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Propagation of activity through the cortical 
hierarchy and perception are determined by 
neural variability

James M. Rowland1,8, Thijs L. van der Plas1,8, Matthias Loidolt1,2,7,8, 
Robert M. Lees    1,3, Joshua Keeling1, Jonas Dehning2, Thomas Akam    4,5, 
Viola Priesemann    2,6 & Adam M. Packer    1 

Brains are composed of anatomically and functionally distinct regions 
performing specialized tasks, but regions do not operate in isolation. 
Orchestration of complex behaviors requires communication between 
brain regions, but how neural dynamics are organized to facilitate reliable 
transmission is not well understood. Here we studied this process directly 
by generating neural activity that propagates between brain regions 
and drives behavior, assessing how neural populations in sensory cortex 
cooperate to transmit information. We achieved this by imaging two densely 
interconnected regions—the primary and secondary somatosensory cortex 
(S1 and S2)—in mice while performing two-photon photostimulation of 
S1 neurons and assigning behavioral salience to t he p ho to st im ul ation. 
We found that the probability of perception is determined not only by the 
strength of t he p ho to st im ul ation but also by the variability of S1 neural 
activity. Therefore, maximizing the signal-to-noise ratio of the stimulus 
representation in cortex relative to the noise or variability is critical to 
facilitate activity propagation and perception.

Key to the orchestration of behavior by neural systems is that infor-
mation, in the form of neural activity, is reliably and accurately trans-
mitted between anatomically distinct brain regions performing 
specialized tasks. Activity is transformed at each stage of its journey, 
and circuits often perform multiple tasks in parallel1,2, so i t is challeng-
ing to d                                                             i                              s                                          a          m          b   i   guate w       h   i    ch f  a c  ets o f n eu ral a ct iv ity c on tr ib ute to a  
s pe ci fic behavior or process. In-depth analysis of cellular-resolution 
recordings of neural activity during sensory stimulation3,4 and/or 
well-characterized behavior5,6 has begun to disentangle how sensa-
tion, decisions and actions are encoded in individual brain regions. 
However, how sensory-related activity is structured to facilitate its 

journey through the brain, and how it interacts with ongoing cortical 
activity, is less well understood. In silico, it has been shown that the 
structure and variability of ongoing activity vary with internal state7 and 
can impact the classification of simple stimuli8,9. In vivo experiments 
have shown that the influence of ongoing cortical activity on sensory 
and behavioral responses can be of similar importance as stimulus 
strength10–12. Therefore, the relationship between sensory-related and 
ongoing cortical activity is crucial to understand.

One of the overarching functions of neural systems is to detect and 
respond to stimuli originating from the outside world. This requires 
reliable propagation of neural signals from sensory organs through 
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Between five and 150 photoresponsive S1 neurons were targeted on a 
single go trial. The number and identity of cells targeted were varied 
randomly on each trial to generate a psychometric curve (Fig. 1f), which 
shows that stimulating a greater number of neurons increased licking 
behavior accuracy. The 50% point of the psychometric curve fit across 
all sessions is 22 ± 1 neurons (n = 11 sessions recorded from five mice, 
±95% confidence interval), in accordance with previously published 
findings24. Thus, we developed a preparation in which activity that 
causally drives behavior can be recorded, with single-cell resolution, 
both locally and after propagation downstream.

2P photostimulation of S1 drives balanced activity that 
propagates to S2
To understand how neural activity is propagated between brain 
regions to guide behavior, we compared neural responses during 
hit and miss trials, both in the directly stimulated region (S1) and the 
downstream region (S2). Qualitatively, hit trials elicit a diverse array 
of relatively strong excitatory and inhibitory responses both in S1 and 
S2, whereas both excitatory and inhibitory responses were less strong 
on miss trials (Fig. 2a and Supplementary Figs. 1 and 2). Excited and 
inhibited cells are also observed in ‘reward-only’ trials (Methods) 
in which reward was delivered in the absence of photostimulation; 
however, the neuronal responses are less pronounced compared 
to hit trials, indicating that the response to reported stimulation is 
not just explained by neural activity driven by reward (Fig. 2a and 
Supplementary Figs. 1 and 2).

We observed that hit trials elicit a significantly greater fraction 
of responsive cells than any other trial type in S1 (one-sided Wilcoxon 
signed-rank test, P < 0.05, Bonferroni corrected; Extended Data  
Fig. 3a). In S2, the fraction of responsive cells was more similar across 
trial types, suggesting that stimulus information is not encoded by this 
relatively simple metric (Extended Data Fig. 3a; one-sided Wilcoxon 
signed-rank test, Bonferroni corrected, P < 0.05, for hit, versus two 
out of four trial types). However, on a single-cell level, we found some 
individual neurons in S2 that are excited or inhibited in response to 
hit trials, but not miss or reward only, hinting that reported stimuli are 
propagated to single neurons in S2 (Fig. 2b).

Interestingly, however, averaging responses across cells, trials 
and sessions reveals that hit trials elicit only a modest increase in popu-
lation activity from baseline in both S1 and S2 (peak post-stimulus 
ΔF/F = 0.038 ± 0.004 and 0.022 ± 0.006, respectively), followed by a 
prolonged period of inhibition, whereas, on miss trials, the population 
average response did not deviate from baseline in S2 (Fig. 2c).

The population responses of S1 and S2 suggest that excitatory 
stimulation is balanced by an inhibitory response (Fig. 2a). The 
relatively weak grand average response also supports that notion  
(Fig. 2c). Therefore, we analyzed the excited and inhibited cells sepa-
rately. Indeed, the inhibited responses increased with the strength of 
optogenetic stimulation (number of cells targeted; Fig. 2d,e, right; 
correlation values are reported in the figure). In S1, but not in S2, the 
excitatory response also increased with stimulation strength (Fig. 2d,e, 
left). This may reflect the strong contribution of the targeted cells in S1.

To quantify this effect directly, we analyzed the excitation–inhi-
bition ratio across all sessions. We found a clear correlation between 
the fraction of excited and inhibited cells for both hit and miss trials 
in S1 and S2 (Fig. 2f,g; correlation values are reported in the figure). 
This indicates that the excitation–inhibition ratio was maintained 
regardless of photostimulation strength or whether the stimulation 
was perceived. However, downstream from the stimulation, in S2, the 
correlation between excitation and inhibition was weaker than in S1 
(excitation–inhibition correlation of S1 hit versus S2 hit, P = 1.2 × 10−5; 
S1 miss versus S2 miss, P = 0.001; two-tailed Steiger test; Fig. 2f,g). 
Taken together, we show that, as activity is propagated from its site 
of initiation in S1 to S2, the excitation–inhibition interplay persists 
but is less tight.

anatomical hierarchies in the brain. Signal propagation is usually stud-
ied in psychophysical assays where stimuli of increasing strength are 
presented to the participant, and their detection is signaled behavio-
rally, while the activity of relevant brain regions is recorded to capture 
propagating activity13–17.

However, a challenge in quantifying signal propagation is that cor-
related activity in two regions may not reflect causal influence of one 
on the other but, rather, may reflect common input18,19. Taking causal 
control of neural activity by directly stimulating neurons circumvents 
this issue, as activity locked temporally to stimulation of a connected 
region likely arises from propagation. This can be achieved by driving 
spikes directly through stimulation of individual neurons20–22 or groups 
of neurons23–27. However, so far, detection of optogenetic stimulation 
with single-cell precision has been paired only with single-region neural 
recordings24,25, limiting signal propagation studies to within-region 
dynamics.

In this study, we harnessed the single-cell precision of all-optical 
interrogation28 to investigate how the collective dynamics of neu-
ral activity determine activity propagation and guide behavior. We 
imaged two hierarchically organized, densely interconnected and 
functionally well-characterized29–32 regions, the primary and second-
ary somatosensory cortex (S1 and S2), while performing two-photon 
(2P) optogenetic photostimulation of S1 neurons, and we trained mice 
to report stimulation. By recording neural activity occurring before 
and after photostimulation in both brain regions simultaneously, we 
were able to assess how behaviorally salient stimulation is propagated 
through anatomically distinct brain regions and interacts with their 
ongoing activity.

