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The increasing complexity of neural networks and the energy consumption associated with training and in-
ference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and im-
plementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear
activation function. However, there are significant challenges with these approaches related to power levels,
control, energy-efficiency, and delays.

Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves
non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that
affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured
in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial
neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms,
e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based
on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.

I. INTRODUCTION

The rapid growth in neural network complexity has led to
an exponential increase in energy consumption and training
costs. This has created a need for more energy and cost ef-
ficient alternatives sparking the rapidly developing field of
neuromorphic computing [1] in which computations are per-
formed with physical artificial neurons.

Typically, neural networks connect neurons in consecutive
layers through linear maps and non-linear activation func-
tions. So far, the prevalent approach has been to realise the lin-
ear maps with linear physical interactions and employ physi-
cal non-linearities (or approaches like optoelectronic conver-
sion) to realise the non-linear activation function. Among
the many neuromorphic computing platforms [2–5], optical
platforms [2, 3, 6] are one of the most promising contenders
for neuromorphic computing as they efficiently allow to im-
plement the linear aspects of the neural network offering a
high degree of parallelism, high computation speeds and scal-
ability. Furthermore, linear computations can be performed
passively [7, 8] while propagation losses can be very small
making these devices potentially very energy efficient. Lin-
ear optical networks (in free space or integrated photonics)
for implementing the linear aspects of neural networks, i.e.,
matrix-vector multiplication, are already well developed and
have become the basis of commercial chips [9, 10].

On the other hand, physical non-linearities to realise the
non-linear aspects of the neural network are still hard to im-
plement, incurring substantial hardware overhead, fabrication
challenges, and other possibly demanding requirements [11–
13], such as high laser powers in an implementation with
non-linear crystals. Furthermore, non-linearities can induce
chaotic dynamics which makes it impossible to train the sys-
tem. An alternative approach bypasses these challenges by
applying the non-linearity opto-electronically [14–17]. How-
ever, proposals relying on optoelectronic conversion to realise
the non-linear activation functions may be bulky, less energy-
efficient and may suffer from delays.

Moreover, an efficient physics-based training in the pres-
ence of non-linearities is an open challenge, although
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FIG. 1. Fully non-linear neuromorphic system with linear wave
propagation. a The input to the linear, neuromorphic system is en-
coded in some of the tunable system parameters while the output is
determined through the scattering response to a probe signal. Other
controllable parameters serve as learnable parameters. b Example
for an implementation using wave propagation through a network of
coupled modes (e.g. optical resonators). Here, the detunings ∆j of
some of the optical modes are utilized as input x while other de-
tunings and the coupling constants Jj between modes are learnable
parameters θ. The output is a suitable set of scattering matrix ele-
ments, Eqs. (3) and 4, which we obtain by comparing the response
to the probe field, Eq. (1). c-d Due to the linearity of these sys-
tems, we have access to the gradients w.r.t. system parameters which
are required for training. The gradients are given by the products of
scattering matrix elements, Eqs. (7) and (8).

some conceptual progress has been made, especially in the
form of equilibrium propagation [18–20] and Hamiltonian-
echo back-propagation [21]. In the presence of decay, a
back-propagation algorithm was developed [22] and imple-
mented [23] only for specific types of non-linearities. An-
other approach to physical training is to adjust parameters
based on feedback [24] or random parameter shifts [10]. How-
ever, this approach may scale unfavourably with network
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size [25]. Other neuromorphic systems can be trained in a
computer simulation [26] which necessitate complete and ac-
curate knowledge of the system but still offers a potential ad-
vantage in terms of speed and efficiency during inference.
Finally, hybrid approaches [14, 16] perform physical back-
propagation on the linear components of the neuromorphic
system.

Here, we propose a completely new approach for a fully
non-linear neuromorphic system which is only based on
linear scattering. and therefore bypasses all of the chal-
lenges associated with realising and controlling physical non-
linearities. The key idea lies in injecting the input of the neural
network in the system parameters, Fig. 1 a: While linear phys-
ical systems linearly relate a probe signal to the response via
the scattering matrix, the scattering matrix itself depends non-
linearly on system parameters. Therefore, we interpret some
of the system parameters as the input of our neural network
and some as learnable parameters. The output of our neural
network is given by suitable scattering matrix elements which
we obtain from scattering experiments by comparing the re-
sponse signal to the probe signal. Remarkably, this non-linear
dependence enables us to implement a fully functional neural
network capable of performing the same tasks as standard arti-
ficial neural networks. As a major advantage of working with
a linear scattering system, gradients needed to perform gradi-
ent descent can be directly measured in scattering experiments
requiring only a minimal number of scattering experiments.
This does not require complete knowledge or control of the
system; in fact, one can treat untrained parts of the system as
black box. The neural network can be evaluated efficiently
(inference) by performing a minimal number of scattering ex-
periments promising high computation speeds. We simulate
and train our system on hand-written digit recognition and
achieve classification accuracies on par with the accuracies
obtained by standard artificial neural networks.

Our proposal can be readily implemented with existing
state-of-the-art scalable platforms, e.g., in photonics [7, 8, 27]
and analog electrical circuits [28]. Concretely, we propose
an implementation of our network with optical racetrack
resonators coupled via microring resonators allowing for a
densely connected network at a minimal number of waveg-
uide crossings. The architecture of our racetrack resonator
array may also find application in other neuromorphic com-
puting applications that require a high connectivity.

Beyond that, our results are very general and apply to any
type of linear system for which measurable quantitites can
be obtained from a Green’s function. For instance, in ana-
log electrical circuits, the scattering matrix can be replaced by
the impedance matrix [8–10] which is obtained from the cir-
cuit’s Green’s function, and tunable resistances, capacitors or
inductances can serve as input of the network.

II. NON-LINEAR NEUROMORPHIC COMPUTING WITH
LINEAR SCATTERING

A. Concept

Waves propagating through a linear multi-mode systems es-
tablish a linear relation between probe signals aprobe and the
response ares (both are vectors in a multi-port device) via the
scattering matrix

ares(ω) = S(ω, x, θ)aprobe(ω). (1)

This matrix explicitly depends on the frequency ω of the probe
signal and the system parameters, some of which we label as
x and some as θ. Later, x will represent the input vector to the
neuromorphic system and θ the set of training parameters.

Concretely, the system could, for instance, consist of a
number of coupled modes aj , such as the modes of optical
resonators, which we call neuron modes. The scattering ma-
trix is determined by the linear evolution equations for the
neuron modes aj collected in the vector a ≡ (a1, . . . , aN )T.
In the frequency domain, a(ω) = 1√

2π

∫∞
−∞ dteiωta(t), the

equations of motion take the form

−iωa(ω) = −iH(x, θ)a(ω)−
√
κaprobe(ω). (2)

H denotes the dynamic matrix which explicitly depends on
the system parameters x and θ, and κ ≡ diag (κ1, . . . , κN )
are the external decay rates of the neuron modes to the probe
waveguides. We obtain the scattering matrix from Eq. (2)
through input-output boundary conditions, aj,res = aj,probe+√
κjaj [32, 33],

S(ω, x, θ) = 1 − i
√
κG(ω, x, θ)

√
κ

= 1 − i
√
κ[ω1 −H(x, θ)]−1

√
κ. (3)

with the system’s Green’s function G(ω, x, θ) ≡ −i(ω1 −
H(ω, x, θ))−1.

Eq. (3) reveals the general idea behind our concept. While
the relation between probe and response is linear, Eq. (1), the
scattering matrix S(ω,x, θ), Eq. (3), is a non-linear function
of the system parameters. Hence, interpreting some of the
system parameters x as inputs, and some as learnable param-
eters θ, see Fig. 1 a, we are now able to represent learnable
non-linear functions of the input with the help of the scatter-
ing matrix.

