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Moving wetting ridges on ultrasoft gels
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The surface mechanics of soft solids are important in many natural and technological applications. In this
context, static and dynamic wetting of soft polymer gels has emerged as a versatile model system. Recent
experimental observations have sparked controversial discussions of the underlying theoretical description,
ranging from concentrated elastic forces over strain-dependent solid surface tensions to poroelastic deformations
or the capillary extraction of liquid components in the gel. Here we present measurements of the shapes of
moving wetting ridges with high spatiotemporal resolution, combining distinct wetting phases (water, FC-70,
air) on different ultrasoft PDMS gels (∼100 Pa). Comparing our experimental results to the asymptotic behavior
of linear viscoelastocapillary theory in the vicinity of the ridge, we separate reliable measurements from potential
resolution artifacts. Remarkably, we find that the commonly used elastocapillary scaling fails to collapse the ridge
shapes, but, for small normal forces, yields a viable prediction of the dynamic ridge angles. We demonstrate that
neither of the debated theoretical models delivers a quantitative description, while the capillary extraction of an
oil skirt appears to be the most promising.
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I. INTRODUCTION

Wetting of soft materials has recently become an intensely
studied field of research [1], with rich dynamics [2–7] and
applications from biology [8] to soft electronics [9]. Reticu-
lated polymer networks, typically swollen by a liquid fraction
of the polymer itself [6,10], are commonly used materials in
applications and fundamental research. Typically, these mate-
rials are so soft that they can be deformed by the capillarity
of their surfaces, i.e., a solid capillary pressure [11]. On long
timescales, the liquid fraction in the gel can rearrange, lead-
ing to poroelastic relaxation and shape adaptation [6,12]. On
small scales, these materials thus behave similar to liquids,
dominated by capillary effects. In contrast to liquids, on large
scales, these materials behave like solids, resisting permanent
loads with a finite storage modulus [13–15]. This dual nature
of soft materials poses intriguing scientific questions, espe-
cially when it comes to their response to localized loads, in
which the capillary and elastic behaviors both contribute.

It is commonly assumed that a three-phase contact line,
formed by a liquid meniscus ending on the surface of a soft
solid, provides a near-perfect line load, concentrated to molec-
ular scales [1,16,17]. Due to its fundamental and practical
relevance, this problem received enormous attention during
the last decade [1,18]. Pioneering work showed that the mo-
tion of contact lines on soft materials is limited by dissipation
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in the solid, not the liquid, which is called viscoelastic brak-
ing [16,17]. The notion that the local force balance at the
three-phase line is of capillary instead of elastic origin was
experimentally verified in a series of seminal papers by Style
and Park et al. [19,20]. Thus, it is believed that this force
balance is equivalent to what is known as Neumann’s balance
for liquid three-phase lines [21].

A purely capillary force balance at a three-phase line is
only possible if the three surface tensions fulfill a certain
inequality, namely, that none of the surface tensions is larger
than the sum of the other two,

γi <
∑
j �=i

γ j, (1)

where the indices i, j ∈ {LA, SL, SA} indicate the interface
between adjacent phases [liquid (L), ambient (A), and solid
(S)]. Equivalently, the spreading parameter must be negative
for any combination of the three phases. Most of the static and
dynamic soft wetting experiments in the past have been con-
ducted for materials where this balance is actually in question,
i.e., water/air on cross-linked polydimethylsiloxane (PDMS):
The liquid precursor in the soft solid, typically uncross-linked
PDMS chains, would spread at the interface of the other
two phases rather than forming a stable three-phase line.
Still, well-defined angles have been observed experimentally
at the three-phase line [19,20,22,23]. Recently, a debate on
the contributing forces has emerged, and various mechanisms
that could alter the force balance have been proposed, both
in static and dynamic situations, including strain-dependent
solid surface tensions [15,24–30], surface adaptation [31],
concentrated line loads due to nonlinear elastic bulk stresses
[32,33], geometric and nonlinear rheological effects [34,35],
as well as extraction of free polymer chains from the gel
[10,36–39].
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FIG. 1. (a) A cuvette with a parabolic cavity is partially filled
with two immiscible phases (bottom, L: FC-70 or water; top, A:
water or air). The motion of the meniscus between the two phases
and the solid wetting ridge is observed with a shadowgraphy setup.
(b) Dynamic wetting ridges under an FC-70/air meniscus. Top: Wet-
ting ridge of a 70 Pa gel traveling with v = 1.63 × 10−3 mm/s (b.1)
and v = 9.60 × 10−2 mm/s (b.2). Bottom: Wetting ridge of a 300 Pa
gel traveling with v = 2.06 × 10−2 mm/s (b.3) and v = 1.36 mm/s
(b.4). Right scale bars refer to �, the elastocapillary length of each
PDMS gel. (c) Schematic representation of geometry of static (c.1)
and moving (c.2) wetting ridges. θs is the opening angle of the ridge,
and ϕ indicates rotation of its bisector. θeq and θ are equilibrium and
dynamic liquid contact angles, respectively; θ − θeq the rotation of
liquid interface.