Results
Causally driving behavior with all-optical interrogation across 
cortical areas
We developed a preparation that allowed us to record activity in two 
brain regions (S1 and S2) simultaneously while holographically pho-
tostimulating S1 (Fig. 1a). To achieve this, we expressed the genetically 
encoded calcium indicator GCaMP6s33 and the somatically targeted, 
red-shifted opsin C1V1-Kv2.1 (refs. 21,34) in layer 2/3 across both S1 and 
S2. We localized S1 and S2 by performing wide-field calcium imaging 
during deflection of individual whiskers (Fig. 1b and Extended Data 
Fig. 1). A field of view was selected that spanned the cortical repre-
sentations of multiple whiskers across the a, b and c rows in both S1 
and S2. Mice were head fixed, and we used a 2P microscope, based 
on previous designs28, adapted to perform 2P calcium imaging of 
neural activity across a large field of view (1.35-mm diameter) while 
performing 2P photostimulation of S1 neurons. Before each experi-
ment, we photostimulated all opsin-expressing neurons in groups of 
20 to find cells responsive to photostimulation, with neurons within 
a 350-μm diameter targeted simultaneously (Fig. 1c). Targeted neu-
rons, defined as cells within 15 μm of the center of a photostimulation 
beam, elicited significant excitatory responses, whereas nearby S1 
non-target neurons elicited significant inhibitory responses on average  
(Fig. 1d and Extended Data Fig. 2a,b; Wilcoxon signed-rank test, P < 0.05,  
Bonferroni corrected).

We trained mice by operant conditioning to associate direct pho-
tostimulation of neurons in S1 with water reward. After initial training, 
mice reported photostimulation by licking a spout (Fig. 1e). Crucially, 
to prevent a guessing strategy and/or random licking, mice had to with-
hold licking to initiate a trial after a variable inter-trial interval. Success-
ful report of stimulation on ‘go’ trials was scored as a ‘hit’, and the mouse 
was rewarded; trials in which the animal failed to report the stimulation 
through licking were scored as a ‘miss’. We also randomly interleaved 
‘catch’ trials in which no stimulus was delivered to analyze the detec-
tion performance relative to chance. Catch trials in which the animal 
licked were ‘false-positive’ trials, whereas trials when the animal appro-
priately refrained from licking were ‘correct-rejection’ trials (Fig. 1e).  
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S1 and S2 populations encode representations of perceived 
photostimulation
Individual cells displayed a diverse array of responses, and balanced 
population responses masked the magnitude and timecourse of propa-
gated activity (Fig. 2). To gain insight into what task-related information 
is contained in these complex neural responses, we assessed propaga-
tion of stimulus-relevant activity from S1 to S2 and its relationship 
to behavior. We trained classifiers to dynamically decode the trial 
type of individual trials using the activity of all cells in S1 or S2 sepa-
rately (Fig. 3a). First, we trained classifiers that distinguish hit trials 
from correct-rejection trials to detect the neural signature of both 
the stimulus and the activity resulting in its perception and report. 
Trained independently on each timeframe, the classifiers performed 

significantly above chance for more than 3 s after stimulation, both in 
S1 and S2 (two-sided Wilcoxon signed-rank test, P < 0.05, Bonferroni 
corrected for number of tested timepoints; Fig. 3b,c and Extended 
Data Figs. 4a,b and 5a,b). This shows that neural activity underpinning 
perceived stimulation persisted both locally in S1 and downstream in 
S2 for several seconds.

However, the classifiers could just have decoded the signatures of 
reward or the motor command required for licking, which are present 
on hit trials but not correct-rejection trials, instead of decoding stimu-
lus perception. To disambiguate this, we tested the classifiers (that 
had been trained to distinguish hit versus correct-rejection trials) on 
reward-only trials (that is, trials in which reward was delivered in the 
absence of photostimulation). Performance on reward-only trials was 
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Fig. 1 | Recording neural activity in S1 and S2 during behavioral report of 
targeted 2P photostimulation of S1. a, Schematic of experimental setup. Left: 
viral strategy for expression of GCaMP6s and C1V1-Kv2.1-mScarlet in S1 and S2. 
Right: mice with a cranial window installed over S1 and S2 were head fixed under a 
2P microscope. A lick spout was placed within reach of the tongue, through which 
the animal reported perception of photostimulation by licking and received a 
water reward. This figure was adapted with permission from Ethan Tyler and Lex 
Kravitz (Scidraw.io, https://doi.org/10.5281/zenodo.3925901) and Jason Keller 
(Scidraw.io, https://doi.org/10.5281/zenodo.3925969). b, Example imaging field 
of view used to localize S1 and S2 by whisker stimulation (stimulus-triggered 
average wide-field calcium whisker response shown in yellow; see Extended 
Data Fig. 1 for multiple whiskers), overlaid with aligned 2P images of GCaMP6s 
(green) and C1V1-Kv2.1-mScarlet (magenta) expression. c, Example 2P calcium 
imaging field of view with photostimulation targets. The intensity of each pixel 
is proportional to the change in fluorescence intensity post-photostimulation 
compared to pre-photostimulation (stimulus-triggered average; Methods); 
bright pixels indicate a photostimulation-induced increase in calcium 
activity. Pixels are color-coded based on whether they were photostimulated 
simultaneously. Non-targeted cells, including those in S2, are not visible because 
different cells would respond to repeated stimulation of the same group of 
targeted cells and were, therefore, averaged out. b and c show data from a 
representative single recording session. d, Top: example activity responses to 

photostimulation of a single recording session. Orange shows the response to 
photostimulation of cells directly targeted with light, averaged across cells and 
across trials. Light and dark blue show the response of cells not directly targeted 
in S1 and S2, respectively. Only trials in which photostimulation was delivered 
were included. Data are blanked while the photostimulation laser was on (pink 
bar), as this causes a large artifact unrelated to neural activity. Bottom: total ΔF/F 
activity post-stimulus is shown, as defined by the area under the curve (AUC) of 
the traces of the top panel, for all 11 recording sessions (mean ± 95% confidence 
interval across sessions). We tested whether each condition was significantly 
different from 0 (two-sided Wilcoxon signed-rank test, Bonferroni corrected).  
e, Top: timing of a single behavioral trial. Bottom left: behavioral response 
matrix. Bottom right: example lick raster from a single session sorted by number 
of cells targeted and by time within each bin. Each row of the plot shows the 
first lick within an individual trial. The color bar shows the outcome of the trial 
as defined in the behavioral response matrix. f, Psychometric curves showing 
behavioral performance (d′) as a function of the number of cells targeted by 
photostimulation. Each gray point is the d′ computed for a given number of cells 
targeted for an individual session, and each gray line is a logistic function fit for 
an individual session. The thick black line shows the fit for all data points across 
all sessions (n = 11 sessions; n = 5 mice). The gray dashed line shows that the 50% 
point from the fit across all sessions occurs at 22 ± 1 cells targeted.
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Fig. 2 | Activity driven by targeted 2P photostimulation is propagated  
from S1 to S2. a, Raster plots showing the trial-averaged response of different 
trial types (left: hit, middle: miss, right: reward only) to photostimulation (pink 
vertical bar: hit/miss) and/or reward (hit/reward only) of individual cells from a 
single session. (All trial types of all sessions are shown in Supplementary Figs. 1  
and 2). Cells are sorted by the sum of their trial-averaged responses across all 
three trial types (Methods). Clear excitatory and inhibitory responses are elicited 
in S1 and S2 on hit trials that are not observed on miss trials or reward-only trials. 
The intensity of the grayscale bar on the right-hand side of the hit and miss rasters 
is proportional to the number of times each cell was directly targeted by the 
photostimulation beam, for hit and miss trials separately. Trials in which  
150 cells were targeted were removed for display because their stimulation 
period is longer. Data are bound between −0.2 and +0.2 ΔF/F and blanked 
during the photostimulation (pink bar). b, Left: the ΔF/F activity traces of the 
most excited S2 cell (of the session of a) are shown, averaged across stimulus 
conditions. This S2 cell shows a large response on hit trials (green) but no 
response on miss trials (red) or reward-only trials (blue). The transparency of 
the line indicates the number of cells targeted in S1. Trials in which 150 cells were 
targeted were removed for display. Right: equivalent plot for the most inhibited 
S2 cell of a. c, The average population response to hit and miss trials across all 
sessions is shown (shaded areas show 95% confidence interval across trials of 
all sessions). Traces are averaged across cells, trials and sessions for a given 
trial type. Trials in which 150 cells were targeted were removed for display. The 
population responses of all other trial types are shown in Extended Data Fig. 3b,c. 

