pose estimation, surface markers have been tracked via mo-
tion capture to obtain three-dimensional animal poses [79,80]. Besides, three-dimensional animal
poses have been estimated by triangulating previously reconstructed two-dimensional poses from
multiple images, which were recorded via different cameras at the same time point [81–83]. By
introducing a CNN architecture in which the respective convolutions are also performed on a
discrete three-dimensional grid rather than only being computed on the two-dimensional image
domain, three-dimensional animal poses have also been inferred from multiple images directly,
without the need for triangulation [69, 84]. Alternatively, three-dimensional animal poses have
been reconstructed from only a single image by utilizing the SMPL model, while the necessity for
obtaining full body scans of the animal subjects was replaced by scanning respective animal toy
figures instead [85–89]. When ground truth data on the three-dimensional positions of body parts
is available for initial training, reconstructing three-dimensional animal poses from single images
has also been achieved without any additional requirements for full body or toy figure scans [90].
Furthermore, this approach also showed the practicability of so-called domain adaption, which
allows for estimating three-dimensional poses of freely-moving animals, even when the corre-
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sponding training data shows subjects of the respective animal species in a different context, e.g.
a head-constrained setting.

While the techniques for reconstructing three-dimensional animal poses are versatile, many
of them rely on standard video cameras to record data of behaving animals [47]. However, since
camera-based approaches are prone to errors, e.g. due to occlusions of body parts, temporal as
well as spatial constraints have been introduced to pose estimation frameworks to improve their
accuracy [6–8,42].

For instance, temporal constraints have been exploited in the context of three-dimensional
animal pose estimation by penalizing large Euclidean distances between landmark locations of
consecutive time points in the optimization procedures of respective pose reconstruction schemes
[68, 82]. Besides, temporal constraints have been implemented into animal pose reconstruction
frameworks indirectly via Bayesian filters [70], an approach which has also enabled classifying
animal poses in real-time with zero latency [91]. Another technique for using temporal constraints
within an animal pose estimation scheme is given by computing and utilizing the optical flow of
heatmaps, which are generated as the output of a trained CNN and contain probabilistic certainty
values for where different body parts are located in a two-dimensional image [83]. Furthermore,
temporal constraints have also been implemented in the context of three-dimensional animal pose
estimation based on sequences of two-dimensional images reorded at consecutive time points
using temporal convolutions, which consider an additional time dimension instead of only operating
on the two-dimensional image domain alone [92].

Spatial constraints have been deployed in animal pose estimation as well, either independently
or alongside temporal constraints. For instance, pictorial structures were used to reconstruct the
three-dimensional movement patterns and poses of flies [93]. Similarly, by enforcing the lengths of
individual limbs or the distances between respective surface markers to be constant or nearly con-
stant over time, plausible three-dimensional poses have been generated for larger animal species,
i.e. cheetahs [70] and macaques [68], as well as smaller ones, i.e. mice and flies [82]. Further-
more, spatial constraints have also been implemented in the form of a kinematic chain, such that
anatomical landmarks or surface markers on the fur of an animal subject are connected via a di-
rected graph in three-dimensional space [70, 94]. This approach allowed for further boosting the
quality of reconstructed three-dimensional animal poses, when compared to existing techniques
based on triangulation or spatial three-dimensional convolutions [94].

1.3 Thesis goal and outline

So far, none of the existing techniques for reconstructing three-dimensional animal poses (Section
1.2.2) have considered estimating the positions of individual joints and bones underneath the
visible body surface of a freely-moving animal. However, the anatomical skeleton of an animal
imposes rigorous constraints to its movement capacities by introducing physiological motion limits.
Thus, the skeleton determines which bone orientations are actually possible to reach and which
are not. Consequently, modeling a realistic skeleton in the context of animal pose estimation is a
promising approach for ensuring that reconstructed poses are anatomically-feasible and accurate
(Section 1.1.3).

Therefore, the goal of this thesis is to develop a camera-based pose reconstruction algorithm
for freely-moving animals, particular rats, to allow for quantitative analyses of animal behaviors
in neuroscientific contexts, in which measurements of skeletal kinematics are a particular point
of interest. A central aim in this regard is to constrain the resulting animal pose reconstruction
framework based on realistic assumptions. Consequently, the developed pose estimation scheme
contains an accurate skeleton model, which introduces anatomical constraints, and guarantees
for reconstructed skeletal poses to be time consistent, which is realized by enforcing temporal

6



1.3. THESIS GOAL AND OUTLINE

constraints. Furthermore, an additional aim with respect to the developed pose reconstruction
framework is to tackle the challenges of animal pose estimation in a probabilistic manner to grasp
the extent to which reconstructed poses are actually consistent with the recorded video data,
which is used as an input to the framework.

After Chapter 1 gives the scientific motivation and background for this thesis (Section 1.1) as
well as an overview of related work in the field (Section 1.2), Chapter 2 describes the methods,
which were used to develop the proposed pose reconstruction framework. Thus, Chapter 2 starts
with introducing the mathematical concepts for modeling three-dimensional rotations and video
cameras (Section 2.1). Furthermore, a skeleton model is described, which allows for learning and
reconstructing the skeletal anatomy of a freely-moving animal from recorded video data via gra-
dient descent optimization, while anatomical constraints are taken into account (Section 2.2). In
order to model the dynamics of skeletal pose changes over time a state space model is introduced,
which adds temporal constraints and enables reconstructing skeletal poses in a probabilistic man-
ner via a Bayesian smoother (Section 2.3). Finally, Chapter 2 concludes with a description of how
the unknown probabilistic hyper-parameters of the previously introduced state space model are
learned from video data via an expectation-maximization algorithm (Section 2.4).

The results of the work presented in this thesis are outlined in Chapter 3. To evaluate whether
the proposed pose reconstruction framework is able to accurately infer skeleton anatomies, ground
truth data on three-dimensional joint positions was obtained via magnetic resonance imaging and
compared to learned skeleton anatomies (Section 3.1). Subsequently, skeletal poses were re-
constructed based on recorded behavioral sequences of freely-moving animals and analyzed with
respect to the reconstruction accuracy of the proposed pose estimation framework (Section 3.2).
Here, a frustrated total internal reflection imaging system was used to obtain ground truth data on
paw positions, which were then compared to their reconstructed counterparts. To assess if the pro-
posed pose reconstruction framework allows for quantifying periodic gait motions, skeletal poses
were also reconstructed based on recorded video data of animals, which were allowed to move
freely in a spacious arena (Section 3.3). Subsequently, resulting reconstructed skeletal poses
were used to extract and analyze cyclic gait patters. Finally, the proposed pose reconstruction
framework was also deployed to quantify gap-crossing behaviors, where animals crossed gaps
of varying lengths via jumping (Section 3.4). Here, reconstructed skeletal poses were used for
characterizing distinct behavioral decision points, like the start-points of the jumps, and extracting
correlations between kinematic quantities, e.g. individual joint velocities, and behavioral outcomes,
i.e. jumped distances.

This thesis ends with Chapter 4, which contains conclusive remarks on the proposed pose
reconstruction framework. Particularly, a brief summary of the previous contents as well as an
assessment of the scientific value of this thesis is included (Section 4.1). Furthermore, this last
chapter discusses the limitations (Section 4.2) and future potential (Section 4.3) of the proposed
pose reconstruction framework within the scope of animal pose estimation and beyond.
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Chapter 2

Methods

2.1 Rotations and cameras

The pose reconstruction framework proposed in this thesis relies on the ability to model three-
dimensional rotations and cameras. Rotating an object in three-dimensional space is an essential
mathematical operation in the context of animal pose estimation, since it allows for describing
bone rotations. In fact, to store the entire three-dimensional configuration of an animal’s bones
and joints, i.e. its skeletal pose, only considering bone rotations suffices. Furthermore, three-
dimensional rotations are also useful for modeling the orientations of cameras, which are crucial
measuring devices for recording data from freely-behaving animals.

This section covers the theoretical background needed for parameterizing three-dimensional
rotations (Section 2.1.1). Additionally, this section introduces the pinhole camera model (Section
2.1.2), which allows for approximating the process of how a camera captures an image. Finally,
a numerical optimization scheme for calibrating a multi-camera setup is described in this section
(Section 2.1.3), which allows for estimating the positions and orientations of different cameras with
respect to each other.

2.1.1 Parameterizing rotations

In mathematical terms, a three-dimensional rotation is a linear transformation expressed via a
matrix R ∈ R3×3, where all columns of R are orthogonal to each other and its determinant equals
one [95]. The orthogonality of R ensures that the overall shape of the rotated object is preserved
while a determinant equal to one guarantees that the volume of the rotated object does not change
[95]. However, while a three-dimensional rotation has only three degrees of freedom [95, 96], R
has nine elements in total. Nevertheless, it is generally advantageous to only consider the actually
existing three degrees of freedom of a three-dimensional rotation. For instance, when learning
bone rotations via gradient descent optimization by minimizing a respective objective function.
Here, optimizing all nine elements of R requires enforcing additional constraints to account for
the shape- and volume-preserving properties of R, which is inferior to only optimizing the actually
existing three degrees of freedom. Thus, an efficient way for parameterizing R is needed.

One option for parameterizing an arbitrary three-dimensional rotation R is given by Euler an-
gles, which were first described by Leonhard Euler in the 18th century [97, 98]. Euler angles
decompose R into a set of three independent rotations Rz, Ry and Rx, which describe rotations
of an object around the z-, y- and x-axis respectively [95]. Applying these rotations consecutively
yields a final rotation R = RxRyRz (Figure 2.1). Unfortunately, this parameterization has two ma-
jor drawbacks. Different sets of Euler angles can lead to the same three-dimensional rotation, i.e.
there does not necessarily exist a unique set for Rz, Ry and Rx to obtain R [95]. Additionally,
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CHAPTER 2. METHODS

Figure 2.1: Illustrative example for how Euler angles are used to rotate an object, i.e. a camera, whose internal coor-
dinate system (dim colors) is initially aligned with the world coordinate system (bright colors). Starting from the initial
orientation (left), the camera is successively rotated 45 deg around the z-axis (center left), −20 deg around the y-axis
(center right) and −45 deg around the x-axis (right). Each rotation is highlighted by an arrow associated with the world
coordinate system, such that each arrow indicates the direction of a positive rotation.

specific sets of Rz, Ry and Rx can lead to a loss of rotational degrees of freedom. This situation
is called gimbal lock and occurs when two of the rotational axes align [96,99] (Figure 2.2).

Another possibility for parameterizing rotations is given by Rodrigues vectors, which are named
after 18th-century-born Olinde Rodrigues [98, 100]. Using Rodrigues vectors to parameterize
rotations eliminates the possibility for gimbal lock configurations, which is a key factor for why they
are a suitable option for modeling bone rotations [96]. A Rodrigues vector r is given by a rotation
axis ω ∈ R3 and an associated rotation angle θ ∈ R, such that

r = θω = θ(ω1, ω2, ω3)T , (2.1)

where ||ω|| = 1 (Figure 2.3). Given a Rodrigues vector r the corresponding rotation matrix R is
calculated using function

fr→R (r) = I + ω̂ sin (θ) + ω̂2 (1− cos (θ)) = R, (2.2)

where I ∈ R3×3 is the identity matrix and ω̂ ∈ R3×3 is a skew-symmetric matrix given by

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.3)

The Rodrigues vector parameterization is still ambiguous, since increasing the rotation angle θ
by a multiple of 2π yields the same rotation matrix due to the trigonometric functions involved in

Figure 2.2: Illustrative example for how rotating an object with Euler angles leads to a gimbal lock configuration. The
figure conventions and shown rotations are the same as in Figure 2.1, except that here the second rotation of the
camera around the y-axis has a magnitude of −90 deg (center right). This causes a gimbal lock configuration, such
that the first 45 deg rotation around the z-axis (center left) is negated by the third −45 deg rotation around the x-axis
(right). Consequently, the final orientation could also be obtained by only applying the rotation around the y-axis.
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2.1. ROTATIONS AND CAMERAS

Figure 2.3: Illustrative example for how a Rodrigues vector r is used to rotate an object. Instead of applying three
consecutive rotations around the world coordinate system, only a single rotation is performed. The axis of this single
rotation is indicated by the Rodrigues vector itself, while its magnitude is encoded by the length of the vector. Note how
this rotation results in the same final orientation as in Figure 2.1.

Equation 2.2, e.g. fr→R (θω) = fr→R ((θ + 2π)ω). Furthermore, a singularity exists for θ = 0, since
ω is not defined in this case [96].

A third option for expressing rotations, which solves the remaining issues of the Rodrigues
vector parameterization, is given by parameterizing them via quaternions, which were first intro-
duced by William Rowan Hamilton in the 19th century [101]. Quaternions are an extension of the
complex numbers C to three-dimensional space, i.e. a single quanternion represents an individual
point on a four-dimensional unit sphere [95]. As such, this parameterization is more challenging to
interpret geometrically. Additionally, when it comes to parameterizing bone rotations for estimating
animal poses, using quaternions complicates the implementation of joint angle limits.

The pose reconstruction framework proposed in this thesis contains physiological joint angle
limits, which were measured as Euler angles in the physical world (Section 2.2.7). When bone
rotations are parameterized via Euler angles or Rodrigues vectors it is possible to implement
these measured joint angle limits as simple box constraints into the optimization scheme, which
is used for reconstructing poses. Furthermore, the existing ambiguities of the Rodrigues vector
parameterization did not cause any issues when poses were reconstructed with the proposed
pose reconstruction framework (Chapter 3). Thus, for the scope of this thesis Rodrigues vectors
are the chosen parameterization for three-dimensional rotations.

2.1.2 The pinhole camera model

To reconstruct poses from a freely-moving animal, its body posture has to be recorded using video
cameras. Recording a single image with a camera is equivalent to projecting a three-dimensional
scene onto the camera’s two-dimensional image plane and storing the therefore generated image.
This process is approximated using the perspective projection, which is part of the pinhole camera
model [102]. The perspective projection relates a three-dimensional point m3D ∈ R3 in space to
the corresponding two-dimensional point m2D ∈ R2 on the camera’s image plane:

m2D = Ã (fnorm (x̃)) = Ã
(
fnorm

(
fr→R (r̃)m3D + t̃

))
. (2.4)

Here, r̃ ∈ R3 is a Rodrigues vector and t̃ ∈ R3 is a translation vector, which together deter-
mine the orientation and location of the camera in three-dimensional space. The expression
x̃ = fr→R (r̃)m3D + t̃ maps m3D from the world coordinate system to the coordinate system of the
camera. The projection on the camera’s image plane at distance 1 in the camera’s z-direction is

then performed via function fnorm (x̃) =
(
x̃1
x̃3
, x̃2x̃3 , 1

)T
. However, since the image plane of a camera

is actually located at a distances equal to the camera’s focal lengths Ã11 and Ã22, it is necessary
to perform an additional scaling operation. Furthermore, a correction term is needed to translate

11



CHAPTER 2. METHODS

Figure 2.4: Illustrative example for how a regular grid is mapped to the image plane of a camera via the perspective
projection (left) and for how the resulting projected grid visually appears in an image (right). Note how grid lines remain
straight and corner points close to the camera appear further apart compared to points at greater distances, when
examining the grid in the image plane.

the origin of the coordinate system of the image from the camera’s optical center
(
Ã11, Ã22

)
to

the upper left corner of the image. Both operations, scaling and translating, are performed at once
using the camera matrix Ã ∈ R2×3, which is given by

Ã =

(
Ã11 0 Ã13

0 Ã22 Ã23

)
. (2.5)

A distinctive characteristic of the resulting projection is given by the fact that it causes straight lines
in a three-dimensional scene to also appear straight in a recorded image of that scene (Figure 2.4).

However, in practice cameras do not necessarily perform this ideal projection and apply dis-
tortions to a recorded image. One possible form of distortions are radial distortions, which cause
straight lines to appear skewed in the recorded image (Figure 2.5). In mathematical terms, radial
distortions are described via a distortion function

fdistort

(
x̄, k̃
)

=


x̄1

(
1 + k̃1s+ k̃2s

2
)

x̄2

(
1 + k̃1s+ k̃2s

2
)

1

 , (2.6)

where x̄ = fnorm (x̃), k̃ = (k1, k2)T and s = x̄2
1 + x̄2

2 [102]. Here, k̃ ∈ R2 is a distortion vector,
which stores the radial distortion coefficients k1 and k2 of the camera. In principle, there exist

Figure 2.5: Illustrative example for how radial distortions affect the appearance of a projected regular grid in an image.
Without distortions the grid appears regular, such that all lines are straight and parallel to each other (left). When radial
distortions are applied, the previously straight lines appear curved and are not longer parallel to each other. Here, the
distortion coefficients are k1 = 10−2 and k2 = 10−4 (center) as well as k1 = −10−2 and k2 = 10−4 (right).
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further kinds of distortions, e.g. tangential or higher-order radial distortions, but considering only
two radial distortion coefficients already yields reasonable results when reconstructing poses with
the proposed pose reconstruction framework (Chapter 3).

Combining the perspective projection with radial distortions allows for mapping an arbitrary
three-dimensional point m3D in space to the corresponding two-dimensional point in a recorded
image using function

f3D→2D

(
m3D, r̃, t̃, k̃, Ã

)
= Ã fdistort

(
fnorm

(
fr→R (r̃)m3D + t̃

)
, k̃
)

. (2.7)

Therefore, each camera has four model parameters: r̃ and t̃, which are called the intrinsic parame-
ters, and Ã and k̃, which are called the extrinsic parameters [102]. Consequently, the intrinsic and
extrinsic parameters need to be estimated before using function f3D→2D, which can be achieved
by calibrating the camera.

2.1.3 Multi-camera calibration

Function f3D→2D (Equation 2.7) is primarily used to predict where a point in three-dimensional
space will be mapped on the two-dimensional image plane of a camera. When additional numeri-
cal optimization steps are performed, function f3D→2D can also be used to triangulate the unknown
three-dimensional position of such a point from a given set of corresponding two-dimensional
points located on the image planes of multiple different cameras. In principle, this process already
allows for recovering an animal’s three-dimensional pose (Section 2.2.3). To obtain matching two-
dimensional points, it is necessary to record a scene with several cameras at the same time point
using a multi-camera setup. To subsequently deploy function f3D→2D full information about all in-
trinsic and extrinsic parameters of the cameras in the setup is required. Globally calibrating all
cameras in the setup via gradient descent optimization gives this information.

To perform a calibration of a multi-camera setup it is possible to leverage the known structures
and dimensions of a physical object. A common example for such an object is a checkerboard,
which is a frequently used item in this context. The main advantage of a checkerboard is its
regular pattern, which allows for the automated detection of the ncorner corners of the checker-
board’s quadratic tiles [102]. Additionally, in the context of camera calibration, the only essential
parameter of a checkerboard is the length of a quadratic tile ltile. To increase the detection ac-
curacy checkerboards are combined with ArUco markers [103], which gives so-called ChArUco
boards [102]. Using ChArUco boards allows for generating data sets for calibrating multiple cam-
eras by recording an image sequence in which the board has to be visible in several cameras,
whose three-dimensional positions and orientations differ from each other (Figure 2.6).

Given a data set containing images from the ncam cameras of the setup reordered at ntime in-
dividual time points, a respective objective function is minimized via gradient descent optimization
to learn the intrinsic and extrinsic parameters of all cameras. In the context of the proposed pose
reconstruction framework this optimization problem is given by

arg min
r̃i,t̃i,k̃i,Ãi,r̂τ ,t̂τ
∀i∈{1,...,ncam}
∀τ∈{1,...,ntime}

ntime∑
τ=1

ncam∑
i=1

ncorner∑
j=1

δτij

∣∣∣∣∣∣c̄τij − f3D→2D

(
fr→R (r̂τ ) m̂j + t̂τ , r̃i, t̃i, k̃i, Ãi

)∣∣∣∣∣∣2, (2.8)

where gradients are computed automatically via an auto-differentiation library [104] and the mini-
mization is performed using an implementation of the Trust Region Reflective algorithm [105,106].
In Equation 2.8 Ãi and k̃i are the intrinsic and r̃i and t̃i the extrinsic parameters of camera i. The
orientation and position of the ChArUco board at time point τ is represented by the Rodrigues vec-
tor r̂τ and the translation vector t̂τ respectively. An automatically detected checkerboard corner j
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Figure 2.6: Example of a ChArUco board pattern (left) and two images recorded at the same time point to calibrate
a multi-camera setup (center, right). Automatically detected corners are highlighted (red crosses). Note how using
multiple cameras allows for recording the ChArUco board from different viewing angles.

Figure 2.7: Example for how calibrating a multi-camera setup gives full information about all camera positions and
orientations, which allows for reconstructing the setup in three-dimensional space (left). The respective calibration is
obtained by minimizing the error between automatically detected (red crosses) and projected (cyan crosses) corner
positions (right). Note how the calibration compensates for an incorrectly detected corner position (right inset).

in camera i at time point τ is denoted as c̄τij ∈ R2 and m̂j = ltile (aj , bj , 0)T ∈ R3 represents the
known planar structure of the ChArUco board, such that aj ∈ N and bj ∈ N. To account for oc-
cluded checkerboard corners the objective function contains a delta function δτij , which indicates
whether in camera i a corner j at time point τ is successfully detected, i.e. δτij = 1, or not, i.e.
δτij = 0. After successfully calibrating a multi-camera setup discrepancies between automatically
detected and estimated two-dimensional corner positions are minimized and all intrinsic and ex-
trinsic camera parameters are known (Figure 2.7), which is a prerequisite for estimating animal
poses.

