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ABSTRACT

The modeling, simulation, control, and stabilization of phase change problems is an
active area of research. One of the most commonly used models for this phenomenon is
the Stefan problem. In particular, the position and trajectory of the moving interface
play an important role in the material quality or the energy and time efficiency in
many real solidification processes. In particular, the feedback stabilization of the two-
dimensional two-phase Stefan problem has the potential to automate such solidification
processes.

The goal of this thesis is to conceptually and numerically investigate the derivation and
computation of a feedback stabilization for the Stefan problem, and then to apply this
feedback stabilization in a closed-loop simulation. However, the moving interface poses
several challenges that are addressed in this thesis. To derive a feedback stabilization, the
linear-quadratic regulator approach is chosen, which requires a linearization of the non-
linear Stefan problem. This linear version of the Stefan problem can then be discretized
in space to assemble matrices that are the coefficients for a differential Riccati equation.
The main challenge here is that the moving interface causes the matrices to be time-
dependent and thus the differential Riccati equation to be non-autonomous. To solve
this Riccati equation numerically, a major contribution of this thesis are non-autonomous
backward differentiation formulas.

Another challenge arising from the moving interface during the closed-loop simula-
tion of the Stefan problem are numerical issues that cause a blow-up behavior of time-
stepping schemes such as the implicit Euler method or the trapezoidal rule. A further
major contribution of this thesis is the presentation of a time-adaptive strategy that
is combined with the fractional-step theta scheme for the closed-loop simulation of the
Stefan problem.

Finally, the different aspects of the derivation and computation of a feedback stabi-
lization are investigated numerically to assess the applicability and performance of the
proposed methods. In addition, the numerical codes and data used for the experiments
are available to make the results of this thesis reproducible and reusable.
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ZUSAMMENFASSUNG

Die Modellierung, Simulation, Steuerung und Stabilisierung von Phasenwechselproble-
men ist ein aktives Forschungsgebiet. Eines der am häufigsten verwendeten Modelle für
dieses Phänomen ist das Stefan-Problem. Insbesondere die Position und die Trajektorie
der sich bewegenden Phasengrenze spielen eine wichtige Rolle für die Materialqualität
oder die Energie- und Zeiteffizienz in vielen realen Erstarrungsprozessen. Insbesondere
die Feedback-Stabilisierung des zweidimensionalen zweiphasigen Stefan-Problems hat
das Potential, solche Erstarrungsprozesse zu automatisieren.

Ziel dieser Dissertation ist es, die Herleitung und Berechnung einer Feedback-
Stabilisierung für das Stefan-Problem konzeptionell und numerisch zu untersuchen und
anschließend diese Feedback-Stabilisierung in einer Closed-Loop-Simulation anzuwen-
den. Die bewegte Phasengrenze stellt jedoch mehrere Herausforderungen dar, die in
dieser Dissertation behandelt werden. Um eine Feedback-Stabilisierung abzuleiten, wird
der Ansatz des linearen-quadratischen Reglers gewählt, der eine Linearisierung des nicht-
linearen Stefan-Problems erfordert. Diese lineare Version des Stefan-Problems kann
dann im Raum diskretisiert werden, um Matrizen aufzustellen, die die Koeffizienten für
eine Riccati-Differentialgleichung darstellen. Die größte Herausforderung besteht darin,
dass die Matrizen aufgrund der sich bewegenden Phasengrenze zeitabhängig sind und
die Riccati-Differentialgleichung somit nicht autonom ist. Um diese Riccati-Gleichung
numerisch zu lösen, sind nicht-autonome BDF-Verfahren (Backward Differentiation For-
mulas) ein wichtiger Beitrag dieser Dissertation.

Eine weitere Herausforderung, die sich aus der beweglichen Phasengrenze während
der Simulation des Stefan-Problems ergibt, sind numerische Probleme, die ein Blow-up-
Verhalten von Zeitschrittverfahren wie der impliziten Euler-Methode oder der Trapez-
regel verursachen. Ein weiterer wichtiger Beitrag dieser Dissertation ist die Einführung
einer zeitadaptiven Strategie, die mit dem Theta-Verfahren (fractional-step theta scheme)
für die Simulation mit Stabilisierung des Stefan-Problems kombiniert wird.