d, The neural response in S1 on hit and miss trials depends on the number of cells 
targeted in S1. Left: the fraction of excited cells (Methods) in S1 maps linearly 
to the number of cells targeted on both hit and miss trials. Right: the fraction of 
inhibited cells in S1 maps linearly to the number of cells targeted on both hit and 
miss trials. For hit and miss trials, data are presented as mean ± s.e.m. The shaded 
purple bar shows the 95% confidence interval across sessions of the fraction of 
excited or inhibited cells in S1 on reward-only trials. The linear fit was determined 
using weighted least squares, where the weights were the inverse variance of the 
trials that constituted a data point, and subsequently bound between their 25th 
and 75th percentiles to prevent extreme weight values. P values were computed 
using a two-sided t-test, where significance is indicated by ***P < 0.001, **P < 0.01, 
*P < 0.05 or NS (not significant). e, Equivalent panel for S1 responses. Left: There 
is no relationship between the fraction of excited cells in S2 and the number of 
cells targeted in S1 on hit trials or miss trials. The shaded purple bar shows the 
fraction of excited or inhibited cells in S2 on reward-only trials. Right: the fraction 
of inhibited cells in S2 maps linearly to the number of cells photostimulated in S1 
on both hit and miss trials. f, The fraction of cells excited by photostimulation in 
S1 is highly correlated with the fraction of cells inhibited after photostimulation, 
both on hit trials (left) and on miss trials (right). The size of the circle indicates the 
number of cells photostimulated. The Pearson correlation coefficient is denoted 
by r, with significance indicated as before (two-sided t-test). g, The fraction of 
cells excited by photostimulation in S2 is correlated with the fraction of cells 
inhibited after photostimulation, both on hit trials (left) and on miss trials (right).
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either below or at chance level in S1 and remained at chance throughout 
the trial in S2, indicating that neural signatures of motor commands 
and licking were not the driving features of the classifier (Fig. 3b,c, blue 
lines, and Extended Data Fig. 4a,b; P > 0.05, Bonferroni corrected).

To evaluate the neural response to reward, we trained classifiers 
to distinguish reward-only from correct-rejection trials; for these clas-
sifiers, hit trials were evaluated at equal accuracy to reward-only trials 
(Extended Data Fig. 4e–h, dark blue and green traces). This indicates 

that the neural response related to reward is similar for both trial types 
and that neural signatures of perceived stimulation are present on hit 
trials, both in S1 and S2.

Next, we asked whether neural activity from unperceived photo-
stimulation was reliably propagated from S1 to S2 by training models to 
classify miss and correct-rejection trials (Fig. 3d,e and Extended Data 
Figs. 3c,d and 5c,d). We found that, in S1, these classifiers decoded miss 
trials slightly above chance immediately after stimulation (P < 0.05, 
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was significantly different from chance (two-sided Wilcoxon signed-rank test, 
P < 0.05, Bonferroni corrected; Methods). The classifiers were able to distinguish 
hit trials from correct-rejection trials with high accuracy for several seconds after 
photostimulation, implying that activity that arose from perceived stimulation 
persists in S1. Reward-only trials were not classified as hits, showing that the 
classifiers were not just trained to decode the neural signature of reward on 
hit trials. c, Classifiers were trained on S2 activity to distinguish hit trials from 

correct-rejection trials and then tested on hit trials (green), correct-rejection 
trials (yellow) and reward-only trials (blue). As above, the classifiers were 
able to decode hit trials from correct-rejection trials for several seconds after 
photostimulation, implying that activity that arose from perceived stimulation 
in S1 is propagated to S2 and persists for several seconds. Reward-only trials 
were not classified as hits, indicating that the model was not just detecting the 
neural signature of reward on hit trials. d, Classifiers were trained on S1 activity 
to classify miss trials from correct-rejection trials and then tested on miss trials 
(red) and correct-rejection trials (yellow). The classifiers were able to distinguish 
the two trial types for only for ~1 s after photostimulation. This implies that non-
perceived stimuli do not generate persistent activity. e, Classifiers were trained 
on S2 activity to classify miss trials from correct-rejection trials and then tested 
on miss trials (red) and correct-rejection trials (yellow). The classifiers were not 
able to classify miss from correct-rejection trials, indicating that non-perceived 
stimuli were not robustly propagated from S1 to S2, likely because they were also 
not encoded in S1 (d). CR, correct-rejection; dim., dimension.
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Bonferroni corrected); however, performance rapidly decayed back 
to chance level after 1 s. Conversely, in S2, the classifiers were not able 
to decode miss trials, indicating that stimulus information that is not 
perceived does not propagate to S2.

Taken together, these results show that only perceived stimulus 
representations are reliably propagated out of the local brain region 
in which they originate to a downstream brain area. Furthermore, the 
representations of stimuli that are propagated and drive perception 
persist both locally and downstream for several seconds after the 
injection of activity.

Pre-stimulus S1 activity predicts trial outcome
Although the previous analysis clearly showed that stimulation of S1 
can be reliably propagated to S2 and reported behaviorally, it is unclear 
what intrinsic network conditions facilitate its detection. To identify 
the conditions that facilitate both the propagation to S2 and the behav-
ioral report, we analyzed population activity in S1 immediately before 
stimulation (Fig. 4a) and asked whether the pre-stimulus population 
activity could predict whether the stimulus would be perceived (that 
is, whether the upcoming trial type would be a hit or a miss). To charac-
terize population activity, we analyzed the distribution of instantane-
ous activity across neurons and computed the population mean and 
population variance as scalar measures. The mean population activ-
ity was not predictive of whether a trial will be a hit or miss (P = 0.28, 
Wilcoxon signed-rank test; Fig. 4b, left). In contrast, the population 
variance across S1 neurons strongly predicted whether the upcoming 
stimulus would be a hit or a miss trial. The population variance in S1 
was larger before miss trials than before hit trials (P = 0.001, Wilcoxon 
signed-rank test; Fig. 4b, right). We further observed that population 
variance was correlated with task variables, such as trial number and 
reward history (Extended Data Fig. 6), and that population variance in 

S1 was correlated with that of S2 (Extended Data Fig. 6e). This suggests 
that population variance in both S1 and S2 may be a global mechanism 
underpinning how arousal and/or motivational state are instantiated 
in neural circuitry. The relationship between population variance 
and behavioral performance was also evident on a trial-by-trial level, 
whereby increased population variance pre-stimulus in S1 is negatively 
correlated with the probability that the upcoming stimulus elicits a 
hit (Fig. 4c; one-sided regression, Bonferroni corrected, P < 0.001, on 
10 of 11 sessions). Furthermore, even though the population variance 
influenced the probability of the stimulus being perceived (and, thus, 
propagated downstream) (Fig. 4c), the subsequent strength of stimulus 
encoding was not influenced by population variance (Extended Data 
Fig. 7a–d). This implies that the neural representation of perceived 
stimuli was independent of the preceding population variance and, 
therefore, generalized.

Strong pre-stimulus recurrent interactions before miss trials
Measuring population mean and variance immediately pre-stimulus is 
the most direct way of quantifying how instantaneous activity impacts 
perception (Fig. 4). However, more timepoints are needed to quantify 
the covariance structure, which could link these basic measures of 
population activity to mechanistic theories of circuit function. There-
fore, we concatenated the activity that preceded all miss trials and 
hit trials separately and assessed their differences (see Methods and 
Supplementary Fig. 3a–c for details). We explored two complementary 
analytical approaches to characterize the role of population activity 
in driving behavior.

First, the strength and structure of inter-neuronal correlations 
can affect sensory-guided behavior35,36. Hence, we assessed whether 
the low-dimensional correlation structure of pre-stimulus population 
activity, measured as the variance explained by the first five latent 
factors, could predict the perceptual variability that we observed, but 
we found no evidence of this in our experiments (Fig. 5b,c; P = 0.168, 
two-sided Wilcoxon signed-rank test). We also tested whether the 
average ‘non-shared’ pairwise correlation of pre-stimulus activity 
was predictive, but, again, we found no evidence for this hypothesis  
(Fig. 5d,e; P = 0.365, two-sided Wilcoxon signed-rank test).

Second, neural circuits are characterized by strong recurrence37, 
which is known to give rise to trial-to-trial variability38; moreover, the 
strength of recurrence can determine local amplification and encoding 
of external stimuli39. We inferred the strength of recurrence in the local 
network (R) from the non-shared covariance distribution as previously 
described39 (Fig. 5f–h and Supplementary Fig. 3), and we found that 
neural dynamics in both S1 and S2 are strongly recurrent 
(R = 0.964 ± 0.008 in S1, R = 0.957 ± 0.016 in S2; Fig. 5h), similar to other 
cortical areas in rodents37,39. Notably, we also observed that lower recur-
rence R before stimulation is correlated with higher detection probabil-
ity (P = 0.002 in S1, Fig. 5i and Extended Data Figs. 8o and 9i,j; and 
P = 0.050 in S2, Extended Data Fig. 8r; two-sided Wilcoxon signed-rank 
tests). We next compared this network-wide, covariance-based recur-
rence metric to the network response timescale τpost, a measure of 
coupling strength inferred directly from the activity of the photostimu-
lated targets40, and we found the same trend as for the recurrence  
R (Fig. 5j–m; P = 0.023, two-sided Wilcoxon signed-rank test). These 
data suggest that the previously described trial-by-trial differences in 
population variance might result from changes in the effective recur-
rence strength before stimulation, influencing the network’s sensitivity 
to direct stimulation.