2.2 Skeleton-based pose estimation

The previous section introduced mathematical concepts for parameterizing three-dimensional ro-
tations and discussed how they are used in different contexts, e.g. to model the orientations of
cameras or bone rotations (Section 2.1.1). Additionally, the previous section introduced the pinhole
camera model, which allows for modeling how an image is captured by a video camera (Section
2.1.2). Finally, the previous section also introduced a method for calibrating a multi-camera setup
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in order to determine the internal and external parameters of each camera in the setup (Section
2.1.3).

However, reconstructing poses of a freely-moving animal requires an additional model, which
describes the skeleton of the animal, such that the configuration of modeled joints and bones can
serve as a proxy for the animal’s body posture. Furthermore, such a skeleton model should al-
low for simulating individual limb movements by dynamically changing bone rotations to describe
poses of animals in motion. Therefore, this section introduces a respective skeleton model (Sec-
tion 2.2.1) and states how the modeled bones and joints are linked to observable surface markers,
which are located on an animal’s body surface (Section 2.2.2). Additionally, this section describes
how unknown skeleton parameters, like bone lengths, are learned from two-dimensional image
data via numerical optimization (Section 2.2.3). To improve the respective optimization scheme,
this section also introduces a variety of enforceable constraints, e.g. body symmetry or physiolog-
ical joint angle limits (Section 2.2.4 to 2.2.8), and finally discusses how they are implemented in
the proposed pose estimation framework (Section 2.2.9).

2.2.1 The skeleton model

The pose of an animal at a single time point is defined as the overall appearance of its body. This
includes, for instance, the placement of individual limbs or the orientation of the animal’s head.
The limiting and therefore governing factor for the possible motion sequences, which determine
how an animal can deform its own body and how it can change its body posture, is given by the
rigidity of the animal’s underlying skeleton (Section 1.1.3). Thus, the proposed pose reconstruction
framework deploys the underlying skeletal configuration of bones and joints as a proxy for the
overall body posture of an animal. Consequently, an animal’s body pose is represented via a
skeleton model, which approximates the animal’s physiological joints and bones and allows for
reconstructing their positions in three-dimensional space.

The mathematical concept of a graph [107] allows for approximating a physiological skeleton.
In this case non-leaf vertices represent joints, leaf vertices represent anatomical features on the
animal’s body surface and edges represent bones (Figure 2.8). This skeleton graph is directed,
such that it starts at the root vertex, i.e. the animal’s snout, and ends at the leaf vertices, e.g. the
animal’s fingers. The connectivity of the skeleton graph, determining which vertices are connected
to each other, is constant, since it is given by the known anatomy of the animal species of interest,
e.g. shoulder, elbow and wrist joints are sequentially connected. However, the three-dimensional
configuration of the vertices and edges is variable: either by globally translating the entire skeleton
graph or by locally rotating individual edges. Since the rotation of a single edge does not only affect
the edge itself but also all child-vertices and their associated edges, the skeleton graph forms a
kinematic chain [108]. Since the vertices and edges approximate the animal’s physiological joints
and bones, using such a kinematic chain allows for representing different poses of a moving
animal.

A respective kinematic chain is constructed using nbone bones, such that each bone j has
an associated local coordinate system Rj ∈ R3×3, an associated bone length lj ∈ R3 and two
associated joint positions pj0 ∈ R3 and pj1 ∈ R3. The local coordinate system Rj determines
the bone orientation ej =

(
Rj13, Rj23, Rj33

)T , specifying in which three-dimensional direction the
bone is facing. The associated bone length lj together with the associated joint positions pj0
and pj1 determine the positions of the start- and end-point of the bone, such that pj1 = pj0 +
ej lj . Consequently, pj0 ∈ R3 is denoting the start-point of the bone, whereas pj1 ∈ R3 denotes
its end-point. To encode the skeletal pose of an animal it is therefore sufficient to consider the
three-dimensional location of the root joint, given by a translation vector t ∈ R3, as well as the
bone rotations and lengths, given by a set of Rodrigues vectors r ∈ Rnbone×3 and the vector
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Figure 2.8: Illustration of the skeleton graph used in the proposed pose reconstruction framework to approximate the
three-dimensional joint and bone positions of an animal. The skeleton graph is directed, i.e. it starts at the root vertex
(head #1) and ends at the leaf vertices (fingers, toes and tail #1). All vertices approximate anatomical joint locations,
except the root and leaf vertices, which represent anatomical landmarks on the animal’s body surface.

l ∈ Rnbone respectively. The resulting local coordinate systems R ∈ Rnbone×3×3 as well as the
three-dimensional start- and end-points p ∈ Rnbone×2×3 of all bones are then calculated according
to Algorithm 1.

Algorithm 1 requires a predefined and constant resting pose R0 ∈ Rnbone×3×3, which stores the
local coordinate systems of all bones, when no bone rotations are present, i.e. rj = (0, 0, 0) ∀ j ∈
{1, ..., nbone}. Furthermore, the definition of Algorithm 1 is based on the assumption that the set
{1, ..., nbone} stores the sorted bone indices, such that an iteration through the set starts at the root
joint and ends at the leaf joints. Consequently, index 1 is associated with the bone, whose start-
point is the root joint, and index nbone is associated with a bone, whose end-point is a leaf joint.
The transpose operation used in Algorithm 1 for updating downstream bone rotations allows for
iterating through the kinematic chain from the root joint to the leaf joints, while the bone rotations
are actually carried out in reversed order [109]. For instance, given individual bone rotations
around the shoulder, elbow and wrist joints, i.e. Rshoulder, Relbow and Rwrist respectively, the new
local coordinate system R∗wrist of the bone, whose start-point is the wrist joint and whose resting
pose is given by R0wrist , is calculated as follows:

R∗wrist =
(
Rwrist

TRelbow
TRshoulder

T
)T
R0wrist = RshoulderRelbowRwristR0wrist . (2.9)

2.2.2 Modeling surface markers

Given a kinematic chain representing the skeleton of an animal, function fpose (Algorithm 1) allows
for obtaining the skeletal pose of an animal by computing the local coordinate systems R of the
bones as well as the three-dimensional joint locations p. However, observing the actual joint
positions of a freely-moving animal using video cameras is not feasible, since only the body surface
of the animal is visible. Nonetheless, to relate the underlying skeleton to the actually observable
body surface, it is possible to use surface markers painted onto the animal’s body (Figure 2.9).
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Algorithm 1: Computing joint locations via the skeleton model.
1: function fpose(t, r, l)
2: for i ∈ {1, ..., nbone} do
3: Ri ← I . Initialize bone rotations
4: for i ∈ {1, ..., nbone} do
5: Rs ← fr→R (ri) . Calculate bone rotation Rs
6: for j ∈ {1, ..., nbone} do
7: if pj1 is child of pi0 then . Find bones affected by rotation Rs
8: Rj ← Rs

TRj . Update all downstream bone rotations
9: for j ∈ {1, ..., nbone} do

10: Rj ← Rj
TR0j . Apply bone rotations to resting pose R0

11: p10 ← t . Initialize root joint location p10

12: for i ∈ {1, ..., nbone} do
13: ei ← (Ri13, Ri23, Ri33)T . Obtain bone orientation ei
14: pi1 ← pi0 + ei li . Calculate bone end-point pi1
15: for j ∈ {1, ..., nbone} do
16: if pi1 is start-point of bone j then . Find upcoming downstream bone
17: pj0 ← pi1 . Initialize bone start-point pj0
18: return p,R

In the kinematic chain this relationship is modeled by adding nmarker surface markers and rigidly
attaching them to the joints. A connection between a single marker k and its associated joint is
given by a respective joint-to-marker-translation vector vk, whose orientation is altered by rotating
bones. When the joint-to-marker-translation vectors v ∈ Rnmarker×3 for all surface markers are
provided, the three-dimensional surface marker positions m ∈ Rnmarker×3 are calculated according
to Algorithm 2.

Given the three-dimensional marker position mτj = fsurface (tτ , rτ , l, v)j of a single marker j for
a specific time point τ , the projected two-dimensional marker location m̃τij ∈ R2 in camera i is

Figure 2.9: Illustration of the symmetric surface marker pattern painted onto the bodies of different animal subjects.
In the used skeleton model each surface marker is rigidly attached to a joint, which links observable surface marker
locations to underlying joint positions.
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Algorithm 2: Computing surface marker locations from joint positions.
1: function fsurface(t, r, l, v)
2: p,R← fpose (t, r, l) . Modify skeletal pose
3: for k ∈ {1, ..., nmarker} do
4: for j ∈ {1, ..., nbone} do
5: if mk is attached to pj1 then . Find joint attached to marker
6: mk ← pj1 +Rjvk . Calculate surface marker positions
7: return m

computed by propagating mτj through the projection function f3D→2D (Equation 2.7):

m̃τij = f3D→2D

(
mτj , r̃i, t̃i, k̃i, Ãi

)
. (2.10)

Thus, Equation 2.10 relates underlying joints to observable surface markers, which, in principle,
already allows for reconstructing poses (Section 2.2.3).

2.2.3 Anatomy learning

For a single time point τ Equation 2.10 establishes a direct mapping from the pose-encoding pa-
rameters, i.e. the translation vector tτ and the bone rotations rτ , and the anatomy-encoding param-
eters, i.e. the bone lengths l and the joint-to-marker-translation vectors v, to the two-dimensional
location m̃τij of surface marker j in camera i. However, initially the pose- and anatomy-encoding
parameters are unknown. Nevertheless, it is possible to learn them from ground truth surface
marker locations m̄τij via gradient descent optimization, since all mathematical operations in-
volved in computing the projected two-dimensional surface marker location m̃τij (Equation 2.10)
are fully differentiable with respect to the pose- and anatomy-encoding parameters. The ground
truth surface marker locations m̄τij are generated by manually labeling a behavioral sequence
consisting of images recorded at ntime different time points. Similarly to how a multi-camera setup
is calibrated (Section 2.1.3), the pose- and anatomy-encoding parameters are learned by minimiz-
ing a respective objective function given by

arg min
tτ ,rτ ,l,v

∀τ∈{1,...,ntime}

ntime∑
τ=1

ncam∑
i=1

nmarker∑
j=1

δτij ||m̄τij − m̃τij ||2. (2.11)

However, to obtain reasonable results for the anatomy- and pose-encoding variables it is not
necessarily sufficient to minimize the objective function given by Equation 2.11, since the respec-
tive solution space is rather large. Additionally, labeling the two-dimensional marker locations in
all cameras for each individual time point of a respective training sequence is a labor-intensive
process, such that the resulting training data set is typically small. Consequently, it is necessary
to constrain the solution space with respect to tτ , rτ , l and v within the minimization scheme given
by Equation 2.11. Such constraints are implemented by incorporating prior knowledge about an
animal’s anatomy (Section 2.2.4 and 2.2.5), the applied surface marker pattern on the animal’s
body (Section 2.2.6) as well as physiological joint angle limits (Section 2.2.7).

2.2.4 Enforcing body symmetry

Constraining the unknown bone lengths l and the joint-to-marker-translation vectors v narrows the
space for possible solutions, when these variables are learned for a specific animal subject by
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Algorithm 3: Computing body-symmetric bone lengths.
1: function f l∗→l(l∗)
2: il ← 1 . Initialize counter for right-sided bones
3: for i ∈ {1, ..., n∗bone} do
4: li ← l∗i . Set value for left-sided or central bone
5: if i is left-sided bone then . Check if bone is left-sided
6: ln∗

bone+il ← l∗i . Copy value for right-sided bone
7: il ← il + 1 . Increase counter for right-sided bones
8: return l

Algorithm 4: Computing body-symmetric joint-to-marker-translation vectors.
1: function fv∗→v(v∗)
2: iv ← 1 . Initialize counter for right-sided markers
3: for j ∈ {1, ..., n∗marker} do
4: vj ← v∗j . Set value for left-sided or central marker
5: if j is left-sided marker then . Check if marker is left-sided

6: vn∗
marker+iv

←
(
−v∗j 1

, v∗j 2
, v∗j 3

)T
. Copy value for right-sided marker

7: iv ← iv + 1 . Increase counter for right-sided markers
8: return v

minimizing Equation 2.11. Particularly, using constraints, which exploit the natural symmetry of
an animal’s body, reduces the total number of free parameters, which need to be learned. For
instance, when assuming that a left-sided bone, e.g. the left humerus, has the same length as
the corresponding right-sided bone, i.e. the right humerus, only a single parameter needs to be
learned to estimate the lengths of both bones.

Following this approach, the number of free parameters in Equation 2.11 is decreased by
introducing the reduced bone lengths l∗ ∈ Rn∗

bone . Here, n∗bone denotes the number of left-sided
bones plus the number of central bones, which are neither left- nor right-sided, e.g. the bones
used to model an animal’s spine. Given the normal bone lengths l, the reduced bone lengths l∗

are obtained according to Algorithm 3. The definition of Algorithm 3 is based on the assumption
that the set {1, ..., n∗bone} stores the bone indices, such that the indices of the central and left-sided
bones are always smaller than those of the right-sided bones.

The number of free parameters with respect to the joint-to-marker-translation vectors v are
reduced as well, since the surface markers are painted onto an animal’s body in a systematic
pattern, which reflects the symmetry of the animal’s body (Section 2.2.2). For instance, a surface
marker i placed closely to the left knee joint has a corresponding surface marker j placed closely
to the right knee joint. This symmetric placement allows for obtaining the x-component of the
corresponding right-sided joint-to-marker-translation vector vj by mirroring the x-component of the
left-sided joint-to-marker-translation vector vi, i.e. vj1 = −vi1 . Thus, the reduced joint-to-marker-
translation vectors v∗ ∈ Rn∗

marker×3 are introduced, where n∗marker denotes the number of the left-
sided surface markers plus the number of central surface markers, which are neither left- nor
right-sided. Given the normal joint-to-marker-translation vectors v, the reduced joint-to-marker-
translation vectors v∗ are obtained according to Algorithm 4. The definition of Algorithm 4 is based
on the assumption the set {1, ..., n∗marker} stores the surface marker indices, such that the indices of
the central and left-sided surface markers are always smaller than those of the right-sided surface
markers.

To learn a symmetric skeletal anatomy the reduced variables l∗ and v∗ are used. The computa-
tions for obtaining the projected surface marker locations m̃τij , which are needed in Equation 2.10,
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are given by:

m̃τij = f3D→2D

(
fsurface (t, r, fl*→l (l∗) , fv*→v (v∗))τj , r̃i, t̃i, k̃i, Ãi

)
. (2.12)

2.2.5 Constraining bone lengths

When learning the reduced bone lengths l∗ the respective solution space is narrowed by enforcing
box constraints on the individual elements of l∗. These box constraints are based on an allometric
study, which investigated correlations between body weights and bone lengths of different animal
species [110]. The study found roughly linear relationships between both quantities, such that the
weight of an individual animal subject gives insights into the lengths of its bones. These linear
relationships are incorporated into the optimization scheme given by Equation 2.11, such that the
resulting learned bone lengths are enforced to stay within predefined physiological ranges.

Given the body weight msubject of an animal subject of a specific species – rattus norvegicus
in the context of the proposed pose reconstruction framework – the upper and lower physiological
bound for the length of a limb bone is calculated using the expectation value and the standard
deviation of the slope parameter, which defines the linear relationship between the body weight
and the limb bone (Table 2.1). Particularity, for each limb bone the respective box constraint is
defined as

[msubject (µslope − σslopesσ) ,msubject (µslope + σslopesσ)] , (2.13)

with the expectation value µslope, the standard deviation σslope and a scalar factor sσ.
In the proposed pose reconstruction framework sσ is set to a relatively large value, i.e. sσ =

10, which ensures that the solution space for l∗ remains broad enough to take into account the
possibility of individual outlier subjects, whose bone lengths do not precisely follow the linear
relationship. Furthermore, box constraints are set to [0, inf) when the respective bones are not
part of the limbs, since linear relationships between body weight and non-limb bones are not
provided by the study.

2.2.6 Constraining surface marker positions

In Section 2.2.4 the reduced joint-to-marker-translation vectors v∗ are introduced to account for
a symmetric surface marker pattern, which reduces the number of free parameters in the opti-
mization scheme given by Equation 2.11. Equivalently, it is possible to enforce respective spatial
constraints for v∗, which further narrows the solution space, when learning an animal’s anatomy.

bone start-joint end-joint avg. slope (cm/kg) s.d. (cm/kg)
humerus shoulder elbow 7.5 0.5
radius elbow wrist 6.9 0.4
metacarpal wrist finger 2.3 0.1
femur hip knee 10.2 0.6
tibia knee ankle 14.4 0.6
metatarsal ankle hind paw 5.3 0.3

Table 2.1: Expectation values and standard deviations of slope parameters for the limb bones of rattus norvegicus taken
from a respective study [110]. The slope parameters describe linear relationships between an animal’s body weight
and its bone lengths. This allows for calculating maximum and minimum bone lengths based on the weight of an animal
subject. When the anatomy of an animal subject is learned via gradient descent optimization (Section 2.2.3), respective
constraints on the maximum and minimum bone lengths are enforced.
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Particularly, incorporating prior knowledge about the arrangement of surface markers on an ani-
mal’s body forces the individual elements of v∗ to stay within predefined intervals during the op-
timization procedure (Table 2.2). For instance, when surface markers are painted on an animal’s
body along its main axis, i.e. the axis pointing from the head to the tail, the learned marker posi-
tions are forced to stay in the plane spanned by this main axis and an additional orthogonal axis,
which points in the upward direction. In this concrete example the number of free parameters per
surface marker is decreased from three to two. Thus, using this approach further reduces the
number of free parameters in the optimization scheme given by Equation 2.11.

surface marker connected joint x y z
head #1 spine #5 [0, 0] [0, inf) (− inf, inf)

head #2 spine #5 [0, 0] [0, inf) (− inf, inf)

head #3 head (root) [0, 0] [0, 0] [0, 0]

spine #1 spine #2 [0, 0] [0, inf) (− inf, inf)

spine #2 spine #2 [0, 0] [0, inf) (− inf, inf)

spine #3 spine #3 [0, 0] [0, inf) (− inf, inf)

spine #4 spine #3 [0, 0] [0, inf) (− inf, inf)

spine #5 spine #4 [0, 0] [0, inf) (− inf, inf)

spine #6 spine #5 [0, 0] [0, inf) [0, 0]

tail #1 tail #1 (leaf) [0, 0] [0, 0] [0, 0]

tail #2 tail #2 [0, 0] [0, inf) (− inf, inf)

tail #3 tail #3 [0, 0] [0, inf) (− inf, inf)

tail #4 tail #4 [0, 0] [0, inf) (− inf, inf)

tail #5 tail #5 [0, 0] [0, inf) (− inf, inf)

tail #6 spine #1 [0, 0] [0, inf) (− inf, inf)

left shoulder left shoulder (− inf, 0] [0, inf) [0, 0]

left elbow left elbow (− inf, 0] [0, 0] [0, 0]

left wrist left wrist [0, 0] (− inf, 0] [0, 0]

left finger #1 left finger (leaf) (− inf, inf) [0, 0] (− inf, inf)

left finger #2 left finger (leaf) [0, 0] [0, 0] [0, 0]

left finger #3 left finger (leaf) (− inf, inf) [0, 0] (− inf, inf)

left side spine #3 (− inf, 0] (− inf, inf) (− inf, inf)

left hip left hip (− inf, 0] [0, inf) [0, 0]

left knee left knee (− inf, 0] [0, 0] [0, 0]

left ankle left ankle (− inf, 0] [0, 0] [0, 0]

left front paw left front paw [0, 0] (− inf, 0] [0, 0]

left toe #1 left toe (leaf) (− inf, inf) [0, 0] (− inf, inf)

left toe #2 left toe (leaf) [0, 0] [0, 0] [0, 0]

left toe #3 left toe (leaf) (− inf, inf) [0, 0] (− inf, inf)

Table 2.2: Enforced intervals for the elements of the reduced joint-to-marker-translation vector v∗. The intervals are in
agreement with the surface marker pattern, which is applied to different animal subjects (Figure 2.9). The x-direction
points from the left to the right, the y-direction from the bottom to the top and the z-direction from the front to the back,
when an animal’s internal coordinate system is used as a frame of reference. Note that each enforced interval [0, 0]
reduces the number of free parameters by one, when the anatomy of an animal subject is learned via gradient descent
optimization (Section 2.2.3). A single exception from the stated intervals is given for the upper bound of the left-sided
surface marker on the shoulder in the z-direction. This upper bound was set to 0 for two large animal subjects to prevent
the bone lengths of the collarbones to become zero during learning (animals #5 and #6 in Section 3.1).
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2.2.7 Constraining bone rotations

Unlike the anatomy-encoding variables l and v, the pose-encoding variables tτ and rτ are dis-
missed after minimizing Equation 2.11, since deploying plain gradient descent optimization for
reconstructing poses, i.e. learning tτ and rτ , does not give sufficient results (Section 3.2 and
3.3). Nevertheless, it is still beneficial to constrain tτ and rτ , since learning pose- and anatomy-
encoding variables is a joint process. As a consequence, learning severely erroneous poses has
the potential to also introduce errors to the learned anatomy. Thus, a subset of the bone rotations
rτ is constrained by enforcing limb bone rotations to stay within physiological limits (Figure 2.10).
These physiological limits correspond to joint angle limits taken from a study, in which minimal and
maximal limb bone rotations with respect to flexion / extension, abduction / adduction and internal
/ external rotation were measured in domestic house cats [111]. These measured joint angle limits
are implemented into the kinematic chain used for modeling an animal’s skeletal pose via constant
box constraints, which are enforced for individual elements of Rodrigues vectors representing limb
bone rotations (Table 2.3).