Schließlich werden die verschiedenen Aspekte der Herleitung und Berechnung einer
Feedback-Stabilisierung numerisch untersucht, um die Anwendbarkeit und Leistungs-
fähigkeit der vorgeschlagenen Methoden zu überprüfen. Darüber hinaus sind die für die
Experimente verwendeten numerischen Codes und Daten verfügbar, um die Ergebnisse
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CHAPTER 1

INTRODUCTION

Contents
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1. Motivation

A fundamental phenomenon that plays an important role both in nature and in many
industrial processes is the transition between two aggregate states of different materials.
In particular, the solid and liquid states of aggregation are elementary manifestations of
matter. Each of them differs discontinuously in the mobility of its atoms and molecules
and in the strength of the interactions between them. It is the discontinuity of this
transition process which poses a mathematical challenge so that the modeling, simu-
lation, control, and stabilization of these problems has been an active research field
since two centuries. The present work contributes to this field by proposing, as well as
conceptually and numerically investigating, a feedback stabilization for a model of the
problem.

Two of the first mathematical models of the transition between the solid and liquid
states of aggregation were published first in 1831 by G. Lamé and B. P. Clapeyron [LC31]
and then later by J. Stefan [Ste89, Ste90, Ste91]. Today, the model that was published
by J. Stefan is often called Stefan problem. It describes the process of solidification and
melting of a pure material on a certain domain Ω as a non-linear partial differential
equation (PDE). The domain contains the solid phase, that is the region Ωs where the
material is solid, and the liquid phase, the region Ωl where the material is liquid. Between
those two is an interface Γint, which is moving depending on the solidification or melting
of the material.

1



1. Introduction

Ωl

Ωs

Γint

Figure 1.1.: One instance of the domain Ω(t) ⊂ R2 of the Stefan problem.

For an example of the domain, see Figure 1.1. The unknowns of the Stefan problem
are the position of the interface and its velocity Υint as well as the temperature Θ of the
material. A simple version of the system of equations can be written in the following
way:

Θ̇ − α∆Θ = 0, on Ω, (1.1a)

Υint =

(
1

ℓ

[
ks∂nintΘ

∣∣
Ωs

− kl∂−nintΘ
∣∣
Ωl

])
· nint, on Γint, (1.1b)

α =

{
ks, on Ωs,

kl, on Ωl.
(1.1c)

Here, the constants ℓ, ks, and kl are material parameters and nint is the interface
normal pointing from solid to liquid. The system of equations (1.1) is widely used since
it allows to model the discontinuities of the Stefan problem with the parameter α and the
jump term of the temperature gradient in the right hand side of Equation (1.1b). But
at the same time, the discontinuities, the structure of Equation (1.1b) as an algebraic
condition, and the time-dependent position of Γint pose significant challenges for the
numerical simulation and optimal control of the system in a feasible and reliable manner.
Therefore, new or improved algorithms and techniques to address these challenges are a
valuable contribution of this thesis.

Of special importance in many applications of the Stefan problem is the position of
the moving interface and for stabilization problems it can be the objective to steer the
interface position. However, existing methods simplify the model to consider only one

2



1.2. State of the Art

spatial dimension, one phase, or use an open-loop control for the two-dimensional two-
phase version of the problem. Thus, the goal of this thesis is to conceptually derive
a feedback stabilization algorithm for the two-dimensional two-phase Stefan problem.
Furthermore, the goal is to compute this feedback stabilization and apply it in numerical
experiments. These goals are pursued in order to go one step further on the path to
having applicable methods for real-world applications.

To emphasize the importance of feedback stabilizations of the Stefan problem and
related problems in a larger scope, it is important to mention that they can make it
possible to automate many processes to an extend that they can be stabilized with a
higher accuracy than humans could steer them manually. The same processes can also
be improved with respect to their energy and time efficiency. During a solidification
process, the quality of the resulting material can strongly depend on the shape of the
interface [Van13]. Therefore, it is advantageous to use feedback stabilization to steer the
interface position, e.g. along a flat trajectory.

To achieve this, either existing methods for the Stefan problem can be used as a start-
ing point, or methods for similar problems can be adapted to the feedback stabilization
of the two-dimensional two-phase Stefan problem. But, new challenging subproblems
arise from the combination and implementation of the methods chosen in this thesis.
The linear-quadratic regulator (LQR) approach is chosen for this purpose. It requires
a linearization and discretization of the Stefan problem with special attention to the
boundary condition at the interface. The LQR approach leads to large differential Ric-
cati equations (DREs) with time-dependent coefficients due to the moving interface. For
these specific non-autonomous DREs, only the theoretical concept of numerical solvers
is available. However, existing implementations in the literature are limited to certain
types of time-dependent coefficients and are not suitable for the Stefan problem. Another
challenge arises in the simulation of the closed-loop system in which the computational
feedback stabilization is applied. In this context, numerical problems may arise, e.g. in
the form of blow-ups of the simulation.