The network’s output is a suitable set of scattering matrix
elements Sj,ℓ which are obtained as the ratio between the re-
sponse and the probe signal. Since the scattering matrix is
generally complex, one can consider real or imaginary part as
output, or, more generally,

yr = Re (eiϕSr,p), (4)

with a suitable set of p and r and a convenient ϕ. p here
refers to a probe site and r to the sites at which the response is
recorded. The number of response sites r equals the output di-
mension Nout. The phase ϕ allows to select a quadrature, e.g.,
ϕ = 0 corresponds to ReSr,p whereas ϕ = π

2 corresponds to
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ImSr,p which we will use later on. In practise, the quadrature
can be measured through homodyne detection. There are two
obvious, convenient choices for p and r: (i) the probe site p
is fixed and we consider different sites r at which we record
the system response. This allows to record the output of the
neuromorphic system (inference) with a single measurement.
(ii) We set p = r. This requires Nout measurements to infer
the output, but we found that in this case, the training con-
verges more reliably.

B. Input replication for improved non-linear expressivity

The non-linearity of the scattering matrix (3) as function
of the input x stems from the calculation of the matrix in-
verse representing a specific type of non-linearity. For in-
stance, considering a scalar input x, any scattering matrix el-
ement Sj,ℓ is of the form Sj,ℓ = (ax + b)/(cx + d) with a,
b, c, d some quantities that depend on the other system pa-
rameters. This non-linearity stems from the fact that waves
can propagate back and forth between modes and the scat-
tering matrix (3) is a result of the interference between all
these waves. We can see this by expressing the matrix in-
verse in Eq. (3) for a specific matrix element via the adju-
gate, (H−1)j,ℓ = (−1)j+ℓ detHj,ℓ

detH , in which Hj,ℓ denotes the
matrix in which the jth row and the ℓth line have been omit-
ted. Expanding the determinant expressions with the Laplace
expansion, it is straightforward to see that both detHj,ℓ and
detH linearly depend on any matrix entry Hm,n; therefore,
both denominator and numerator in the previous expression
depend linearly on x.

Note, however, that the matrix determinant of detH (and
similarly detHj,ℓ) contains terms such as H1,1H2,2H3,3 · · ·
and H1,1H2,3H3,2 · · · . This allows us to overcome the seem-
ing limitation of the scattering matrix, namely, by letting the
input value x explicitly enter in more than one system param-
eter. In this way, it is possible to show, that one can repre-
sent general non-linear functions with the scattering matrix
in which the number of repetitions R of the input determines
how well the target function can be approximated. Letting
R → ∞, the approximation approaches the target function.
We prove this in the SI for one-dimensional inputs.

Most applications of machine learning, however, operate on
high-dimensional input spaces. In this case, the situation be-
comes even more favourable: even at a single replication of
the input, the scattering matrix allows to encode correlations
between different elements of the input vector, i.e., the scatter-
ing matrix automatically includes terms such as x1x2x3 · · · .
Therefore, in practise, it can be sufficient to replicate the input
only once or twice. In particular, we will show later that for a
digit recognition task, Fig. 2, it was sufficient to replicate the
input once, R = 1.

C. Training

We will now show one particularly useful consequence of
working with a linear scattering system: it is possible to per-

form gradient descent based on physically measurable gradi-
ents, which is rare in neuromorphic systems. Specifically, gra-
dients w.r.t. θ are directly measurable as products of scattering
matrix elements.

The aim of the training is to minimise a cost function C,
such as the square distance between the target output ytar and
the output y of the system, Eq. (4), C = |ytar − y|2. The
derivative of the cost function w.r.t. a learnable parameter θj
is given by

∂C
∂θj

= ∇yC ·
(
∂y

∂θj

)
(5)

with y defined by Eq. (4). so it only depends on the derivative
of the scattering matrix.

Given the mathematical structure of the scattering ma-
trix (3), we obtain a simple formula for its derivative

∂Sr,p

∂θj
= iκp

(
G
∂H

∂θj
G

)
r,p

(6)

with G =
√
κ
−1

(S − 1)
√
κ
−1 the Green’s function (3), see

the SI for the derivation. Since ∂H/∂θj is local, this implies
that gradients can be obtained from scattering experiments as
combination of scattering matrix elements. Gradients can be
physically extracted allowing for very efficient training.

We make this more concrete in the next section in which
we consider an optical system whose learnable parameters are
the mode detunings and coupling strengths between modes.

D. Implementation based on coupled modes

To make the previous considerations more concrete, we
consider a system of coupled radiation modes, e.g., in the mi-
crowave or optical regime or in electrical circuits composed of
coupled resonant modes, but stress that the concept is general
and applies to a variety of systems and platforms. In an op-
tical system, the neuron modes can be represented by cavity
modes, Fig. 1 b, at frequencies ωj at detunings ∆j ≡ ωj −ω0

from some suitable reference frequency ω0. They all experi-
ence intrinsic decay at rate κ′

j . The modes can, in full general-
ity, be coupled via any form of bi-linear coherent interactions,
such as beam-splitter interactions, single-mode or two-mode
squeezing, or via linear engineered dissipators. For simplic-
ity, we will focus on beam-splitter couplings at strength Jj as
shown in Fig. 1 b. Furthermore, a probe aj,probe is injected
via a waveguide coupled to the modes at rate κj which in-
duces additional losses at this rate. The detunings of some
of the neuron modes serve as input x while other tunable pa-
rameters, such as detunings and coupling strengths, are the
learnable parameters θ, see Fig. 1 b. We obtain the network’s
output (4) by performing a suitable homodyne measurement
on the response fields aj,res. Importantly, not all of the system
parameters need to be tunable for our concept to work.

Coming back to training, we can now more explicitly
present the gradients of the scattering matrix elements defin-
ing the output (6) for the parameters of this coupled-mode



4

structure. In particular, the derivative w.r.t. detuning at the
jth site is given by the scattering path from the probe site r to
site j, and from j to the response site r as illustrated in Fig. 1 c

∂Sr,p

∂∆j
= i

1

κj
Gj,pGr,j (7)

with the Green’s function Gm,n = (Sm,n − δm,n)/
√
κmκn.

Similarly, the derivative w.r.t. the coupling between the jth
and ℓth site is the sum of the possible scattering paths from
the probe site to j or ℓ and the response site, Fig. 1 d,

∂Sr,p

∂Jj,ℓ
= i

1
√
κjκℓ

(Gj,pGr,ℓ +Gℓ,pGr,j). (8)

As we will show in more detail below, the physical ex-
traction of gradients is most straightforward in integrated-
photonics platforms based on coupled resonators [14], with
probe waveguides attached to every resonator whose res-
onance frequency represents a tunable training parameter.
Other, non-tunable linear components can be freely added to
the setup and need not even be fully characterized or fabri-
cated according to some specified design: they can be treated
as a black box, while the training procedure will automat-
ically take care of accounting for their effect on the wave
propagation. Gradients can be efficiently measured requiring
only Nout measurements with Nout the dimension of the net-
work output. These measurements record the full scattering
response to a probe at any of the probe sites p, so the network
can be evaluated (inference) at the same time as computing
the gradients.

During training, gradients can either be applied directly or
be post-processed to average over a mini-batch or to perform
more advanced adaptive gradient-descent optimization (like
with the well-known Adam optimizer). Post-processing can
be directly implemented with analog electronics, e.g., to per-
form the sum operation over multiple gradients [16].

Note that while we focus on photonic systems for the rest
of this work, our results are very general and apply to any
type of linear system for which measurable quantitites can be
obtained from a Green’s function. In fact, linear equations of
the form (2) appear in many different contexts so we expect
our findings to have wide-ranging application. For instance,
for electrical circuits, the scattering matrix can be replaced
by the impedance matrix [8–10] which is obtained from the
circuit’s Green’s function and tunable resistances can serve as
input of the network, see the SI for more details.

III. LAYERED ARCHITECTURE

A. Recursive solution to the scattering problem

The principle of information processing in the neuromor-
phic platform introduced here is fundamentally different from
standard neural networks since the waves representing the in-
formation will be scattered back and forth inside the device
rather than propagating unidirectionally. Nevertheless, with

this in mind, we can choose an architecture that is at least in-
spired by the typical layer-wise structure of artificial neural
networks. It allows us to gain analytic insight into the scatter-
ing matrix and to derive optimal layer sizes to make efficient
use of the number of independent parameters available.