Since the measured joint angle limits are only available for the limb bones, the respective
limits for all other bones are set to [−90, 90] for the x- and y-rotation and [0, 0] for the z-rotation.
This ensures that the end-joint of a non-limb bone is allowed to reach any point on a hemisphere
with radius equal to the bone length of the respective bone, which is assumed to be sufficient for
modeling all physiologically-feasible bone rotations. The only exception to this is the bone, whose
start-point is the root joint, since rotations around the root joint define the overall orientation of an
animal’s entire body and do not correspond to any anatomical rotation. Consequently, rotations
around the root joint remain unconstrained.

However, in the context of the proposed pose reconstruction framework rats are the animal
species of interest. Therefore, it is assumed that the measured joint angle limits for domestic
house cats generalize to those for rats, since both animal species are four-legged mammals,
which share a common anatomical structure. Besides, there is no equivalent study available,
which states the corresponding physiological joint angle limits for rats.

While the measured joint angle limits in the study refer to the three anatomical rotations, i.e.

Figure 2.10: Illustration of enforced joint angle limits. The shown skeletal pose is reconstructed based on three-
dimensional surface marker positions obtained via an MRI scan (Section 3.1). Physiological bones are approximated
by a kinematic chain (black lines), whereas the body surface of the animal subject is directly obtained from the MRI
scan (gray area). In anatomical terms, the shown rotations indicated by the colored angles are equivalent to flexion /
extension (red), abduction / adduction (green) and internal / external rotation (blue).
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flexion / extension, abduction / adduction and internal / external rotation, which are effectively
equivalent to rotations via Euler angles, the proposed pose reconstruction framework uses Ro-
drigues vectors to parameterize rotations (Section 2.1.1). In the study all bone rotations were
measured independently from each other. However, anatomical joint angle limits are in fact co-
dependent. For instance, in humans the extent to which the forearm can be flexed depends on the
rotation of the shoulder. Thus, the maximal extent of flexion is higher when the forearm is flexed in
front of the torso, compared to when it is flexed behind the torso. While it is in principle possible to
learn such co-dependent joint angle limits from recorded images [112], there is no such data avail-
able for rats. Additionally, not every bone movement can be described by only applying a single
anatomical rotation to a respective bone. In fact, there are bone movements, which are the result
of a superposition of different anatomical rotations, e.g. a combination of flexion and abduction.
Physically measuring joint angle limits for such bone movements is complex as it would require
not only considering rotations around one of the three axes given by Euler angles but any rotation
possible. As a consequence, it is necessary to find reasonable approximations, when modeling
physiological bone rotations whose constraints are furthermore co-dependent.

In the proposed pose reconstruction framework it is assumed that joint angle limits for different
bone rotations are independent from each other, which allows for implementing them as constant
quantities in the form of simple box constraints. Concerning the discrepancies between Euler
angles and Rodrigues vectors, two different cases have to be differentiated. For situations in which
only a single anatomical rotation is sufficient to describe bone movements, the Euler angle and
Rodrigues vector parameterization coincide and are effectively equivalent. This is, for instance,
the case for rotations around the knee or ankle joint, since those rotations have only a single
rotational degree of freedom (Table 2.3). Here, the enforced box constraints in the proposed pose
estimation framework are therefore in line with those stated by the study, irrespective of the fact that
Rodrigues vectors are used to parameterize rotations. For all situations, in which bone movements
are described by a superposition of anatomical rotations, the Euler angle and Rodrigues vector
parameterization differ. However, for those situations accurately measured joint angle limits are
not available. Here, it is therefore assumed that any respective bone rotation is in a transition
state between one of the three anatomical rotations, such that enforcing box constraints on the
individual elements of an associated Rodrigues vector is justified. Additionally, using Rodrigues
vectors for parameterizing rotations generally prevents the potential occurrence of issues related
to the shortcomings of the Euler angle paramterization, i.e. gimbal lock configurations (Section
2.1.1). As a consequence, it is assumed that parameterizing bone rotations via Rodrigues vectors

joint x (deg) y (deg) z (deg)
left shoulder [25, 205] [−85, 25] [−35, 35]

left elbow [2.5, 145] [0, 0] [−100, 45]

left wrist [−135, 35] [−12.5, 37.5] [0, 0]

left hip [35, 195] [−65, 25] [−85, 40]

left knee [−145, 15] [0, 0] [0, 0]

left ankle [−10, 145] [0, 0] [0, 0]

left hind paw [0, 0] [0, 0] [−15, 35]

Table 2.3: Physiological joint angle limits for the limb bones of the domestic house cat taken from a respective study
[111]. Limb bone rotations are enforced to stay within the stated intervals, when the anatomy of an animal subject is
learned via gradient descent optimization (Section 2.2.3). In anatomical terms, the x-rotation is equivalent to flexion /
extension, the y-rotation to abduction / adduction and the z-rotation to internal / external rotation. Due to the symmetry
of an animal’s body, the joint angle limits for left- and right-sided limb bones are identical with the exception that absolute
values of the lower and upper limits for the y-rotations are flipped, e.g. the y-rotation limit for the right shoulder joint is
[−25, 85].
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and implementing respective box constraints on their individual elements represents a reasonable
solution for approximating physiological bone rotations.

2.2.8 Re-scaling input and output parameters

It is generally advantageous to re-scale the variables involved in a numerical optimization scheme,
such that their magnitudes are roughly identical [113]. Otherwise different magnitudes of, for in-
stance, the translation vector tτ and the bone rotations rτ have the potential to cause the mag-
nitudes of their respective gradients to be different as well. Since these gradients are required
and used in the optimization scheme given by Equation 2.11, this can in turn have negative con-
sequences for learning skeletal anatomies and poses. For instance, not re-scaling the variables
might lead to an exaggeration of how much influence the optimization of tτ has on the final cost
value, placing insufficient emphasis on also learning a good solution for rτ , as long as tτ is es-
timated reasonably well. Thus, the translation vector tτ and the bone rotations rτ are re-scaled
before any form of optimization is performed, which gives the re-scaled input variables t∗τ and r∗τ :

t∗τ =
tτ
st

(2.14)

r∗τ =
rτ
sr

, (2.15)

with the scaling constants st = 50 and sr = 90.
The value of the scaling constant st for the translation vector tτ is based on the sizes of the

different arenas used during the experiments, which were conducted within the scope of this thesis
(Chapter 3). The maximum distance an animal could cross inside the arenas was close to one
meter before it reached an obstacle, i.e. a wall or an abyss. In each conducted experiment the
given frame of reference for the translation vector tτ was a world coordinate system, which was
placed in the center the respective arena, aligned with the arena’s three main axes and whose
measuring unit was given in centimeters. Consequently, dividing tτ by st ensured that entries of
t∗τ stayed within [−1, 1] during the optimization process.

The choice for the value of the scaling constant sr for the bone rotations rτ is based on the
interval [−90, 90] for joint angle limits associated to non-limb bones (Section 2.2.7). As a result
of the scaling, the entries of r∗τ were ensured to be roughly of the same magnitude as those
of t∗τ during the optimization process. To obtain the required re-scaled box constraints for r∗τ , the
intervals for all enforced joint angle limits (Table 2.3) are re-scaled accordingly, i.e. they are divided
by sr.

Furthermore, the optimization procedure given by Equation 2.11 contains the x- and y-distances
between ground truth and projected surface marker positions dτij = m̄τij − m̃τij , which are re-
scaled as follows:

d∗τij =

(
dτij1
sx

,
dτij2
sy

)T
, (2.16)

with sx = 640 and sy = 512. Here, the choice for the values of the scaling constants sx and sy are
based on the sensor sizes of the used cameras. The respective sensor dimensions were equal to
1280x1024 px2 in all conducted experiments. Consequently, re-scaling ensured that the value of
each calculated distance d∗τij stayed within the interval [−2, 2] during the optimization process.

To learn skeletal anatomies it is also necessary to learn the reduced bone lengths l∗ as well
as the reduced joint-to-marker-translation vectors v∗ (Section 2.2.9). However, additional scaling
of these two variables was not performed, since sufficient results with respect to the learned
anatomies could already be obtained without any re-scaling (Section 3.1).
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2.2.9 Constrained anatomy learning

Taking into account all of the previously discussed constraints (Section 2.2.4 to 2.2.7) as well as
the parameter re-scaling (Section 2.2.8), the pose- and anatomy-encoding parameters are learned
by minimizing a reformulated version of the objective function given in Equation 2.11 via gradient
descent optimization. The respective optimization scheme is given by

arg min
t∗τ ,r

∗
τ ,l

∗,v∗

∀τ∈{1,...,ntime}

ntime∑
τ=1

ncam∑
i=1

nmarker∑
j=1

δτij
∣∣∣∣d∗τij∣∣∣∣2, (2.17)

where box constraints for the reduced bone lengths l∗ (Section 2.2.5), the reduced joint-to-marker-
translation vectors v∗ (Section 2.2.6) and the re-scaled bone rotations r∗ (Section 2.2.7) are en-
forced. Here, the gradients are computed automatically via an auto-differentiation library [114] and
the minimization itself is performed using an implementation of the L-BFGS-B algorithm [106,115].
By minimizing discrepancies between ground truth and projected two-dimensional marker posi-
tions, given by the re-scaled distances d∗τij (Section 2.2.8), the skeletal anatomy of an animal is
learned and the pose for each time point τ is reconstructed (Figure 2.11).

However, while learning the anatomy-encoding variables l∗ and v∗ via gradient descent opti-
mization gives reasonable results (Section 3.1), the pose-encoding variables t∗ and r∗ need to be
discarded, since respective pose reconstruction results are not satisfactory. For instance, when
learning t∗ and r∗ via gradient descent optimization by minimizing the constrained objective func-
tion given by Equation 2.17, resulting poses are not consistent in time, which leads to unreason-
able fast limb movements in three-dimensional space (Section 3.2). This is due to the fact that the
pose-encoding variables vary through time and are learned independently, such that for each indi-
vidual time point τ the learned values for tτ and rτ are uncorrelated and therefore vastly different
from each other. For the anatomy-encoding parameters l and v this is not the case, since they do
not change with time and are therefore shared across all time points. As a consequence, learning
l and v by minimizing the constrained objective function given in Equation 2.17 gives reasonable
solutions, such that the kinematic chain used for modeling poses becomes a plausible represen-
tation of the skeletal anatomy of an individual animal subject. Particularly, measurable quantities,
like bone lengths and three-dimensional joint positions, are consistent with the therefore learned
skeletal anatomies (Section 3.1). However, to obtain reasonable estimates for an animal’s skeletal
pose, given by tτ and rτ , it is necessary to further improve the pose reconstruction framework
(Section 2.3).
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Figure 2.11: The anatomy-encoding variables of an animal subject, i.e. its bone lengths and joint-to-marker-translation
vectors, are learned using multiple images recorded via four different cameras at the same time point. To achieve
this the two-dimensional Euclidean distances (orange lines) between manually labeled and projected surface marker
locations (green and blue dots respectively) are minimized (top left). Learning the anatomy-encoding variables also
yields the animal’s pose, which allows for projecting the resulting three-dimensional configuration of the skeleton onto
the image plane of all four cameras (top right, bottom).

2.3 Probabilistic skeleton-based pose estimation

The previous section introduced a skeleton model containing a kinematic chain, which allows for
representing skeletal poses of freely-moving animals by approximating their three-dimensional
joint and bone positions in space (Section 2.2.1). Furthermore, the previous section described
how approximated joint positions are related to markers painted on an animal’s body surface
(Section 2.2.2). When constraints are enforced on the anatomy- and pose-encoding variables of
the skeleton model (Section 2.2.4 to 2.2.7), the skeletal poses in a behavioral sequence can in
principle be learned from images recorded via multiple cameras by minimizing the discrepancies
between ground truth and projected surface marker locations (Section 2.2.9).

However, learning the pose-encoding variables for each individual time point of a behavioral
sequence independently from each other is problematic, since poses are consistent in time,
i.e. poses of consecutive time points are correlated and therefore similar. To account for time-

26



2.3. PROBABILISTIC SKELETON-BASED POSE ESTIMATION

consisted skeletal poses, this section introduces a state space model, which enables recon-
structing skeletal poses in a probabilistic manner (Section 2.3.1). Given automatically detected
two-dimensional surface marker locations from a trained deep neural network (Section 2.3.2), the
state space model allows for inferring the pose-encoding variables via a Bayesian filter or smoother
(Section 2.3.4 and 2.3.5), which implicitly enforces temporal constraints. Since this newly intro-
duced inference scheme does not allow for enforcing box constraints on the pose-encoding vari-
ables to guarantee that modeled bone rotations are coherent with physiological joint angle limits,
the initial state space model is further modified by introducing new model variables to achieve the
same outcome (Section 2.3.6).

2.3.1 The state space model

In the proposed pose reconstruction framework, a state space model is used to simulate the
dynamics of pose changes over time (Figure 2.12). In mathematical terms, the state space model
is given by a transition and an emission equation:

zτ = f (zτ−1) + εz = zτ−1 + εz (2.18)
xτ = g (zτ ) + εx. (2.19)

For each time point τ ∈ {1, ..., T} of a behavioral sequence of length T , the pose-encoding
variables of the skeleton model are stored within a state variable zτ ∈ Rnz and the observable
two-dimensional surface marker locations are stored within a measurement variable xτ ∈ Rnx .
Therefore, zτ contains the elements of the Rodrigues vectors rτ , which store the bone rotations
of each bone, as well as the three elements of the global translation vector tτ , which stores the
three-dimensional location of the root joint of the modeled skeleton. Thus, the dimensionality of
zτ only depends on the number of modeled bones nbones, i.e. nz = 3 (nbones + 1), whereas the di-
mensionality of xτ is a function of the number of used cameras ncam and surface markers nmarker,
i.e. nx = 2 ncam nmarker.

The transition equation (Equation 2.18) describes how the state variables change between
two consecutive time points τ − 1 and τ . Here, the transition function f and the noise variable εz
are used to compute the current state variable zτ from the previous one zτ−1. In the proposed

Figure 2.12: Graphical illustration of the state space model, which is used to model how skeletal poses of a freely-
moving animal change over time. For each time point of a behavioral sequence a state variable zτ encodes the pose
of an animal and gives rise to a measurement variable xτ , which is calculated using an emission function g and a
noise variable εx, such that xτ = g (zτ ) + εx. The measurement variable xτ stores directly observable two-dimensional
surface marker locations, which are recorded via a multi-camera setup, whereas the noise variable εx ∼ N (0, Vx)
simulates measurement noise. The temporal progression of poses, which describes how a pose at time point τ − 1
gives rise to a pose at the subsequent time point τ , is modeled via an additional noise variable εz ∼ N (0, Vz), such
that zτ = zτ−1 + εz. The random variables εz and εx together with the initial state variable z0 ∼ N (µ0, V0) account for
the probabilistic nature of the state space model.
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Algorithm 5: The emission function of the state space model.
1: function g(zτ )
2: t← st(zτ1 , zτ2 , zτ3)T . Obtain global translation t
3: for i ∈ {1, .., nbone} do
4: ri ← sr

(
zτ3i+1 , zτ3i+2 , zτ3i+3

)T
. Obtain bone rotations ri

5: m3D ← fsurface (t, r, l, v) . Obtain 3D marker locations m3D

6: for i ∈ {1, .., ncam} do
7: for j ∈ {1, .., nmarker} do
8: m2D ← f3D→2D

(
m3Dj , r̃i, t̃i, k̃i, Ãi

)
. Obtain 2D marker locations m2D

9: m∗nmarker(i−1)+j ←
(
m2D1
sx
− 1,

m2D2
sy
− 1
)T

. Normalize x- and y-coordinates

10: x∗τ ← cat
(
m∗1,m

∗
2, ...,m

∗
ncamnmarker

)
. Obtain noise-free x∗τ via concatenation

11: return x∗τ

pose reconstruction framework it is assumed that the transition function f is equal to the identity
function, i.e. f (zτ−1) = zτ−1, such that only the noise variable εz governs the dynamics of pose
changes over time.

Computing xτ given zτ is performed via the emission equation (Equation 2.19) containing the
emission function g and the noise variable εx. Here, the emission function g extracts the pose-
encoding variables, i.e. the global translation vector tτ and the bone rotations rτ , from the state
variable zτ , propagates them through the functions fsurface (Algorithm 2) and f3D→2D (Equation 2.7)
to obtain the noise-free two-dimensional surface marker locations and stores this final result within
a nx-dimensional vector (Algorithm 5). Thus, to calculate xτ from zτ it is necessary to learn the
skeletal anatomy of an animal subject and calibrate the deployed multi-camera setup beforehand.
Here, learning the skeletal anatomy gives the bone-lengths l and the join-to-marker-translation
vectors v, whereas calibrating the multi-camera setup gives the intrinsic and extrinsic parameters
r̃i, t̃i, k̃i and Ãi for each camera i. These quantities are required input parameters for the functions
fsurface and f3D→2D.

The two noise variables εz ∈ Rnz and εx ∈ Rnx as well as the initial state variable z0 account for
the probabilistic nature of the state space model, since they are assumed to be random variables
drawn from normal distributions, i.e. εz ∼ N (0, Vz), εx ∼ N (0, Vx) and z0 ∼ N (µ0, V0). Conse-
quently, the dynamics of changing skeletal poses are described in their entirety by the probabilistic
hyper-parameters of the state space model, i.e. the model parameters Θ = {µ0, V0, Vz, Vx}.

When the model parameters Θ and all measurement variables x = {x1, x2, ..., xT } of a behav-
ioral sequence are given, deploying the state space model allows for inferring the state variables
z = {z0, z1, ..., zT } and therefore reconstructing poses. To achieve this, the measurement variables
of the entire behavioral sequence are obtained via a trained deep neural network, which automat-
ically estimates the two-dimensional surface marker locations in the recorded video data (Section
2.3.2). The actual inference of z is performed via a Bayesian filter (Section 2.3.4) or smoother
(Section 2.3.5), which implicitly incorporates temporal constraints into the pose reconstruction
framework.

2.3.2 Detecting surface marker locations via deep neural networks

Using the state space model given by Equation 2.18 and 2.19 to infer the pose-encoding state
variables z requires full knowledge of the measurement variables x, i.e. the two-dimensional sur-
face marker locations in the recorded video data. Obtaining the surface marker locations solely via
manually annotated labels is infeasible, since the video data is generated using multiple cameras,
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which record images at high frame rates, e.g. 200 Hz, to allow for reconstructing poses with high
temporal resolution. Consequently, reconstructing poses of a behavioral sequence, which is only
a few seconds long, already places the total number of frames, for which labels are required, in
the order of thousands, e.g. 4000 images in total for a 5 s long sequence recorded via 4 cameras.
This yields a considerable amount of data, whose sheer quantity deems manual labeling imprac-
tical. Thus, it is necessary to reduce the manual labor involved in the process of obtaining the
two-dimensional surface marker locations by shifting to automatized methods.

An established tool for automatically classifying, segmenting and detecting distinct objects
or features from images are artificial neural networks, which are trained via supervised learning
[116–118]. In the proposed pose reconstruction framework the used artificial neural network for
this task is DeepLabCut [76], which is a deep convolutional neural network [55, 56] specifically
designed for the automatized extraction of anatomical surface features, e.g. the snout of a freely-
moving rat, from recorded video data. Particularly, a DeepLabCut network is a deep residual
neural network [119] and builds on the concepts introduced by it’s predecessors networks, i.e.
DeepCut [57] and DeeperCut [58], whose original purposes are situated in the realm of human
pose estimation (Section 1.2.1).

For training a DeepLabCut network only a comparably small number of manually labeled
frames, i.e. a few hundred frames, is sufficient to ensure that the network’s feature detection
capabilities generalize to unseen data, such that detecting the two-dimensional surface marker
locations in the recorded video data can be automated. After a DeepLabCut network is trained
successfully, processing a previously unseen image via the trained network yields a score map for
each surface marker, which contains a score value for each pixel of the input image. The score
value of a single pixel indicates the probability of a respective two-dimensional surface marker
being located at this pixel. By choosing the pixel location with the highest score vale for each indi-
vidual surface marker, all surface marker locations are automatically detected. Furthermore, since
a comparably small score value indicates a small certainty with respect to the detection accuracy,
the risk for detecting incorrect surface marker locations is reduced by requiring the score value
to be above a predefined threshold, the pcutoff-value, in order to deem a detection successful
(Figure 2.13). In the proposed pose reconstruction framework this pcutoff-value equals 0.9.

However, while this approach provides an efficient way for automatically processing a high
number of images, it does not necessarily guarantee that all surface marker locations are de-
tected accurately. In fact, even though the detected surface marker locations given by a trained
DeepLabCut network are treated as actual measurements within the state space model, the detec-
tion accuracy can be low, irrespective of the corresponding score values. Thus, the detected sur-
face marker locations need to be treated with caution, which is accounted for by using a Bayesian
filter or smoother for inferring the state variables in the state space model.