1.2. State of the Art

Stefan Problem Since the original publications by J. Stefan [Ste89, Ste90, Ste91] as
well as G. Lamé and B. P. Clapeyron [LC31], the Stefan problem is actively and inten-
sively studied from the modeling to the theoretical analysis to the numerical simulation.
An extensive historical survey can be found in the book by L. I. Rubenštĕın [Rub71, In-
troduction: §1]. It is illustrated here that early works on the Stefan problem usually con-
sider the one-dimensional or one-phase cases. This evolved to the consideration of higher
dimensional and two-phase cases only decades after the original publication. The fact
that there are several books dedicated to the Stefan problem emphasizes the importance
of this topic. A selection of these books are [Rub71, Vis96, NCM11, Gup18, KK20b],

3



1. Introduction

which also treat the theoretical analysis of the Stefan problem.
The modeling of the Stefan problem entails the specific challenge to represent the

interface and its velocity in a way that allows efficient numerical simulations, which
are at the same time sufficiently accurate and can resolve the discontinuities. Many
publications evolve around this challenge, like the comparison [BSVU06].

One possibility is to treat the interface implicitly as a mushy region of material. Then,
no explicit representation or tracking of the inner boundary is necessary and the jump
in the temperature gradient can be replaced with a steep but still continuous transition
region. For instance, the enthalpy formulation of the Stefan problem, e.g. [Whi82a,
Whi82b], has no sharp interface representation. As a consequence, the implementation
of a numerical simulation of this model is relatively simple [Vab14, p. 219] but the exact
interface position is unknown. This makes it more challenging to control the interface
position.

In contrast, a sharp interface representation allows evaluating the interface position
or velocity as explicit variables and comparing them to a desired position or velocity
given a control setting. One way to treat the moving inner boundary explicitly is to
represent it as the zero level set of a time-dependent, implicit function, e.g. [NPV91a,
NPV91b] or [ZGT06]. A common method to approximate the temperature and the zero-
level-set function is the extended finite element method (X-FEM). Here, the finite el-
ement method (FEM) functions are modified in a narrow band around the interface
to deal with the discontinuity of the temperature gradient. For a detailed description
of X-FEM see, e.g. [Ber10, BH11]. Another numerical method that is available in the
literature to approximate the temperature and the zero-level-set function is presented
in [CMOS97] where a finite difference scheme is used.

An alternative method for a sharp and explicit representation of the interface is to let
the spatial discretization adaptively track the position of the interface. This approach
on an adaptive mesh is also known as mesh movement or arbitrary Lagrangian-Eulerian
(ALE) method. These methods are applied to different types of problems [DGH82] and
have originally been developed for finite differences. However, they are also used together
with FEM [HLZ81]. For the Stefan problem, the advantage of a moving mesh is that it
can be aligned with the interface throughout the movement. Like this, discontinuities
along the interface can be resolved. In [HZ07, Zie08] a moving mesh is combined with
finite differences for the two-phase Stefan problem. Here, the interface is explicitly repre-
sented as a graph over one boundary of the two-dimensional domain. The same approach
can be combined with the FEM as well [Bar16, BBHS18]. A similar formulation of the
two-dimensional two-phase Stefan problem can be found in [BPS10, BPS13], [BMR01],
and [BBHS18], where FEM and a moving mesh are used as well.

A sufficiently accurate and feasible method for the numerical simulation is a crucial
prerequisite to develop open-loop control approaches for the Stefan problem. Several of
the resources that are mentioned in this paragraph approach this challenge as well.
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Open-loop Control of the Stefan Problem Several well established open-loop control
strategies are applied to the Stefan problem in order to not just simulate the system but
also steer it to a desired state. A general overview over these well established open-loop
control strategies can be found in books about optimal control and partial differential
equation (PDE)-constrained optimization, like [Trö10, LEG+12].

In order to derive an open-loop control for the Stefan problem, requirements are:

• a control variable as an input to the system,

• a cost functional that penalizes the deviation of the system from a desired state,

• optimality conditions,

• an algorithm to numerically compute the control.