Here we revisit this problem, starting with a liquid com-
bination that actually does allow a stable force balance at the
three-phase line, even when the liquid precursor to the soft
solid, i.e., the uncross-linked substrate material, is considered.
In this case, the deformations also remain relatively small,
and linear viscoelastocapillary theory is expected to hold near
quantitatively. We shadowgraphically visualize wetting ridges
at high spatiotemporal resolution (Fig. 1) for various sub-
strate materials and wetting liquids to test the existing scaling
relations. With this approach, we show that neither of the
former explanation attempts [10,15,25–33,36–39] delivers a
consistent description of the observations.

II. EXPERIMENTAL

To obtain the shapes of wetting ridges at high spatiotem-
poral resolution, we perform shadowgraphy on cylindrical
cavities inside blocks of transparent PDMS gels, analogous to
previous studies [22,23]. Briefly, the mixed liquid ingredients
of the gel formulation are spun at high speed inside a standard
optical cuvette while the gel cures. A bubble entrapped in the
cuvette is elongated along the rotation axis due to centrifugal
forces, forming a stable cylindrical cavity (R ∼ 2 mm) when
the gel is cured. The thickness of the gel layer between the
cavity surface and the cuvette inner wall is h0 ∼ 2 mm. The
surface of the cavity is observed through the gel in grazing in-
cidence, using a long-working distance microscope (Infinitube
with Olympus Objective) and a high-speed camera (Phantom
VEO 4K). The cavity is illuminated from behind to observe
the shadow generated by refraction at the cavity surface [see
Fig. 1(a)]. In contrast to earlier experiments where a diffuse
illumination was used, here we use a Köhler-type collimated
light source, focused into the imaging plane by a 5x Mitutoyo

microscopy objective. Refraction of light at the cavity surface
casts a shadow, while reflection of the collimated light at
the gel surface creates a narrow bright line that enhances the
visualization of the surface profile. We estimate the resolution
of this imaging setup to ∼2 µm, but exclude any data closer
than ∼4 µm to the ridge tip from the analysis, to avoid picking
up optical artifacts. Surface profiles are extracted from the
shadowgraphs by first calculating the mean intensity gradi-
ent in Gaussian-weighted neighborhoods (standard deviation
∼3 px) and determining local maxima of the magnitude of
the gradient along the direction of the gradient. We determine
the slopes at the resolution limit (∼4 µm) by fitting empir-
ical functions to the profile data and compare these slopes
to theory to extract the rotation of the ridge tip ϕ and the
solid opening angle θs [Fig. 1(c), see Appendix A for more
information on the data analysis]. In addition to the ridge
profile, we obtain an estimate of the dynamic liquid contact
angle relative to the undeformed substrate, by monitoring the
shadow of the liquid meniscus through the cavity [Fig. 1(c)].
At the center of the cavity, distortion from the lensing effect
of the cavity is minimal and the meniscus position can be
determined precisely. Since the capillary length and the ridge
location are known, and the capillary number remains very
small, the liquid angle at the ridge can be determined.

As gels, we use three different formulations. For a very
soft gel, we use Dow Corning CY52-276, mixing com-
ponents A and B in a mass ratio of 1.3:1, to obtain
zero-frequency storage modulus G0 ∼ 70 Pa. For slightly
stiffer gels, we use custom formulations, based on a vinyl-end-
functionalized PDMS prepolymer (DMS-V31, Gelest) and
two different methylhydrosiloxane-dimethylsiloxane copoly-
mers (HMS-053 and HMS-082, Gelest) as cross-linker, and a
platinum-complex catalyst (SIP6831.2, Gelest); The prepara-
tion procedure was analogous to Ref. [25]. We first prepare
two stock mixtures, base and catalyst (component A) and
base and cross-linker (component B), respectively, in propor-
tions that the desired ratio of base polymer to cross-linker
in the final gel formulation is achieved by mixing compo-
nents A and B at a 9:1 mass ratio. Then, the second gel
with G0 ∼ 300 Pa is obtained with 97.30 wt% of DMS-V31
and 2.70 wt% of HMS-053, estimating a nonstoichiometric
molar ratio of vinyl to hydride groups of 3.8. Fig. 2 shows
the rheometric spectra of the two gels, where the viscoelas-
tic rheology can be fitted by the Chasset-Thirion consti-
tutional model, μ(ω) = G′(ω) + i G′′(ω) = G0[1 + (i ωτ )n],
with zero-frequency storage modulus G0, timescale τ , and
rheological exponent n [17]. A third gel with G0 ∼ 340 Pa
is obtained with 96.78 wt% of DMS-V31 and 3.22 wt%
of HMS-082, estimating a molar ratio of vinyl to hydride
groups of 2.1. This gel is intentionally prepared with a differ-
ent cross-linker molecule and a different deviation from the
stoichiometric ratio of the functional groups, but a modulus
comparable to the previous one. We repeat all experiments on
the third gel, finding nearly identical profiles as for the 300 Pa
gel. Thus in the following, we will focus exclusively on the
70 Pa and 300 Pa gels. All cavities are stored for a few days
prior to use, to achieve stationary gel and surface states [40].