Since the Bayesian filter and smoother indirectly incorporate temporal constraints into the pose
reconstruction scheme (Section 2.3.4 and 2.3.5), the influence of isolated misdetections on the re-
constructed poses can be reduced. Furthermore, frequently occurring body part occlusions can
cause surface markers to be temporarily invisible in the recorded video data, which leads to unde-
tectable surface marker locations. As a consequence the underlying state space model contains
missing measurements, i.e. a lack of detections for some of the surface marker locations. Thus,
the measurement variables x are incomplete, i.e. the entries of a single measurement variable
xτ remain empty, when they correspond to missing measurements. Due to frequent body part
occlusions it is necessary to formulate the algorithm for the Bayesian filter, such that it accounts
for the dynamically changing visibility of the surface markers in a recorded behavioral sequence
(Section 2.3.4).
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Figure 2.13: Example for how a trained DeepLabCut network is used to process a recorded image to automatically
detect surface marker locations. For each surface marker the network gives a score map, which indicates the most
likely location of a surface marker in the image. The respective score maps of three different surface markers at the
right hind paw are shown (top row). The surface marker locations (green dots) are obtained from these score maps by
choosing the pixel with the highest score value above a predefined threshold (bottom row). If the score value is below
this threshold the corresponding surface marker is classified as not detected (here: toe #3), which leads to incomplete
measurement variables within the state space model.

2.3.3 The unscented transform

To perform inference of the sate variables z in the state space model via a Bayesian filter or
smoother, it is necessary to approximate arbitrary with normal probability distributions. In the
state space model the initial state variable z0 as well as the two noise variables εz and εx are
assumed to be normally distributed, which causes each state variable zτ at a time point τ to be
normally distributed as well, due to the linearity of the transition equation [120,121]. However, this
property is lost for each measurement variable xτ , due to the non-linearity of the emission function
g. In fact, the underlying probability density function associated with the probability distribution of
xτ is unknown. Nevertheless, by drawing samples from the unknown distribution of xτ , subse-
quently calculating the expectation value and covariance matrix of these samples and then using
both quantities to parameterize a normal distribution, it is possible to approximate the unknown
distribution of xτ with a normal distribution [122,123].

Thus, in order to approximate an arbitrary with a normal probability distribution, it is necessary
to approximate an expectation value

E [h (y)] =

∫
p (y) h (y) dy (2.20)

and a covariance matrix

Var (h (y)) = E
[
(h (y)− E [h (y)]) (h (y)− E [h (y)])T

]
, (2.21)

where h is an arbitrary function and y ∈ Rd is a normally distributed random variable, i.e. y ∼
N (µy,Σy), of arbitrary size, i.e. d ∈ N. To generate samples Y ∈ R2d+1×d from the normal distri-
bution N (µy,Σy), the unscented transform fut is used, such that Y = fut (µy,Σy) [122, 123]. The
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Figure 2.14: Two-dimensional example for how the unscented transform fut is used to approximate an arbitrary probabil-
ity density function. From an initial two-dimensional normal distribution N (µy,Σy) with expectation value µy = (0, 0)T

(green dot) and covariances Σy11 = 1, Σy22 = 1 and Σy12 = Σy21 = −0.5, sigma points Y (black dots) are calcu-
lated, such that Y = fut (µy,Σy). Calculating the predicted expectation value (orange cross) from the sigma points with
non-zero weights, i.e. Y2, Y3, Y4 and Y5, gives the true expectation value µy of the initial distribution (left). However,
applying a non-linear function h (y) = 0.5

(
abs (y) + (y1 + y2, y1 + y2)T

)
to samples from the initial normal distribution

N (µy,Σy) yields a new sample distribution (center). This new probability distribution is not longer normal and has a
new expectation value equal to (0.39, 0.39)T , which is different from µy. Likewise, applying h to the sigma points Y also
changes the predicted expectation value µh(y). The normal distribution N

(
µh(y),Σh(y)

)
is then used to approximate

the new sample distribution, where µh(y) and Σh(y) are calculated from the new sigma points h (Y2), h (Y3), h (Y4) and
h (Y5) giving µh(y) = (0.35, 0.48)T , Σh(y)11

= 0.37, Σh(y)22
= 0.26 and Σh(y)12

= Σh(y)21
= 0.20 (right).

samples Y are called sigma points and are representative of the probability distribution N (µy,Σy)
in the sense that they are systematically spread around µy (Figure 2.14). The required un-
scented transform fut is defined in Algorithm 6 [123]. Here, fcholesky (Σy) denotes the Cholesky
decomposition of the covariance matrix Σy, which computes a lower triangular matrix L, such that
LLT = Σy [124], and λ is a scalar value defined as

λ = α2 (d+ κ)− d, (2.22)

where the parameters are choosen as α = 1 and κ = 0, such that λ = 0 [123,125].
Using the sigma points Y, the expectation value E [h (y)] and the covariance matrix Var (h (y))

are approximated as

E [h (y)] ≈
2d+1∑
i=1

wi h (Yi) = µh(y) (2.23)

and

Var (h (y)) ≈
2d+1∑
i=1

wi
(
h (Yi)− µh(y)

)(
h (Yi)− µh(y)

)T
= Σh(y), (2.24)

Algorithm 6: The unscented transform.
1: function fut(µy,Σy)
2: L← fcholesky (Σy) . Obtain lower triangular matrix L
3: Y1 ← µy . Set first unsymmetrical sigma point Y1

4: for i ∈ {2, ..., d+ 1} do
5: Yi ← µy +

√
d+ λ LT i . Compute first half of symmetrical sigma points

6: for i ∈ {d+ 2, ..., 2d+ 1} do
7: Yi ← µy −

√
d+ λ LT i . Compute second half of symmetrical sigma points

8: return Y
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where the weights w ∈ R2d+1 are defined as

w1 =
λ

d+ λ
= 0 (2.25)

wi =
1

2 (d+ λ)
=

1

2d
∀i ∈ {2, ..., 2d+ 1}. (2.26)

By assuming h (y) ∼ N
(
µh(y),Σh(y)

)
, the parameters µh(y) and Σh(y) are then used to parameter-

ize a normal distribution, which approximates the unknown probability density function from which
the transformed random variable h (y) is drawn from (Figure 2.14).

2.3.4 Bayesian filtering

Inferring the skeletal pose of an animal for an arbitrary time point τ of a behavioral sequence
via the state space model and a Bayesian filter is equivalent to estimating the parameters of the
normal distribution from which the pose-encoding state variable zτ is drawn from, i.e. the filtered
estimates µ̃τ and Ṽτ for the distribution’s expectation value and covariance matrix. A seminal
work in this context was published by Rudolf Kálmán in 1960, who introduced a formulation of a
Bayesian filter, which is now named after him, i.e. the Kalman filter [126]. The Kalman filter allows
for inferring the state variables in a purely linear state space model. However, in the proposed pose
reconstruction framework the emission equation of the state space model is non-linear due to the
emission function g. Consequently, the Bayesian filter used in the proposed pose reconstruction
framework is the unscented Kalman filter [122], which is a modified version of the original Kalman
filter.

By utilizing the unscented transform (Section 2.3.3), the unscented Kalman filter allows for
inferring µ̃τ and Ṽτ , even though the underlying state space model is not purely linear. Like the
ordinary Kalman filter, the unscented Kalman filter is an iterative algorithm and uses it’s estimates
µ̃τ−1 and Ṽτ−1 from the previous time point τ − 1, the covariance matrix of the state and mea-
surement noise Vz and Vx as well as the measurement variable xτ from the current time point τ to
calculate µ̃τ and Ṽτ . The corresponding inference scheme of the unscented Kalman filter is given
by Algorithm 7 [123,127].

Starting from the filter estimate for the distribution parameters of the state variable zτ−1 at time
point τ − 1, i.e. µ̃τ−1 and Ṽτ−1, the unscented Kalman filter generates sigma points via the un-
scented transform fut (Algorithm 6) to calculate predictions for how the state variable zτ and the
measurement variable xτ at time point τ are distributed. These predicted distributions are normal
distributions given by N (z̄, P ) for zτ and N (x̄, S) for xτ . After theses predictions are calculated,
the filter gain K is computed, which allows for updating the predicted distribution N (z̄, P ). This
yields the final filter estimate for the distribution of the state variable zτ , i.e. N

(
µ̃τ , Ṽτ

)
(Figure

2.15). Basing the computation of the final distribution N
(
µ̃τ , Ṽτ

)
at time point τ on the already

inferred distribution N
(
µ̃τ−1, Ṽτ−1

)
from the previous time point τ − 1 establishes a one-sided

dependency of N
(
µ̃τ , Ṽτ

)
on N

(
µ̃τ−1, Ṽτ−1

)
, i.e. N

(
µ̃τ−1, Ṽτ−1

)
acts as a prior probability dis-

tribution for the state variables at time point τ . In practice, this limits the extent to whichN
(
µ̃τ , Ṽτ

)
differs fromN

(
µ̃τ−1, Ṽτ−1

)
and therefore implicitly incorporates temporal constraints into the state

space model.
Furthermore, Algorithm 8 accounts for missing measurements by performing computations,

which are equivalent to reducing the dimensionality of the measurement space to an approriate
size [127]. For instance, assuming the last two elements of the measurement variable xτ corre-
spond to a missing measurement, i.e. the respective surface marker location could not be detected
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Algorithm 7: A single step of the unscented Kalman filter.
1: function fukf step(µ̃τ−1, Ṽτ−1, Vz, Vx)
2: Z ← fut

(
µ̃τ−1, Ṽτ−1

)
. Form sigma points Z

3: Z ← f (Z) . Propagate sigma points through transition function f
4: z̄ ←

∑2nz+1
i=1 wiZi . Compute predicted mean z̄

5: P ← Vz +
∑2nz+1

i=1 wi(Zi − z̄)(Zi − z̄)T . Compute predicted covariance matrix P
6: Z ← fut (z̄, P ) . Form sigma points Z
7: X ← g (Z) . Propagate sigma points through emission function g
8: x̄←

∑2nz+1
i=1 wiXi . Compute predicted mean x̄

9: S ← Vx +
∑2nz+1

i=1 wi(Xi − x̄)(Xi − x̄)T . Compute predicted covariance matrix S
10: for i ∈ {1, ..., nx} do
11: if xτ i is missing measurement then
12: for j ∈ {1, ..., nx} do
13: Sij ← 0 . Set rows of missing measurements to 0
14: Sji ← 0 . Set columns of missing measurements to 0
15: Sii ← 1 . Set diagonal entries to 1 to allow for computing S−1

16: C ←
∑2nz+1

i=1 wi(Zi − z̄)(Xi − x̄)T . Compute cross-covariance matrix C
17: for i ∈ {1, ..., nx} do
18: if xτ i is missing measurement then
19: for j ∈ {1, ..., nz} do
20: Cji ← 0 . Set columns of missing measurements to 0
21: K ← CS−1 . Compute filter gain K
22: r ← xτ − x̄ . Compute residual r
23: for i ∈ {1, ..., nx} do
24: if xτ i is missing measurement then
25: ri ← 0 . Set entries of missing measurements to 0
26: µ̃τ ← z̄ +Kr . Compute filtered mean µ̃τ
27: Ṽτ ← P −KCT . Compute filtered covariance matrix Ṽτ
28: return µ̃τ , Ṽτ

Figure 2.15: One-dimensional example for a single step of the unscented Kalman filter, showing predicted and filtered
probability distributions for the state and measurement variables. Based on the distribution of the state variable zτ−1

from the previous time point τ − 1, a prediction for the distribution of the state variable zτ at the current time point τ is
calculated. This predicted distribution is then updated to compute the final output distribution, i.e. the filtered distribution
of the state variable zτ at the current time point τ .
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Algorithm 8: The unscented Kalman filter.
1: function fukf (µ0, V0, Vz, Vx)
2: µ̃0 ← µ0

3: Ṽ0 ← V0

4: for τ ∈ {1, ..., T} do
5: µ̃τ , Ṽτ ← fukf step

(
µ̃τ−1, Ṽτ−1, Vz, Vx

)
6: return µ̃, Ṽ

Figure 2.16: One-dimensional example for how the unscented Kalman filter is used to infer state variables z from incom-
plete measurement variables x for a sequence containing 100 time steps, where 10% of the measurement variables
are missing. The underlying state space model is given by the transition function f (zτ−1) = zτ−1 + π

25
and the emission

function g (zτ ) = sin (zτ ) as well as the random variables z0 ∼ N (0, 0.1), εz ∼ N (0, 0.1) and εx ∼ N (0, 0.1). The
state variables z are assumed to be equal to the inferred expectation values µ̃, i.e. z = µ̃, such that the measurement
variables x are reconstructed as x = sin (µ̃). The uncertainty intervals with respect to the state and measurement
variables are given by the corresponding standard deviations (blue shading), which are calculated by generating 1000
samples from the inferred normal distribution N

(
µ̃τ , Ṽτ

)
for each time point τ . Note how the uncertainty intervals

increase and the reconstruction quality decreases near the extrema of the emission function.

accurately (Section 2.3.2). In this situation the computations in Algorithm 8 are equivalent to cal-
culating the reduced Kalman gain K∗ ∈ Rnz×nx−2 and using it to update the predicted distribution
N (z̄, P ), such that only accurately detected surface marker locations influence the computation.

To obtain the filter estimates for the expectation values µ̃ = {µ̃0, ..., µ̃T } and covariance matri-
ces Ṽ = {Ṽ0, ..., ṼT } of an entire behavioral sequence, the inference scheme given by Algorithm 7
has to be executed sequentially for each time point τ ∈ {1, ..., T} according to Algorithm 8 [123].
Computing all inferred expectation values µ̃ allows for reconstructing z by assuming equality be-
tween both quantities, i.e. z = µ̃. Consequently, reconstructing the measurement variables x is
achieved by propagating µ̃ through the emission function g, i.e. x = g (µ̃). Since the unscented
Kalman filter infers the probability distributions from which the state variables are drawn from, it
is also possible to calculate uncertainty intervals with respect to the reconstructed measurement
variables, by sampling from the inferred distributions (Figure 2.16).

2.3.5 Bayesian smoothing

In principle, utilizing the unscented Kalman filter already allows for inferring the state variables z
(Section 2.3.4). However, the used inference scheme in the proposed pose reconstruction frame-
work is actually a Bayesian smoother, i.e. the unscented Rauch-Tung-Striebel (RTS) smoother
[128, 129]. Unlike the unscented Kalman filter, whose inference scheme is solely based on in-
corporating information from past time points, i.e. {0, 1, ..., τ − 1}, the unscented RTS smoother
uses information from an entire behavioral sequence, including past and future time points, i.e.
{0, 1, ..., T}, to infer the parameters of the underlying distribution from which a state variable zτ
at time point τ is drawn from. For the unscented RTS smoother these parameters are equal to
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Algorithm 9: A single step of the unscented RTS smoother.

1: function fuks step(µ̃τ , Ṽτ , µ̂τ+1, V̂τ+1, Vz)
2: Z ← fut

(
µ̃τ , Ṽτ

)
. Form sigma points Z

3: Z ← f (Z) . Propagate sigma points through transition function f
4: z̄ ←

∑2nz+1
i=1 wiZi . Compute predicted mean z̄

5: P ← Vz +
∑2nz+1

i=1 wi(Zi − z̄)(Zi − z̄)T . Compute predicted covariance matrix P
6: D ←

∑2nz+1
i=1 wi(Zi − µ̃τ )(Zi − z̄)T . Compute cross-covariance matrix D

7: Gτ ← DP−1 . Compute smoother gain Gτ
8: µ̂τ ← µ̃τ +Gτ (µ̂τ+1 − z̄) . Compute smoothed mean µ̂τ
9: V̂τ ← Ṽτ +Gτ

(
V̂τ+1 − P

)
Gτ

T . Compute smoothed covariance matrix V̂τ
10: return µ̂τ , V̂τ , Gτ

Figure 2.17: One-dimensional example for a single step of the backward pass of the unscented RTS smoother, showing
the filtered, predicted and smoothed probability distributions of the state and measurement variables. Based on the
filtered distribution of the state variable zτ from the current time point τ , a prediction for the distribution of the state
variable zτ+1 at the subsequent time point τ + 1 is calculated. Computing the differences between this predicted
distribution and the smoothed estimate for the distribution of the state variable zτ+1 allows for updating the filtered
distribution. This yields the final output distribution, i.e. the smoothed distribution of the state variable zτ .

the smoothed estimates µ̂τ and V̂τ for the distribution’s expectation value and covariance matrix
respectively.

Using the unscented RTS smoother, µ̂τ and V̂τ are inferred by iterating through a given behav-
ioral sequence twice via a forward and a backward pass. In the forward pass the iteration starts at
the beginning of the behavioral sequence and terminates at its end. Thus, executing the forward
pass is identical to obtaining the filtered estimates µ̃ and Ṽ via the unscented Kalman filter. In the
subsequent backward pass the direction of the iteration is reversed, i.e. the iteration starts at the
end and terminates at the beginning of the behavioral sequence.

To generate the smoothed estimates µ̂τ and V̂τ , the unscented RTS smoother uses its own
estimates µ̂τ+1 and V̂τ+1 at the subsequent time point τ + 1, the estimates of the unscented
Kalman filter µ̃τ and Ṽτ at the current time point τ and the covariance matrix of the state noise Vz.
The respective inference scheme of the unscented RTS smoother’s backward pass for a single
time point τ is given by Algorithm 9 [123].

Similarly to the unscented Kalman filter, in a single step of the backward pass of the unscented
RTS smoother the filter estimate for the distribution of the state variable zτ at time point τ , i.e.
N
(
µ̃τ , Ṽτ

)
, is used to calculate a prediction for the distribution of the state variable zτ+1 at time

point τ + 1, i.e. N (z̄, P ). Subsequently, the smoother gain G is computed and used to update the
initial filter estimates µ̃τ and Ṽτ , which yields the smoother’s final output distribution N

(
µ̂τ , V̂τ

)
of

the state variable zτ (Figure 2.17). In contrast to the unscented Kalman Filter, the unscented RTS
smoother does not need access to the measurement variables x.
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Algorithm 10: The unscented RTS smoother.
1: function fuks(µ0, V0, Vz, Vx)
2: µ̃, Ṽ ← fukf (µ0, V0, Vz, Vx)
3: µ̂T ← µ̃T
4: V̂T ← ṼT
5: for τ ∈ {T − 1, ..., 0} do
6: µ̂τ , V̂τ , Gτ ← fuks step

(
µ̃τ , Ṽτ , µ̂τ+1, V̂τ+1, Vz

)
7: return µ̂, V̂ , G

Figure 2.18: One-dimensional example for how the unscented RTS smoother is used to infer state variables z from
incomplete measurement variables x. All model parameters and the sequence itself are identical to Figure 2.16. The
state variables z are assumed to be equal to the inferred expectation values µ̂, i.e. z = µ̂, such that the measurement
variables x are reconstructed as x = sin (µ̂). The uncertainty intervals with respect to the reconstructed state and
measurement variables are given by the corresponding standard deviations (blue shading), which are calculated by
generating 1000 samples from the inferred normal distribution N

(
µ̂τ , V̂τ

)
for each time point τ . Note how the un-

certainty intervals decrease and the reconstruction quality increases near the extrema of the emission function, when
compared to the corresponding results given by the unscented Kalman filter (Figure 2.16).

To obtain the smoother estimates for all expectation values µ̂ = {µ̂0, ..., µ̂T } and covariance
matrices V̂ = {V̂0, ..., V̂T } of an entire behavioral sequence, Algroithm 9 has to be executed se-
quentially according to Algorithm 10 [123]. Using the unscented RTS smoother to infer the state
variables yields smoother results with higher reconstruction accuracy for the state and measure-
ment variables, when compared to the unscented Kalman filter (Figure 2.18).