While there are many different possible choices for a control and cost functional, also
depending on the systems that are coupled with the Stefan problem, the desired state is
usually a particular interface position or trajectory. The optimality conditions that are
present in the literature are either of first or second order nature. However, sufficient
optimality conditions of second order have been derived theoretically only for a more gen-
eral free boundary problem [ANS14, ANS15]. In contrast, several variants of fist-order
optimality systems exist that are also implemented numerically. A common method is to
use a quadratic tracking-type cost functional, which measures the control costs and the
interface deviation. This is then combined with the formal Lagrange approach to derive
an adjoint system and the gradient of the cost functional. With this, a gradient method
can be used to approximate the optimal control. Some examples of this approach are
contained in [ANS14, ANS15] and [Zie08], where a moving mesh is combined with finite
differences. This is used to simulate the Stefan problem coupled with the NSE as well as
Lorentz forces and a graph representation of the interface. The gradient method, which
computes the optimal control is combined with a quadratic line minimization algorithm
for the step size control. A similar approach is used in [Ber10, BH11] as well as [Mar12].
Here, the Stefan problem is not coupled to any other system and the interface is repre-
sented with a zero level set function. For the simulation, X-FEM is used instead of mesh
movement and again, a gradient method to approximate the control. A combination of
the previous approaches is developped in [BBHS18]. Here, the adjoint-based approach
for the Stefan problem coupled with NSE and mesh movement is used in combination
with FEM. The mesh movement is treated and coupled as an unknown to the system and
incorporated in the adjoint system together with a graph representation of the interface.
The gradient method is combined with a quadratic line minimization algorithm for the
step size control. The open-loop approach in [BBHS18] is also used as a starting point
to compute reference trajectories for closed-loop feedback stabilizations of the Stefan
problem.
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Closed-loop Control of the Stefan Problem Closed-loop, i.e. feedback stabilization,
for the Stefan problem is a field that has been discussed in the literature only recently.
Similar to the earlier work on the numerical simulation and open-loop control, it is a
natural approach to first significantly simplify the problem and then to develop new
methods for it before extending them to more challenging instances. In case of the
Stefan problem, there are two common approaches to handle this non-linear problem in
a formulation, which is more simple and thus more feasible for numerical computations.

The first approach is to consider the one-phase Stefan problem. An early derivation
of a feedforward control is in [DPRM03]. Further, available in the literature are enthalpy-
based [PBT12, PBT14], geometry-based [MC14], and backstepping-based [KDK19] meth-
ods, as well as an approach where the simulation model is built around the feedback
stabilization’s state definition [KDK16]. A direct extension of the methods for the one-
phase Stefan problem to the two-phase case is not feasible since the incorporation of the
coupling between the two phases is not straight forward.

The second approach to make the Stefan problem more simple is the considera-
tion of the one-dimensional Stefan problem. First theoretical derivations of a closed-
loop stabilization are in [RWW04, PBT10, KK19]. Lately, also an energy-shaping ap-
proach [KK20a], a backstepping method [EWW20], a flatness-based state feedback de-
sign [EWFR+22], and model predictive control [EBRW21] have been developed for the
one-dimensional problem. To the best of the authors’ knowledge, non of these methods
has been extended to the two-dimensional case and the only existing feedback stabiliza-
tion approaches for the two-phase two-dimensional Stefan problem are [BBSS24, BBS22],
which apply the LQR approach.

LQR and DRE Solver The method used in this work to derive a feedback stabilization
for the Stefan problem is to apply the LQR approach. A key element of the LQR
approach is to assemble and numerically solve a DRE.

Even though the LQR approach has not been applied to phase-change problems so
far, it is well studied for related types of problems, e.g. convection-diffusion equa-
tions [Wei16]. It is important to note that the optimal feedback stabilization for a linear
control system in state-space formulation with a quadratic cost functional is given by
LQR, see e.g. [Loc01]. Although the convection-diffusion equations in [Wei16] and the
Stefan problem are non-linear systems, they can be stabilized with this method under
certain conditions. These conditions include that the system is stabilizable and the
deviation from the desired trajectory is sufficiently small [Son98, Section 8.5].

A general introduction of the derivation of the LQR problem and the resulting DRE
is available in [Rei72, BG91]. More particular, an extensive study on DREs and their
numerous applications can be found in [AKFIJ03] or for generalized DREs in [KM90a]. A
specific property of the Stefan problem is that the Stefan condition (1.1b) is an algebraic
equation. Thus, the corresponding DREs have differential-algebraic structure as well.
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For a general introduction to DREs, which result from differential-algebraic equations
(DAEs), see [KM90b].

With this, the prerequisites are provided to derive the DRE theoretically and as-
semble it numerically. This numerical realization can be done, e.g. with the help of
a linearization and a spatial discretization as it is demonstrated in [BBS22] using the
FEM software FEniCS [LWH12]. Here, the moving mesh method is used and, thus,
the spatial discretization is time-dependent. This results in a large-scale matrix-valued
DRE with time-dependent coefficients, that is, a non-autonomous DRE. The next step
is to approximate the numerical solution of the non-autonomous DRE with a sufficiently
accurate and efficient method.

A crucial feature of efficient and feasible numerical methods to solve large-scale matrix-
valued DREs is to approximate the solution by a low-rank factorization. It is proven
theoretically for the autonomous DRE in [Sti18b] that this is a valid and sufficiently ac-
curate approach. For the non-autonomous DRE a similar result is observed in numerical
experiments only [BBSS24].