The wetting ridge is formed on the inside of the cavity
by the meniscus of a liquid that fills the bottom half of the
cavity, leaving the upper half exposed to ambient air. As
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FIG. 2. Rheometric spectra of the two main gels used (sym-
bols), together with fits of the Chasset-Thirion constitutional model
(lines). Blue: Dow Corning CY52-276A/B, mixed 1.3:1 (G0 ∼
70 Pa). Green: Gelest DMS-V31 + HMS-053 (G0 ∼ 300 Pa). Closed
symbols: G′. Open symbols: G′′.

liquids, we use a fluorinated oil, FC-70 (Sigma) and Milli-Q
water (resistivity 18.1 M�cm). We also perform experiments
where the FC-70 meniscus was covered with Milli-Q water,
to obtain an additional set of solid and liquid surface tensions.
To measure interfacial tensions of liquid surfaces, the pendant
drop method (OCA20, DataPhysics Instruments) is used. For
notational convenience and in most situations, we use the
index L to denote the liquid phase that is in the bottom of
the cavity, and A for the ambient, upper phase, which can be
air or water [Fig. 1(a)].

The motion of the meniscus is induced by injecting liquid
into the bottom phase of the cavity using a Nemesys syringe
pump with a Hamilton gas tight syringe, connected to a needle
that sticks through the liquid meniscus. Importantly, these
syringe pumps generate virtually no stick-slip motion in their
actuators [41], allowing for truly stationary motion of the
menisci. All experiments are preformed at room temperature,
∼22 ± 1 ◦C.

III. WETTING RIDGE PROFILES

Figure 3(a) shows the surface profiles of moving wetting
ridges induced by an FC-70/air meniscus on two gels, with
G0 ∼ 70 Pa (blue) and G0 ∼ 300 Pa (green), and for vari-
ous velocities, increasing from top to bottom. The profiles
have been shifted along the vertical axis for a convenient
arrangement. We define the elastocapillary length using the
normal force that the liquid interface exerts at equilibrium,
� = γ sin θeq/G0, where γ is the liquid surface tension and θeq

is Young’s angle, as a scale for the ridge height. These elasto-
capillary lengths are also indicated as scale bars in Fig. 1(b).
According to linear theory [42], the horizontal length scale
�s = ϒs/G0 involves the solid surface tension ϒs, which is
not known a priori, typically different on either side of the
ridge, and may, in addition, depend on the surface strain. To
obtain a suitable estimate for a mean �s, we extract the solid
opening angle θs (see Fig. 1) from the profiles and calculate an
effective ϒs [43] from the vertical force balance, 2ϒs sin((π −
θs)/2) = γ sin θeq. The profiles, scaled with � and �s on
vertical and horizontal axes, respectively, are shown in

FIG. 3. Wetting ridge profiles extracted from the shadowgraphic
images. Blue curves: Profiles of gel with G0 ∼ 70 Pa; green curves:
profiles of gel with G0 ∼ 300 Pa. (a) Profiles in physical units. A
vertical offset has been added to arrange the profiles conveniently.
(b) Profiles scaled with � in y, and �s in x.

Fig. 3(b), again shifted vertically to align the tips of the ridges.
Note that we apply the different physical contact line veloci-
ties of the two different gels, so they become comparable after
being scaled with the corresponding characteristic velocity,
v∗ = ϒs/(G0τ ) [22,42]. Apparently, the profile shapes col-
lapse near the ridge tip for dimensionless velocities v/v∗ < 1.
For dimensionless speeds v/v∗ > 1, a small deviation near
the tips can be seen. However, this deviation is in the range
where optical artifacts due to the corner cannot safely be
excluded anymore [see Fig. 3(b)]. Quite remarkably though,
despite their collapse at small |x|, the scaled profiles deviate
significantly already for |x| ∼ 0.2�s. If the regular viscoelas-
tocapillary theory [17,42] would apply, the scaled profiles
should collapse up to |x| ∼ �s.

A sharp fold at the surface of an elastic half space, as
induced by a contact line, exhibits a regular strain energy
density but generates a logarithmic pressure singularity, both
in finite strain and in linear theory [44,45]. For a wetting
ridge, the surfaces next to the fold are free and subject to solid
capillarity. Thus, the pressure singularity manifests itself in a
logarithmic divergence of the curvature of the solid surface,
which has been shown in finite strain numerical simulations
and experiments [45,46]. Note that the slopes and thus the
contact angles remain regular because the logarithmic singu-
larity is integrable.

Now two questions arise: (i) Can the ridge angles be
determined faithfully from our experiments, i.e., do our exper-
iments resolve scales on which the slopes have substantially
converged to the angles at the three-phase line? (ii) Does vis-
coelastic dissipation in moving wetting ridges generate some
kind of singularity that might enter the force balance or even
render Neumann angles ill-defined, as observed theoretically
for Kelvin-Voigt substrates [7,42]?