2.3.6 Constraining bone rotations in the state space model

When using a state space model to describe how skeletal poses change over time, constrain-
ing the pose-encoding state variables z to guarantee that modeled bone rotations are in agree-
ment with anatomical joint angle limits (Section 2.2.7) becomes more complex. When the skeletal
anatomy and poses of an animal subject are learned via gradient descent optimization, joint angle
limits are enforced by introducing respective box constraints into the optimization scheme (Section
2.2.9). In contrast to that, using the unscented RTS smoother to infer the state variables z (Sec-
tion 2.3.5) does not allow for constraining the corresponding smoothed estimates µ̂ to stay within
predefined intervals via box constraints. However, box constraints are incorporated into the state
space model indirectly, by introducing a redefined state variable z∗τ ∈ Rnz and a function fz*→z

according to

z∗τ = f
(
z∗τ−1

)
+ εz = z∗τ−1 + εz (2.27)

xτ = g (fz*→z (z∗τ )) + εx. (2.28)

Function fz*→z is given by Algorithm 11 and used to map each element of the redefined state
variable z∗τ , which corresponds to an entry of a Rodrigues vector ri, to the respective lower and
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Algorithm 11: Constraining bone rotations in the state space model.
1: function fz*→z(z

∗
τ )

2: t∗ ←
(
z∗τ1 , z

∗
τ2 , z

∗
τ3

)T
. Obtain normalized global translation t∗

3: r∗1 ←
(
z∗τ4 , z

∗
τ5 , z

∗
τ6

)T
. Obtain normalized global rotation r∗1

4: for i ∈ {2, .., nbone} do

5: r∗∗i ←
(
z∗τ3i+1

, z∗τ3i+2
, z∗τ3i+3

)T
. Obtain redefined bone rotation r∗∗i

6: for j ∈ {1, .., 3} do
7: n← 1

2

(
fsigmoid

(
r∗∗ij

)
+ 1
)

. Map r∗∗ij ∈ (− inf, inf) to n ∈ (0, 1)

8: rij ← b0ij +
(
b1ij − b0ij

)
n . Compute bone rotation rij ∈

(
b0ij , b1ij

)
9: r∗i ←

ri
sr

. Obtain normalized bone rotation r∗i
10: zτ ← cat

(
t∗, r∗1, r

∗
2, ..., r

∗
nbone

)
. Obtain zτ via concatenation

11: return zτ

upper bound of the associated bone rotation, such that joint angle limits are enforced. Thus, b0ij
and b1ij in Algorithm 11 denote the lower and upper bound, which correspond to entry j of a
Rodrigues vector ri encoding the rotation of bone i. The sigmoid function fsigmoid (y) in Algorithm
11 maps an input parameter y ∈ R from the interval (− inf, inf) to the interval (−1, 1), such that

lim
y→− inf

fsigmoid (y) = −1 (2.29)

lim
y→inf

fsigmoid (y) = 1. (2.30)

To ensure that the sigmoid function fsigmoid is as similar as possible to the identity function, the
following properties are advantageous:

fsigmoid (0) = 0 (2.31)
fsigmoid

′ (0) = 1, (2.32)

with fsigmoid
′ (y) = ∂

∂y fsigmoid (y). Here, the intention for minimizing the discrepancy between fsigmoid

and the identity function is to reduce the effect of the additional non-linearities introduced by
fsigmoid, such that the modified state space model (Equation 2.27 and 2.28) remains as similar
as possible to the original state space model (Equation 2.18 and 2.19). For the proposed pose
reconstruction framework the following functions represent candidates for the sigmoid function
fsigmoid [120,121]:

fatan (y) =
2

π
arctan

(π
2
y
)

(2.33)

flogistic (y) =
2

1 + exp (−2y)
− 1 (2.34)

ferf (y) = erf

(√
π

2
y

)
, (2.35)

where the error function erf is defined as

erf (y) =
2√
π

∫ y

0
exp

(
−a2

)
da. (2.36)

Here, candidate function ferf is the least different from the identity function in the sense that it min-
imizes the cumulative error

∫
abs (fsigmoid (y)− y) dy, when compared to the other two candidate
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Figure 2.19: Curve progressions (left) and corresponding error values (right) in the vicinity of the origin for the sigmoid
candidate functions fatan, flogistic and ferf , which allow for enforcing joint angle limits in the state space model. The
shown error values indicate discrepancies between the identity function and the candidate functions. Note how every
input value from the interval (− inf, inf) is mapped to the output interval (−1, 1), which is used to enforce box constraints
corresponding to joint angle limits. Additionally, note how the error values for candidate function ferf are overall smaller
compared to those from candidate functions fatan and flogistic.

functions (Figure 2.19). Thus, the required sigmoid function is defined as fsigmoid (y) = ferf (y).
Consequently, instead of using the unscented RTS smoother to infer the state variables z =
{z0, ..., zT } in the original state space model, the smoother is deployed in the context of the mod-
ified state space model to infer the redefined state variables z∗ = {z∗0 , ..., z∗T } in order to account
for joint angle limits in the proposed pose estimation framework.

2.4 Learning the model’s probabilistic hyper-parameters

The previous section introduced a state space model to describe how skeletal poses change over
time within a behavioral sequence (Section 2.3.1). Additionally, the previous section described
how the pose-encoding state variables z = {z0, z1, ..., zT } in the state space model are inferred
from the corresponding measurement variables x = {x1, x2, ..., xT } via a Bayesian smoother, i.e.
an unscented RTS smoother (Section 2.3.5), such that the resulting reconstructed bone configu-
rations are guaranteed to comply with physiological joint angle limits (Section 2.3.6).

When the unscented RTS smoother is used to infer the state variables z, the dynamics of
changing skeletal poses are determined by the model parameters Θ = {µ0, V0, Vz, Vx}. These
model parameters are given by the expectation value µ0 and the covariance matrix V0 of the
underlying normal distribution, from which the initial state variable z0 is drawn from, as well as the
covariance matrices Vz and Vx, which determine the magnitude of the transition and measurement
noise εz and εx respectively. Thus, given that there exists a reasonably good estimate for the
model parameters Θ, deploying the unscented RTS smoother to infer the state variables z from
the measurement variables x allows for reconstructing the unknown skeletal poses in a behavioral
sequence. However, while the measurement variables x are automatically obtained via a trained
deep neural network (Section 2.3.2), the model parameters Θ are unknown in practice.

In principle, the initial parameter values for the expectation value µ0 and the covariance matrix
V0 are updated by the unscented RTS smoother, yielding the smoothed estimates µ̂0 and V̂0. How-
ever, since the resulting values for µ̂0 and V̂0 are highly dependent on how µ0 and V0 are initialized,
it is essential to actually use reasonable initial parameter values to obtain a decent reconstruction
quality with respect to the estimated skeletal poses. Furthermore, the parameter values for the co-
variance matrices Vz and Vx are not updated at all by the unscented RTS smoother. Consequently,
obtaining reasonable values for these two quantities is even more challenging. Particularly, finding
reasonable values for Vz and Vx is non-trivial, since the associated transition and measurement
noise are assumed to be normally distributed, which only approximates the true dynamics gov-
erning how an animal behaves and adjusts its skeletal pose. In fact, the circumstance that all
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random variables involved in the state space model, i.e. the initial state variable z0, the transition
noise εz and the measurement noise εx, are normally distributed is a mere model assumption. The
actual mechanics and associated distributions, which would accurately describe the dynamics of
skeletal pose changes, are complex and unknown. Thus, an appropriate method for estimating the
model parameters Θ of the state space model is required, such that the true dynamics of changing
skeletal poses can at least be approximated reasonably well.

A method for learning the model parameters Θ is given by the iterative expectation-maximization
(EM) algorithm [130], which allows for calculating a set of model parameters, such that a lower
bound of the state space model’s evidence, i.e. the evidence lower bound (ELBO), is maxi-
mized [120, 121]. Each iteration of the EM algorithm contains an expectation step (E-step), in
which the state variables z are inferred, and a maximization step (M-step), in which a new set of
model parameters is calculated, such that the ELBO is maximized. Thus, the E-step is identical to
infering the state variables z via the unscented RTS smoother, whereas the computations of the
M-step are aimed at solving a respective optimization problem in closed-form [125].

This section covers the theoretical bases of the EM algorithm (Section 2.4.1) and describes
how it is used to learn the model parameters Θ of the state space model (Section 2.4.2). Addition-
ally, this section describes how convergence of the EM algorithm is defined (Section 2.4.3) and
how the algorithm is implemented in the context of animal pose estimation (Section 2.4.4).

2.4.1 The expectation-maximization algorithm

While the general form of the EM algorithm was first introduced by Arthur Dempster, Nan Laird and
Donald Rubin in 1977 [130], this section follows the concepts and notations stated by Christopher
Bishop [120] and Kevin Murphy [121].

The general idea behind the EM algorithm is to incrementally increase the state space model’s
marginal likelihood p (x), i.e. the model evidence, by maximizing the ELBO. To understand the
theoretical background of this maximization scheme, it is beneficial to recall two fundamental
concepts on which probability theory is build on. Firstly, the model’s joint distribution p (x, z) is
equal to the product of the model’s likelihood p (x|z) and prior p (z) [120,121]:

p (x, z) = p (x|z) p (z) . (2.37)

Secondly, the mutual dependency of the model’s marginal likelihood p (x), posterior p (z|x), likeli-
hood p (x|z) and prior p (z) is given by Bayes’ theorem [120,121]:

p (z|x) p (x) = p (x|z) p (z) . (2.38)

To start building an understanding for how the EM algorithm works, at first an arbitrary proba-
bility density function q (z) over the state variables z is defined, such that the following statement
is true by definition: ∫

q (z) dz = 1. (2.39)

Multiplying Equation 2.39 with an arbitrary constant c yields

c

∫
q (z) dz =

∫
c q (z) dz = c. (2.40)

However, replacing the constant c with a function, which is independent of the state variables z,
is a valid mathematical operation and can be performed without loss of generality. Choosing this
function to be the model’s marginal log-likelihood ln p (x) yields∫

q (z) ln p (x) dz = ln p (x) . (2.41)
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Here, it is advantageous to memorize that the marginal log-likelihood ln p (x) is independent of the
probability density function q (z) to understand the upcoming theoretical considerations, which are
essential for understanding the EM algorithm.

Now, Equations 2.37 and 2.38 are used to obtain a relationship between the marginal log-
likelihood ln p (x), the Kullback–Leibler (KL) divergence KL (q ||p) and the ELBO L. Starting from
Equation 2.41, the following equations are derived:

ln p (x) =

∫
q (z) ln p (x) dz (2.42)

=

∫
q (z) ln

p (z|x) p (x)

p (z|x)
dz (2.43)

=

∫
q (z) ln

p (x|z) p (z)

p (z|x)
dz (2.44)

=

∫
q (z) ln

p (x, z)

p (z|x)
dz (2.45)

=

∫
q (z) ln

p (x, z) q (z)

p (z|x) q (z)
dz (2.46)

=

∫
q (z)

(
ln

p (x, z)

q (z)
− ln

p (z|x)

q (z)

)
dz (2.47)

=

∫
q (z) ln

p (x, z)

q (z)
dz −

∫
q (z) ln

p (z|x)

q (z)
dz (2.48)

= L+ KL (q ||p) , (2.49)

with L =
∫

q (z) ln p(x,z)
q(z) dz and KL (q ||p) = −

∫
q (z) ln p(z|x)

q(z) dz. The KL divergence is a distance
measure between the probability density functions q and p. Consequently, it is always larger or
equal to zero:

KL (q ||p) ≥ 0, (2.50)

with equality KL (q ||p) = 0 if q = p [120, 121]. When the ELBO L is added to Equation 2.50 and
the result is combined with the derived definition of the marginal log-likelihood ln p (x) (Equation
2.49), it becomes clear that the ELBO L is indeed a lower bound of the marginal log-likelihood
ln p (x):

ln p (x) = L+ KL (q ||p) ≥ L. (2.51)

Now, noticing that ln p (x) is actually conditioned on the model parameters Θ finally yields

ln p (x|Θ) = L (q,Θ) + KL (q ||p) (2.52)

=

∫
q (z) ln

p (x, z|Θ)

q (z)
dz −

∫
q (z) ln

p (z|x,Θ)

q (z)
dz (2.53)

=

∫
q (z) ln

p (z|x,Θ) p (x|Θ)

q (z)
dz −

∫
q (z) ln

p (z|x,Θ)

q (z)
dz (2.54)

=

(∫
q (z) ln p (x|Θ) dz +

∫
q (z) ln

p (z|x,Θ)

q (z)
dz

)
−
∫

q (z) ln
p (z|x,Θ)

q (z)
dz (2.55)

=

(∫
q (z) ln p (x|Θ) dz −KL (q ||p)

)
+ KL (q ||p) (2.56)

≥ L (q,Θ) (2.57)

L (q,Θ) =

∫
q (z) ln p (x|Θ) dz −KL (q ||p) (2.58)

= ln p (x|Θ)−KL (q ||p) . (2.59)

40



2.4. LEARNING THE MODEL’S PROBABILISTIC HYPER-PARAMETERS

These last equations mark a cornerstone for developing an understanding of the EM algorithm, in
which the E- and M-step are sequentially executed in every iteration of the algorithm.

In the E-step the model parameters Θ are held constant and the ELBO L (q,Θ) is maximized
with respect to q (z), i.e. the probability density functions p (z|x,Θk) of the state variables z are
inferred, given a current estimate Θk of the model parameters Θ at iteration k of the EM algorithm.
As a consequence q (z) becomes equal to p (z|x,Θk), i.e. q (z) = p (z|x,Θk), which results in the
KL divergence KL (q ||p) becoming equal to zero, i.e. KL (q ||p) = KL (p ||p) = 0, and the marginal
log-likelihood ln p (x|Θk) becoming equal to the ELBO L (q,Θk), i.e. ln p (x|Θk) = L (q,Θk). For
understanding this step it is helpful to remember that the KL divergence is always greater than
zero (Equation 2.50) and that the marginal log-likelihood ln p (x|Θk) is actually independent of the
probability density function q (z).

In the subsequent M-step q (z) is held constant and L (q,Θ) is maximized with respect to the
model parameters Θ in order to obtain a new estimate Θk+1 of the model parameters Θ for the
next iteration k + 1 of the EM algorithm. Here, the fact that the ELBO L (q,Θ) is maximized with
respect to the model parameters Θ yields the inequality L (q,Θk+1) ≥ L (q,Θk). Therefore, the
M-step leads to an increased marginal log-likelihood:

ln p (x|Θk+1) ≥ L (q,Θk+1) ≥ L (q,Θk) = ln p (x|Θk) . (2.60)

Thus, the starting point in the M-step is the following:

ln p (x|Θ) = L (q,Θ) (2.61)

=

∫
q (z) ln

p (x, z|Θ)

q (z)
dz (2.62)

=

∫
p (z|x,Θk) ln

p (x, z|Θ)

p (z|x,Θk)
dz (2.63)

=

∫
p (z|x,Θk) ln p (x, z|Θ) dz −

∫
p (z|x,Θk) ln p (z|x,Θk) dz (2.64)

= Q (Θ,Θk)−
∫

p (z|x,Θk) ln p (z|x,Θk) dz, (2.65)

with Q (Θ,Θk) =
∫

p (z|x,Θk) ln p (x, z|Θ) dz. Since the objective of the M-step is to optimize the
ELBO L (q,Θ) with respect to Θ, the latter term is omitted due to its independence of Θ. Con-
sequently, it is sufficient to maximize function Q (Θ,Θk) in order to maximize the ELBO L (q,Θ).
Furthermore, function Q (Θ,Θk) has the form of an expectation value, such that Q (Θ,Θk) is ob-
tained by calculating the expectation of ln p (x, z|Θ) with respect to z:

Q (Θ,Θk) = E [ln p (x, z|Θ)] , (2.66)

where it is a requirement that x and Θk are given quantities, which is fulfilled in the M-step. Finally,
this leads to the sole purpose of the M-step, i.e. maximizing Q (Θ,Θk) with respect to Θ in order
to obtain a new estimate Θk+1 of the model parameters Θ:

Θk+1 = arg max
Θ

Q (Θ,Θk) . (2.67)

By successively executing the E-step and the M-step for several iterations, the model parame-
ters Θ of the state space model are learned via the EM algorithm. The learned model parameters
are then used to reconstruct skeletal poses by inferring the state variables z via the unscented
RTS smoother.
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2.4.2 The maximization step

In the previously described M-step the function Q (Θ,Θk) is maximized in order to compute a
new estimate Θk+1 = {µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1} of the model parameters Θ of the state space
model for iteration k + 1 of the EM algorithm. The details of this computation are described in this
section, which follows the concepts stated by Juho Kokkala, Arno Solin and Simo Särkkä [125].

In the state space model all state variables z fulfill the Markov property, i.e. each state variable
zτ only depends on the previous one zτ−1 [120, 121]. This sequential structure is exploited when
maximizing function Q (Θ,Θk) in the M-step. Particularly, it leads to the following formulation of
the model’s joint distribution [120,121,125]:

p (x, z) = p (z0)
T∏
τ=1

p (zτ |zτ−1) p (xτ |zτ ) . (2.68)

Taking the logarithm of the joint distribution p (x, z) and accounting for the fact that it is actually
conditioned on the model parameters Θ yields

ln p (x, z|Θ) = ln p (z0|µ0, V0) +

T∑
τ=1

ln p (zτ |zτ−1, Vz) +

T∑
τ=1

ln p (xτ |zτ , Vx) . (2.69)

However, to maximize Q (Θ,Θk) the expectation value of ln p (x, z|Θ) needs to be considered:

Q (Θ,Θk) = E [ln p (x, z|Θ)] (2.70)

= E [ln p (z0|µ0, V0)] +
T∑
τ=1

E [ln p (zτ |zτ−1, Vz)] +
T∑
τ=1

E [ln p (xτ |zτ , Vx)] (2.71)

= I0 + Iz + Ix, (2.72)

with I0 = E [ln p (z0|µ0, V0)], Iz =
∑T

τ=1 E [ln p (zτ |zτ−1, Vz)] and Ix =
∑T

τ=1 E [ln p (xτ |zτ , Vx)].
When acknowledging that all random variables in the state space model are assumed to be nor-
mally distributed, i.e. zτ ∼ N

(
µ̂τ , V̂τ

)
, it becomes clear that computing Q (Θ,Θk) only involves

evaluating the expectation values of log-transformed normal distributions (Appendix A.1). Conse-
quently, simplified terms for I0, Iz and Ix can be obtained by using the outputs of the unscented
RTS smoother, i.e. the expectation values µ̂, the covariance matrices V̂ and the smoother gains
G. Respective parameter values for these three quantities are computed in the preceding E-step
based on the current estimate Θk = {µ0,k, V0,k, Vz,k, Vx,k} of the model parameters Θ at iteration k
of the EM algorithm. [125].

A respectively simplified expression for I0 is given by

I0 = −1

2
ln det (2πV0)− 1

2
tr
(
V0
−1E

[
(z0 − µ0) (z0 − µ0)T

])
(2.73)

= −1

2
ln det (2πV0)− 1

2
tr
(
V0
−1
(
V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)T

))
. (2.74)

To obtain a simplified expression for Iz it is necessary to use pairwise sigma points Pτ , since
there are two different random variables involved, i.e. zτ ∼ N

(
µ̂τ , V̂τ

)
and zτ−1 ∼ N

(
µ̂τ−1, V̂τ−1

)
,

when evaluating the expectation values of the log-transformed normal distributions in Iz [125]. For
each of the T transition steps in the state space model the pairwise mean vector µ̌τ ∈ R2nz is
generated by concatenating µ̂τ and µ̂τ−1:

µ̌τ = cat (µ̂τ , µ̂τ−1) = cat

(
µ̂τ
µ̂τ−1

)
. (2.75)
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Likewise, the pairwise covariance matrix V̌τ ∈ R2nz×2nz is generated as

V̌τ = cat

(
V̂τ V̂τGτ−1

T

Gτ−1V̂τ V̂τ−1

)
, (2.76)

such that the upper left, upper right, lower left and lower right entries of matrix V̌τ are given by
V̂τ ∈ Rnz×nz , V̂τGτ−1

T ∈ Rnz×nz , Gτ−1V̂τ ∈ Rnz×nz and V̂τ−1 ∈ Rnz×nz respectively. Using µ̌τ and
V̌τ allows for deploying the unscented transform fut (Algorithm 6) to calculate the pairwise sigma
points Pτ :

Pτ = cat
(
Bτ Aτ

)
= fut

(
µ̌τ , V̌τ

)
. (2.77)

Here, the incomplete pairwise sigma points Bτ ∈ R4nz+1×nz andAτ ∈ R4nz+1×nz are defined, such
that concatenating them along their second dimension yields Pτ ∈ R4nz+1×2nz . The respective
weights w̌ ∈ R4nz+1, which are required within the unscented transform fut, are given as follows:

w̌1 = 0 (2.78)

w̌i =
1

4nz
∀i ∈ {2, ..., 4nz + 1}. (2.79)

A simplified expression for Iz is then given by

Iz = −T
2

ln det (2πVz)−
1

2

T∑
τ=1

tr
(
Vz
−1E

[
(zτ − zτ−1) (zτ − zτ−1)T

])
(2.80)

= −T
2

ln det (2πVz)−
T

2
tr

(
Vz
−1

(
1

T

T∑
τ=1

E
[
(zτ − zτ−1) (zτ − zτ−1)T

]))
(2.81)

≈ −T
2

ln det (2πVz)−
T

2

T∑
τ=1

tr

(
Vz
−1

(
1

T

4nz+1∑
i=1

w̌i (Bτ i −Aτ i) (Bτ i −Aτ i)T
))

. (2.82)

In contrast, simplifying the expression for Ix only requires using the ordinary sigma points
Zτ = fut

(
µ̂t, V̂t

)
, which need to be propagated through the emission function g (Algorithm 5):

Ix = −T
2

ln det (2πVx)− 1

2

T∑
τ=1

tr
(
Vx
−1E

[
(xτ − g (zτ )) (xτ − g (zτ ))T

])
(2.83)

= −T
2

ln det (2πVx)− T

2
tr

(
Vx
−1

(
1

T

T∑
τ=1

E
[
(xτ − g (zτ )) (xτ − g (zτ ))T

]))
(2.84)

≈ −T
2

ln det (2πVx)− T

2

T∑
τ=1

tr

(
Vx
−1

(
1

T

2nz+1∑
i=1

wi (xτ − g (Zτ i)) (xτ − g (Zτ i))T
))

. (2.85)

To obtain the new estimate Θk+1 of the model parameters Θ for iteration k + 1 of the EM
algorithm, Q (Θ,Θk) still needs to be differentiated with respect to µ0, V0, Vz and Vx. Setting the
resulting derivatives to zero and solving them for µ0, V0, Vz and Vx respectively finally yields the
new estimate Θk+1 of the model parameters Θ. The expressions for these derivatives are given
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as follows (Appendix A.2):

∂

∂µ0
Q (Θ,Θk) =

∂

∂µ0
I0 (2.86)

= V0
−1 (µ̂0 − µ0) (2.87)

∂

∂V0
Q (Θ,Θk) =

∂

∂V0
I0 (2.88)

= −1

2
V0
−1 +

1

2
V0
−1
(
V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)T

)
V0
−1 (2.89)

∂

∂Vz
Q (Θ,Θk) =

∂

∂Vz
Iz (2.90)

= −T
2
Vz
−1 +

T

2

T∑
τ=1

Vz
−1

(
1

T

4nz+1∑
i=1

w̌i (Bτ i −Aτ i) (Bτ i −Aτ i)T
)
Vz
−1 (2.91)

∂

∂Vx
Q (Θ,Θk) =

∂

∂Vx
Ix (2.92)

= −T
2
Vx
−1 +

T

2

T∑
τ=1

Vx
−1

(
1

T

2nz+1∑
i=1

wi (xτ − g (Zτ i)) (xτ − g (Zτ i))T
)
Vx
−1. (2.93)

Setting these derivatives to zero and solving for µ0, V0, Vz and Vx respectively yields

µ0 = µ̂0 (2.94)

V0 = V̂0 + (µ̂0 − µ0) (µ̂0 − µ0)T = V̂0 (2.95)

Vz =
1

T

T∑
τ=1

4nz+1∑
i=1

w̌i (Bτ i −Aτ i) (Bτ i −Aτ i)T (2.96)

Vx =
1

T

T∑
τ=1

2nz+1∑
i=1

wi (xτ − g (Zτ i)) (xτ − g (Zτ i))T . (2.97)

The parameter values for µ0,k+1, V0,k+1 and Vz,k+1 are then given by Equation 2.94, 2.95 and
2.96 respectively. To obtain parameter values for Vx,k+1 Equation 2.97 still needs to be modified
to account for missing measurements, i.e. incomplete entries of the measurement variables x
(Section 2.3.2). Besides, in the proposed pose reconstruction framework the covariance matrix
Vx of the measurement noise is restricted to only have diagonal entries. Consequently, only the
diagonal entries diag (Vx) of Vx are updated in the M-step. Thus, the final solution for a single
diagonal entry j ∈ {1, ..., nx} of Vx is given by

diag (Vx)j =
1

Tj

T∑
τ=1

δτ j

2nz+1∑
i=1

wi

(
xτ j − g (Zτ i)j

)2
, (2.98)

where δtj indicates if at time point τ entry j of measurement variable xτ is associated with a
missing measurement, i.e. δτ j = 0, or not, i.e. δτ j = 1, and Tj is the total number of observed
measurements for entry j in the entire behavioral sequence, i.e. Tj =

∑T
τ=1 δτ j . Therefore, the

parameter values for the diagonal entries of Vx,k+1 are given by Equation 2.98.
Successively learning new model parameters in each iteration of the EM algorithm results

in gradually improving the inference results for the probability distributions, from which the state
variables are drawn from. As a consequence, the reconstruction quality with respect to the mea-
surement variables is improved as well (Figure 2.20).
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Figure 2.20: One-dimensional example for how the EM algorithm is used to learn unknown model parameters Θ =
{µ0, V0, Vz, Vx} of a state space model. Here, all model parameters and the sequence itself are identical to Figure
2.16 and 2.18. The EM algorithm is initialized with µ0,0 = π

4
, V0,0 = 0.5, Vz,0 = 0.5 and Vx,0 = 0.5. The uncertainty

intervals with respect to z and x (blue shading) are calculated as described in Figure 2.18. In each iteration of the EM
algorithm a new estimate of the model parameters is computed. This estimate is used to infer the underlying normal
distributions of the state variables z via the unscented RTS smoother. Based on these inferred normal distributions the
measurement variables x are reconstructed as described in Figure 2.18. Note how the reconstruction quality increases
with each iteration.