The numerical solution of large-scale matrix-valued DREs is well studied for the au-
tonomous case. For this, well known methods, which use the low-rank structure of the
numerical solution, are splitting schemes [Sti15a, Sti15b, Sti18a, OPW19, MOPP18],
Rosenbrock and Peer methods [Men12, LMS15, Lan17, BL18] as well as the backward
differentiation formulas (BDF) [BM04, Men12, LMS15, BM18]. Krylov subspace meth-
ods [BBH21, KM20, KS20, GHJK18], exponential integrators [LZL20], and an all-at-once
space-time approach [BDS21] (computing a low-rank tensor format solution) for DREs
have been developed recently as well. In [Men12, BM18] Rosenbrock and BDF meth-
ods and in [LMS15, Lan17, BL18] also Peer methods are studied for a non-autonomous
DRE where the mass matrix is constant. In extension of this, splitting schemes and
BDF methods are developed in [BBSS24] for non-autonomous DREs with a time-varying
mass matrix. In contrast to the BDF methods, the splitting schemes require that the
coefficients can be decomposed into a time-dependent scalar function times a constant
matrix. Non-autonomous DREs resulting from the Stefan problem in combination with
mesh movement exceed this case. The single matrix entries change very differently, pos-
sibly for all matrices and, thus, do not permit the decomposition that is required for the
splitting schemes.

In summary, the non-autonomous DRE, which results from the Stefan problem, can
be solved numerically with a suitable method like the non-autonomous BDF method.
Then, the numerical solution can be used to compute a feedback gain matrix and, finally,
a feedback stabilization during a closed-loop forward simulation.

Adaptive Time-Stepping for Related Problems The numerical simulation of closed-
loop problems with free boundaries and moving interfaces, like the Stefan problem, is
a very broad and active field of research, see e.g. [KDK19, LF20, JWN20, CRD20,
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KMC+20], and there are numerous numerical methods available. Especially during the
closed-loop simulation of the Stefan problem with quickly varying inputs, common meth-
ods like the implicit Euler method and the trapezoidal rule run the risk to break down
as described in [FW18] or [BBSS24]. This very specific problem is treated rarely in
the literature. A possible method to overcome this is the fractional-step-theta algo-
rithm [BGP87] combined with adaptive time-stepping. It has successfully been applied
to Navier-Stokes equations [MR14, MR15] as well as for fluid structure interaction (FSI)
problems [FW18, Wic11, RW15] and the Stefan problem [BBSS24].

For the time-adaptivity, a common approach to determine the time step size are clas-
sical error estimates, e.g. heuristics, based on models of the actual error [GLS88, Tur99,
JR10], like the one that is used in [FW18]. An alternative approach is residual-based,
such as the dual-weighted residual, which gives the best results in [FW18]. However, the
dual weighted residual has high computational costs, which are not feasible for the two-
phase two-dimensional Stefan problem. Since here the purpose of the time-adaptivity is
to prevent numerical issues that occur when the input is quickly varying, a specialized
approach is developed in [BBSS24]. This approach for the time-adaptivity is to adapt
an error-based heuristic to monitor the change in the input instead of the error estimate.

Additionally, for specific problems that have moving inner boundaries as well, there are
other specialized time-adaptive strategies available. One example is an adaptive time-
stepping applied for a two-phase flow with a proportional–integral–derivative (PID) con-
trol in [AG17]. Another example is [SUS15], where time and spatial discretizations are
used that are adaptive with respect to Courant-Friedrichs-Lewy and non-self-intersection
conditions for a dendritic Stefan problem.

1.3. Outline

The outline of this thesis is in line with the objective of the derivation and application of
feedback stabilizations for the two-phase two-dimensional Stefan problem. This means
that for the core algorithm of this thesis, which is proposed in Algorithm 3.1, the outline
follows the path starting from the existing methods that are used as a starting point,
then to the adapted and newly developed methods leading to the demonstration of the
effectiveness of the proposed algorithm.

Chapter 2: Mathematical Background for the Feedback Stabilization of the Ste-
fan Problem Although the field of feedback stabilization for the Stefan problem has
only recently been discussed, there are well-studied methods for related problems. This
chapter reviews various numerical methods from the existing literature for deriving,
computing, and applying feedback stabilization to the Stefan problem and the subprob-
lems that arise in this context. Some of these subproblems are already discussed in the
literature, such as numerical simulation and open-loop control of the Stefan problem
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(Sections 2.1 and 2.2). Other subproblems, such as LQR and DRE solvers, have been
well studied, e.g. for convection-diffusion problems (Sections 2.3 and 2.4). Therefore,
the approaches to these subproblems can be adapted accordingly.