To address these questions, we first analyze the solid shape
in the vicinity of the contact line in the framework of linear
viscoelasticity, solving for the slope h′(x) of a wetting ridge
moving at velocity v. We scale x by �s, h′ by �, and v by
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FIG. 4. Asymptotic surface slopes of moving wetting ridges
for small x and v, with n = 1/2: (a) linear scale and (b) double-
logarithmic scale after subtracting the slope at x = 0. The asymmet-
ric component (blue) corresponds to a static ridge and is independent
of v to the leading order. The symmetric component (red) scales as
vn and converges much slower to the limiting value at the contact
line.

v∗. The Fourier transform of the slope is readily obtained
following Ref. [42],

ĥ′(q) = −i q

μ(v q)/χ (q) + q2
, (2)

where q is the wave number in units of �−1
s , and χ (q) is the

Green’s function for the geometry of the solid. The solution
in real space h′(x) is obtained by Fourier inversion of ĥ′(q).
Here we are primarily interested in the properties of the so-
lution near the tip of the ridge, well below the elastocapillary
length, while the outer length, i.e., the wall thickness of the
soft cavity, is much larger than �s. Thus, the elastic behavior
can locally be approximated by an elastic half space, i.e.,
χ (q) ∼ (2|q|)−1.

To analyze the shape near the tip, we expand Eq. (2) into
real and imaginary parts, and those separately for small v:

ĥ′(q) = −i q

2|q| + q2
− vn |q|n sin n π

2

2 + 2|q| + q2/2
+ O(vn+1). (3)

Physically, the small-v expansion corresponds to approximat-
ing the symmetric component of the ridge shape by the static
solution because the leading-order consequence of dissipation
is the emergence of an antisymmetric component in the shape,
close to the tip. The imaginary part in Eq. (3) resembles
the static solution and carries a slope discontinuity at x = 0,
encoded in the ∼q−1 asymptote for large q. The real part
introduces a symmetric component ∼vn to the slope due to
viscoelastic dissipation.

Equation (3) can be inverted analytically to obtain a
lengthy expression, plotted in Fig. 4, which shows the follow-
ing asymptotic behavior at small x,

h′(x) ∼ − signx

2
− 2x (ln 2|x| + γE − 1)

π

− vn

(
2n−1n sec

nπ

2
+ 2�(n − 1) sin2 nπ

2

π
|x|1−n

)
,

(4)

where γE = 0.5772 . . . is Euler’s constant. The first line of
Eq. (4) resembles the asymmetric component of the slope

TABLE I. Surface tensions in mN/m of various liquids against
each other. For PDMS, we measure the surface tensions of the
non-cross-linked base polymer. For water/air, we consider a PDMS-
cloaked interface, using the value from Ref. [38]. The other
interfacial tensions are measured by the pendant drop method. Mea-
surement errors are ±0.5 mN/m except for water/air, which varies
∼ ± 1 mN/m [38].

Water FC-70 PDMS

Air 64.0 18.0 19.8
Water 50.6 42.4
FC-70 6.7

[blue lines in Fig. 4(a)], which is identical to the static solu-
tion. Its slope discontinuity at x = 0 represents the Neumann
balance. Such sharp surface fold introduces a log-singular
elastic stress in its vicinity which, by elastocapillarity, is
translated into a log-singular surface curvature. The second
line represents the symmetric component of the slope [red
lines in Fig. 4(a)], which is caused by dissipation and scales
as vn. The constant component corresponds to a rotation of
the ridge tip, which had already been derived earlier [42]. In
addition, one can identify an algebraic divergence of stress
and curvature, h′′ ∼ x−n. This singularity is also integrable
across the contact line, does not generate a line force, and the
Neumann angles remain well-defined. Recent numerical sim-
ulations showed that the behavior of the viscoelastic stress is
qualitatively maintained for finite strain viscoelasticity when
using an equivalent relaxation law [47].

Figure 4(b) shows the deviation of the dissipative (sym-
metric, red) and static (asymmetric, blue) slope components
from their values at the contact line, scaling the symmetric
component also with vn, on logarithmic scales. The dissipative
component of stress and thus surface curvature diverges much
stronger than the elastic component, such that the correspond-
ing components of the slope converges much slower to its
value at the contact line. At a distance ∼�s/10, the static
component of the slopes deviates by ∼20% from the value at
the contact line [h′(x = ±0, v = 0) = ∓1/2], while the cor-
responding deviation of the viscoelastic component remains
much stronger unless the contact line speed is much smaller
than the elastocapillary speed. Thus, in both experiments and
simulations, resolutions well beyond ∼�s/10 are required to
correctly resolve the solid contact angles.

To estimate the actual surface slopes at the contact line
and thus θSL and θSA [see Fig. 1(c)] from the profiles shown
in Fig. 3, we use the asymptotic result of the linear theory,
fitting the prefactor, to obtain parameters that describe the
ridge shape well below the elastocapillary length, noting that
finite strains might yield quantitatively different results. For
the low surface tension fluid system (FC-70/air), the cap-
illary traction is small compared to the surface tension of
the fluid/PDMS gel interface (see Table I), leading to small
surface slopes and thus small strains. Therefore, comparing
experiments to linear viscoelastic theory appears reasonable.
For larger strains, the character of the elastic and dissipative
stress singularities remains unchanged as far as geometric
nonlinearity is considered, only the prefactor changes [47]
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and the comparison is still meaningful (see Appendix A). For
the softer gel, the resolution limit is around �s/40, for which
a residual deviation is expected to be small. For the stiffer
gel, however, we achieve only �s/10, and nonlinear effects,
especially for the viscoelastic component, might still show
significant deviations.