We consider a layered architecture as sketched in Fig. 2 a
with L layers and Nℓ neuron modes in the ℓth layer. Neuron
modes are only coupled to neuron modes in consecutive lay-
ers but not within a layer. Note that while we sketch fully con-
nected layers in Fig. 2 a, the network does not, in principle,
have to be fully connected. However, fully connected layers
have the advantage that there is a priori no ordering relation
between modes based on their proximity within a layer.

This architecture allows us to gain analytic insight into
the mathematical structure of the scattering matrix. For a
compact notation, we split the vector a of neuron modes,
Eq. (2), into vectors an ≡ (a

(n)
1 , . . . , a

(n)
Nn

) collecting the
neuron modes of the nth layer. Correspondingly, we de-
fine the detunings of the neuron modes in the nth layer
∆(n) = diag (∆

(n)
1 , . . . ,∆

(n)
Nn

), the extrinsic decay rates to

the waveguides κ(n) = diag (κ
(n)
1 , . . . , κ

(n)
Nn

), the intrinsic de-

cay rates κ′(n) = diag (κ′(n)
1 , . . . , κ′(n)

Nn
), the total decay rate

κtot
(n) = κ′(n) + κ(n) and J (n) the coupling matrix between

layer n and (n+1) in which the element J (n)
j,ℓ connects neuron

mode j in layer n to neuron mode ℓ in layer (n+1). Note that
this accounts for the possibility of attaching waveguides to all
modes in each layer to physically evaluate gradients accord-
ing to Eqs. (7) and (8). In the frequency domain, we obtain
for the equations of motion of the nth layer

−iωan =

(
−κ

(n)
tot

2
− i∆(n)

)
an − iJ (n)an+1 − iJ (n−1)an−1

−
√
κ(n)an,probe, (9)

in which we omitted the frequency argument ω for clar-
ity. Eq. (9) does not have the typical structure of a feed-
forward neural network since neighbouring layers are coupled
to the left and right—a consequence of the wave propagation
through the system.

We are interested in calculating the scattering response at
the last layer L (the output layer) which defines the output of
the neuromorphic system, so we set an,probe = 0 for n ̸= L
in Eq. (9) and only consider the response to the probe fields
aL,probe. The following procedure allows us to calculate the
scattering matrix block Sout relating only aL,probe to aL,res.
A suitable set of matrix elements of Sout then defines the out-
put of the neuromorphic system via Eq. (4).

Solving for a1(ω), then a2(ω) and subsequent layers up to
aL(ω), we obtain a recursive formula for an(ω)

an = iGnJ
(n)an+1 (10)

with

Gn(ω) ≡

[
κ
(n)
tot

2
+ i(∆(n) − ω) + J (n−1)†Gn−1J

(n−1)

]−1

(11)



5

N2N1

resonant
off-resonant

0
5

N3

0
1
2
3
4
5
6
7
8
9

J1 J2

 

a

d

2
1
0
-1
-1 0 1

0

0

2
3
4
5
6

1 2 3 4 5 6 7 8 9
predicted class

tr
ue

 c
la

ss

7
8
9

1
b c

te
st

 a
cc

ur
ac

y

iterations

iterations

0.82

0.86

0.90

0.94

5000 10000 150000

N2=64

no hidden layer

N2=30
N2=20

0 20 400 200 4000 20 400 200 4000 20 400 200 4000 20 400 200 4000 20 400 200 400

0 0.2 0.4

99 0 0 0 1 1 0 0 0 0
0 93 0 1 1 0 2 0 0 4
0 1 98 0 0 0 0 1 1 0
0 2 2 88 0 1 0 3 4 1
0 2 0 0 97 0 0 0 1 0
1 1 0 0 0 96 1 0 1 2
0 1 0 0 2 0 96 0 2 0
0 0 1 0 0 2 0 89 2 7
0 3 0 1 0 1 0 0 92 3
0 1 0 2 0 1 0 0 1 96

0.8

1

0.6

0.4

0.2

0

FIG. 2. Digit recognition using a scattering neuromorphic system with layered structure. a Scattering network used for digit recognition
consisting of two or three fully connected layers with N1 = 128, N3 = 10 and either without hidden layer or with N2 ∈ {20, 30, 64}. We
consider equal decay rates κ, set the intrinsic decay to zero κ′ = 0 and start from J/κ = 2 with random disorder on top. The input consisting
of 64 greyscale pixel values is encoded in the detuning of the first layer to which we initially add a trainable offset which is initialised according
to Eq. (14). A vector of pixel values serves as input in which we detune the background to xj = 5κ and make the foreground, the numerals,
resonant xj = 0. The inset illustrates the non-linear effect of the first layer showing real and imaginary part of [G1(0)]j,j , Eq. (11). The
response to a probe signal at the third layer constitutes the output vector. The index of the maximal response constitutes the class. b Evolution
of the test accuracy during training for different architectures: without hidden layer, or with N2 = {20, 30, 64}. Here, an iteration over
one mini-batch corresponds to evaluating 200 randomly chosen images while the shown test accuracy is evaluated on the entire test set.
Increasing the size of the hidden layer improves both the convergence speed and the best accuracy. c The confusion matrix of the trained
model with N2 = 64 after 28, 000 iterations. The overall test accuracy amounts to 94.66%. d Convergence for individual input pictures. The
scattering matrix element with the largest imaginary part indicates the class. In most cases, the training rapidly converges towards the correct
classification results. Digits of similar appearance, however, are frequently mistaken for the other, such as the digit 4 and 9, and only converge
relatively late during training. For the training run shown here, we used Adam optimisation.

and G0 = 0 so that in the last layer, we have

aL = GL(ω)aL,probe. (12)

At the last layer, the matrix GL(ω) is equal to the system’s

Green’s function G(ω) = GL(ω), Eq. (3).

Employing input-output boundary conditions [33],
aL,res = aL,probe +

√
κ(L)aL, we obtain the scattering

matrix for the response at the last layer

Sout(ω, x, θ) = 1 +
√

κ(L)

[
κ
(L)
tot

2
+ i(∆(L) − ω) + J (L−1)†G(L−1)J (L−1)

]−1√
κ(L) (13)

The structure of Eqs. (13) and (11) is reminiscent of a gen-
eralised continued fraction, with the difference that scalar co-
efficients are replaced by matrices. We explore this analogy
further in the SI where we also show that for scalar input and
output, the scattering matrix (13) can approximate arbitrary
analytic functions. Furthermore, the recursive structure de-
fined by Eqs. (11) and (12) mimics that of a standard artifi-
cial neural network in which the weight matrix is replaced by
the coupling matrix and the matrix inverse serves as activa-
tion function. However, in contrast to the standard activation
function, which is applied element-wise for each neuron, the
matrix inversion acts on the entire layer. To gain intuition for
the effect of taking the matrix inverse, we plot a diagonal en-
try of [G1(0)]j,j/κ = [ 12 + i∆

(1)
j /κ

(1)
j ]−1 in Fig. 2 a. The

real part follows a Lorentzian whereas the imaginary part is

reminiscent of a tapered sigmoid function.
The recursive structure of the scattering matrix (13) bears

some resemblance to the variational quantum circuits of the
quantum machine learning literature [34, 35] in which the sub-
sequent application of discrete unitary operators allows to re-
alise non-linear operations. In contrast, here, we consider the
steady state scattering response which allows waves to propa-
gate back and forth giving rise to yet more complicated non-
linear maps (3).

B. Test case: digit recognition

To benchmark our model, we simulate and train a network
with three layers, see Fig. 2 a, on handwritten digit classifica-
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tion on a down-sized version of the MNIST dataset [36]. The
set consists of 3, 823 8 × 8 pixels training images of numer-
als between 0 and 9 as well as 1, 797 test images. We choose
an architecture in which the input is encoded in the detunings
∆

(1)
j of the first layer to which we add a trainable offset ∆(0)

j

∆
(1)
2j = ∆

(0)
2j + xj

∆
(1)
2j+1 = −∆

(0)
2j+1 + xj (14)

which we initially set to ∆2j = ∆2j+1 = 4κ (for simplic-
ity, we consider equal decay rates κ

(n)
j ≡ κ from now on).