Stimulus strength and neural population variance determine 
probability of perception
Our previous analyses show that we have identified two separate con-
ditions that predict the probability that a stimulus will be perceived: 
the strength of the stimulus (number of cells targeted; Fig. 1f) and the 
variance of the population activity (Fig. 4b,c). Next, we asked if these 

–1 0
0

0.25

0.50

0.75

1.00

z-scored population variance

P(hit) decreases with pop. variance

Pop. mean
P = 0.28

∆F/F activity

∆F/F distr.

Pre-stimulus
activity metrics:

Pop mean

Pop var.

Pop. variance
P = 0.001

One-sided (↓) P values:

1 × 10–14

2 × 10–25

1 × 10–43

7 × 10–56

3 × 10–66

8 × 10–25

8 × 10–13

4 × 10–40

4 × 10–11

1.0
1 × 10–35

Miss
–0.5

0
0.5

–0.5
0

0.5

HitMiss Hit

Pr
ob

ab
ili

ty
 h

it
M

ea
n 
z-

sc
or

e

1

a b

c

Fig. 4 | Pre-stimulus population in S1 predicts the upcoming trial outcome. 
a, Illustration of neural activity throughout a trial. Only the activity in the 0.5 s 
before the stimulus on a given trial is included in subsequent panels. First, we 
considered two metrics of pre-stimulus neural activity: the population mean and 
the population variance. b, Comparison of population metrics of pre-stimulus 
S1 activity before hit trials and before miss trials. Left: no evidence that mean 
population activity pre-stimulus predicts the upcoming trial outcome.  
Right: population variance is significantly higher before miss trials than before  
hit trials. Pre-stimulus population metrics in S1 were computed trial-wise and  
z-scored across trials within a session before being split into hit and miss trials 
and averaged across a session. P values were tested for a difference in session-wise 
population metrics between hit and miss trials (two-sided Wilcoxon signed-rank 
test). c, The probability of detecting the photostimulation decreased linearly 
with increasing pre-stimulus population variance in S1 for 10 of 11 sessions  
(one-sided t-test, Bonferroni corrected). Trials within a session were binned by 
their z-scored population variance, and this was correlated to the probability of  
a hit trial within that bin. distr., distribution; pop., population; var., variance.

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | September 2023 | 1584–1594 1590

Article https://doi.org/10.1038/s41593-023-01413-5

two predictors work in tandem—that is, whether stimulus perception 
depends on both the strength of the stimulus and the ongoing state 
of the population.

We found that the probability that a stimulus elicits a hit can be 
expressed on a two-dimensional axis (Fig. 6a), where hit probability is 
highest when population variance is minimized and the number of cells 
targeted is maximized. More targeted cells were required to reliably 
drive hits, as pre-stimulus population variance increased. This phenom-
enon can be conceptualised by a signal-to-noise ratio (SNR) framework, 
in which activity injected into cells through photostimulation forms 

the signal, and the magnitude of background noise is measured by the 
population variance. The higher the SNR, the more likely the animal 
is to detect the signal above ongoing noise and respond, as quanti-
fied by collapsing the population variance and the number of cells 
targeted onto a single SNR axis (Fig. 6b; both population variance 
and the number of targeted cells contributed significantly to predict-
ing trial outcome, both P < 10−13, logistic regression two-sided t-test; 
Methods). Furthermore, as pupil size changes have been associated 
with spontaneous activity fluctuations10, we measured the change in 
pupil size of three animals during the all-optical experiments, but we 
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found no evidence that pre-stimulus pupil size consistently influenced 
trial outcome (Extended Data Fig. 9). In summary, our results show that 
the SNR of a stimulus determines how likely it is to be perceived and 
propagated downstream to drive behavior (Fig. 6c).

Discussion
Critical to the brain’s ability to process stimuli is that activity is robustly 
propagated between functionally and anatomically distinct regions9. 
Although this question is often addressed in observational meso-scale 
studies of particularly the primate brain41, less is known about how the 
dynamics of neural activity are structured at the single-cell level to 
propagate activity between brain regions (but see refs. 15–17). By using 
an all-optical interrogation technique across multiple brain areas, we 
demonstrate, to our knowledge for the first time, that behaviorally 
salient photostimulation of S1 as a causal intervention elicits robust 
activation of S2. As expected, stronger stimulation elicits a stronger 
response in S2. Interestingly, we also found that pre-stimulus activity 
in S1 influences the detectability of the upcoming stimulus. This is 
consistent with an SNR framework in which the signal strength is the 
number of photostimulated cells and the noise is the pre-stimulus neu-
ral variability in S1. Thus, our results provide new insights into cortical 
function, as we show, to our knowledge for the first time, that the SNR 
of a stimulus, relative to network state, is critical for the propagation 
of the stimulus and its ability to drive action.

Inhibition stabilization and generalization
One feature of cortical dynamics that may allow activity to reliably 
propagate is inhibition stabilization, in which inhibition tracks exci-
tation to prevent unstable dynamics42,43. Indeed, we observed that 
excitation and inhibition covaried with stimulus strength in S1 and S2 
and that both regions demonstrated correlated excitation and inhibi-
tion. Taken together, our results show that the population response of 
somatosensory cortex to excitatory photostimulation of small groups 
of neurons was stabilized by inhibition both in the excited region 
and in a downstream region. We observed that both the correlation 
between excitation and inhibition as well as the fraction of inhibited 
cells were lower in S2 than S1. This could explain why stimulus decod-
ability was also slightly better in S1, as theoretical results suggest that 
strong inhibition enhances stimulus representations44. This stronger 

excitation–inhibition correlation in S1 may reflect stabilizing network 
dynamics in response to optogenetic perturbation, confirming pre-
dictions of how the activation of just tens of neurons can excite large 
cortical networks45.

Furthermore, we found that the population representation of 
the stimulus was generalized, as the neural response to perceived 
stimulation was similar across trials in both regions. We demonstrated 
this by showing that classifiers robustly decoded hit trials using 
cross-validation across trials, even though we varied the identity of 
targeted neurons on each trial. This variation of the stimulus requires 
sufficient consistency of the representation of the stimulus, implying 
that perceived neural activity remains generalized throughout its jour-
ney through the cortex. Conversely, on miss trials, the presence of the 
stimulus was decodable for only a brief period in S1 immediately after 
stimulation, and not at all in S2, showing that non-perceived stimulus 
information was not generalized across both brain regions. Stimulus 
generalization is a well-characterised phenomenon in psychology46, 
biological circuits47,48 and artificial neural networks49,50 and endows 
an agent with the ability to effectively interpret novel stimuli based on 
prior experience. This process has been shown to be enhanced if the 
stimulus is coupled to reward48, matching our results.

Measures of neural variance
The SNR of a sensory neuron51 or population of neurons52 is often used 
to quantify the fidelity of the representation of a stimulus, whereby a 
higher SNR means that the sensory stimulus is more robustly repre-
sented in neural activity15. Indeed, one of the functions of the highly 
recurrent circuitry in sensory cortex is thought to be the amplification 
of relevant activity arising from feedforward inputs, to enhance SNR15,53. 
Despite the well-characterized importance of high SNR in the local rep-
resentation of sensory stimuli, it is unclear how the SNR of a stimulus 
relates to its likelihood to propagate downstream. In this study, we 
generated a signal with direct cortical activation and quantified noise 
using the population variance metric. We found that the probability 
that a photostimulus was propagated and perceived was determined 
by the SNR of the stimulus.

Other metrics of pre-stimulus neural variability, such as single-cell 
temporal variance10, synchrony54 and neural oscillation power15,55, have 
all previously been linked to task performance. Although differences 
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in recording techniques preclude direct comparisons, in particular, 
lower variance of single-cell membrane potentials was also found to 
enhance stimulus detection performance10, possibly providing a link 
between single-cell and population variability. Population variance, 
thus, captures the population-wide neural variability, which can arise 
from recurrent neural activity39.

We quantified the recurrence R to test theories53 about its impact 
on signal propagation. We found that the S1 network operates in a 
strongly recurrent dynamical regime, similar to other cortical areas 
in rodents37,39, monkeys37,56 and humans57, in which a small change in 
R can have a large effect. Indeed, we also found that slight variations 
around this operating point before stimulation reflect changes in 
detection performance. Specifically, we found that higher recurrence 
was associated with a decrease in stimulus detection. This is consistent 
with the SNR framework outlined above, whereby greater noise (vari-
ability) results in diminished perception, and with previous results that 
show that recurrence can be tuned to meet task requirements56,57. Our 
study adds to this body of literature with results obtained in a different 
model system (mouse) and different task (detection of direct cortical 
stimulation), further supporting the theory that differences in recur-
rence reflect changes in perceptual sensitivity.