IV. QUASISTATIC RIDGE ANGLES

Instead of measuring truly static ridges, we here extrap-
olate the solid angles of moving wetting ridges for v → 0.
This has two advantages: On the one hand, we avoid the
ambiguity of a possible residual velocity, which can be as
small as 1 nm/s; on the other hand, we minimize excessive
poroelastic deformation, which occurs on long timescales,
most noticably for wetting ridges that have been residing at the
same location for extended periods of time, although poroe-
lastic relaxation will still be present [6,48]. For FC-70/air
on gels, extrapolating our measurements of θPDMS/FC70 and
θPDMS/air for v → 0, we obtain θPDMS/FC70 ∼ θPDMS/air ∼17◦,
independent (within the errors ∼ ± 1◦) of the stiffness of the
gel. These values match almost perfectly to those reported on
static FC-70 droplets on PDMS gels in air, using confocal mi-
croscopy to localize surface-attached beads [19]. We also test
FC-70/water and water/air on all our gels. For FC-70/water,
we obtain θPDMS/FC70 ∼ θPDMS/water ∼34◦, again independent
of the gel stiffness. For water/air, we obtain θPDMS/water ∼
θPDMS/air ∼50◦ for the 70 Pa gel, and θPDMS/water ∼ θPDMS/air

∼45◦ for the 300 Pa gel. The angles of the last case are most
likely suffering from a resolution problem, since the true non-
linear stress might be quantitatively different from the linear
model. Also, x-ray microscopy experiments yielded different
values for this case [20]. Remarkably, however, we always
find symmetric ridge tips for v → 0, independent of the gel
or the liquid combination.

Since cross-linking of PDMS leaves the molecular interac-
tions of the PDMS chains largely unchanged, it is instructive
to compare the observed angles to the Neumann angles against
liquid PDMS. By employing a Neumann construction, using
the surface tensions of the liquids against each other and the
liquid PDMS base polymer (see Table I), namely, θs = π−
θPDMS/FC70 − θPDMS/air, for FC-70/air on PDMS, one would
expect θs ∼ 115 ◦. The validity of this Neumann construction
is confirmed in a direct measurement of the angle in the liquid
PDMS phase ∼115◦, using an air bubble at the interface
between bulk FC-70 and liquid PDMS (Fig. 5). This value
is significantly smaller than our measurement for wetting on
cross-linked PDMS, which gives θs ∼ 146◦ for FC-70/air on
all cross-linked gels.

Since bulk elasticity does not generate line forces at sharp
folds [44,45,49], the deviation must be caused by altered
surface tensions or other surface-bound phenomena. Several
hypotheses have been proposed to explain this deviation in the
Neumann angles between liquid and cross-linked PDMS: (i)
the cross-linking reaction alters the surface tension [50], (ii)
strain-dependent solid surface tension [25], and (iii) extraction
of liquid PDMS precursor from the network into a wetting
skirt that, in addition, may [36,38] or may not [6,31,37] cloak
the liquid-vapor surface and lower its effective tension [51].

FIG. 5. An air bubble trapped at the interface of liquid PDMS
(top) and FC-70 (bottom). The Neumann angle in the PDMS phase
is extracted from the bubble (red dashed line) and meniscus (blue
dashed line) contours.

For case (i), one would expect that the surface tension
of cross-linked PDMS is different from liquid PDMS but
depends only on the liquid it is in contact with. In particular,
it should not be affected by the strain at the ridge tip. We
apply three different liquid/ambient interface combinations,
namely, FC-70/air, FC-70/water, and water/air, with different
interfacial tensions, measuring the solid opening angle θs for
each combination, i.e., θs ∼ 146 ◦, 112 ◦, and 80 ◦, respec-
tively (see Table II). Here, the values of θs are calculated
by θs = π − θSL − θSA, where θSL and θSA are obtained by
extrapolating the measured slopes on the two sides of the
ridge with the asymptotes from linear theory, Eq. (4), fitting
the prefactors to match the experimentally measured slopes at
∼4 µm away from the tip. For each θs, the surface stress can
be calculated from the Neumann balance, using the measured
θeq, θSL, θSA, and γ . Thus, we obtained two ϒs values for each
PDMS/fluid interface (rows in Table II), corresponding to a
different third phase and thus different θs. We find that, under
different θs, the obtained ϒs values differ significantly for
the each liquid/ambient interface combination (see Table II),
which is also well beyond any reasonable experimental error
estimate, so we arrive at hypothesis (ii).

For case (ii), we may use the Neumann construction pre-
formed above to estimate the solid surface stresses. For the
case of FC-70/air on PDMS, the value we obtain matches
well with previous reports [19]. Solid surface tension is as-
sumed to depend primarily on the surface dilational strain,
which can be estimated from the inclination of the surface:
εs ∼

√
1 + (h′)2 − 1 ∼ h′. This means a decreasing θs corre-

sponds to an increasing strain: the wetting ridge gets sharper,
i.e., the deformation (of the originally flat surface, θs = 180 ◦)
increases. From Table II, we find that for PDMS/air and

TABLE II. Surface tension ϒs in mN/m, obtained from the
Neumann construction under various liquid combinations on top of
cross-linked PDMS gels. Typical uncertainties are ±1 mN/m, except
for θs ∼ 80◦, where a large systematic error cannot be ruled out.