In this way, the input enters the second layer in the form of
[G1(0)]j,j/κ once with positive, once with negative sign, see
the plot of [G1(0)]j,j/κ in Fig. 2 b. We found that, beyond im-
proving the expressivity as explained above, this also leads to
faster convergence of the training. This doubling of the input
fixes the layer size to N1 = 2 · 64. The second layer (hidden
layer) can be of variable size and we train a system (i) with-
out the hidden layer, (ii) with N2 = 20, (iii) with N2 = 30,
(iv) with N2 = 64. We use one-hot encoding of the classes,
so the output layer is fixed at N3 = 10. We choose equal de-
cay rates κ and express all other parameters in terms of κ. For
simplicity, we set the intrinsic decay to zero κ′ = 0.

We initialise the system by making the neuron modes in the
second and third layer resonant and add a small amount of
disorder, i.e., ∆(n)

j /κ = w∆(ξ
(n)
j − 1/2) with w∆ = 0.002

and ξ ∈ [0, 1). Similarly, we set the coupling rates to 2κ

and add a small amount of disorder, J (n)
j,ℓ /κ = 2 + wJξ

(n)
j,ℓ

with wJ = 0.2. We found empirically that this initialisation
leads to the fastest convergence of the training. Furthermore,
we scale our input images such that the background is off-
resonant at ∆/κ = 5 and the numerals are resonant ∆/κ =
0, see Fig. 2 a since, otherwise, the initial gradients are very
small.

As output of the system, we consider the imaginary part of
the diagonal entries of the scattering matrix (13) at the last
layer at ω = 0, i.e. yℓ ≡ ImSℓ,ℓ(0, x, θ), Fig. 2 a. The goal is
to minimise the cost function C = |ytar−y|2 in which ytar is
the target output vector of the system which is 1 at the index of
the correct class and zero elsewhere. We train the system by
performing gradient descent, i.e., for one mini-batch we select
200 random images, and compute the gradients of the cost
function according to which we adjust the system parameters:
the detunings ∆(n)

j and the coupling rates J (n)
j,ℓ .

We show the accuracy evaluated on the test set at differ-
ent stages during the training for four different architectures
in Fig. 2 b. Both the convergence speed and the maximally
attainable test accuracy depend on the size of the hidden layer
with the system without hidden layer performing worst. This
should not surprise us, since an increase in N2 also increases
the number of trainable parameters. We obtained the best clas-
sification accuracy on the test set of 94.7% for the system with
N2 = 64 after iterating over 28, 000 mini-batches. We show
the associated confusion matrix in Fig. 2 c. This accuracy is
on par with the accuracy of 94.7% achieved by a standard ar-
tificial neural network. The artificial model we trained had
an input layer of size 64, a hidden layer of size 64, an output

layer of size 10, and we used a sigmoid activation function.
We show the evolution of the output scattering matrix ele-

ments evaluated for a few specific images in Fig. 2 d. During
training, the scattering matrix converges to the correct classi-
fication result quickly. Only for such images that look very
similar, e.g., the image of the 4 and 9 shown in Fig. 2 d, the
training oscillates between the two classes and takes a longer
time to converge.

C. Hyperparameters

The architecture we propose has the following hyperparam-
eters which influence the accuracy and the convergence speed:
(i) the number of neuron modes per layer Nℓ; (ii) the number
of layers L; (iii) the number of input replications R; (iv) The
intrinsic decay rate of the system.

(i) The number of neuron modes in the first layer should
match the product of the input dimension D and the number
of repetitions of the input R. The number of neurons in the fi-
nal layer is given by the output dimension, e.g., for classifica-
tion tasks the dimension corresponds to the number of classes.
The sizes of intermediate layers should be chosen to provide
enough training parameters; as we can see from Fig. 2 b, both
the convergence speed and the best accuracy rely on having a
sufficient number of training parameters available, as for in-
stance, a system with a second layer of only 20 neuron modes
performs worse than a system with 64 neuron modes in the
second layer. In particular, as we show in the SI, that indepen-
dent of the architecture, the maximal number of independent
couplings for an input of dimension D, input replication R
and output dimension Nout is given by

Nopt =
(RD +Nout)(RD +Nout + 1)

2
. (15)

In addition, there are RD +Nout local detunings that can be
varied independently. For the layered structure of Fig. 2 a,
this translates to an optimal size of the second layer N2,opt =
⌈(N1 +N3 + 1)/2⌉. For a system with N1 = 128 and
N3 = 10 the optimal value N2,opt is given by of N2,opt = 70.
Smaller N2 leads to fewer independent parameters, while
larger N2 introduces redundant parameters. In our simula-
tions, the system with N2 = 64 already achieved the same
classification accuracy as a standard artificial neural network,
so it may not always be necessary to increase the layer size to
N2,opt. Further increasing the number of parameters and in-
troducing redundant parameters can help avoid getting stuck
during training. Similarly, even though a neuromophic sys-
tem with all-to-all couplings provides a sufficient number of
independent parameters, considering a system with multiple
hidden layers can be advantageous for the training.

(ii) Similar considerations apply to choosing the number of
layers of the network. L should be large enough to provide
a sufficient number of training parameters. At the same time,
L should not be too large to minimise attenuation losses. For
deep networks with L ⪆ 3, localisation effects may become
important [6, 7] which may hinder the training, so it is advis-
able to choose an architecture with sufficiently small L.
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FIG. 3. Implementation with racetrack resonators. a Neuron modes are represented by racetrack resonators and racetrack resonators (light
blue) of different layers in the neural network are crossed employing techniques to reduce the cross-talk between them. They are then coupled
via microring resonators (dark blue)—the coupler modes. Changing the detuning of the coupler modes changes the effective coupling strength
J between any two racetrack resonators that cross. This is illustrated in the ersatz image on the right. b The advantage of this design is that
the system can be scaled up while requiring only a minimal number of waveguide crossing and the neuron modes can still be accessed with
waveguides from outside. c Three possibilities to measure gradients: following the expression for the gradient in terms of scattering matrix
elements, one can either measure the response at the racetrack resonators and use Eq. (8) or directly at the microring resonators and use Eq. (7)
to update parameters. Alternative to coupling to waveguides to each resonator, optical grating tap monitors can be utilised which light up
according to the output signal at that resonator which can be recorded by a camera [16, 37]. In commercial implementations, grating tap
monitors can be complemented by integrated photodetectors for a faster readout. To be sensitive to a specific quadrature (4), the light coupled
to the grating tap monitor can be combined with light from a local oscillator (not shown) to perform a homodyne measurement. d Scale of the
relevant frequencies in an optical implementation. e Distribution of neuron modes and coupler mode detunings after training.

(iii) The choice of R depends on the complexity of the train-
ing set. For the digit recognition task, R = 2 was sufficient,
but more complicated datasets can require larger R. We ex-
plore this question in the SI, where we show for scalar func-
tions that R determines the approximation order and utilise
our system to fit scalar functions. To fit quickly oscillating
functions or functions with other sharp features, we require
larger R.

Here, we only considered injecting the input at the first
layer. However, it could be interesting to explore in the future
whether spreading the (replicated) input over different layers
holds an advantage, since this would allow to make subse-
quent layers more ‘non-linear’.

(iv) The intrinsic decay rate determines the sharpest fea-
ture that can be resolved, or, equivalently, a larger rate κ
smoothens the output functions. It is straightforward to see
from Eq. (7) that the derivative of the output w.r.t. a com-
ponent of the input scales with κ. In the context of one-
dimensional function fitting this is straightforward to picture
and we provide some examples in the SI. However, the net-
work does not lose its use since the larger decay rate can be
compensated for by rescaling the range of the input according

to κ. For instance, for the digit recognition training, we set
the image background to ∆/κ = 5 and made the pixels stor-
ing the number resonant ∆/κ = 0 which is still possible in
lossy systems.

IV. PROPOSED OPTICAL IMPLEMENTATION

A. Racetrack resonator architecture

The experimental realisation of our proposed system has
two main requirements: (i) a sufficiently large number of
system parameters (not necessarily all) needs to be tunable;
(ii) a large number of modes needs to be sufficiently densely
connected. A simple geometry could consist of localised
resonators (neuron modes) connected by waveguides (cou-
plings). However, we find a more promising geometry in
terms of tunability and spatial layout.