Causality and feedback connections
We suggest that the photostimulus is causal in driving both behavior 
and observed neural responses. Photostimulation was designed such 
that it causally drove behavior as the task required the mouse to lick 
after photostimulation to receive a reward. Our data confirm that, 
indeed, the probability of licking immediately after (sufficiently strong) 
stimulation was far greater than baseline. The causal paths that lead 
to the observed neural activity, in particular the transmission to S2, is 
less trivial because, in practice, causality is challenging to define58 or to 
quantify in the context of neural activity recordings58. One crucial crite-
rion for causality generally, but particularly important in neuroscience, 
is that an effect should consistently follow a randomized intervention58. 
In our experiments, neural responses to perceived photostimulation 
in S2 were sufficiently consistent despite the random timing of their 
delivery such that we could classify them as specific to the hit condition. 
This resistance to randomization of the intervention critically under-
pins our argument for causality. Furthermore, our observed effects 
also satisfy some of the properties of observational causality (a weaker 
form of causality), namely strength (effect size), consistency (effect 
reliably follows stimulus), temporality (effect follows stimulus closely 
in time), dose–response relationship (greater stimulus leads to greater 
effect) and plausibility (reasonable mechanistic explanation)58,59. The 
strength, consistency, temporality and dose–response relationship of 
neural activity in S2 after S1 photostimulation are shown in Figs. 2, 3 
and 6 and Extended Data Fig. 7e–h. The information transmission from 
stimulation to S2 neurons could be caused via many different paths. 
We do not have the experimental capacity to disentangle all potential 
paths driving S2 activity. These include, but are not limited to, direct, 
monosynaptic transmission from S1 to S2 (ref. 31), indirect paths via 
other brain regions60, brain state changes due to reward consumption54, 
reafference from the whiskers61 or movement1. Thus, although we can 
make statements about a causal relation, we cannot make any claim 
about the specific paths or their relative contributions.

Theoretical work has also highlighted the potential role of feed-
back connections in information processing62,63, and it is known that 
S2 also projects back to S1 directly and indirectly31,64. An interventional 
approach, for example17, could further interrogate the role of feedback 
in the S1–S2 circuit, to elucidate whether perception arises through a 
bi-directional flow of information.

Technical limitations of the study
In this study, we focused on communication between two neighboring 
areas at the single-neuron level. We used state-of-the art recording and 

manipulation techniques (2P imaging and photostimulation), which 
require a tradeoff between spatiotemporal resolution and field-of-view 
size. For example, the ‘slow’ dynamics of GCaMP6s (the best-performing 
calcium sensor available at the time the experiments were performed) 
precluded us from reading out millisecond-level spike timings but 
allowed us to observe task-relevant activity of hundreds of neurons 
across a field of view spanning more than a square millimeter of cortex. 
Crucially, these slow dynamics also enabled us to read out the neural 
activity occurring immediately after trial onset despite the photo-
stimulation artifact (but note that a combination of recent advances in 
sensor biotechnology and microscopy design could facilitate a higher 
temporal resolution65–67).

Summary
In summary, we developed a new preparation to inject sparse, 
task-relevant activity into the cortex while recording its propagation 
downstream and resulting behavior. Using this, we elucidated how, at 
the level of neuronal networks, perception depends on the SNR of the 
stimulus relative to background activity. This reveals an organizing 
principle of the cortex that explains how inhibition-stabilized circuits 
can remain susceptible to behaviorally relevant stimuli.
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Methods
All experimental procedures involving animals were conducted in 
accordance with the UK Animals in Scientific Procedures Act (1986).

Male and female C57/BL6 and Tg(tetO-GCaMP6s)2Niell mice were 
used for all experiments. Mice were 4–12 weeks of age when surgery 
was performed. Mice were housed at room temperature (20–22 °C) 
on a standard light/dark cycle and humidity of ~40%.

Surgical procedures
Animals were anaesthetised with isoflurane (5% for induction, 1.5% for 
maintenance) during all surgical procedures. A perioperative injection 
of 0.1 mg kg−1 buprenorphine (Vetergesic) and 5 mg kg−1 meloxicam 
(Metacam) was administered. Mice were prepared for chronic imaging 
experiments through a single surgery. Then, 2 mg kg−1 bupivacaine 
(Marcaine) was applied to the scalp before it was sterilized with chlo-
rhexidine gluconate and isopropyl alcohol (ChloraPrep) before being 
removed bilaterally. The skull was cleaned with a bone scraper (Fine 
Science Tools) to remove the periosteum. An aluminium head plate 
with a 7-mm imaging well was bonded to the skull using dental cement 
(Super-Bond C&B, Sun Medical). A 3-mm circular craniotomy was 
drilled over the right somatosensory cortex, targeting the S1/S2 border 
(−1.9 mm posterior, +3.8 mm lateral) using a dental drill (NSK UK Ltd.). 
The skull within the craniotomy was soaked in saline before removal. 
Any blood was flushed with saline for more than 5 min, before a durot-
omy was performed. A single 1-μl viral injection was performed using 
a calibrated injection pipette beveled to a sharp point. Injections were 
performed at a rate of 100 nl min−1 at 300 μm below the pial surface 
and were controlled using a hydraulic micromanipulator (Narishige).

Pipettes were front loaded with either 1:10 GCaMP6s (AAV1-Syn.
GCaMP6s.WPRE.SV40) diluted in C1V1-Kv2.1 (AAV9-CamKIIa-C1V1(t/t)- 
mScarlet-KV2.1) if injecting into C57/BL6 mice or C1V1-Kv2.1 alone if 
injecting into transgenic mice. After injection, a double-tiered cranial 
window composed of a 4-mm circular coverslip glued to a 3-mm circular 
coverslip was pressed into the craniotomy and sealed with cyanoacr-
ylate (VetBond) and dental cement. Mice were recovered in a heated 
recovery chamber and kept under observation until behaving normally. 
Mice were subsequently monitored and their weight recorded for 7 d 
after surgery. Mice were allowed to recover for at least 21 d with ad 
libitum access to food and water before further procedures. This also 
allowed viral expression to ramp up before behavioral training was 
commenced.

2P imaging
2P imaging was performed using a resonant scanning microscope 
(2PPlus, Bruker Corporation) that raster scanned a femtosecond 
pulsed, dispersion-corrected laser beam (Vision-S, Coherent) across 
the sample at 30 Hz. A ×16/0.8 NA water immersion objective lens 
(Nikon) was used. GCaMP and mScarlet were imaged using a 920-nm 
and a 765-nm beam, respectively. Power on sample was controlled using 
a Pockels cell (Conoptics) and was kept at 50 mW for all experiments. 
A rectangular field of view (1,024 × 514 pixels, 1,397.4 × 701.4 μm) was 
used to image across two brain regions at 30 Hz. Imaging was controlled 
through PrairieView (Bruker Corporation). For 2P optogenetic proce-
dures, see Supplementary Methods.

Behavioral training
Mice were water restricted and given access to ~1 ml of water per day. 
Their weights were recorded, and ad libitum access to water or wet 
mash was provided if the animal’s weight dropped below 80% of the 
pre-restriction weight. For training, mice were head fixed using their 
head plate with their body supported in a 3D-printed polylactic acid 
tube. Mice became acclimatized to head fixation and relaxed in the 
tube after the first 1–2 sessions.

All behavioral training was controlled using pyControl hard-
ware and software68 based around the micropython microcontroller.  

The pyControl framework acted as the master clock for behavior by 
writing the timing of behavioral input and output events to disk and 
triggering trials and stimuli based on behavioral events.

Mice reported photostimulation by licking a metallic lick 
spout placed ~5 mm from the tongue using a micromanipulator arm  
(Noga Engineering). The spout was electrically connected to the pyCon-
trol lickometer circuit (Open Ephys), which both recorded licking 
events and drove a solenoid valve (Lee Products) to deliver a ~2-μl 
water reward.

The general structure of the task and individual trials was con-
sistent at all stages of training. Each trial was separated by a fixed 5-s 
inter-trial interval followed by a 4–6-s lick-withhold period, where the 
length of the lick-withhold period was drawn randomly from a uniform 
distribution spanning these times. This prevented mice from learning 
temporal structure in the task and eliminated the utility of a strategy 
based around random high-frequency licking. If the mouse licked dur-
ing the lick-withhold period, the trial was restarted, and a new withhold 
length was drawn from the uniform distribution.