θs ∼ 146◦ θs ∼ 112◦ θs ∼ 80◦

PDMS/air 28.0 21.5
PDMS/water 53.6 56.7
PDMS/FC-70 14.3 10.5
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FIG. 6. Extended Neumann construction in the presence of a liq-
uid skirt (light red), presumably extracted from the soft gel (yellow).
Contact angles between the oil and the gel are assumed to vanish.
For cloaking of the liquid interface with oil, the Neumann angle θO

would vanish.

PDMS/FC-70 interfaces, the surface tensions decrease with
increasing strain. Note that the values (56.7 mN/m) on the
last column for water/air on PDMS (θs ∼ 80 ◦) probably suf-
fer from a large systematic error, leading to underestimated
ϒPDMS/water and ϒPDMS/air. Park et al. reported ϒPDMS/water

∼16 mN/m and ϒPDMS/air ∼59 mN/m, without taking into
account cloaking [20]. Correcting their values for PDMS-
cloaked water, we would obtain ϒPDMS/water ∼14 mN/m and
ϒPDMS/air ∼52 mN/m. Observing surface tensions that de-
crease with decreasing solid angle contradicts the assumption
of a strain-dependent solid surface tension since measure-
ments with externally stretched surfaces showed that surface
stress increases with strain [25,45].

In case (iii), the three-phase line is no longer located at
the solid surface. Instead, an oil skirt [37,39] with a nega-
tive Laplace pressure pskirt transmits the normal force of the
liquid/liquid or liquid/air interface, γ sin θ , onto the solid,
distributed over a width �skirt: pskirt = γ sin θ/�skirt . Figure 6
shows a sketch of this wetting configuration. The distributed
pressure can straightforwardly be implemented into linear vis-
coelastocapillary theory from Ref. [42] to estimate the surface
slopes of the gel, using a normal traction (in physical units)
tn = γ sin θ · �(�skirt/2 − |x|), with �(x) the Heaviside theta
function. The expression for the surface slopes, Eq. (3), is then
multiplied with the Fourier transform of the traction profile,

ĥ′(q) = −i �s
�skirt

sin q �skirt

�s

μ(v q)/χ (q) + q2
, (5)

The surface slopes are then calculated by numerical Fourier
inversion. Given the small ridge surface slopes θPDMS/FC70 ∼
θPDMS/air ∼17 ◦ observed for FC-70/air on PDMS gels, this
model should be near-quantitatively accurate. To obtain θs ∼
146◦, a skirt with �skirt ∼ 0.86�s is required, corresponding to
150 µm and 41 µm for ∼70 Pa and ∼300 Pa gels, respectively.
In the light of recent direct visualizations of oil skirts for static
[37], and moving [39] contact lines on artificially swollen
networks, this estimate appears unreasonably large.

FIG. 7. Rotation of the liquid interface (θ − θeq, filled symbols)
and the bisector of the wetting ridge (ϕ, open symbols), scaled by the
aspect ratio �/�s = γ sin θeq/ϒs as a function of velocity v scaled by
the characteristic velocity v∗. The red dashed line shows the result of
linear viscoelastocapillary theory.

Prior to extraction, the free oil phase in the PDMS gel
has to be advected toward the contact line, which is indeed
predicted by nonlinear poroelasticity theory [52]. Since the
refractive index of the oil and network are expected to be
well-matched, poroelastic deformations remain invisible in
our experiments, i.e., showing up as bright as and thus in-
distinguishable from the gel, despite their significant size.
Poroelastic swelling would further reduce the effective mod-
ulus of the gel at the tip. On the one hand, this would reduce
the skirt size required to obtain the observed θs. On the other
hand, such enhanced swelling would show up in a deviation
of the typical ridge shape.

This is indeed observed in Fig. 3(b): The scaled profiles
for different gel stiffnesses deviate significantly from each
other for |x| � 0.2�s. The elastocapillary model would predict
a good match between the profiles up to |x| ∼ �s because the
outer length, i.e., the gel thickness, is much larger than �s

in both cases and does not impact the local shapes. Instead,
we find a closer match between the shapes in physical units.
Given that the surface tensions are identical for both cases,
this indicates that the zero-frequency shear modulus G0 is not
a good scaling parameter here. Whether or not the observed
ridge shapes can be described by, e.g., linear poroelasticity
[48] remains to be evaluated.