In this chapter the methods for the feedback stabilization of the Stefan problem are
collected, which are then used, adapted or extended in Chapter 3.

Chapter 3: Methods for the Feedback Stabilization of the Stefan Problem The
central chapter of this thesis is dedicated to the main objective, namely to derive, com-
pute and apply a feedback stabilization for the two-phase two-dimensional Stefan prob-
lem. One of the key contributions of this thesis is the core algorithm for this objective.
This algorithm is formulated in Section 3.1. Each step of this algorithm has its own
subproblems and the need for new methods. For the Stefan problem, the methods of
Chapter 2 are adapted or extended.

The main feature of the Stefan problem that requires special treatment is the moving
interface. This requires special attention to the associated boundary conditions in the
spatial discretization (Section 3.2). It also causes the matrices in the resulting DRE to
be time-dependent when using the LQR approach for the Stefan problem (Section 3.1).
To solve these DREs numerically, non-autonomous BDF methods are presented in Sec-
tion 3.3. Finally, special numerical problems can arise from the simulation of the Stefan
problem with applied feedback stabilization. These can be treated using adaptive time
stepping combined with a fractional step theta scheme (Section 3.4). Here, an error-
based indicator function and two input-based indicator functions are described. These
are specifically tailored to the closed-loop simulation of the Stefan problem.

Chapter 4: Numerical Results This chapter examines the numerical behavior and
performance of the core results of this thesis. Each proposed method for the related sub-
problems has specific numerical properties. They are studied and compared with existing
methods in several numerical experiments to demonstrate and verify the effectiveness of
the implementations. All of the results are made reproducible by providing the codes
and the data used for the experiments that are presented in this chapter (Section 4.1).

The solution of the non-autonomous DRE is the main computational effort for the
computation of feedback stabilization for the Stefan problem. Therefore, the accuracy
and efficiency of the non-autonomous BDF methods are investigated in Section 4.2. Once
the feedback gain matrix is computed, the next crucial step is its reliable and efficient
application in a forward simulation of the non-linear closed-loop Stefan problem. For this
purpose, the behavior of the time-adaptive fractional-step theta algorithm is described
in detail in Section 4.3. Lastly, with these two components settled, the LQR problem
design is discussed in terms of different choices for problem parameters such as cost
functional weight, inputs, outputs, and desired trajectories (Section 4.4).
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Chapter 5: Conclusion & Outlook Finally, in the last chapter, Section 5.1 summa-
rizes the main contributions of this thesis and points out how these contributions go
beyond the existing literature. In Section 5.2, the limitations of the presented results
and aspects that go beyond the scope of this thesis are highlighted. These limitations
and aspects point in the direction of further research. A particularly promising exten-
sion of the work presented in this thesis is the inclusion of flow in the liquid phase, i.e.
the coupling of the Stefan problem with the Stokes or Navier-Stokes equations. The
general framework for this coupling is already described in this section, together with
the relevant equations and the block structure of the resulting matrices.
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MATHEMATICAL BACKGROUND FOR THE FEEDBACK
STABILIZATION OF THE STEFAN PROBLEM
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This chapter gathers the methods that are then used, adapted, or extended in Chap-
ter 3 for the feedback stabilization of the Stefan problem.

Even though the field of feedback stabilization for the Stefan problem has been dis-
cussed only recently, there are well studied methods for related problems. In the process
of deriving, computing, and applying a feedback stabilization to the Stefan problem,
several subproblems arise. Some of these subproblems, like the numerical simulation
and the open-loop control of the Stefan problem, are already discussed in the literature
(Sections 2.1 and 2.2). Other subproblems, such as LQR and DRE solvers, are well
studied, e.g. for convection-diffusion problems (Sections 2.3 and 2.4), but not yet for
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the Stefan problem. Thus, the methods that are used to approach these subproblems
can be adapted or extended accordingly.

2.1. Modeling and Simulation of the Stefan Problem

This section explains the equations that describe the Stefan problem, its boundary condi-
tions, and initial values (Section 2.1.1). For the purpose of steering the interface position
with open-loop controls and closed-loop stabilizations, an important distinction is the
choice of a sharp interface representation and mesh movement (Section 2.1.3). This
choice influences also the discretization in space and time (Section 2.1.2), in particular
the spatial discretization and the FEM formulation. At the end of this section, the gen-
eral framework for time-stepping schemes is presented (Section 2.1.4), with which the
numerical simulation can be implemented.

2.1.1. Domain and Equations

The Stefan problem is described by equations characterizing the temperature and in-
terface movement as in [BBHS18, BBS22]. In order to apply open-loop and closed-loop
inputs to this problem a sharp interface representation is chosen, which makes the in-
terface position available explicitly.