On trials where photostimulation was delivered, mice were 
rewarded if they licked to report perception of the stimulus. When no 
photostimulation was delivered, no punishment was administered for 
licking. No cues were made available that could signal the start of a trial.

The ‘response period’ during which the mouse’s licking response  
was recorded commenced immediately after the end of the lick- 
withhold period. This coincided with the onset of photostimulation 
in the case of go trials. The response period lasted for 1 s, and licks 
during this period alone were used to define the outcome of the trial. 
If the animal licked during the response period, this was scored as a 
‘hit’; failure to lick on a go trial was scored as a ‘miss’. On catch trials, if 
the animal licked in the response period, the trial was scored as a ‘false 
positive’; trials where the animal did not lick in this period were scored 
as a ‘correct rejection’. A reward was delivered immediately after a cor-
rect lick on hit trials. This behavior can, thus, be considered a detection 
task where catch trials are used to report the animal’s baseline licking 
probability. Trial type was selected pseudorandomly ensuring no more 
than three consecutive trials of the same type. Mice were trained until 
they ignored 10 consecutive rewards or until 90 min had elapsed.

Behavioral performance was quantified using the d′ metric69, 
which quantifies the difference in response probability between hit and 
catch trials while controlling for baseline response rate. This allows for 
comparison of performance of mice with conservative licking strate-
gies, that are less likely to lick on both go and catch trials, with mice 
that are more likely to lick on both trial types.

d′ is defined as

d′ = z(hit rate) − z(false alarm rate)

where z is the Z-transform function
Sessions were discarded from all analyses if behavioral perfor-

mance was poor, where d′ for trials on which 150 cells were targeted 
was less than 0.95 and/or d′ for trials on which 40 and 50 cells were 
targeted was less than 0.5.

2P behavioral training
Naive mice initially learned the association between photostimula-
tion and reward through ‘one-photon’ wide-field stimulation with 
a 595-nm LED (Cree) (Supplementary Methods). After learning the 
one-photon stimulation task, mice were transitioned to the 2P version 
of the task, whereby mice responded to 2P photostimulation targeted 
to S1 only. Initially mice were trained on a task in which ~150 S1 neurons 
were photostimulated on every go trial in three groups of 50, with an 
inter-group interval of 5 ms (each group stimulated with 10 × 25-ms 
spirals; the entire 150-cell photostimulation takes 760 ms). Once mice 
registered a d′ > 1.5 across an entire session, they were transitioned to 
the main version of the task. This task consisted of three trial types 
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selected pseudorandomly, with equal probability and with no more 
than three consecutive trials of the same type. On 1/3 of trials, 150 cells 
were targeted in groups of three; on 1/3 of trials, cells were targeted in 
a single group, with the number of targets drawn randomly from the 
set {5,10,20,30,40,50} with equal probability and with replacement; 
and the final 1/3 of trials were catch trials in which no photostimula-
tion was performed. The 5–50-target photostimulation took 250 ms 
(10 × 25-ms spirals).

Before each session, photoresponsive cells were identified by 
performing 2P photostimulation spanning opsin-expressing areas 
of S1 (for example, Fig. 1c). This generated the coordinates of ~150 S1 
neurons known to be responsive to stimulation. The subset of neurons 
to be targeted was selected randomly before each trial; cells in each 
simultaneously targeted subset were no more than 350 μm apart.

Before active behavior, 10 min of spontaneous imaging was per-
formed without any photostimulation being delivered. During this 
time period, 10 rewards were delivered with an inter-reward interval 
of 10 s; this allowed us to assess the ‘reward-only’ neural response in 
somatosensory cortex. Active behavior followed spontaneous imag-
ing, during which the mouse was rewarded only if it responded to a go 
trial. Neural activity was imaged throughout active behavior but was 
stopped every ~15 min to ensure that the objective lens was completely 
immersed in water and to monitor animal welfare. The field of view was 
manually corrected for drift throughout the session by moving the 
objective to realign the field of view to a marker cell.

White noise was played to the animal throughout the session to 
mask auditory cues signifying the onset of stimulation, and galvanom-
eter mirrors were moved in an identical fashion on both go and catch 
trials. This ensured that the auditory cues generated were matched on 
both go and catch trials and also ensured that mice were responding to 
optical activation of S1 alone. Behavioral events were recorded through 
pyControl, and photostimulation was controlled by custom-written 
routines in Python and C.

Imaging data analysis
Calcium imaging movies were processed using Suite2p70, and regions of 
interest corresponding to putative cell somata were manually selected. 
Suite2p also extracts a signal arising from the neuropil surrounding a 
cell body. To remove contamination of the signal arising from individual 
soma by the surrounding neuropil, we subtracted the neuropil signal 
from each cell body at each timepoint (t) according to the equation:

F(t) = Fsoma(t) − Fneuropil(t) x0.7

where:
F = neuropil subtracted fluorescence
Fsoma = fluorescence from the cell’s soma
Fneuropil = fluorescence from the cell’s surrounding neuropil
0.7 = neuropil coefficient33

To ensure that cells with a bright baseline did not dominate the 
analysis, we computed ΔF/F for each cell using the equation

∆F/F = (F − F)/F

where:
F  = the mean of F  across time through the entire session
Cells with very high ΔF/F values (max ΔF/F > 10), likely not arising 

from spikes, were discarded from further analysis.
Imaging data were split into individual trials, defined as 2 s preced-

ing and 8 s following the onset of a trial. Trial onset was defined as the 
onset of photostimulation in the case of go trials, the onset of galvo 
spiraling in the case of catch trials or the delivery of reward in the case 
of reward-only trials. Frames occuring while the photostimulation laser 
was on were excluded due to artifactual crosstalk in the imaging chan-
nel (as well as two frames before and after stimulation to ensure that 

there was no contamination from the laser in neighboring timeframes). 
Due to the slow decay of the GCaMP6s calcium sensor, the magnitude 
(but not the precise timing) of neural activity obscured by photostimu-
lation artifact was clearly apparent in the 500-ms post-stimulus period 
(Fig. 1d; see also Supplementary Fig. 4 for spike-to-fluorescence simu-
lations of this effect). See Supplementary Methods for normalization 
and sorting procedures and definitions of targets, photostimulation 
responsiveness and excited/inhibited neurons.

Normalization and sorting of post-stimulus neural activity
Post-stimulus neural activity was baselined relative to pre-stimulus 
activity to assess the relative change in activity after the photostimu-
lation period and to compare this change across cells and trials. On 
each trial, for each individual cell, the average ΔF/F activity in the 2 s 
preceding the photostimulation was subtracted from the post-stimulus 
activity trace. This normalization procedure was applied to all analyses 
and visualizations of post-stimulus neural activity, except for Fig. 2d–f 
and Extended Data Fig. 3a where the difference between pre-stimulus 
and post-stimulus activity was assessed. Neurons were sorted for visual 
clarity only (in Fig. 2), using the sum of the post-stimulus ΔF/F activity 
on hit, miss and reward-only trials. This yields a sorting from strongly 
inhibited to strongly excited cells.

Pre-stimulus population metrics
All pre-stimulus population metrics were computed across a 500-ms 
period immediately before photostimulation. All metrics were calcu-
lated on a trial-wise basis. The natural logarithm was taken of metrics 
that were fit better by a log-normal distribution as opposed to a normal 
distribution as assessed by Kullback–Leibler divergence (for clarity, 
this includes population variance).

Mean population activity was computed by first averaging ΔF/F 
activity across all pre-stimulus frames for each neuron to yield a vec-
tor containing a scalar value for each neuron defining its pre-stimulus 
activity. Next, firing rates were averaged across all neurons to give a sin-
gle scalar value for each trial, defining the average population activity.

Population variance was computed in a similar fashion, first by 
averaging across all pre-stimulus frames (in the 500-ms window before 
stimulation) for each neuron. However, rather than taking the mean 
of the activity vector as above, the variance of the vector was used to 
generate a single scalar value for each trial.

Logistic regression classifiers
The dynamic decoding classifiers of Fig. 3 used a logistic regression 
model with an L2 penalty term to the weights with a regularization 
strength of 0.001 (optimized by a parameter sweep with values 10−7 
to 103 with increments of factor 10). The Scikit-learn implementation 
of logistic regression was used71. Classification accuracy was com-
puted per timepoint on a session-wise basis and then averaged across 
sessions, with shaded areas showing the 95% confidence interval of 
performance across sessions.