V. DYNAMIC RIDGE ANGLES

Figure 7 shows the rotation of the liquid interface, θ − θeq

(filled symbols) and of the ridge bisector, ϕ (open symbols:
experiments; red dashed line: linear viscoelastocapillary the-
ory), for FC-70/air on our softer (∼70 Pa, blue) and stiffer
(∼300 Pa, green) gels. The rotations have been scaled by the
typical aspect ratio, i.e., �/�s, and the velocity by the charac-
teristic velocity v∗. For the 70 Pa gel (blue), we find a good
agreement between the measured liquid and solid rotation, as
well as the prediction from linear theory. Since the wetting
ridges under FC-70/air menisci exhibit rather small surface
slopes (θPDMS/FC70 ∼ θPDMS/air ∼17 ◦), one may expect that
linear theory could deliver reasonable results here. For the
300 Pa gel (green), however, we find a deviation between the
liquid rotation and the solid rotation, while the latter collapses
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FIG. 8. Solid opening angle θs as a function of velocity v, scaled
by the characteristic velocity v∗. For small speeds, the angle remains
constant, increasing only at large speeds. Data for soft and stiff gels
collapses in this scaling. Larger γ , i.e., smaller θs, leads to an earlier
increase of θs.

onto the data from the soft gel and the model. Possibly,
the velocity-dependent component of the ridge slopes has
not been extracted with sufficient resolution, and thus the
rotation is underestimated. The liquid angle does not suffer
from such resolution limit since the capillary number remains
very small and the meniscus shape is not expected to show
significant deviations from its static shape. Thus, the dissi-
pation generated by the 300 Pa gel appears to be increased
relative to the 70 Pa gel or the theory. Finally, under the
assumption of a poroelastic relaxation and/or an extracted
oil skirt, the match between theory and the softer gel would
be surprising. In this case, poroelastic dissipation or the dis-
sipation in the skirt would have to be taken into account as
well. If the loss modulus of the free oil phase was similar
to the cross-linked gel, however, such a behavior could be
rationalized.

Figure 8 shows the solid opening angle θs for all liquid
combinations and the two gels, with velocity v scaled by the
elastocapillary velocity v∗. We notice that for small scaled
velocities v/v∗, θs remains constant. For large v/v∗, θs in-
creases. The larger the liquid surface tension γ , i.e., the larger
the normal traction and the smaller θs, the earlier the detected
θs increases with v, which points to a nonlinear effect that is
triggered by the surface strain. The curves for different gels,
however, collapse perfectly in the case of same liquid-fluid
combinations, indicating that the time scale τ of the rheolog-
ical model correctly describes the dynamics. Previously, the
velocity-dependent increase of θs has been interpreted by a
dynamical increase of the surface stresses, which yielded a
quantitative explanation for the transition to stick-slip motion
[22]. Given the asymptotic behavior of the slopes in the linear
theory outlined above, resolution artifacts would, however, be
expected to manifest in a similar way. Yet, then the stiffer
gel should be more prone to these artifacts, and the collapse
suggests this is not the case. Invoking again the hypotheses of
poroelastic relaxation and/or extraction of an oil skirt by the
contact line, as well as taking into account the noncollapse of
the ridge profiles, the storage modulus in the ridge-tip region
should be smaller than the independently measured G0, and
the length scales no longer depend on it. Further, the increase
in θs can be reproduced in the linear model with a distributed

traction. On the scale of the skirt, viscoelasticity significantly
contributes to the force balance, and the increase of the mod-
uli with frequency then leads to an increase of the solid
angle.

VI. CONCLUSION

We have shown that both the static and the dynamic an-
gles at the tip of a wetting ridge cannot quantitatively be
described by standard linear viscoelastocapillary theory. The
solid angle θs is typically much larger than expected from
the Neumann balance for liquid PDMS. Neither linear nor
finite strain bulk elasticity can generate line forces at sharp
surface folds [44,45] that could contribute to the Neumann
balance. It remains open though, whether a cusplike singu-
larity of the profile, possibly combined with strain-stiffening
constitutional laws, would generate a stronger stress singular-
ity with a nonzero integral. For the case primarily studied here,
FC-70/air on PDMS, such a singular profile is not expected.
From the Neumann deconstruction of the ridge tip, we derive
surface stresses that depend on θs. We find that the stresses
decrease with θs, which seemingly contradicts measurements
of the surface stress in response to an external strain [25,27].
We also find that surface profiles on gels of different stiffness
do not collapse, apart from a region very close (|x| � 0.2�s)
to the ridge tip, when scaled with the elastocapillary length.
This indicates that the zero-frequency storage modulus G0 is
not a good parameter for the scaling behavior of the ridge
profile, and some critical processes could be missing in cur-
rent theories. For instance, the size scale deviation of the
wetting ridges could be explained by a model that combines
viscoelastic dissipation [17,42] with dynamic poroelasticity
[48,52–54]. Due to solvent aspiration toward the ridge tip
[52,53], the effective stiffness near the tip decreases, and a
spatially varying poroelastocapillary length would be required
to describe the ridge shape. The observed decreasing ϒs with
increasing strain might be caused by the noninert nature of
PDMS surfaces, reacting to the liquid on top of it, e.g., hy-
drolysis reactions of PDMS [31,55]. Furthermore, reticulated
polymer networks are inherently multiscale, and a systematic
derivation of continuum equations from microscopic mod-
els might lead to nonlocal constitutive relations. The size
of the nonlocal kernel could further depend on swelling,
since swelling impacts the distance between cross-links
[50,56]. Including these features in theoretical models of static
and dynamic soft wetting might finally deliver a consistent
theoretical understanding of the experimental observations
[10,15,25–33,36–39].