2.4.3 Convergence criterion

To determine at which iteration the EM algorithm is going to be terminated, it is necessary to define
a respective convergence criterion. One possibility for evaluating if the EM algorithm converged
is given by calculating the change in the learned model parameters Θk in each iteration k and
assuming convergence once it falls below a predefined threshold [120].
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In the proposed pose reconstruction framework the vectors ∆µ0 ∈ Rnz , ∆ diag (V0) ∈ Rnz ,
∆ diag (Vz) ∈ Rnz and ∆ diag (Vx) ∈ Rnx , which contain the relative changes of the model param-
eters µ0, V0, Vz and Vx respectively, are computed in each iteration as follows:

∆µ0i = abs

(
µ0,ki − µ0,k−1i

µ0,k−1i

)
∀ i ∈ {1, ..., nz} (2.99)

∆ diag (V0)i = abs

(
V0,kii − V0,k−1ii

V0,k−1ii

)
∀ i ∈ {1, ..., nz} (2.100)

∆ diag (Vz)i = abs

(
Vz,kii − Vz,k−1ii

Vz,k−1ii

)
∀ i ∈ {1, ..., nz} (2.101)

∆ diag (Vx)i = abs

(
Vx,kii − Vx,k−1ii

Vx,k−1ii

)
∀ i ∈ {1, ..., nx}. (2.102)

Here, only the diagonal entries of the covariance matrices V0, Vz and Vx are considered, since
a fraction of their off-diagonal entries is expected to be zero, e.g. due to uncorrelated bone ro-
tations. Furthermore, for Vx all off-diagonal entries are zero by definition, since it is modeled as
a diagonal matrix (Section 2.4.2). Using these vectors allows for generating an additional vector
∆v ∈ R3nz+nx , which contains all relative changes, via concatenation:

∆v = cat (∆µ0,∆ diag (V0) ,∆ diag (Vz) ,∆ diag (Vx)) . (2.103)

The EM algorithm is assumed to have reached convergence, when the mean ∆v̄ of ∆v falls below
a threshold εtol:

∆v̄ =
1

3nz + nx

3nz+nx∑
i=1

∆vi < εtol = 0.05. (2.104)

By deploying this convergence criterion, the unknown model parameters Θ of the state space
model are learned, which allows for inferring the state variables z and reconstructing the measure-
ment variables x (Figure 2.21).

Figure 2.21: Convergence behavior of the EM algorithm for a one-dimensional example (top row) as well as final
reconstruction results for the state and measurement variable z and x respectively (bottom row). Here, all model
parameters and the sequence itself are identical to Figure 2.16, 2.18 and 2.20. The uncertainty intervals with respect to
z and x (blue shading) are calculated as described in Figure 2.18. Convergence is reached after 22 iterations, such that
∆v̄ = 0.25 (∆µ0 + ∆ diag (V0) + ∆ diag (Vz) + ∆ diag (Vx)) < εtol = 0.05. The respective threshold value εtol = 0.05
is highlighted (upper right, green line). Note how the measured and reconstructed values for x are almost identical.
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While the choice for the value of εtol is arbitrary in principle, setting it to 0.05 leads to reasonable
results in the context of animal pose reconstruction (Chapter 3).

2.4.4 Implementation

To deploy the EM algorithm within the context of the proposed pose reconstruction framework,
an initial estimate Θ0 = {µ0,0, V0,0, Vz,0, Vx,0} of the model parameters Θ is used to initiate the
first iteration of the EM algorithm. To obtain µ0,0 the objective function given in Equation 2.17
is minimized, while the bone lengths as well as the surface marker positions are kept constant.
Here, ntime is set to 1 to ensure that only the first time point of the respective behavioral sequence
is included in the optimization scheme. Furthermore, the covariance matrices V0,0, Vx,0 and Vz,0
are initialized as diagonal matrices, whose diagonal and off-diagonal entries equal 0.001 and 0
respectively.

To learn the model parameters µ0, V0, Vx and Vz the EM algorithm is then executed according
to Algorithm 12. Here, in accordance to the concepts stated in Section 2.4.2 and 2.4.3, function
fM, given by Algorithm 13, performs the M-step and function ftol, given by Algorithm 14, computes
the mean ∆v̄ of the relative changes of the model parameters Θ. The implementation of the EM
algorithm allows for reconstructing skeletal poses of freely-moving animals with high temporal as
well as spatial resolution with respect to the resulting three-dimensional joint positions (Figure
2.22, Chapter 3).

Figure 2.22: Example for how the EM algorithm is used to reconstruct skeletal poses of a freely-moving animal. Based
on two-dimensional images recorded at different time points (top), three-dimensional joint positions are reconstructed
(center). Resulting reconstructed skeletal poses are consistent in time and allow for extracting fine-grained motions of
individual limbs, e.g. the right hind limb (bottom). The shown skeletal poses (center) correspond to the time points at
which the displayed images were captured. The shown motion trajectory of the right hind limb (bottom) also corresponds
to the behavioral sequence depicted in the displayed images. Here, the additional skeletal leg poses were reconstructed
based on in-between time points, where further images were recorded.
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Algorithm 12: The EM algorithm.
1: function fEM(µ0,0, V0,0, Vz,0, Vx,0)
2: k ← 0 . Initialize iteration number k
3: ∆v̄ ← inf . Initialize changes in Θ
4: while ∆v̄ ≥ εtol do
5: µ̂, V̂ , G← fuks (µ0,k, V0,k, Vz,k, Vx,k) . Perform E-step
6: µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1 ← fM

(
µ̂, V̂ , G

)
. Perform M-step

7: k ← k + 1 . Increase iteration number k
8: ∆v̄ ← ftol (µ0,k−1, V0,k−1, Vz,k−1, Vx,k−1, µ0,k, V0,k, Vz,k, Vx,k) . Compute changes in Θ

9: return µ0,k, V0,k, Vz,k, Vx,k

Algorithm 13: The M-step of the EM algorithm.

1: function fM(µ̂, V̂ , G)
2: for τ ∈ {1, ..., T} do

3: cat
(
Bτ Aτ

)
← fut

(
cat

(
µ̂τ
µ̂τ−1

)
, cat

(
V̂τ V̂τGτ−1

T

Gτ−1V̂τ V̂τ−1

))
4: Zτ ← fut

(
µ̂τ , V̂τ

)
5: µ0,k+1 ← µ̂0

6: V0,k+1 ← V̂0

7: Vz,k+1 ← 1
T

∑T
τ=1

∑4nz+1
i=1 w̌i (Bτ i −Aτ i) (Bτ i −Aτ i)T

8: for j ∈ {1, ..., nx} do

9: Vx,k+1jj ←
1
Tj

∑T
τ=1 δtj

∑2nz+1
i=1 wi

(
xτ j − g (Zτ i)j

)2

10: return µ0,k+1, V0,k+1, Vz,k+1, Vx,k+1

Algorithm 14: Computing the convergence criterion of the EM algorithm.
1: function ftol(µ0,k−1, V0,k−1, Vz,k−1, Vx,k−1, µ0,k, V0,k, Vz,k, Vx,k)
2: for i ∈ {1, ..., nz} do
3: ∆µ0i ← abs

(
µ0,ki−µ0,k−1i

µ0,k−1i

)
4: ∆ diag (V0)i ← abs

(
V0,kii−V0,k−1ii

V0,k−1ii

)
5: ∆ diag (Vz)i ← abs

(
Vz,kii−Vz,k−1ii

Vz,k−1ii

)
6: for i ∈ {1, ..., nx} do
7: ∆ diag (Vx)i ← abs

(
Vx,kii−Vx,k−1ii

Vx,k−1ii

)
8: ∆v ← cat (∆µ0,∆ diag (V0) ,∆ diag (Vz) ,∆ diag (Vx))
9: ∆v̄ ← 1

3nz+nx

∑3nz+nx
i=1 ∆vi

10: return ∆v̄
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Chapter 3

Results

3.1 Evaluating learned skeleton anatomies

To evaluate the performance of the numerical optimization scheme used for learning the skeletal
anatomy (Section 2.2.9), video data of six freely-moving animals was recorded, whereas surface
markers were painted onto the body of each animal in a symmetrical pattern prior to the recordings
(Section 2.2.2). The six animals were rats of different sizes, whose weights spanned an order of
magnitude, i.e. the individual animals weighted 174 g (animal #1), 178 g (animal #2), 71 g (animal
#3), 72 g (animal #4), 735 g (animal #5) and 699 g (animal #6). To generate the video data,
all animals were allowed to move freely in an open area of size 105x80 cm2 (animal #1 and #2)
or 60x60 cm2 (animal #3, #4, #5 and #6), while their behavior was recorded via four different
overhead cameras. All overhead cameras were calibrated prior to the experiments, recorded the
images synchronously, had a resolution of 1280x1024 px2 and were operated at either 100 Hz
(animal #1 and #2) or 200 Hz (animal #3, #4, #5 and #6) with an acquisition time of 2.5 ms.

After the video data was recorded the two-dimensional positions of the surface markers were
manually located and labeled in each camera view for all animals, such that either each 50th
(animals #1 and #2) or 200th (animals #3, #4, #5 and #6) time point of the recorded behavioral
sequences was subjected to labeling. In total, this procedure yielded 2404 (animal #1 and #2),
752 (animal #3), 1100 (animal #4), 992 (animal #5) and 1128 (animal #6) annotated frames,
corresponding to 601 (animal #1 and #2), 188 (animal #3), 275 (animal #4), 248 (animal #5)
and 282 (animal #6) different time points in the recorded behavioral sequences. The labeled two-
dimensional surface marker locations were then used to learn the anatomy-encoding variables, i.e.
the reduced bone lengths l∗ (Section 2.2.4) and the reduced joint-to-marker-translation vectors v∗

(Section 2.2.5), for each animal by minimizing the objective function given in Equation 2.17. This
allowed for reconstructing the skeletal anatomy of each animal (Figure 3.1).

To evaluate the accuracy of the learned skeletal anatomies, three-dimensional scans of all
animals were obtained via magnetic resonance imaging (MRI), such that each MRI scan had a
resolution of 0.4x0.4x0.4 mm3. In order to identify the three-dimensional locations of the painted
surface markers in the MRI data, half-spherical MRI markers were attached to the bodies of the
animals prior to the scans, such that the position of each MRI marker coincided with the location of
a painted surface marker. Ground truth data on joint and surface marker positions of the animals
was then obtained by manually labeling the positions of individual joints and MRI markers in the
MRI scans (Figure 3.2). However, during one of the scans a single MRI marker fell off the body
of an animal (right hind paw marker, animal #1), such that the three-dimensional location of the
corresponding painted surface marker was not recoverable. In this particular case the three-
dimensional position on the animal’s body closest to the location of the seceded MRI marker was
labeled instead. Furthermore, the ground truth joint positions of the left and right hind paw joints
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Figure 3.1: Learned skeletal anatomies of six different animal subjects seen in the xy- (left column) and xz-plane (right
column). The individual bones (black lines), three-dimensional surface marker locations (green dots) as well as the rigid
connections between them (blue lines) are shown. To highlight the different bone lengths and surface marker positions,
the skeletal poses of all animal subjects are identical.

could not be identified in the MRI scan (12 joint locations in total, 2 for each animal), such that the
missing locations were assumed to be identical to the positions of the corresponding left and right
hind paw markers.

After all joint and surface marker positions were labeled, the obtained three-dimensional sur-
face marker locations were used to align learned skeleton anatomies with ground truth skeletal
poses for each animal by minimizing an optimization problem similar to the one given by Equation
2.17:

arg min
t∗,r∗

nmarker∑
j=1

∣∣∣∣∣∣fsurface (st t
∗, sr r

∗, l, v)j −mj

∣∣∣∣∣∣2, (3.1)

with l = fl*→l (l∗) (Algorithm 3), v = fv*→v (v∗) (Algorithm 4) and mj the labeled three-dimensional
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Figure 3.2: MRI scans of three differently-sized animal subjects (maximum projection), where manually labeled bone
(white lines) and joint (white dots) positions are highlighted. Additionally, an enlarged section (dashed black box)
provides a more detailed view of the right elbow joint of the medium-sized animal subject (lower left, mean projection).
Note the half-spherical MRI marker in the enlarged area. Also note how the weights of the displayed animal subjects
differ by an order of magnitude.

position of marker j. Aligning learned skeleton anatomies with ground truth poses enabled recon-
structing the static skeletal pose of each animal during the MRI scan.

To determine correspondences between the spine joints in the modeled skeletal anatomies
and the MRI scans, vertebrae were counted in the MRI scans, such that each spine segment
in the skeleton model matched its anatomical counterpart [131]. As a result the modeled spine
segments were equivalent to the spinal column’s cervical, thoracic and lumbar sections as well as
the sacrum.

After skeletal anatomies were learned, the resulting bone lengths in the skeleton model were

51



CHAPTER 3. RESULTS

Figure 3.3: Histogram of joint position error probabilities (left) as well as scatter plots showing learned vs. true limb
bone lengths (center) and limb joint angles (right). The different colors represent small (blue), medium (orange) and
large (green) animal sizes (blue: 71 g and 72 g, orange: 174 g and 178 g, green: 699 g and 735 g).

compared to those measured in the MRI scans. Additionally, reconstructing the skeletal poses of
the animals during the MRI scans allowed for computing the distribution of the three-dimensional
joint position errors as well as the discrepancies between learned and true limb joint angles (Figure
3.3). Here, joint position errors were defined as the Euclidean distances between reconstructed
and true joint positions in three-dimensional space, taking into account all joints except those
along the tail. Furthermore, when comparing learned with true bone lengths and joint angles, only
the bones and joints of the limbs were considered, since the number of modeled bones along the
spine and tail in the skeleton model was limited to ten. Consequently, there did not necessarily
exist a one-to-one correspondence between modeled and anatomical spine and tail joints, since
a multitude of anatomical spine and tail bones were approximated with only a few bones in the
skeleton model (Section 2.2.1). Thus, including the spine and tail joints for the comparison of
learned and measured bone lengths and joint angles was infeasible.

The majority of the computed joint position errors were below 1 cm (138 joint positions in total,
joint position error: 0.79 +/- 0.69 and 0.65 cm [avg. +/- s.d. and median]). Additionally, inferred
limb bone lengths and limb bone angles were not significantly different from those measured in
the MRI scans (108 limb bone lengths in total, range of measured limb bone lengths: 0.53 cm to
4.76 cm, limb bone length error: 0.46 +/- 0.34 and 0.36 cm [avg. +/- s.d. and median], Spearman
correlation coefficient: 0.75, two-tailed p-value testing for non-correlation: 5.00x10-21; 84 limb
bone angles in total, range of measured limb bone angles: 4.13 deg to 123.77 deg, limb bone
angle error: 27.80 +/- 18.98 and 26.72 deg [avg. +/- s.d. and median], Spearman correlation
coefficient: 0.47, two-tailed p-value testing for non-correlation: 5.29x10-6).

Altogether, this evaluation demonstrated that learned skeleton anatomies were accurate when
compared with true skeleton anatomies, while accuracy was invariant to different animal sizes. Ad-
ditionally, the fact that accurate three-dimensional joint positions were reconstructed for the static
animal poses during the MRI scans indicated that joint positions can be successfully recovered,
when three-dimensional ground truth surface marker locations are available or, equivalently, when
they are inferred from correctly detected two-dimensional surface marker locations in recorded
video data.
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3.2 Assessing how constraints affect pose reconstruction accuracy

The proposed pose reconstructing framework enforces anatomical constraints in the form of phys-
iological joint angle limits (Section 2.2.7 and 2.3.6) as well as temporal constraints, which are
implicitly incorporated via a state space model (Section 2.3.1) and the usage of an unscented
RTS smoother (Section 2.3.5). To evaluate the influence of both constraint types on the pose
reconstruction accuracy, behavioral sequences of freely-moving animals were recorded, while ad-
ditional ground truth data on paw positions and orientations was obtained using a frustrated total
internal reflection (FTIR) imaging approach [132,133].

Particularly, the same six animals, which were described in Section 3.1, were recorded via four
different overhead cameras, while they were allowed to move freely on a transparent FTIR plate
of size 60x60 cm2. Two infrared LED-strips were mounted at the edges of the FTIR plate, such
that infrared light could propagate through the plate from two opposing sites. This construction
made the paws of the animals appear bright in images recorded via additional cameras located
underneath the FTIR plate, whenever the paws were placed in close vicinity to the surface of the
plate, e.g. when they touched it. To ensure that the respective camera sensors only detected
infrared light emitted from the LED-strips, infrared filters were mounted onto the lenses of the
cameras. All cameras used in these experiments were calibrated beforehand, recorded the images
synchronously, had a resolution of 1280x1024 px2 and were operated at 200 Hz with an acquisition
time of 2.5 ms. Using this approach, 29 behavioral sequences were recorded, which accumulated
to 36250 frames per camera and a total duration of 181.25 s.

To allow for the automated detection of two-dimensional surface marker locations in the im-
ages, which were recorded via the four overhead cameras, an individual DeepLabCut network
was trained for each animal. Particularly, 4068 (animal #1), 3980 (animal #2), 752 (animal #3),
1100 (animal #4), 992 (animal #5) and 1128 (animal #6) images were used for training. These
training images were not part of the data set, which was analyzed to assess the effect of the
enforced constraints on the pose reconstruction accuracy. The automatically detected surface
marker locations were then used to reconstruct skeletal poses of freely-moving animals via the
proposed pose reconstruction framework.

Additional ground truth information on the positioning of individual paws was obtained by man-
ually labeling the two-dimensional locations of paw center points, fingers and toes in every 40th im-
age, which was recorded with the underneath cameras. Consequently, manually labeled anatomi-
cal landmarks, i.e. paw center points, fingers and toes, corresponded to modeled surface markers,
i.e. the left- as well as right-sided front and hind paw markers as well as the finger and toe markers
#1 to #3 (Figure 2.9). By comparing the two-dimensional positions of manually labeled anatomical
landmarks with the corresponding surface marker positions on the FTIR plate obtained by recon-
structing poses, discrepancies with respect to ground truth and reconstructed paw positions and
orientations were computed, i.e. the position and angle errors of the paws (Figure 3.4).

To obtain the two-dimensional positions of the reconstructed surface markers on the FTIR
plate, their inferred three-dimensional positions were projected on the FTIR plate by dismissing
their last component. This projection was valid, since the coordinate system of the FTIR plate
was the used frame of reference during the reconstruction of skeletal poses, such that inferred
three-dimensional surface marker positions were given in the coordinate system of the FTIR plate.
The corresponding two-dimensional positions of the manually labeled anatomical landmarks were
obtained by projecting the respective labels into three-dimensional space using a pinhole cam-
era model (Section 2.1.2) and subsequently computing the intersections of the resulting three-
dimensional lines with the FTIR plate.