Here we propose an integrated-photonics design based on
racetrack resonators as neuron modes that are coupled via mi-
croring resonators which realise an effective coupling between



8

the neuron modes, see Fig. 3 a. This alleviates the need to
tune the coupling between the neuron modes directly, since
the effective coupling strength can be controlled via the detun-
ing of the coupling resonator. The detunings of the racetrack
resonators and the microring resonators could in practice, for
instance, be tuned electro-optically [40, 41] or by locally heat-
ing the resonator. Alternatively, the couplings can directly be
controlled electro-optically [42].

To achieve high connectivity, we propose to cross race-
track resonators of different network layers as in Fig. 3 b
and use techniques developed to reduce cross-talk between
overlapping waveguides [43, 44] to isolate the racetrack res-
onators of different layers from one another. The coupling
between these neuron modes is controlled via the detuning
of the microring resonators placed at the intersection between
racetrack resonators which we dub coupler modes. The ef-
fective coupling J induced by a coupler mode of detuning
∆coupler coupled to two modes with strength J ′ is given
by J = |J ′|2/(iκcoupler/2 − (∆coupler − ω)), see the SI.
The coupler modes also induce a frequency shift on the neu-
ron modes by the same amount which can be compensated
by alternating positive and negative detuning in neighbour-
ing coupler modes. A special feature of our proposed de-
sign is that the neuron modes are spatially extended whereas
the coupling is facilitated by local microring resonators. In
fact, the device layout of Fig. 3 c can be seen as a direct
visualisation of the coupling matrix J (n) between consecu-
tive layers. In practice, it is advantageous to operate in the
regime |∆coupler| ≫ κcoupler in which the effective coupling
is predominantly coherent. We outline further requirements
on ∆coupler and κcoupler as well as a procedure to create a
suitable initial configuration of the system in the SI.

Following our procedure to measure gradients based on the
scattering matrix, Eqs. (8) and (7), there are three possibil-
ities to obtain the gradients, Fig. 3 c: (i) One only measures
the scattering matrix at the racetrack resonators which directly
yields the gradients according to Eq. (7) w.r.t. the neuron
mode detunings and uses Eq. (8) to infers the gradients for
the coupler modes, see the SI. This requires knowledge of
the coupling strength J ′ between coupler modes and neuron
modes. (ii) Alternatively, one directly measures the scattering
response at the coupler modes and uses Eq. (7) to update all
parameters. This immediately yields the gradients for the de-
tuning of the coupler modes while requiring a larger number
of (crossed) waveguides. (iii) To reduce the number of waveg-
uides required to measure the system, one can couple grating
tap monitors to each resonator which can either be monitored
with a camera [16] or integrated photodetectors for a faster
readout. To detect a specific quadrature (4), the light coupled
to the grating tap monitor can be combined with light from a
local oscillator to perform a homodyne measurement.

We simulate the system of the previous section using the er-
satz description illustrated in Fig. 3 a to represent the coupler
modes. To make the simulation as realistic as possible, we
initialised the system such that the detuning range of the ini-
tially random detunings was |∆|/κ ∼ 5 for the neuron modes
and |∆c|/κ ∼ 10 for the coupler modes. This is in-line with
realistic values. We provide a complete overview of the rel-

evant frequencies in state-of-the-art electro-optically tunable
resonators in Fig. 3 d. We further discuss the requirements for
the experimental implementation of our neuromorphic system
in more detail in the next section. We train the system for
11, 300 iterations and achieve a test accuracy of 92.6% which
is similar to the previous simplified setup. The slightly lower
accuracy is due to the shorter training time. Fig. 3 e shows
the distribution of the detunings of neuron modes and cou-
pler modes after training. The final distributions spread over a
range of approximately |∆|/κ ∼ |∆c|/κ ∼ 20 which is well
within the tunable range that can be realistically achieved in
experiments [45, 46], see Fig. 3 d. We discuss requirements
on the physical implementation in further detail in the next
section.

We propose that this layout can also find application in
the implementation of other neuromorphic systems since it
presents a convenient way to achieve high connectivity while
keeping the number of waveguide crossings minimal.

B. Experimental requirements

Fig. 3 d shows the relevant frequencies that are important
for the implementation of our neuromorphic system. The ap-
proach proposed here relies on efficient tuneability of a lin-
ear system, both for injecting the input x and for learning.
During training (or device calibration), the detuning range
needs to be sufficiently large to overcome any fabrication
disorder. In optical systems, disorder in the resonance fre-
quencies typically amounts to about one percent of the free
spectral range (FSR), and this can easily be overcome via
electrical thermo-optic tuners that have shown [47, 48] tun-
ing by a full FSR in resonator structures of the scale con-
sidered here (10µm to 100µm), see Fig. 3 e, operating on
time scales [48] of 10µsec. For input injection, it is desir-
able to have faster response times, but conversely the tuning
range can be much smaller, on the order of the couplings or
decay rates. This could be achieved via electro-optic tuning
that has demonstrated resonator tuning by many linewidths
at speeds of tens of MHz for microtoroids [49], tens of GHz
for photonic-crystal resonators [50] and tens of GHz [45] for
racetrack resonators. Tuning ranges even up to hundreds of
GHz [46] were demonstrated for racetrack resonators which
would be sufficient to compensate for initial frequency disor-
der. In an alternative approach to coupling the neuron modes
via coupler modes, one can tune the couplings between race-
track resonators directly which has been demonstrated at mul-
tiples of the linewidth [51]. Without further optimization,
one can expect tuning speeds of multiple GHz [45, 52] which
with further optimization can be brought down to 100 GHz
modulation frequency [53] allowing for fast training and in-
ference. Assuming 5GHz modulation frequency, one could
complete all tuning steps of the entire training with 28, 000
iterations over minibatches of 200 images reported above in
only 1.1ms.

We would like to stress that the ideas developed here are
very general and apply to a range of linear systems. In partic-
ular, we discuss in the SI how to transfer these ideas to analog
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electronic circuits.

V. DISCUSSION

We introduced a concept for neuromorphic computing that
relies purely on linear wave scattering and does not require
any physical non-linearities. By injecting the input in the sys-
tem parameters and considering the scattering response to a
probe signal as output of the neuromorphic system, Fig. 1, we
obtain a non-linear function between input data and output.
Replicating the input multiple times allows to realise more
complex non-linear functions.

With our approach, training is most straight-forward since
gradients can be physically measured as products of scattering
matrix elements which can be efficiently obtained with a min-
imal number of measurements. Furthermore, our approach
does not require full knowledge of the system. In fact, we can
freely add modes and couplings to the systems, which are not
trained, that can be treated like a black box and the training
procedure remains the same.

We propose a layer architecture and gain analytic insight
into its scattering matrix which has a recursive structure rem-
iniscent of standard neural networks. Simulations of our neu-
romorphic system achieved a classification accuracy on par
with the accuracy of standard artificial neural networks.

Furthermore, we propose its implementation in a system
of crossed, tunable racetrack resonators which are coupled
through tunable microring resonators that allow to control the
coupling strength. We suggest that this architecture of crossed
racetrack resonators can also find application in the imple-
mentation of other neuromorphic systems since it presents an

efficient way to achieve a high connectivity between modes at
a minimal number of waveguide crossings.

Our approach solves two major challenges in the field of
neuromorphic computing. We not only overcome the chal-
lenge of implementing physical non-linearities, our approach
also allows to perform physical back-propagation with mea-
sured gradients. Moreover, our proposal can be implemented
in state-of-the-art integrated and scalable, photonic circuits in
which high resonator tuning speeds promise fast and reliable
data processing.

In future work, we propose to explore different architec-
tures and the possibility of employing a Floquet scheme for
input replication or the use of multiple modes of the same cav-
ity to reduce the hardware overhead. Furthermore, the frame-
work developed here is very general and can be applied to a
range of settings beyond optics, for instance, analog electronic
circuits. Therefore, our work opens up new possibilities for
neuromorphic devices with physical back-propagation over a
broad range of platforms.