Each model was trained to classify the probability that a trial 
belonged to one of two different trial types. A 3:1 train:test split was 
employed, and model performance was assessed on held-out test trials 
only. Trials were subsampled if necessary to prevent biases (Supplemen-
tary Methods). Four-fold cross validation was used on each session, with 
a new model trained for each fold for each timepoint, and classification 
accuracy is reported as the average of the test data across folds, meaning 
that all (potentially subsampled) trials were in the held-out test set exactly 
once. A new model was trained from scratch for each imaging frame 
within a trial; hence, the training data consisted of a vector containing a 
single scalar ΔF/F value for each cell of all trials on a given frame.

See Supplementary Methods for more detail on the statistical tests 
used, classification of the reward-only trials, decoding time-averaged 
signals and analysis on the influence of response time, stimulus 
strength and population variance.
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Behavioral data analysis
As imaging was stopped intermittently, neural activity was not recorded 
for every trial performed by the animal; trials that were not imaged were 
excluded from all analysis. Hit trials in which the animal licked with an 
exceptionally short latency (<150 ms) are likely to have been driven by 
random licking rather than perception of the stimulus and were, thus, 
marked as ‘too-soon’ and not included in further analysis24.

For trial-wise analysis of neural activity, each trial’s time series was 
aligned to the onset of the (sham) photostimulation (time = 0 s) or to 
the onset of reward for the reward-only condition.

Psychometric curves were fit to behavioral data by computing 
the value of d′ separately for trials in which a given number of cells was 
targeted (Fig. 1f). This was achieved by comparing the hit rate for a given 
number of cells targeted to the false-positive rate across all catch trials. 
Data were fit using a logistic-function-adjusted lower bound at d′ = 0.

Quantification of SNR effect
We performed a logistic regression analysis to validate that both stimu-
lus strength (that is, the number of targeted cells) and the noise level 
(that is, pre-stimulus population variance) significantly contributed to 
predicting trial outcome (Fig. 6). Logistic regression was performed 
on the data of all hit and miss trials of all sessions (as in Fig. 6a,b). 
Both regressors significantly contributed to explaining trial outcome 
(both P values < 10−13, two-sided t-test on the logistic regression coeffi-
cients), with explained variance R2 of 8.4% (as calculated by McFadden’s 
pseudo-R2 for logistic regression). This was greater than the R2 obtained 
by regressing trial outcome to each of the two variables individually 
(R2 = 5.4% for number of targeted cells and R2 = 2.7% for population vari-
ance). Hence, trial outcome was best predicted using both regressors.

Calculating the effective recurrence from the covariance 
matrix of non-shared activity
We infer the effective recurrence (R) from the covariance matrix of 
non-shared activity as described in ref. 39. In brief, the three main steps 
are (1) to disentangle the activity that is shared across all neurons from 
the non-shared activity that is individual to each neuron (latent factor 
analysis). (2) From the non-shared activity, estimate the width of the 
cross-covariance distribution, which is an indicator of the dynamical 
state of the system, and the mean variance (two-step bias correction). (3) 
From the ratio of these two quantities, calculate the effective recurrence 
R directly as derived in ref. 72 (final estimate). To calculate the recurrence 
as precisely as possible but to avoid any bias from different trial numbers 
between conditions and sessions, we concatenate 6.5 s of pre-stimulation 
activity from 15 subsampled trials at a time and report the average of effec-
tive recurrence R across 1,000 subsamples for each session and condition.

Calculating the network response timescale from 
photostimulated neurons
We calculated the network response decay time after photostimulation 
as a measure of persistent activity likely generated by local recurrence, 
adapted from ref. 40. To capture as much of the response as possible, 
we restricted our analysis to the subset of trials where photostimulation 
lasted 250 ms (that is, 5–50 cells targeted). For each trial, we selected 
only the targeted neurons and averaged their photostimulation 
response up to 5.5 s corrected for their average fluorescence in a 6.5-s 
pre-trial window. We then computed the average response across trials, 
subsampling 10 trials at a time 1,000 times to avoid any bias from dif-
ferent trial numbers between conditions and sessions. Last, we fit an 
exponential decay function with amplitude A and decay time τpost to 
the averaged responses and, finally, reported the average of the decay 
time τ across 1,000 subsamples for each session and condition. To 
relate the network response timescale τpost to the effective recurrence  
R, we used a simple network model73 that describes the firing rates of 
the targeted neurons r(t) as a linear function of the recurrent weights 
W and external input h(t). After an eigenvector decomposition of W 

and identifying the largest eigenvalue as R, we found the decay time-
scale along its eigenvector τpost to scale with R as τpost ∼

1
1−R

.

Statistics and reproducibility
We did not use statistical methods to determine sample size, and no 
randomization was used. Sample sizes were chosen based on previous 
studies24 that showed that statistical inferences can be drawn, in studies 
using 2P calcium imaging and 2P optogenetics, with n ≈ 10 mice. Data 
collection and analysis were not performed blinded to the conditions of 
the experiments. Unless otherwise stated, paired non-parametric tests 
were employed, and a P value of 0.05 was used as a threshold for signifi-
cance throughout. Multiple comparison corrections were applied to 
significance tests using Bonferroni correction unless otherwise stated. 
Error bars show 95% confidence interval unless otherwise stated. We 
have made the code that (re)produces all analysis and visualization 
publicly available (see ‘Code availability’ section).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All source data used for the data analysis and visualization are publicly 
available on a GIN data repository at https://doi.org/10.12751/g-node.
h27xvl.
This includes the 2P calcium imaging and optogenetics recordings of 
all experiments as well as the pupil size data.

Code availability
Behavioral training used pyControl hardware and software as previ-
ously reported68. Photostimulation was controlled by custom-written 
code in Python and C, available from the authors upon reasonable 
request. Online imaging analysis used STAMovieMaker (https://github.
com/llerussell/STAMovieMaker). Offline pre-processing imaging analy-
sis was performed using Suite2p70.
All subsequent data analysis and visualization were performed in 
Python 3.7 using custom-written code, which we have made publicly 
available on GitHub at https://doi.org/10.5281/zenodo.8066289.
Furthermore, the recurrence and pupil imaging processing analysis 
can be found on GitHub at https://doi.org/10.5281/zenodo.8109935.
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Extended Data Fig. 1 | Mapping whisker S1 and S2 regions using widefield 
calcium imaging and whisker stimulation. (a) Single whiskers were deflected 
one at a time by threading them on to a capillary tube attached to a piezoelectric 
actuator. This figure was adapted with permission from Ethan Tyler and Lex 
Kravitz (10.5281/zenodo.3925901). (b) Each whisker was deflected multiple 
times and the results were averaged. The stimulus-triggered average responses 

from all whisker deflections is plotted on an image of the cerebral vasculature. 
(c) Individual stimulus-triggered average images from each whisker shows the 
topographical organisation of the barrel cortex in whisker S1 and the mirrored 
topography in whisker S2. Panels b) and c) show data from a representative single 
recording session.
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Extended Data Fig. 2 | Activation of targeted cells by photostimulation.  
(a) The average ΔF/F activity of the cells targeted by photostimulation is shown 
(mean values +/− SEM) per recording session, for Hit and Miss trials separately. 
Targeted cells are activated similarly, with the notable exception of Hit-only 
inhibition at ~2 seconds post-stimulus in 3 recording sessions (of the same 
animal), indicating that the photostimulation-induced activation is largely 
independent of behavioural outcome. All trials with 5 to 50 cells targeted were 
used; trials where 150 cells were targeted were excluded because almost all of 
these trials resulted in a Hit outcome, biasing the averages. (b) The same data as 
panel a) is shown, but now averaged across animals and split by number of cells 

targeted (mean values +/− SEM). (c) Stacked histogram of the animals’ response 
times (defined by the time of the first lick) for each trial type. All trials with a 
response time within 2000 ms of all recording sessions are shown in the left 
panel, while trials with a response time greater than 2000 ms and trials where no 
lick occurred are grouped in the right panel. (d) Density histograms of response 
times of hit and reward only trials. Same data as in panel a), but normalised per 
trial type and binned per 200 ms. Medians (248 ms for reward only trials and 
383 ms for hit trials) are significantly different (p = 0.01, (two-sided) Mood’s 
median test).
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Extended Data Fig. 3 | Fraction of cells responding and grand average traces 
of all trial types in S1 and S2. (a) The fraction of responsive cells (both excited 
and inhibited) on each trial type across all numbers of cells targeted. One-sided 
Wilcoxon signed-rank tests were used to test whether the fraction of responsive 
cells of hit trials was significantly greater than on other trial types (Bonferroni 
corrected for 8 tests). N = 11 independent recording experiments. Boxplots are 
defined by the median (centre), interquartile range (IQR) box, 1,5 IQR whiskers 
plus any outliers. (b) Average population responses of all trial types across all 