At each time t ∈ [0, tend], the Stefan problem is modeled on the two-dimensional
domain Ω(t) ⊂ R2. For this, one instance is illustrated in Figure 2.1. The domain
Ω(t) is split into the two regions corresponding to the two phases. These are the region
Ωs(t) where the material is in its solid phase and accordingly, the region Ωl(t) related
to the liquid phase. The two phases are separated by the interface Γint(t). This inner
phase-boundary can move such that its position is time-dependent. Thus, also the two
phases Ωs(t) and Ωl(t) are time-dependent and, as a consequence, so is the whole domain
Ω(t) and its boundary regions. The boundary of Ω(t) is separated into Γu(t), Γcool(t)
and ΓN(t) as depicted in Figure 2.1. Note that the outer shape of Ω(t) is constant for
the realization chosen in this manuscript. Thus, the time-dependence of Ω(t) is not
absolutely necessary even though its sub-domains are time-dependent. However, the
time-dependence is kept in the notation in order to not restrict the presented methods
to this case.

Compared to the definition of the Stefan problem from [BBHS18], a more compact
form is used in this work, i.e. omitting the coupling with the Navier-Stokes equations.
The interface graph formulation is only used for the open-loop control approach in Sec-
tion 2.2 and is specified there. While the Navier-Stokes equations alone add additional
algebraic constraints, making the DAE harder to classify, both the Navier-Stokes equa-
tions and the interface graph formulation add more non-linearities to the problem. In
order to develop the general numerical strategy, the first step is to study the feedback
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Γcool

Γu

Ωl

Ωs

Γint

ΓN ΓN

ΓN ΓN

Figure 2.1.: One instance of the domain Ω(t) ⊂ R2 of the Stefan problem.

stabilization problem for this simplified setting without these couplings, before delving
into the additional technical challenges of the full problem formulation.

The temperature is denoted as Θ(t) and modeled with the partial differential Equa-
tion (2.1), which is a more detailed version of Equation (1.1):

Θ̇ −Υ · ∇Θ − α∆Θ = 0, on (0, tend]× Ω, (2.1a)
∂nΘ = u, on (0, tend]× Γu, (2.1b)
Θ = Θcool, on (0, tend]× Γcool, (2.1c)
Θ = Θmelt, on (0, tend]× Γint, (2.1d)

∂nΘ = 0, on (0, tend]× ΓN, (2.1e)
Θ(0) = Θ0, on Ω. (2.1f)

In Equation (2.1b), the input u(t) is applied as a Neumann condition on the control
boundary Γu(t). The Equations (2.1c) and (2.1d) describe the Dirichlet conditions on
the cooling boundary Γcool(t) and the interface Γint(t) with the constants Θcool and Θmelt,
respectively. Equation (2.1f) presents the initial condition with the initial temperature
distribution Θ0. The heat conductivities in the solid phase ks and in the liquid phase kl
are collected in α(Θ(t)):

α =

{
ks, on Ωs,

kl, on Ωl.
(2.2)
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In Equation (2.1a), the temperature is coupled with the extended interface movement
Υ(∇Θ(t)). For each t ∈ (0, tend], Υ(∇Θ(t)) is modeled by a system of algebraic equa-
tions. This means that these equations do not contain time derivatives:

∆Υ = 0, on Ω, (2.3a)

Υ =
(1
ℓ
[k(∇Θ(t))]sl

)
· nint, on Γint, (2.3b)

Υ = 0, on Γcool ∪ Γu, (2.3c)
Υ · n = 0, on ΓN, (2.3d)
Υ(0) = 0, on Ω, (2.3e)

On the interface, Υ
∣∣
Γint

(∇Θ(t)) = Υint(∇Θ(t)) is the interface movement in normal di-
rection, where nint(t) is the unit normal vector pointing from Ωs(t) to Ωl(t). Υint(∇Θ(t))
is coupled to Θ(t) through the Stefan condition (2.3b). Here, ℓ is the latent heat constant
and

[k(∇Θ)]sl = ks∂nintΘ
∣∣
Ωs

− kl∂−nintΘ
∣∣
Ωl

(2.4)

is the jump of the temperature gradient along Γint(t). Equations (2.3c) and (2.3d) ensure
that the outer boundaries of Ω(t) do not move such that the outer shape of the domain
does not change.

The extended interface movement Υ(∇Θ(t)) is used in Section 2.1.2 for the mesh
movement. The Stefan problem, which is described by the system of Equations (2.1)
and (2.3), is a non-linear system of DAEs on a time-varying domain.