During the completion of our manuscript, two related works
appeared as preprints [54, 55]. In contrast to these works
which rely on free-space light propagation, our approach is
based on the (steady state) scattering response which has po-
tential advantages in terms of the realisable non-linear func-
tions and allowed us to formulate a simple technique for phys-
ically extracting gradients via scattering experiments.
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M. Soljačić, C. Denz, D. A. Miller, and D. Psaltis, Inference
in artificial intelligence with deep optics and photonics, Nature
588, 39 (2020).

[3] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. Pernice,
H. Bhaskaran, C. D. Wright, and P. R. Prucnal, Photonics for ar-
tificial intelligence and neuromorphic computing, Nature Pho-
tonics 15, 102 (2021).

[4] J. Grollier, D. Querlioz, K. Camsari, K. Everschor-Sitte,
S. Fukami, and M. D. Stiles, Neuromorphic spintronics, Nature
electronics 3, 360 (2020).

[5] M. Schneider, E. Toomey, G. Rowlands, J. Shainline,
P. Tschirhart, and K. Segall, Supermind: a survey of the po-
tential of superconducting electronics for neuromorphic com-
puting, Superconductor Science and Technology 35, 053001
(2022).

[6] K. Wagner and D. Psaltis, Multilayer optical learning networks,
Applied Optics 26, 5061 (1987).
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FIG. S1. Mapping of a multimode system to a one-dimensional
chain. a The scattering matrix of a one-dimensional chain with
nearest-neighbour couplings in which the input enters in the detuning
of each mode has the form of a generalised continued fraction which
can be used to approximate any analytic function. In the limit of an
infinite chain length, this approximation approaches the exact result.
b Reduction rules to map between systems of coupled modes [1].
Eliminating an intermediate mode in a chain of modes coupled via
beamsplitter couplings results in effective dissipative coupling with
added local decay, Eq. (S3), a further elimination step yields effec-
tive coherent beamsplitter coupling with added decay, Eq. (S4). This
technique is discussed in more detail and generalised to combina-
tions of beamsplitter and two-mode-squeezing couplings in Ref. [1].
c Employing the reduction rules of b, one can map any system of
arbitrarily coupled modes to a one-dimensional chain with couplings
of varying range. For clarity, not all resulting effective couplings are
shown. d Any neuromorphic system with input dimension D and
input replication R, e.g., the three-layer system of Fig. 2 a, can be
mapped to a system consisting only of the input and output modes
with all-to-all dissipative couplings. The number of these dissipative
couplings equals the number of couplings we can at most control in-
dependently in a neuromorphic system with this input dimension and
input replication.

I. THE SCATTERING MATRIX CAN APPROXIMATE
ARBITRARY NON-LINEAR FUNCTIONS

Here, we prove for the case of scalar input and output that
the scattering matrix of a system of coupled modes can be
used to approximate arbitrary analytic functions x → f(x) ∈
R. The scalar input x ∈ R is encoded in the detunings of each
mode and the function is approximated by optimizing (some
of) the other system parameters. In the limit of an infinitely
large system, the approximation becomes exact.

1. One-dimensional chain with nearest-neighbour couplings

The Green’s function of a one-dimensional chain with
nearest-neighbour couplings is particularly straightforward to
compute. We consider the setup for a chain of length N =
R + 1, with R the number of input replications, shown in
Fig. S1 a. The detuning at the jth mode is given by ∆j + x
for j ≤ N = R+1 and nearest-neighbour modes j and j +1
are coupled at strength Jj . The system is probed at the N th
site where the detuning is simply ∆N . Similar to the deriva-
tion of the scattering matrix (13) for the layered architecture,
we consider the equation of motions in the frequency domain

ωaj(ω) =
(
−i

κj

2
+ (∆j + x)

)
aj + Jj−1aj−1 + Jj+1aj+1,

ωaN (ω) =

(
−i

κN + κ′
N

2
+ (∆N + x)

)
aN + JN−1aN−1

−
√

κ′
NaN,probe (S1)

and recursively solve for aj(ω) starting from a1(ω) up to
aN (ω). Together with the input-output boundary conditions
aN,res =

√
κaN + aN,probe, we can compute the scattering

matrix element SN,N

SN,N (ω, x, θ) = 1 +
κN

iκN

2 − (∆N − ω) + |JN−1|2

i
κN−1

2 −(∆N−1+x−ω)+

...
i
κ2
2

−(∆2+x−ω)+
|J1|2

i
κ1
2

−(∆1+x−ω)

. (S2)

This scattering matrix has the form of a generalised continued fraction. More specifically, it is a so called C-type continu-
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ous fraction with the tunable parameters Jj and ∆j . For this
type of continued fraction, it has been shown that any analytic
function can be expanded into a corresponding type continued
fraction, short type continued fraction, [2] which in the limit
N → ∞ becomes exact. Therefore, assuming that Jj and ∆j

can be arbitrarily tunable, SN,N (ω, x, θ) can approximate ar-
bitrary analytic functions with N dictating the accuracy of the
expansion.

This expansion has a number of advantages over expansions
such as power series, since it converges much faster than, for
instance, a Taylor series, and it converges for any physical,
dynamically stable system such as the ones we are concerned
with in this work. In particular, the generalised continued frac-
tions (S2) of stable physical systems are bounded at each or-
der. In contrast to power series the series behaves well for
large |x| at finite N since at each order, the approximated
function y(x) → 0 for |x| → ∞.

2. General system of coupled modes

Let us now consider a general systems of coupled modes
such as the one shown in the first panel of Fig. S1 c. The

scalar input enters in the detunings ∆j + x of R sites while
the other sites have detunings ∆ℓ which serve as parameters.
The system is again probed at a specific site p and we derive
the scattering matrix element Sp,p of that site.

Here, we can employ a technique to map this system of
coupled modes to a linear chain by employing a reduction
technique that eliminates individual modes to map a smaller
physical system with different couplings and added decay [1].
Specifically, the rules of this reduction technique are shown in
Fig. S1 b. In the first row, four modes are coupled via beam-
splitter couplings

−iωa1 =
(
−κ1

2
− i∆1

)
a1 − iJ1a2

−iωa2 =
(
−κ2

2
− i∆2

)
a2 − iJ∗

1a1 − iJ2a3

−iωa3 =
(
−κ3

2
− i∆3

)
a3 − iJ∗

2a2 − iJ3a4

−iωa4 =
(
−κ4

2
− i∆4

)
a4 − iJ∗

3a3.

Eliminating the third mode induces effective dissipative cou-
pling between the second and third mode with additional local
decay and a detuning shift

−iωa2 =

(
−κ2

2
− i∆2 −

|J2|2
κ3

2 + i(∆3 − ω)

)
a2 − iJ∗

1a1 −
J2J3

κ3

2 + i(∆3 + ω)
a4

−iωa4 =

(
−κ4

2
− i∆4

|J3|2
κ3

2 + i(∆3 − ω)

)
a4 −

J∗
3J

∗
2

κ3

2 + i(∆3 + ω)
a2. (S3)

Subsequently eliminating the second mode a2 yields again beamsplitter coupling with additional local decay and a de-
tuning shift [1]

−iωa1 =

−κ1

2
− i∆1 −

|J1|2

−κ2

2 − i(∆2 − ω)− |J2|2
κ3
2 +i(∆3−ω)

 a1 + i
J1J2J3

κ3

2 + i(∆3 + ω)
a4

−iωa4 =

(
−κ4

2
− i∆4 −

|J3|2
κ3

2 + i(∆3 + ω)
+

|J2J3|2(
κ3

2 + i(∆3 + ω)
)2
)
a4 + i

J∗
3J

∗
2J

∗
1

κ3

2 + i(∆3 − ω)
a1. (S4)

The reduction approach can be applied in large networks of
modes in which the elimination step of a mode involves re-
placing all couplings this mode was connected to by the ap-
propriate coherent or dissipative coupling as described above.
This technique is discussed in more detail and generality in the
Supplementary Information of Ref. [1] where also the gener-
ality of the argument to two-mode and single-mode squeezing
is derived; a related technique is employed in Ref. [3, 4].