sessions. Traces are averaged across cells, trials and sessions for a given trial type. 
Trials in which 150 cells were targeted were removed for display (and shown in 
c). The time course of reward only trials is different from the time course of hit 
trials, hinting that the neural activity on hit trials constitutes more than motor 
preparation, movement, and reward related activity. This is further quantified 
in Figs. 2, 3. (c) As above but showing exclusively trials in which 150 cells were 
targeted.
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Extended Data Fig. 4 | Dynamic decoders of all trial types. The strength of 
stimulus decoding of trial type in the neural population in S1 was dynamically 
quantified using logistic regression models. Models were trained on each time 
frame individually, with activity of all cells in S1 or S2, and tested on held-out 
data. (a) Models were trained, for each time point, on S1 activity to classify hit 
trials from correct rejection trials and then tested on held-out hit trials (green), 
correct rejection trials (yellow), reward only trials (dark blue), false positive trials 
(light blue) and miss trials (red). Classifications are presented as mean values 
+/− SEM across N = 11 sessions in panels (a)-(l). Coloured bars above the traces 
show time points at which classifier performance was significantly different from 
chance (two-sided Wilcoxon signed-rank tests, p < 0.05, Bonferroni corrected, 
see Methods). (b) As above, but trained on S2 activity. (c) Models were trained on 
S1 activity to classify miss trials from correct rejection trials and then tested on 
miss trials (red), correct rejection trials (yellow) reward only trials (dark blue), 
false positive trials (light blue) and hit trials (green). (d) As above, but trained on 
S2 activity. (e) Models were trained on S1 activity to classify reward only trials 
from correct rejection trials and then tested on reward only (dark blue), correct 
rejection trials (yellow), miss trials (red), false positive trials (light blue) and hit 
trials (green). (f ) As above, but trained on S2 activity. (g) As (a) but the number of 

trials was restricted to 10 for each type, matching the total number of reward only 
trials recorded. (h) As (b) but the number of trials was restricted to 10 for each 
type, matching the total number of reward only trials recorded. (i-l) Equivalent 
to Fig. 3, but now using 2-second windows to train the classifiers. Three windows 
were used (−2.0 s up to and including −0.1 s, 0.4 s u/i 2.3 s, 2.4 s u/i 4.3 s), shown at 
the bottom of each panel. For each window, neural activity was averaged across 
time, per neuron per trial. Classifiers were then trained and evaluated as before 
and described in Methods. Asterisks indicate significant differences with chance 
level accuracy 0.5 (two-sided Wilcoxon signed-rank test, bonferroni-corrected 
p value < 0.05). As in panels (a)-(h), classifications are presented as mean values 
+/− SEM across N = 11 sessions in panels. (m) Comparison between lick response 
time and predicted outcome for all hit trials in S2. We considered the first 
decoder post-stimulus (at t = 367 ms), and compared for each trial the predicted 
outcome evaluated on withheld test data to the response time. This panel shows 
one example session (same session as Fig. 2a), and its Pearson correlation value 
r and associated (two-sided) p value. (n) Pearson correlation values r between 
response time and decoded S2 predictions of hit trials of all 11 sessions are shown. 
A Bonferroni multiple-comparison correction of N = 11 (sessions) was used.
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Extended Data Fig. 5 | Dynamic decoders of individual sessions. (a–d) As Fig. 3, but displaying classifier performance for each individual session. Traces were 
smoothed using a running mean of 5 time points for visual clarity.
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Extended Data Fig. 6 | Further population metrics of pre-stimulus activity. 
Comparison of population metrics of pre-stimulus in S1 (a) and S2 (b) activity 
prior to hit trials and prior to miss trials. The first two panels show the two metrics 
of Fig. 4b. Next, two other significant task variables are shown; the trial number 
(an integer between 0 and the total number of trials in a session, indicating the 
number of trials previously undertaken by the animal in a given session) and 
the reward history (defined as % hit trials in the 5 preceding photostimulated 
trials). All variables were z-scored for clarity, and significance was assessed using 
two-sided Wilcoxon signed-rank tests. (c, d) The co-variability of the significant 

statistics of panels a and b was assessed using Pearson correlation (two-sided 
t-test). In sum, as recording sessions progress, reward history declines, and 
population variance is correlated to this trend. (e) Population variance is 
significantly correlated between S1 and S2 on a single-trial level (two-sided 
t-test). (f ) Population variance is significantly correlated to the population mean 
on a trial-by-trial basis in both S1 and S2 (two-sided t-test). Population mean and 
variance were z-scored in all panels to allow comparison between  
different recording sessions. Trial number and reward history were z-scored in 
panels a-b only.
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Extended Data Fig. 7 | Dynamic decoding results split by population 
variance. (a–d) The decoders of Fig. 3 are shown, but additionally split by 
population variance. In other words, this figure shows the same data, but with an 
additional condition to separate trials by. Each recording session was split into 
3 tertiles of equal size based on population variance (that is 3 bins were used), 
which were then averaged across sessions. Classifications are presented as mean 
values +/− SEM across N = 11 sessions. (e-h) The decoders of Fig. 3 are shown, but 

additionally split by number of cells targeted. Three ‘number of cells targeted’ 
conditions were used (instead of six) to increase data size, in particular for the 
rare scenarios (such as, for example, ‘Miss 40-50’). Two recorded sessions did not 
include data for one trial type/cells targeted combination, and were therefore 
omitted (for that combination only). Hence, classifications are presented as 
mean values +/− SEM across N = 9 sessions.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Recurrence analysis for all, shared and non-shared 
activity. The recurrence analysis results of Fig. 5 are shown in more detail. The 
first row (a-c) shows the mean off-diagonal correlation: for (a) all activity, (b) 
shared activity, and (c) non-shared activity. The second row (d–f ) shows the mean 
on-diagonal covariance μV. The third row (g–i) shows the standard deviation 
of the off-diagonal covariance σCC. The fourth row ( j–l) shows the ratio of the 

standard deviation of the off-diagonal covariance and the mean on-diagonal 
covariance σCC/μV. The fifth row (m–o) shows the change in recurrence R. The 
sixth row (p–r) also shows the change in the recurrence R, but estimated from 
neural activity in S2 instead of in S1. P values tested for a difference in session-wise 
population metrics between hit and miss trials (two-sided Wilcoxon signed-rank 
test without correction multiple comparison).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Recurrence analysis for different number of latent 
factors. The stability of the results shown in Fig. 5 with respect to the choice 
of the number of latent factors is explored (dashed vertical line denotes the 
5 latent factors we used in Fig. 5). The first row (a, b) explores the hit-miss 
difference for the mean off-diagonal correlation; shown are (a) the effect size 
(dashed horizontal line denotes nil effect) and (b) the p-value of the observed 
effect (dashed horizontal lines denote p = 0.05, p = 0.01, and p = 0.001; two-
sided Wilcoxon signed-rank test without correction multiple comparison), for 
all activity (black diamond), shared activity (purple crosses) and non-shared 

activity (pink crosses). The second row (c, d) explores the hit-miss difference for 
the mean on-diagonal covariance μV. The third row (e, f ) explores the hit-miss 
difference for the standard deviation of the off-diagonal covariance σCC. The 
fourth row (g, h) explores the hit-miss difference for the ratio of the standard 
deviation of the off-diagonal covariance and the mean on-diagonal covariance 
σCC/μV. The fourth row (i, j) explores the hit-miss difference for the recurrence R. 
The fifth row (k, l) shows the same hit-miss difference for R, but uses Principal 
Component Analysis (PCA) instead of LFA to estimate shared activity.
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Extended Data Fig. 10 | Pre-stimulus pupil size does not influence trial 
outcome. (a) Pupil size was measured for 3 sessions (sessions 7, 8 and 9, 
corresponding to Supplementary Fig. 2), see Methods. (b) Trial- and session-
averaged pupil size dynamics for hit and miss trials, where shaded areas indicate 
the 95% confidence interval of the mean (across sessions and trials). The time-
averaged pre-stimulus pupil size was not significantly different between hit and 
miss trials (two-sided t-test). (c) Population variance was very weakly correlated 
to pupil size across all sessions (both averaged across 500 ms pre-stimulus per 

trial) (two-sided Pearon correlation r = 0.12, p = 0.02). (d–f ) Trial-averaged pupil 
size dynamics per session, where shaded areas indicate the 95% confidence 
interval of the mean (across trials). Pre-stimulus differences between hit and miss 
were not significant for any of the sessions (two-sided t-tests), although session 7 
(panel d) almost reached the significance threshold (p = 0.053). (g–i) Population 
variance vs pupil size per session. Two-sided Pearson’ correlation was significant 
for only one of the sessions (session 7).
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