Despite these discrepancies for the shapes and the static
properties of wetting ridges, we find a rather good agreement
between the measured rotation and the linear theory, at least
for the softer gel where we can exclude significant experi-
mental errors due to resolution limitations. This suggests that
the elastocapillary velocity, v∗ = ϒs/(G0τ ), remains identical
upon poroelastic swelling of the tip, i.e., G0 τ remains almost
constant, which can also be observed when the cross-linking
degree is tuned (see Appendix B for more information). Fur-
ther, this points out that, should indeed poroelastic relaxation
or an oil skirt be responsible for the observed shapes, then
these regions should exhibit a similar elastocapillary veloc-
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ity v∗ as the underlying gel. The measurement of the liquid
angle indicates that the shadowgraphy misses a dissipative
rotation of the ridge that is localized within the last ∼4 µm.
This could be due to finite strain effects or high-frequency
components in the loss modulus that are not detected in
oscillatory rheometry. Unfortunately, with our current ex-
perimental setup, higher spatiotemporal resolution is beyond
reach. Phase contrast x-ray microscopy at a synchrotron fa-
cility [20,57] could reveal the ridge properties at increased
resolution and possibly identify regions of excess dissipative
stress.
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APPENDIX A: DATA ANALYSIS NEAR
THE RIDGE TIP

In the following, we describe how we obtain the profile
slopes near the ridge tip at the optical resolution limit and how
we apply our theory to extract two key parameters from the
experiments, ϕ and θs. Due to the asymmetry of the wetting
ridge, especially at a high velocity [see Fig. 1(b)], we closely
follow our previous work [22,23] and fit each side of the con-
tact line with a separate, empirical shape, but exclude profile
data within ∼4 µm from the tip, where optical artifacts are
observed. For the right-hand side profile [in contact with phase
A, Fig. 1(b)], we use a generic logarithmic function h(x) =
a2 + b2 log(c2 + x), regularizing the near-field singularity by
the offset c2. For the left-hand side profile [in contact with
phase L, Fig. 1(b)], where the profile becomes nonmonotonic
for faster speeds, we use a third-order polynomial function,
h(x) = a1 + b1x + c1x2 + d1x3, to allow for a nonconstant
curvature as observed in the experiments. Figure 9 shows the
comparison between the fitting curves and the raw data points
near the wetting tip, including the slow and fast velocities
for ∼70 Pa and ∼300 Pa gels in panels (a), (b) and (c), (d),
respectively. The wavy structure of the tip profiles, i.e., the
deviations of the extracted profile points from the fit curves
very near the tip (∼2 µm), particularly in the case of high
contact-line velocity, is most likely due to optical artifacts. We
note that these deviations are quite random and not systematic,
which probably comes from the limited resolution of our setup
and the fine details of the tip geometry that changes with speed
and contact line position, so it appears safest to exclude these
data. From these fitted profiles, we extract the slopes at the
optical resolution limit, i.e., ∼4 µm away from the tip. By
matching the slopes to the asymptotic expressions, Eq. (4)
from our linear theory, we obtain the ridge parameters ϕ

and θs.

FIG. 9. Comparison between the shadowgraphic images
(grayscale, reduced contrast), the extracted profile data (teal circles)
and the fitting curves (red and green) near the tip of the wetting
ridge for (a), (b) ∼70 Pa gel and (c), (d) ∼300 Pa gel. Tip artifacts
are visible as a bright spot near the ridge tip. The outer range of the
curve fitting is typically between 80 and 120 µm, and profile data
within ∼4 µm from the tip are excluded.

APPENDIX B: RHEOLOGICAL PROPERTIES
VS STOICHIOMETRIC MISMATCH

Figure 10(a) shows the zero-frequency storage mudulus G0

as a function of molar ratio between vinyl and hydride groups,
i.e., nvinyl/nhydride. We test two different ingredient com-
binations obtained from Gelest Inc., namely, DMS-V31 +
HMS-053 and DMS-V31 + HMS-082. The base polymer
(DMS-V31) is functionalized on both ends with vinyl groups,
while each cross-linker molecule carries ∼15.2 (HMS-053)
or 6.4 (HMS-082) hydride groups on average, according
to manufacturer specifications. Figure 10(b) shows the cor-
responding relaxation time τ as a function of G0. When
adjusting G0 by the cross-linking degree, τ changes approx-
imately inversely, so that G0 τ remains nearly constant. Thus
the elastocapillary velocity, v∗ = ϒs/(G0τ ) remains rather

FIG. 10. Plots of rheological parameters: (a) Zero-frequency
storage mudulus G0 as a function of molar ratio between vinyl groups
(end functionalization of the base polymer) and hydride groups
(functional groups on the cross-linker), i.e., nvinyl/nhydride. (b) The
corresponding relaxation time τ as a function of G0.
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similar when the cross-linking density is changed. Poroelastic
swelling, as it occurs for the ridge tip [52], also reduces

the cross-linking density, and would thus change τ and G0

simultaneously, presumably in a similar way.
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