For the following arguments, the values of the effective cou-

pling strength, effective local decay and detuning shifts are not
relevant. We merely employ this reduction technique to map
one physical system to one that is easier to analyse. In par-
ticular, we map the generic system of multiple modes, such
as the first panel in Fig. S1 c, to a chain with arbitrary, pos-
sibly long-range couplings, such as the chain in the last panel
of Fig. S1 c, consisting only of the modes whose detunings
encode the input and the mode p which is used to probe the
system which is the (L+1)th modes of the chain. This is pos-
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sible by performing multiple reduction steps eliminating all
other modes as is sketching in the other panels of Fig. S1 c.
The couplings between the modes of this reduced model are
now a combination of coherent beamsplitter coupling and dis-
sipative coupling, with coupling constants which may even be
complex. We introduce the effective coupling strengths gj,ℓ
for the effective coupling between modes j and ℓ in which we
indexed modes from left to right. We note that gj,ℓ need not
be symmetric, i.e., gj,ℓ ̸= g∗ℓ,j . The on-site terms, i.e., decay
rate and detuning, were also modified by the reduction to the
chain and we define µj ≡ − κ̃j

2 − i∆j as the effective on-
site term of the jth site in the equations of motion for the re-
duced chain. We can then proceed as before for the chain with
nearest-neighbour couplings to derive the scattering matrix el-
ement at the (R + 1)th site, SL+1,L+1 = Sp,p by eliminating
mode by mode along the chain

SR+1,R+1(ω, x, θ) = 1 +
κR+1

µ̃R+1
(S5)

with

µ̃j = µj +
gj,j−1gj−1,j

µ̃j−1
+

∑
paths of
length ℓ:

3≤ℓ≤2j

(−i)ℓ
gj,m1

gm1,m2
. . . gmℓ,j

µ̃m1 µ̃m2 . . . µ̃mℓ

(S6)

with µ̃1 = µ1. Here, the sum goes over all paths from mode j
to modes m1,m2, . . . ,mℓ < j and come back to mode j that
have a length smaller than 2j and involve at least one cou-
pling of a range longer than one, i.e., next-nearest neighbour
coupling and beyond. Note that the scalar input x enters as
summand in each µj .

As result of this exercise, we see that Eq. (S5) reduces to
Eq. (S2) in the case of only symmetric nearest-neighbour cou-
plings in which case we know that SR+1,R+1(ω, x, θ) can rep-
resent arbitrary, non-linear analytic functions. In the general
case, the expression for SR+1,R+1(ω, x, θ), Eq. (S5), contains
sums of generalised continued fractions in which the coeffi-
cients are again generalised continued fractions. So Eq. (S5)
has both more parameters and contains more general terms,
e.g., powers of x, so is by no means more restrictive than ex-
pression (S2) which already allowed to approximate arbitrary
analytic functions. We therefore conclude that a scattering
matrix of any linear system in which the input enters R times
can be used to approximate arbitrary analytic functions. The
number of input replications L determines the recursive depth
of expression (S5) and therefore plays a crucial role for the
accuracy of the approximation.

To exemplify the expressive power of the scattering matrix,
we employ the system sketched in Fig. S2 a to fit different
non-linear functions ranging from a combination of hyper-
bolic tangents to oscillating functions. The system we con-
sider consists of a first layer with R modes in which the input
is replicated R times in the detunings ∆

(1)
j + x of the first

layer, then a second layer of variable size and an output layer
with only one mode. The decay rate κ is considered equal at
all sites.

We note that functions with sharper features or many os-
cillations require larger R than smoother functions. Further-
more, we selected for each plot the largest value of κ that still
yielded a good approximation of the function. As we would
expect from Eq. (7) of the main text, a larger derivative re-
quires a smaller decay rate κ.

II. EXPRESSIBILITY

1. Number of independent parameters

In general, a scattering matrix element is of the form
Sj,ℓ(0) = 1 + iκj(−1)j+ℓ detH(j,ℓ)

detH . For a neuromorphic sys-
tem with multi-dimensional input and output, both numerator
and denominator automatically contains terms such as x1x2,
x2x3 and x1x2x3 even at R = 1 with some coefficients de-
fined through the other system parameters. In fact, with D the
input dimension and R the number of input replications, the
number of these terms grows as

DR∑
j=1

(
DR

j

)
= 2DR − 1. (S7)

However, while, in general, the number of terms grows expo-
nentially with the input dimension and input replication, not
all of these coefficients are independent parameters that can
be controlled by adjusting the other system parameters. The
number of independent parameters is typically much smaller.

To find the actual number of independent parameters we
can maximally achieve for a neuromorphic system with in-
put dimension D, input replication R and output dimension
Nout, including systems with the three-layer architecture of
Fig. 2 a, we consider the map to the minimal reduced sys-
tem which still contains all input sites and probe sites, see
Fig. S1 d. The number of couplings entering in this system is
equal to the maximal number of independent parameters we
can maximally achieve for this given input dimension D and
input replication R. We find that the minimal system con-
sists only of input and output modes with all-to-all dissipative
couplings between them, see Fig. S1 d. The total number of
couplings in this system is

Nmax =
(DR+Nout)(DR+Nout + 1)

2
. (S8)

In the three-layer architecture, N1 = DR and N3 = Nout.
In addition to that, we have DR + Nout local terms (decay
rates, detunings). Expression (S8) is the maximal number of
couplings we can at most control independently in any system
at given D, R and Nout independent of the architecture.

Next, we come back to the three-layer architecture, Fig. 2 a,
and we ask how large the second layer N2 has to be to have
enough independent parameters to control all of these effec-
tive couplings independently. (The N1 + N3 local parame-
ters are automatically independent parameters since they also
exist in the original system.) The total number of couplings
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FIG. S2. One-dimensional function fitting. Examples for one-dimensional functions fitted with the network shown in a. The input enters
as offset to the detuning of the first layer and enters R = N1 number of times. A second layer of variable size is connected to a single site.
The imaginary part of the scattering response at that site serves as output. The parameters used in the fits were b N1 = 20, N2 = 20, κ = 1;
c N1 = 60, N2 = 30, κ = 0.2; d-f N1 = 60, N2 = 30, κ = 0.1. Note that functions with sharper features require larger R and larger N2.
Typically, κ has to be small to capture sharp features, although, this can to some extent be compensated by rescaling the range of input values
by 1/κ.

between layers of sizes N1, N2 and N3 is given by

Ncontrol = N1N2 +N2N3. (S9)

This is the number of couplings, we can actually control.
When Ncontrol < Nmax we do not utilise the full potential
of the architecture, whereas when Ncontrol > Nmax, some
of the couplings are, at least in principle, redundant and the
system has a hardware overhead.

The optimal case is when Ncontrol = Nmax. Equating ex-
pressions (S8) and (S9), we find that to be able to indepen-
dently control all parameters, N2 should be larger or equal to

N2 ≥
⌈
N1 +N3 + 1

2

⌉
. (S10)

For the system we consider in the main text with N1 = 128
and N3 = 10, we find N2 ≥ 70. This explains why the
classification accuracy is limited for smaller N2 and why we
achieve the highest classification accuracy for N2 = 64.

Depending on the training data, it may also be worth to
explore larger N2 than this bound, even though the system is
then over determined, since this may have advantages during
training.

2. Remarks about systems encoding functions with
multi-dimensional input and output

In the main text, we derive the expression for the scatter-
ing matrix (13) of a neuromorphic system with a layered ar-
chitecture, Fig. 2 a. The mathematical form of this equation
resembles that of the generalised continued fraction (S2) but
in matrix form.

In the literature of condensed matter physics, expressions
such as Eq. (13) are known as recursive Green’s functions [5]
and have been employed to study various condensed matter
systems. It is expected that for larger depth L, these networks
display localisation when subject to disorder in the couplings
and detunings [6, 7]—this may possibly impede the training
of such networks (correlations between input and output layer
are expected to decrease with L in which case the gradients
will also become small). For most applications, L = 3 or 4
may already be sufficient. If the application requires deeper
networks, introducing gain, e.g., in the form of two-mode
or single-mode squeezing, or, alternatively, introducing a few
strategic couplings of longer range between layers that are fur-
ther apart, may resolve this issue of localisation.
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a b
coupler

FIG. S3. Effective coupling mediated by coupler modes. The aim
of the implementation, Fig. 3 a, is to replace a the tunable couplings
of strength J by b a coupler mode at tunable detuning ∆c coupled
to two neuron modes at fixed coupling strength J ′. This gives rise
to an effective coupling between the two neuron modes at strength
J = |J ′|2/

(
iκc
2

+ ω − ∆c

)
, Eq. (S16), so the effective coupling

strength J can be tuned by tuning ∆c. At the same time, the detuning
of each mode is shifted by the same amount. To map back to exactly
the same situation as in a, this shift needs to be compensated when
tuning ∆′

j , Eq. (S17).