To finally assess the effect of the anatomical and temporal constraints on the pose recon-
struction accuracy, skeletal poses were reconstructed via four different reconstruction models,
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Figure 3.4: Single image recorded with an underneath camera, showing a freely-moving animal subject on a transparent
FTIR plate (top). The reconstructed (colored circles) and ground truth (colored crosses) xy-positions of the center
points, fingers and toes of the four different paws are shown (purple: left front paw, red: right front paw, cyan: left
hind paw, yellow: right hind paw). Large point clouds in the vicinity of the reconstructed xy-positions indicate high
reconstruction uncertainty. Enlarged views of the left front paw furthermore illustrate how the position and angle errors
are computed (bottom).

namely the full, temporal, anatomical and naive model. In the full model anatomical and tempo-
ral constraints were enforced using the state space model in combination with the unscented RTS
smoother and the EM algorithm. This was also the case for the temporal model but here joint angle
limits for the limb joints were set to [−180, 180], whenever the respective limit in the full model did
not equal [0, 0] already (Table 2.3). This enabled full 360 deg bone rotations at the respective limb
joints, such that effectively no physiological joint angle limits were enforced in the temporal model.
The pose-encoding parameters in the full and temporal model were initialized by reconstructing
the skeletal pose of only the first time point of an analyzed behavioral sequence by minimizing the
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Figure 3.5: Probability histograms of the position (left) and angle (right) error obtained via four different reconstruction
models, i.e. the full (green), temporal (blue), anatomical (orange) and naive (brown) model.

objective function given in Equation 2.17 via gradient descent optimization. Here, automatically
detected instead of manually labeled two-dimensional surface marker locations were used in the
objective function to calculate discrepancies between them and the corresponding reconstructed
surface marker positions. This optimization scheme was also used for reconstructing poses via the
anatomical and the naive model. As a consequence, no temporal constraints were enforced in the
anatomical and the naive model, since the state space model and the unscented RTS smoother
were not deployed here. To initialize the pose-encoding parameters in the anatomical or naive
model for a given time point of an analyzed behavioral sequence, the restructured skeletal pose
of the previous time point was used. Furthermore, to also remove the enforcement of anatomical
constraints in the naive model, respective joint angle limits of limb joints were set to [−180, 180],
equivalently to the temporal model.

Comparing the position and angle errors of the four different reconstruction models with each
other showed that the pose reconstruction accuracy varied depending on which reconstruction
model was used (Figure 3.5). Particularly, the full model produced significantly smaller posi-
tion errors compared to the other models (10410 position errors in total; p-values of one-sided
Kolmogorov-Smirnov test: full vs. anatomical: 9.84x10-21; full vs. temporal: 4.38x10-35; full vs.
naive: 9.03x10-37). However, angle errors were only significantly smaller when comparing the full
to the temporal and naive model (7203 and 6969 angle errors in total for the full / anatomical and
the temporal / naive model respectively; p-values of one-sided Kolmogorov-Smirnov test: full vs.
temporal: 3.20x10-39; full vs. naive: 2.51x10-50). Additionally, the fraction of position errors ex-
ceeding 4 cm increased, when constraints were not enforced (fraction of position errors exceeding
4 cm: full: 2.72%; anatomical: 3.64%; temporal: 4.42%; naive: 6.44%). The same trend was ob-
served for angle errors exceeding 60 deg (fraction of angle errors exceeding 60 deg: full: 7.78%;
anatomical: 7.81%; temporal: 17.77%; naive: 18.22%).

While angle errors were significantly reduced by the anatomical constraints, enforcing temporal
constraints limited abrupt pose changes over time (Figure 3.6). Particularly, this effect became ev-
ident when computing and comparing joint velocities and accelerations from skeletal poses recon-
structed via the four different reconstruction models (Figure 3.7). In fact, joint velocities obtained
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Figure 3.6: Maximum intensity projection of images recorded with an underneath camera, showing a 2.5 s long behav-
ioral sequence of a freely-moving animal subject walking on a transparent FTIR plate. The colored trajectories show
the reconstructed xy-positions of the right hind paw, given by the full (green), temporal (blue), anatomical (orange) and
naive (brown) model. Note how the reconstruction quality occasionally decreases for the anatomical and the naive
model, which both do not enforce temporal constraints (brown and orange trajectories).

via the full model were significantly smaller when compared to the other models (576288 joint ve-
locities in total; p-value of one-sided Kolmogorov-Smirnov test: full vs. anatomical: numerically 0;
full vs. temporal: numerically 0; full vs. naive: numerically 0). Furthermore, the same was true for
joint accelerations (576288 joint accelerations in total; p-value of one-sided Kolmogorov-Smirnov
test: full vs. anatomical: numerically 0; full vs. temporal: 3.71x10-90; full vs. naive: numerically 0).
Enforcing temporal constraints also lowered the percentage of velocities exceeding 0.08 cm/ms
(full: 3.29%; anatomical: 13.49%; temporal: 3.28%; naive: 13.85%). Additionally, this was also
the case for accelerations exceeding 0.02 cm/ms2 (full: 0.22%; anatomical: 23.43%; temporal:
0.25%; naive: 24.55%). Here, velocity and acceleration values were computed via central finite
differences (order of accuracy: 8) [134] based on the reconstructed three-dimensional positions of
surface markers, which corresponded to the paw center points, fingers and toes.

To also assess the effect of missing measurements (Section 2.3.2), position errors were com-
puted for only those surface markers, whose two-dimensional locations were not successfully
detected by the trained DeepLabCut networks, e.g. due to occlusions (Figure 3.8). Compared to
all other models the full model produced significantly lower errors (2797 position errors in total;
p-values of one-sided Kolmogorov-Smirnov test: full vs. anatomical: 9.67x10-23; full vs. temporal:
2.83x10-22; full vs. naive: 3.91x10-47). Additionally, the full model also produced the smallest num-
ber of errors above 4 cm (full: 9.36%; anatomical: 11.61%; temporal: 13.72%; naive: 19.12%).
Besides, averaged position errors increased the longer a surface marker remained undetected for
the full and the naive model (linear regression full: slope: 1.49 cm/s, intercept: 1.13 cm; linear re-
gression naive: slope: 2.77 cm/s, intercept: 1.39 cm). However, averaged position errors obtained
via the full model were significantly lower when compared to errors obtained via the naive model
(p-value of one-sided Mann-Whitney rank test: full vs. naive: 3.91x10-47).

To accurately compare the averaged position errors of occluded surface markers for the full
and the naive model, the error calculation was adjusted depending on which model was used.
Time spans until the next successful detection were treated equally to time spans since the last
successful detection, when calculating the averaged position errors of the full model, since here
the used unscented RTS smoother incorporates information from past and future time points. As
a consequence, the direction of time becomes irrelevant, when computing the time span for which

56



3.2. ASSESSING HOW CONSTRAINTS AFFECT POSE RECONSTRUCTION ACCURACY

Figure 3.7: Histograms of the joint velocities (left) and accelerations (right) obtained from four different reconstruction
models, i.e. the full (green), temporal (blue), anatomical (orange) and naive (brown) model. Note how velocities and
accelerations are substantially higher, when no temporal constraints are enforced, i.e. when the anatomical or naive
model is used for reconstructing skeletal poses.

Figure 3.8: Probability histogram of the position error obtained via four different reconstruction models, i.e. the full
(green), temporal (blue), anatomical (orange) and naive (brown) model, where only undetected surface markers are
considered (left). Additionally, the averaged position errors of undetected surface markers (bottom right) and corre-
sponding binned sample sizes (top right) as a function of time since the last or until the next successful surface marker
detection are shown. The distinction between ”since the last” and ”until the next” successful detection is necessary due
to the different nature of the full and the naive reconstitution model, i.e. the full model has access to detections in the
past and future, whereas the naive model only has access to detections in the past. The shaded areas represent the
computed standard deviations of the averaged position errors (bottom right).
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a given surface marker remained undetected. Thus, in the full model a time span, which indicated
how much time has passed since the last successful detection of a given surface marker, was
defined as the smallest element of the set containing both, the time span until the next successful
detection and the time span since the last successful detection. However, in the naive model only
time spans since the last successful detection were considered for the respective computations,
since the unscented RTS smoother was not used here, such that the naive model did not have the
capacity to process pose information of future time points.

Altogether, this evaluation demonstrated the beneficial effects of simultaneously enforcing
anatomical and temporal constraints during pose estimation. Particularly, considering both con-
straint types led to an overall increased pose reconstruction accuracy.

3.3 Quantifying periodic gait cycles

To assess to which extent the proposed pose reconstruction framework allows for extracting pe-
riodic gait cycles and how the enforced anatomical and temporal constraints affect the corre-
sponding results, skeletal poses were reconstructed based on recorded behavioral sequences
of freely-moving animals. Particularly, animal #1 and animal #2 (Section 3.1) were recorded via
four different overhead cameras while they were allowed to move freely in an open arena of size
80x105 cm2 with 50 cm high walls. All overhead cameras were calibrated prior to the experiments,
recorded the images synchronously, had a resolution of 1280x1024 px2 and were operated at 100
Hz with an acquisition time of 2.5 ms. The therefore generated data set consisted of 27 sequences
with a total of 14650 frames in each of the four cameras and a total duration of 146.5 s.

To allow for the automated detection of two-dimensional surface marker locations in the im-
ages, which were recorded via the four overhead cameras, an individual DeepLabCut network
was trained for each animal. Particularly, 2404 different images were used for training a respective
DeepLabCut network for each animal subject. These training images were not part of the data set,
which was analyzed to assess if periodic gait cycles could be extracted based on reconstructed
poses. The automatically detected surface marker locations were then used to reconstruct skeletal
poses of freely-moving animals via the proposed pose reconstruction framework.

While the animals were moving freely in the arena, sequences of gait were observed frequently.
During these gait sequences animals crossed various distances on different paths in the arena
(Figure 3.9). To extract cyclic gait patterns from the recorded gait sequences, skeletal poses
were reconstructed and analyzed with respect to skeletal kinematics by computing four different
kinematic metrics, namely the x-positions and -velocities of different joints as well as their angles
and angular velocities (Figure 3.10).

To calculate the kinematic metrics, all reconstructed skeletal poses were aligned by applying
a respective coordinate transformation, which translated and rotated the three-dimensional joint

Figure 3.9: Images of a freely-moving animal recorded via four different overhead cameras. Reconstructed skeletal
poses are shown for different time points of an analyzed gait sequence (colored lines). Time differences between the
shown skeletal poses are equal to 1 s.
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Figure 3.10: Schematic illustrations of kinematic metrics for a single joint, i.e. the x-position (left), x-velocity (center left),
angle (center right), and angular velocity (right) of the knee joint. For the shown example of the knee joint, the x-position
px denotes the distance from the pelvis, i.e. spine joint #2 (Figure 2.8), to the knee joint, whereas the angle α denotes
the angle between the walking direction and the tibia, i.e. the bone connecting knee and ankle joints. The x-velocity vx
and angular velocity ω are computed as the first temporal derivatives of the x-position px and the angle α.

Figure 3.11: Exemplary traces of the x-position (top row), x-velocity (center top row), angle (bottom top row) and angular
velocity (bottom row) of the left wrist (purple), right wrist (red), left ankle (cyan) and right ankle (yellow) joint as a function
of time. The four kinematic metrics were computed based on reconstructed skeletal poses obtained via the full (left
column) and naive (right column) reconstruction model for a single gait sequence. To obtain a concise overview, all
traces were centered by subtracting their mean value. Shaded areas represent standard deviations.
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positions. This coordinate transformation changed the origin of each reconstructed skeletal pose
to spine joint #2, which connects the hind limb bones to the spine, and modified the x-direction,
such that it pointed from the new origin joint, i.e. spine joint #2, to the xy-position of spine joint
#4, which connects the front limb bones to the spine (Figure 2.8). As a consequence, the new
x-direction always coincided with the walking direction of the respective animal subject. Thus, the
x-position of a joint denoted the distance along the new x-direction from the respective joint to spine
joint #2 and the joint angle measured the angle between the new x-direction and the bone, whose
end-joint was identical to the respective joint. Based on these two quantities, the corresponding
x-velocities and angular velocities of a joint were calculated via central finite differences (order of
accuracy: 8) [134].

To compare the full to the naive reconstruction model (Section 3.2), skeletal poses were re-
constructed via both models based on the recorded video data of gait sequences. Subsequently,
the reconstructed poses were used to calculate the kinematic metrics. When analyzing the tem-
poral progression of individual traces of these kinematic metrics, periodic gait cycles could be
identified. Respective gait cycles formed self-similar patterns, whereas gait periodicity was more
evident when skeletal poses were reconstructed via the full model instead of the naive model
(Figure 3.11). In fact, individual traces generated via the naive model were dominated by noise,
such that the periodic nature of gait was overall less apparent, when the naive model was used.

Figure 3.12: Auto-correlations of the x-position as a function of
time (top) and corresponding Fourier-transformed data (bot-
tom). Shortened time sections of the associated x-position
traces, which were generated via the full model, are shown in
Figure 3.11 using the same color-coding. Note how a fitted
damped sinusoid (black) matches the auto-correlations and
all Fourier-transformed auto-correlations have their maximum
peak at the same frequency.

However, when skeletal poses were recon-
structed via the full model the self-similarity
of gait cycles was evident, for instance,
when computing auto-correlations of individ-
ual x-position traces as well as their asso-
ciated frequency spectra (Figure 3.12; fit-
ting auto-correlations via a damped sinu-
soid: frequency: 3.14 Hz, decay rate: 2.49
Hz, R2-value: 0.90; frequency spectra of
auto-correlations: max. peak at 3.33 Hz,
sampling rate: 0.83 Hz).

Furthermore, averaging the traces of the
four different kinematic metrics across the
entire population using all 27 gait sequences
yielded population-averaged traces, which
highlighted the beneficial effects of enforc-
ing anatomical and temporal constraints via

the full model (Figure 3.13, 3.14, A.1 and A.2). To obtain these population-averaged traces, swing
phase mid-points of individual limbs were localized by identifying maximum peaks in individual
x-velocity traces of different joints with values above 25 cm/s. Subsequently, population-averaged
traces were calculated using 400 ms long sub-sections of the individual x-velocity traces, which
all contained the mid-point of a single swing phase. Prior to averaging, the sub-sections were
aligned, such that the swing phase mid-point of each sub-section was always located at the center
of the resulting population-averaged trace, i.e. 200 ms before the end and after the beginning of
each population-averaged trace.

Population-averaged traces of the four different limbs obtained via the full model were signifi-
cantly less variable than those obtained via the naive model, i.e. standard deviations related to the
full model were smaller than those related to the naive model for all time points of the population-
averaged traces (Figure 3.13 and 3.14; p-value of one-sided Mann-Whitney rank test: x-position:
1.40x10-49; x-velocity: 2.28x10-55; angle: 1.42x10-55; angular velocity: 1.44x10-55). Additionally,
the periodicity of gait cycles was apparent in the population-averaged traces in the form of equidis-
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Figure 3.13: Population-averaged traces of the x-position (top row), x-velocity (center top row), angle (center bottom
row) and angular velocity (bottom) as a function of time for the left wrist (purple), right wrist (red), left ankle (cyan) and
right ankle (yellow) joint. To compute the population-averaged traces, individual traces were first obtained based on
skeletal poses, which were reconstructed via the full reconstruction model. Then these individual traces were aligned
to x-velocity peaks above 25 cm/s of the left wrist (left column), right wrist (center left column), left ankle (center right
column) and right ankle joint (right column) before averaging across the entire population of individual traces. To obtain
a concise overview, all population-averaged traces were centered by subtracting their mean value. Shaded areas
represent standard deviations.
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Figure 3.14: Same as Figure 3.13, except that traces were obtained via the naive reconstruction model.
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tant maximum and minimum peaks, which corresponded to swing phase mid-points of individual
limbs. Particularly, time differences between these peaks were less variable, when comparing
population-averaged traces related to the full model with those related to the naive model (16
peaks resulting in 12 time differences in total; sampling rate: 10 ms; full: x-position [min. peaks]:
75.00 +/- 29.01 ms, x-velocity [max. peaks]: 78.33 +/- 10.67 ms, angle [max. peaks]: 78.33 +/-
23.74 ms, angular velocity [min. peaks]: 75.00 +/- 10.40 ms [avg. +/- s.d.]; naive: x-position [min.
peaks]: 64.16 +/- 56.78 ms, x-velocity [max. peaks]: 80.83 +/- 54.99 ms, angle [max. peaks]:
74.16 +/- 33.53 ms, angular velocity [min. peaks]: 53.33 +/- 47.78 ms [avg. +/- s.d.]).

In contrast, high noise levels caused the periodicity of gait cycles to vanish in its entirety,
when population-averaged traces were computed based on triangulated three-dimensional sur-
face marker locations, since no underlying skeleton model was used in this case (Figure A.3 and
A.4). Here, the three-dimensional surface marker locations were reconstructed via triangulation by
directly using the corresponding two-dimensional surface marker locations, which were given by
the trained DeepLabCut networks. Particularly, only the two most likely two-dimensional surface
marker locations were taken into account for triangulation, i.e. the image locations with the highest
probability values in the score maps of two different cameras (Section 2.3.2).

Altogether, this evaluation demonstrated that reconstructing skeletal poses via the full recon-
struction model allows for accurately extracting and quantifying periodic gait cycles. However,
when skeletal poses were reconstructed via the naive reconstruction model, extracting periodic
gait cycles was less feasible. Furthermore, periodic gait cycles could not be observed based
on trajectories of merely triangulated three-dimensional surface marker positions, whose two-
dimensional counterparts were automatically detected via trained DeepLabCut networks.

3.4 Quantifying gap-crossing behaviors

To evaluate if the proposed pose reconstruction framework is suited for quantifying behaviors other
than gait, skeletal poses were reconstructed based on recorded behavioral sequences of animals,
which were subjected to a gap-crossing task. Particularly, animal #1 and animal #2 (Section 3.1)
were recorded via four different overhead cameras, while they were crossing gaps of variable
lengths. The respective gap-crossing track consisted of two 50x20 cm2 platforms, mounted 120
cm off the ground on a slide mechanism to allow adjusting the distance between the platforms in
the range of 10 to 30 cm. All overhead cameras were calibrated prior to the experiments, recorded
the images synchronously, had a resolution of 1280x1024 px2 and were operated at 200 Hz with
an acquisition time of 2.5 ms. The therefore generated data set consisted of 44 sequences with
a total of 8800 frames in each of the four cameras and a total duration of 44 s, such that each
individual sequence had a length of 1 s.

To allow for automatically detecting two-dimensional surface marker locations in the recorded
video data an individual DeepLabCut network was trained for each animal. In contrast to the
previously described analyzes of animal behavior (Section 3.2 and 3.3), quantifying gap-crossing
behavior required the training data set of each DeepLabCut network (Section 2.3.2) to be a subset
of the finally analyzed data set, due to the limited number of gap-crossing events and recorded
images. Particularly, 20% of the recorded images, which belonged to the finally analyzed data set,
were used for training, i.e. every 5th image of each gap-crossing sequence. Thus, for each animal
3608 different images were used for training the DeepLabCut networks. Once the DeepLabCut
networks were trained, they were used to automatically detect two-dimensional surface marker
locations in all recorded images. These automatically detect surface marker locations were then
used to reconstruct skeletal poses during gap-crossing.

Subjecting animals to gap-crossing tasks with varying gap lengths forced them to coordinate
their body during the entire time of the jump and to re-estimate the jumped distance in each trial
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in order to prevent falling of the track (Figure 3.15). Reconstructing skeletal poses during gap-
crossing allowed for relating different kinematic quantities to the placement of individual paws, e.g.
by computing the angle of spine joint #3 (Figure 2.8) at the onset of a jump in relation to hind paw
positions upon landing (Figure 3.16). The respective joint angles were calculated as the angle
between two connected bones and temporal kinematic quantities, i.e. spatial and angular velocity
values of joints, were computed via central finite differences (order of accuracy: 8) [134]. To obtain
kinematic quantities, reconstructed skeletal poses were aligned equivalently to the analyses of
gait data (Section 3.3), i.e. a coordinate transformation was applied to the three-dimensional joint
positions, such that the origin of each skeletal pose was identical to the location of spine joint #2
(Figure 2.8) and the x-direction pointed from this origin joint to the xy-position of spine joint #4
(Figure 2.8).

Similar to periodic gait cycles, gap-crossing behaviors appeared to follow a stereotypical pat-
tern, which allowed for identifying specific behavioral decision points based on the reconstructed
skeletal poses. These decision points were the start-, mid- and end-point of a jump. To obtain
these points in each gap-crossing sequence, computed joint angles for all spine and hind limb
joints were averaged, yielding traces of averaged joint angles over time for each jump (Figure
3.17). In the resulting averaged joint angle traces distinct minimum and maximum peaks were
always present in the following order: local minimum, local maximum, global minimum, local maxi-
mum, local minimum. Identifying these extrema allowed for extracting the start- and end-point of a
jump, since they coincided with the first and last local minimum respectively. Additionally, the mid-
point of each jump was also extracted, since it coincided with the global minimum of the respective
trace. The similar temporal progression of the averaged joint angle traces pointed towards a con-
sistent gap-crossing behavior, which could be illustrated by computing a single globally-averaged
joint angle trace as well as characteristic skeletal poses at the start-, mid- and end-point of a
stereotypical jump (Figure 3.17).