III. DERIVATION OF THE GRADIENT FORMULAS

Here, we derive the derivative of the scattering matrix w.r.t.
a parameter θj , Eq. (6),

∂S(ω,x, θ)

∂θj
= −i

√
κ

∂

∂θj
[ω1 −H(x, θ)]−1

√
κ. (S11)

The derivative of the matrix inverse M−1 w.r.t. a parameter
follows from

0 =
∂

∂θj
1 =

∂

∂θj

(
M−1(θ)M(θ)

)
=

(
∂

∂θj
M−1(θ)

)
M(θ) +M−1(θ)

(
∂

∂θj
M(θ)

)
.

(S12)

Solving for ∂
∂θj

M−1(θ), we obtain

∂

∂θj
M−1(θ) = M−1(θ)

(
∂

∂θj
M(θ)

)
M−1(θ). (S13)

Using this expression for Eq. (S11), we obtain Eq. (6) of the
main text.

IV. FURTHER DETAILS ABOUT THE IMPLEMENTATION

A. Derivation of the effective coupling

In Fig. 3 we introduced coupler modes mediating the cou-
pling between two neuron modes. Here, we derive how a

change in the detuning of the coupler mode changes the ef-
fective coupling between two neuron modes. The aim is
to achieve an effective, predominantly coherent coupling be-
tween two neuron modes which can be tuned by adjusting the
detuning of the coupler mode, see Fig. S3. This allows to
transfer all results obtained for a network with tunable coher-
ent coupling strengths to this system with coupler modes.

For simplicity consider the two neuron modes a1 and a2 at
detunings ∆1 and ∆2, respectively, coupled via coupler mode
c at detuning ∆c and experiencing decay at κc to which both
a1 and a2 are coupled at strengths J ′2. The corresponding,
Fourier transformed equations of motion are given by

−iωa1 = −
(κ
2
+ i∆′

1

)
a1 − iJ ′c

−iωa2 = −
(κ
2
+ i∆′

2

)
a2 − i(J ′)∗c

−iωc = −
(κc

2
+ i∆c

)
c− i(J ′)∗a1 − iJ ′a2. (S14)

Solving for c(ω), we find

c =
J ′

iκc

2 + ω −∆c
(a1 + a2) (S15)

which we insert in Eqs. (S14)

−iωa1 = −
(κ
2
+ i∆′

1

)
a1 − i

|J ′|2

iκc

2 + ω −∆c
(a1 + a2)

−iωa2 = −
(κ
2
+ i∆′

2

)
a2 − i

|J ′|2

iκc

2 + ω −∆c
(a1 + a2).

(S16)

There are two key points to notice: (i) the coupler mode in-
duces effective coupling between the two modes in which the
coupling strength is complex, i.e., it results in both coher-
ent and dissipative coupling. To come as close as possible
to an effectively coherent coupling, we require κc ≪ ∆c, in
which case the coherent coupling strength is approximately
−|J ′|2/(∆c − ω). (ii) the coupler modes lead to an on-site
shift in detuning and contributes towards the dissipation. To
compensate for this detuning shift, we offset ∆′

j by the same
amount, i.e.,

∆′
j = ∆j + |J ′|2/∆c. (S17)

This gives rise to

−iωa1 = −
(κ
2
+ i∆1

)
a1 + i

|J ′|2

∆c
a2

−iωa2 = −
(κ
2
+ i∆2

)
a2 + i

|J ′|2

∆c
a1 (S18)

which are the equations describing the scenario depicted in
Fig. S3 a with J = −|J ′|2/∆c Note that if the neuron modes
are coupled to multiple coupler modes, the detuning shifts
from all coupler modes have to be compensated, so, more gen-
erally,

∆′
j = ∆j +

∑
ℓ

|J ′|2/∆ℓ,c (S19)
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in which ℓ sums over all coupler modes that mode j is con-
nected to.

In practise, a neuron mode can be connected to a large num-
ber of coupler modes, so to avoid large detuning shifts (which
may then even be outside the tuning range), one can alternate
positive and negative detuning of the coupler modes. In that
case, most of the terms in Eq. (S19) balance out and the net
shift is very small.

B. Creating the initial configuration in the proposed
implementation

To start training the neuromorphic system, it is first neces-
sary to calibrate the setup, so any fabrication disorder should
not be larger than the tunable range, see Fig. 3 d. Once the
setup is calibrated, one can fine tune the detunings to a suit-
able initial configuration. We found in our simulations that
starting from configurations in which the neuron modes are
effectively approximately resonant (up to some small disor-
der), i.e., taking into account the detuning shifts (S19) due
to the coupler modes, leads to a faster and reliable conver-
gence of the training. The detunings of the coupler modes
should be large enough to enable sufficiently strong coupling
between neuron modes. In particular, ∆c/κc ≫ 1 ensures
that the coherent coupling dominates over the dissipative cou-
pling induced by the coupler mode, Eq. (S14). In addition,
some small disorder in the effective coupling strengths helps
to avoid getting stuck early in the training.

Concretely, in numerical experiments, it has proven help-
ful to generate a random initial configuration in the ersatz de-
scription, i.e., without the coupler modes and to translate this
back to a description in terms of coupler modes, i.e., solv-
ing for ∆c. Subsequently, one chooses alternating sign for
the coupler mode detunings and calculates the resulting on-
site shift (S19) which is then compensated for by changing
the neuron mode detuning which effectively makes the neuron
modes resonant again. This serves as initial configuration for
the training. Subsequent training steps can then be performed
in sito based purely on the measured scattering matrix.

V. ANALOG ELECTRICAL CIRCUITS

The general idea of exploiting the non-linear structure of
the Green’s function of a linear system transfers to other sys-
tems such as analog electrical circuits. Here, we sketch the
idea for a circuit network of resistors, but the same principle
holds for more general electric circuits that can, for instance,
also contain inductors and capacitors.

Consider an electrical circuit in which resistors ρj,ℓ connect
nodes j and ℓ in a resistor network. Kirchhoff’s law estab-
lishes a relation between the current In at each node n and the
voltage Vn via the connectivity matrix L or Laplacian of the
network. Concretely,

−In =
∑
m

Ln,mVm. (S20)

with

Lm,n =

{
1

ρm,n
: m ̸= n

−
∑

m
1

ρm,n
: m = n

. (S21)

Our ultimate goal is to calculate the resistance between nodes
j and ℓ. To that purpose, we solve the above equation for the
voltages, by calculating the circuit’s Green’s function [8–10]

G = (L− v · vT)−1 (S22)

with v = (1, 1, · · · , 1)T. This matrix of ones v · vT is the
outer product of the eigenvector corresponding to the zero
eigenvalue of L which accounts for the fact that adding a con-
stant, uniform potential to every node yields the same circuit
with the same relative voltages.

The two-point resistance Rj,ℓ between nodes j and ℓ is then
given through elements of this Green’s function

Rj,ℓ = Gj,j +Gℓ,ℓ − (Gj,ℓ +Gℓ,j). (S23)

The elements Rj,ℓ define the impedance matrix of the system.
Similar as for the scattering matrix, the impedance matrix is
a non-linear function of the resistors ρm,n, so we can inter-
pret a set of tunable ρm,n to be the input x of our neuromor-
phic system and some other tunable resistors ρm′,n′ to be the
learning parameters θ. The output is the measured two-point
resistance Rj,ℓ between a suitable set of nodes. If the ground
of the circuit is fixed at a certain node, e.g. node j, the output
is proportional to the measured voltage difference to nodes ℓ
such that the output can be recorded with a single measure-
ment step. As before, the linear nature of the system enables
us to directly measure gradients via the impedance matrix.
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