Besides, high cross-correlations of kinematic quantities, i.e. spatial and angular limb velocities,
indicated that joint motions were interdependent at the start-points of the jumps (Figure 3.18).
For instance, significant correlations between the spatial velocities of the right wrist and elbow
joints and the right and left knee joints were found in reconstructed skeletal poses (right wrist vs.
right elbow: Spearman correlation coefficient: 0.95, two-tailed p-value testing for non-correlation:
5.40x10-24; right knee vs. left knee: Spearman correlation coefficient: 0.93, two-tailed p-value
testing for non-correlation: 6.79x10-20). Here, spatial velocities were calculated as the absolute
velocity values of the joints in three-dimensional space, i.e. the lengths of their velocity vectors.

Additionally, reconstructed skeletal poses allowed for weak predictions of behavioral outcomes,
since kinematic quantities at time points prior to the end-points of the jumps were correlated with
the jumped distances (Figure 3.19). Here, jumped distances were computed as the absolute xy-
difference of hind paw positions at the start- and end-point of each jump and paw positions were
defined as the average of the ankle, hind paw and toe joint positions. For instance, angular veloc-
ities of spine joint #3 (Figure 2.8) and z-velocities of spine joint #4 (Figure 2.8) were significantly
correlated with the jumped distances 205 ms and 175 ms before the end-points of the jumps
(Spearman correlation coefficients: -0.73 and 0.81, two-tailed p-values testing for non-correlation:
1.13x10-8 and 1.12x10-11).

Altogether, this evaluation demonstrated that reconstructing skeletal poses enables quantita-
tive analyses of skeletal kinematics during complex gap-crossing behaviors, where animals jump
to cross gaps of various lengths. These analyses showed that skeletal movement patterns dur-
ing gap-crossing behaviors were conserved across different trials and comprised interdependent
joint motions at the onsets of the jumps. Furthermore, kinematic quantities of the skeleton were
correlated with jumped distances, such that the kinematic quantities were weakly predictive of the
distance the animals crossed via jumping.
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Figure 3.15: Images of an animal performing a gap-crossing task at the start (left), middle (center) and end (right) of a
jump. Additionally, the reconstructed skeletal poses corresponding to the three different time points are shown (green,
orange and red lines).

Figure 3.16: Reconstructed xy-positions of the hind paws at the start and end of jumps obtained from animals, which
were subjected to a gap-crossing task. The displayed paw positions are color-coded by the joint angle of spine joint #3
(Figure 2.8). Paw positions at the start of the jumps (paws on the left) were aligned, such that their x-positions matched.

Figure 3.17: Averaged joint-angle traces containing all spine and hind limb joint angles for 22 out of 44 gap-crossing
trials (left). Aligning all 44 traces to the mind-point of each jump (global minimum of each trace) and averaging again
across all trials yielded a globally-averaged joint angle trace (top right), which illustrates stereotypical jumping behavior
during gap-crossing. The respective start-, mid- and end-point of the resulting stereotypical jump are highlighted (ver-
tical green, orange and red lines respectively). Similarly, averaging reconstructed skeletal poses of all 44 gap-crossing
trials at the start- (green), mid- (orange) and end-point (red) of the individual jumps yielded characteristic skeletal poses
for these time points (bottom right).
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Figure 3.18: Cross-correlation matrix of spatial and angular velocities at the start-points of the jumps for different limb
joints (left). Different marker shapes indicate whether rows and columns represent spatial or angular velocities (circles:
spatial velocities, squares: angular velocities). An additional illustration of the skeletal pose of an animal at the start-
point of a jump indicates which marker color corresponds to which joint. Examples for two high correlation values are
highlighted with black rectangles in the cross-correlation matrix and displayed via scatter plots (right).

Figure 3.19: Cross-correlation matrix showing how the z- and angular velocities of head and spine joints are correlated
with the jumped distances for time points up to 400 ms before the end-points of the jumps (top left). Conventions of
marker colors and shapes are the same as in Figure 3.18. Examples for two high correlation values are highlighted
with black rectangles in the cross-correlation matrix and displayed via scatter plots (bottom). Additionally, aligned and
subsequently overlaid reconstructed skeletal poses 240 ms to 160 ms before the end of a single jump are shown, such
that the positions for spine joint #3 (Figure 2.8) are identical for all poses (top right). The displayed skeletal poses were
taken from a jump trial represented by the top left data point in the scatter plot at the lower left.
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Chapter 4

Discussion

4.1 Conclusive summary

In the previous chapters of this thesis a framework for reconstructing skeletal poses of freely-
moving animals at the resolution of single joints is presented. The lengths and rotation ranges of
bones are constrained within an underlying skeleton model based on realistic anatomical princi-
ples [110,111], such that only physiologically-feasible poses are reconstructed (Section 2.2). Ad-
ditionally, skeletal poses are estimated in a probabilistic manner by deploying a state space model,
which furthermore ensures that temporal constraints are accounted for, such that reconstructed
poses are consistent in time (Section 2.3). The pose-encoding variables of the state space model
are inferred via an unscented RTS smoother [128, 129], which processes pose information from
past and future time points of a behavioral sequence, while an EM algorithm [125,130] is used to
learn the required probabilistic hyper-parameters of the unscented RTS smoother (Section 2.4).

The proposed pose reconstruction framework relies on video data of freely-moving animals,
which needs to be recorded via multiple calibrated cameras. The respective calibration of the
cameras is performed automatically without the need for generating any manual annotations (Sec-
tion 2.1). Subsequently, the positions of surface markers located on the fur of the freely-moving
animals are determined in the recorded video data, for which a published CNN architecture for
detecting anatomical surface features in two-dimensional images, i.e. DeepLabCut [76], is used.
Fusing these automatically generated detections with the anatomical and temporal constraints
enforced by the proposed pose estimation framework enables reconstructing skeletal poses and
quantifying skeletal kinematics of freely-moving animals of various sizes.

The results presented in this thesis show that the proposed pose reconstruction framework al-
lows for learning bone lengths as well as three-dimensional joint and surface marker locations
from recorded two-dimensional video data. Particularly, learned skeleton anatomies are vali-
dated by comparing them with ground truth data obtained via MRI scans (Section 3.1). Besides,
further analyses show that simultaneously enforcing the implemented anatomical and temporal
constraints is advantageous for the pose reconstruction accuracy of the proposed pose recon-
struction framework and enables compensating for occasional occlusions of body parts and noisy
detections of surface markers (Section 3.2). Additionally, the scientific potential of reconstructing
skeletal poses within the scope of behavior quantification is demonstrated by analyzing periodic
gait sequences (Section 3.3) as well as gap-crossing events (Section 3.4), both of which involve
complex coordinated limb placements. Particularly, the proposed pose reconstruction framework
offers the opportunity to relate these behaviors with the underlying skeleton. Respective analyses
show that reconstructed skeletal poses follow characteristic movement patterns during gait and
gap-crossing and that they comprise an interplay of interdependent skeletal kinematics, which are
furthermore correlated to future behavioral outcomes, i.e. jumped distances during gap-crossing.
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In contrast to related studies in the field of animal pose estimation, which solely rely on deep
neural networks to approximate a black-box function mapping recorded images to anatomical fea-
ture locations [8,69,76,77], the work presented in this thesis takes a different direction to shed light
into how the underlying skeleton gives rise to the movement dynamics of visible markers located
at an animal’s body surface. Using a realistic skeleton model to incorporate mechanistic knowl-
edge about the physical world into the proposed pose reconstruction framework thereby allows for
estimating interpretable bone rotations, while anatomical and temporal constraints are accounted
for. Thus, the work presented in this thesis addresses the challenges of directly estimating hidden
skeletal kinematics, which ultimately govern how an animal’s body surface appears, instead of
merely aiming at reconstructing the visible body surface itself. Consequently, the proposed pose
estimation framework has the capacity to not only enhance the detail at which animal behavior
can be studied, but also provides an opportunity for objectively quantifying underlying bone and
joint movements in freely-behaving animals.

4.2 Limitations

While the results presented in this thesis indicate that the proposed pose estimation framework
offers the unique potential to unravel skeletal kinematics of freely-moving animals, there exist
limitations with respect to the framework itself as well as to how the framework was evaluated.
Particularly, there exist limitations regarding the framework’s overall performance and reconstruc-
tion capabilities, i.e. technical limitations, as well as the analyses, which were performed within the
scope of this thesis, i.e. analytical limitations.

4.2.1 Technical limitations

A technical limitation of the proposed pose reconstruction framework is given by its dependence on
automatically generated detections of surface marker positions, which are obtained via a trained
CNN (Section 2.3.2). The respective detection accuracy is required to be high enough, such that
the majority of surface marker positions fed into the framework is reasonably accurate and there-
fore reliable to a certain degree. For a very high number of incorrect detections the framework
is expected to generate inaccurate pose reconstruction results. In fact, the framework does not
provide an unlimited capability for compensating for incorrectly detected surface marker positions.
This is particularly true when the overall fraction of erroneous surface marker detections becomes
too large. Similarly, if the probabilistic certainties of the trained CNN with respect to the surface
marker positions, i.e. the score values (Section 2.3.2), are too low, a majority of the surface marker
positions are actually regarded as missing measurements (Section 2.3.4), such that reconstruct-
ing accurate skeletal poses becomes infeasible. For instance, in case a behavioral sequence con-
tains missing measurements over a comparably long time span, the proposed pose reconstruction
framework will increase the probabilistic uncertainties associated with the three-dimensional joint
positions of a reconstructed skeletal poses, which effectively deems the reconstruction itself unre-
liable. Thus, rigorous training of the deployed CNN is a prerequisite for the proposed framework to
be functional, since it ensures that automatically generated detections of surface marker positions
comprise a minimum level of accuracy.

Another drawback of the proposed pose estimation scheme is the speed at which skeletal
poses are reconstructed. Since the unscented RTS smoother fuses pose information of past and
future time points (Section 2.3.5), live-processing of a behavioral sequence is infeasible, i.e. it is
not possible to reconstruct poses of a freely-moving animal with only a very short time delay, e.g.
a few milliseconds. Nevertheless, due to the limited amount of computational steps required for
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the unscented Kalman filter (Section 2.3.4), executing it in real-time could be achieved in princi-
ple [135–137]. Thus, a potential option for decreasing the processing time needed for reconstruct-
ing poses of a freely-moving animal lies in using an efficient implementation of the unscented
Kalman filter. For inferring the underlying pose-encoding variables of the deployed state space
model, the filter could then be used instead of the unscented RTS smoother. In this scenario, the
required probabilistic hyper-parameters of the state space model could, for instance, be learned
beforehand from a previously recorded behavioral sequence of the same animal. Alternatively, the
EM algorithm could be executed for a single iteration based on only a few time points in the past,
which would allow for repeatedly updating the probabilistic hyper-parameters of the state space
model at a relatively high frequency. While only performing a single iteration of the EM algorithm
will not lead to the same pose reconstruction quality, it still has the potential to yield considerable
improvements, particularly when compared to a scenario where the probabilistic hyper-parameters
of the state space model are not updated at all (Figure 2.20).

Lastly, the circumstance that the deployed skeleton model rigidly attaches each modeled sur-
face marker to a single underlying joint represents another technical limitation of the proposed
pose reconstruction framework (Section 2.2.2). In fact, the assumption that the motion dynamics
of a surface marker are entirely governed by only a single joint simplifies the complex mechanisms,
which actually determine how a point on an animal’s body surface moves when the underlying
bone configuration changes. However, in principle more realistic movement interactions between
joints and surface markers could be implemented into the proposed pose reconstruction frame-
work to address this limitation. Particularly, the implemented skeleton model could be extended,
such that surface marker movements are influenced by more than a single joint, e.g. via ordinary
linear blend skinning [138] or extensions of this method [139].

4.2.2 Analytical limitations

Besides technical limitations of the proposed pose reconstruction framework itself, there also exist
analytical limitations with respect to the analyses performed in this thesis. Such an analytical lim-
itation is given by the fact that reconstructed skeletal poses were only validated based on ground
truth data of three-dimensional joint positions, obtained via MRI scans (Section 3.1), or inde-
pendent measurements of two-dimensional paw positions, obtained via an FTIR imaging system
(Section 3.2). Since an MRI scan only gives insights into joint locations of an immobile animal
in a single static pose and an FTIR imaging system only generates data on paw positions and
not the entire skeleton, an exhaustive comparison between reconstructed and ground truth three-
dimensional joint positions, obtained for the entire skeleton from animals in motion, is not part of
this thesis. In principle, there exist techniques for quantifying the ground truth three-dimensional
locations of joints from moving animals by simultaneously using two x-ray emitters [140, 141].
However, unlike MRI scanners, the specialized equipment required for such measurements is not
only cost-intensive but also less broadly available, such that respective analyses were not within
the scope of this thesis.

Nevertheless, the performed comparisons between reconstructed and MRI-generated ground
truth skeletons indicate that three-dimensional joint positions can be reconstructed successfully,
if the three-dimensional positions of surface markers are available (Section 3.1). Knowing the
precise three-dimensional surface marker positions is equivalent to accurately detecting the two-
dimensional surface marker locations in at least two cameras, which allows for recovering their
three-dimensional positions, e.g. by using triangulation. Thus, the proposed pose reconstruction
framework is certainly capable of inferring accurate three-dimensional joint positions underneath
the body surface, when an effective detection system for surface markers is given. However, since
detecting two-dimensional surface marker locations is always accompanied by occasional detec-
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tion errors, reconstructed three-dimensional joint positions are also expected to be erroneous at
times. Nevertheless, extensively high reconstruction errors with respect to the three-dimensional
joint positions are still expected to be rare, especially given that the enforced anatomical and tem-
poral constraints have the potential to compensate for detection noise, e.g. in the form of missing
measurements (Section 3.2).

Besides, being able to generate smooth and physiologically-feasible skeletal poses is a valu-
able asset within neuroscientific research, even when modeled and anatomical joints do not coin-
cide perfectly, e.g. because reconstructed joint positions slightly diverge from the actual anatom-
ical joint locations. In such cases the reconstructed joint positions can still be regarded as rea-
sonable approximations of the underlying skeletal movements. As such they can, for instance,
be interpreted as biologically-meaningful principle components of a principle component analy-
sis [120, 142, 143]. Following this analogy, the proposed pose reconstruction framework provides
an opportunity for quantifying the behavioral spectrum of a freely-behaving animal in a rather
low-dimensional space. Consequently, reconstructing smooth and physiologically-feasible skele-
tal poses by inferring bone rotations via the proposed pose reconstruction framework allows for
an unbiased yet interpretable description of behavior, irrespective of occasionally occurring recon-
struction errors.

Another limitation of the analyses presented in this thesis is the lack of a broad and direct
comparison to other animal pose reconstruction techniques, which detect the locations of anatom-
ical landmarks at an animal’s body surface via trained CNNs [8, 69, 76, 77]. However, since
the proposed pose reconstruction framework aims at reconstructing joint positions by combining
automatically-generated detections of surface marker positions with the implementation of real-
istic anatomical and temporal constraints, it serves as an extension to the existing CNN-based
approaches rather than being a competitor. In fact, the complementary character of the pro-
posed pose reconstruction framework persists for all currently existing surface landmark detection
schemes, regardless of whether landmark detections are computed in two- [8, 76, 77] or three-
dimensional space [69]. The only adjustment required for the proposed pose estimation frame-
work to be compatible with detected three-dimensional surface marker locations is to skip the last
computational step in the emission function of the state space model, in which surface markers
are projected from three- to two-dimensional space (Section 2.3.1). Due to this compatibility, the
computations performed by the proposed pose reconstruction framework could, in principle, be
attached as downstream processing steps to any CNN-based animal pose estimation technique,
which allows for detecting anatomical feature locations in two-dimensional images. As long as the
upstream CNN yields overall reasonable surface marker detections with acceptable noise levels,
the proposed pose reconstruction framework generates anatomically- and physiologically-feasible
skeletal poses with smooth motion transitions, while being capable of compensating for sparse
detection patterns or even isolated misdetections of surface markers.

4.3 Outlook

The proposed pose reconstruction framework ushers in a suite of new possibilities for quantifying
poses and therefore the behavior of freely-moving animals (Section 1.2). As such, it complements
recent supervised learning approaches for tracking body surfaces of animals [8, 69, 76, 77] by
taking advantage of build-in mechanistic knowledge of the physical world in the form of anatomical
and temporal constraints.

With respect to future short- to mid-term developments in the field of animal pose estimation
it can be expected that future pose reconstruction frameworks will increasingly aim at capitalizing
on respective constraints by implementing them directly into fully end-to-end trainable CNNs. For
instance, adding computations for constraining poses via a realistic skeleton model to the last lay-
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ers of a CNN would force the network to learn biologically-meaningful bone rotations and allow for
deriving accurate anatomical feature positions on an animal’s body surface. Such a synergistic ap-
proach would offer the potential to obtain skeletal poses fully end-to-end as well as to improve the
overall pose estimation accuracy, since the underlying skeleton model would effectively prevent
inferring physiologically-infeasible poses. Furthermore, given that the proposed pose estimation
framework can be considered as a general example for how black-box deep learning frameworks
can profit from build-in mechanistic world knowledge, it can be expected that incorporating respec-
tive constraints into neural networks trained for other tasks than animal pose estimation would
also improve their overall capabilities. Consequently, more and more relying on mechanistic world
knowledge within deep learning frameworks has the potential to not only have implications for the
field of neuroscience but also many other scientific areas, where the deployment of deep neural
networks is starting to increase.

In a next step, more long-term developments in the field of animal pose estimation could aim
at expanding the underlying skeleton model to account for realistic muscles, such that inferring
anatomical forces, which act on skeletal bones, would become feasible. When finally combined
with tools for measuring neural activity (Section 1.1.1), applying such global approaches for animal
pose estimation could help to incrementally bridge the knowledge gap between the neural compu-
tations conducted by the brain and the downstream muscle contractions, which ultimately dictate
bone movements and therefore behavior itself. Furthermore, approaches for tracking skeletal
poses and forces could enable detailed and seamless quantification of animal behavior in real-
time on a broad scale.

Hence, the extent of future methods and related scientific studies can be expected to continu-
ously increase and span behavior analyses of various animal species in environments mimicking
their natural habitats, until behavior and neural activity of multiple freely-moving animals in the wild
can be quantified in a simultaneous yet accurate manner. While these developments are of pri-
mary interest within the field of neuroscience, the required competences to achieve this massive
undertaking are highly interdisciplinary and cover many branches of science, particularly biol-
ogy, physics, computer science and mathematics. Thus, the perpetual endeavor for improving
measurement techniques might also offer the opportunity to bridge conceptual, methodological
and foremost ideological gaps between different scientific fields, providing a chance for creating
a more unified and therefore efficient scientific community, which is nevertheless still maintaining
its ability for critical thinking and scientific debate. Therefore, the depicted developments might
usher in a new era of fully quantifiable animal behavior with a yet unpredictable potential for future
scientific discoveries.
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[125] J. Kokkala, A. Solin, and S. Särkkä, “Sigma-point filtering and smoothing based parameter
estimation in nonlinear dynamic systems,” 2015.

[126] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of
the ASME–Journal of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[127] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications. Springer,
4th ed., 2017.
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Appendix

A.1 Evaluating expectation values of log-transformed normal distri-
butions

Given a d-dimensional normal distribution pnorm with expectation value µy ∈ Rd and covariance
matrix Vy ∈ Rd×d, evaluating it for a normally distributed random variable y ∼ N (m,Σ) gives the
following expression:

pnorm (y|µy, Vy) = (2π)−
d
2 det (Vy)

− 1
2 exp

(
−1

2
(y − µy)TVy−1 (y − µy)

)
, (A.1)

where det (Vy) ∈ R denotes the determinant of matrix Vy. Applying a logarithmic transformation to
Equation A.1 yields

ln pnorm (y|µy, Vy) = −1

2
ln det (2πVy)−

1

2
tr
(
Vy
−1 (y − µy) (y − µy)T

)
, (A.2)

where tr (Vy) ∈ R denotes the trace of matrix Vy. Consequently, noticing that E
[
yyT

]
= Σ +mmT

[125,144] allows for calculating the expectation value of Equation A.2 with respect to y:

E [ln pnorm (y|µy, Vy)] = −1

2
ln det (2πVy)−

1

2
tr
(
Vy
−1E

[
(y − µy) (y − µy)T

])
(A.3)

= −1

2
ln det (2πVy)−

1

2
tr
(
Vy
−1
(

Σ + (m− µy) (m− µy)T
))

. (A.4)

A.2 Derivatives

Given a d-dimensional vector v ∈ Rd, two symmetric matrices M ∈ Rd×d and C ∈ Rd×d as well as
a scalar c ∈ R, the following derivatives exist [144]:

∂

∂v
tr
(
CvvT

)
= Cv + CT v = 2Cv (A.5)

∂

∂M
ln det (cM) = M−1 (A.6)

∂

∂M
tr
(
M−1C

)
= −

(
MT

)−1
CT
(
MT

)−1
= −M−1CM−1. (A.7)

A.3 Statistics

For computing the p-values stated in this thesis it is assumed that the underlying data is uncorre-
lated. This also applies for data obtained from recorded images, such that potential correlations
between images from different but consecutive time points are ignored.
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A.4 Quantifying periodic gait cycles

Figure A.1: Same as Figure 3.13 with the exception that traces belong to single limbs.
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Figure A.2: Same as Figure 3.14 with the exception that traces belong to single limbs.
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Figure A.3: Same as Figure 3.13, except that triangulated surface marker positions were used for analyzing gait.
Individual traces therefore correspond to the left front paw (purple), right front paw (red), left ankle (cyan) and right
ankle (yellow) marker.
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Figure A.4: Same as Figure A.3 with the exception that traces belong to single limbs. 87
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