The non-linearities arise due to the coupling ofΘ(t) and Υint(∇Θ(t)) in Equation (2.3b)
and the two temperature-dependent phases in the definition of α(Θ(t)) in Equation (2.2).
Hence, the dependence of Υint(∇Θ(t)) and α(Θ(t)) on Θ(t) leads to the non-linearity of
the terms Υ(∇Θ(t)) · ∇Θ(t) and α(Θ(t))∆Θ(t) in Equation (2.1a).

The Stefan problem formulation presented in this section is discretized in the next
section such that the Equations (2.1) and (2.3) can be solved numerically. Furthermore,
the non-linearities are treated and the Stefan problem is formulated in a more general
representation to make the LQR approach applicable.

2.1.2. Discretization and Linearization

In order to apply the LQR approach in Section 3.1, the Stefan problem needs to be for-
mulated in a standard state-space format, which is linear and semi-discretized in space.
Thus, this section describes how to transform the coupled DAE system of Equations (2.1)
and (2.3) into the linear state-space formulation

Mẋh = Axh + B̂uh,

yh = Cxh.
(2.5)
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To generate the square matrices A(t),M(t) ∈ Rn×n, the input matrix B̂(t) ∈ Rn×m, and
output matrix C(t) ∈ Rp×n, the Stefan problem is linearized and spatially discretized
(indicated by the index (·)h). Further, special care is taken on how the boundary con-
ditions (2.1d) and (2.3b) are treated in the definition of the matrices for Equation (2.5)
since they are of particular importance for the feedback stabilization problem (see Sec-
tion 2.1.3).

For the spatial discretization, FEM is used on a mesh of triangular cells Qh(t) = {Q(t)}
that changes over time, driven by the movement of the interface (see Section 2.1.3).

In order to derive a linearization of the Stefan problem, a reference trajectory is
used. This trajectory can be generated by applying an open-loop control approach to
the non-linear problem (see Section 2.2). This (desired) reference trajectory contains the
semi-discrete reference solutions Θ̃h(t), Υ̃h(∇Θ̃h(t)), Γint,ref(t), and the heat conductivity
α̃(Θ̃h(t)).

Using these reference states and the spatial discretization, a linearized, semi-discrete
version of Equation (2.1a) is derived by using the semi-discrete
states (Θh(t),Υh(∇Θh(t))). In particular, Θh(t) is replaced by Θ̃h(t) in the convection
term and α(Θh(t)) is replaced by the reference heat conductivity α̃(Θ̃h(t)):

Θ̇h −Υh · ∇Θ̃h − α̃∆Θh = 0, on (0, tend]× Ω. (2.6)

To formulate the Stefan problem into the standard state-space format of Equation (2.5),
i.e. to derive the matrices for this format, the semi-discrete variational formulations of
the Stefan problem are posed. The underlying equations are Equation (2.6), together
with the boundary and initial conditions from Equations (2.1) and (2.3):

0 =

∫
Ω

Θ̇h · vhdx−
∫
Ω

Υh · ∇Θ̃h · vhdx+
∫
Ω

α∇Θh · ∇vhdx−
∫
Γu

klu
h · vhds,

0 = −
∫
Ω

∇Υh · ∇v̂hdx+
∫

Γint

Υh · v̂hds−
∫

Γint

1

ℓ
[k(∇Θh)]sl · nint · v̂hds.

The semi-discrete test functions are denoted with vh(t) and v̂h(t) and these variational
formulations are reformulated into a matrix-based form:

MΘΘ̇
h = AΘΘΘ

h + AΘΥΥ
h +BΘu

h, on (0, tend]× Ω,

0 = AΥΘΘ
h + AΥΥΥ

h, on (0, tend]× Ω.
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Here, the coefficient matrices are defined via the inner products

⟨MΘΘ
h, vh⟩ =

∫
Ω

Θh · vh dx,

⟨AΘΘΘ
h, vh⟩ = −

∫
Ω

α∇Θh · ∇vh dx,

⟨AΘΥΥ
h, vh⟩ =

∫
Ω

Υh · ∇Θ̃h · vh dx,

⟨AΥΥΥ
h, v̂h⟩ =

∫
Ω

∇Υh · ∇v̂hdx−
∫
Γint

Υh · v̂hds

⟨AΥΘΘ
h, v̂h⟩ =

∫
Γint

1

ℓ
[k(∇Θh)]sl · nint · v̂hds,

⟨BΘu
h, vh⟩ =

∫
Γu

klu
h · vhds.

(2.7)

With these definitions, the semi-discrete linearized Stefan problem can be formulated in
the format of Equation (2.5) as: MΘ 0

0 0

 d

dt

 Θh

Υh

 =

 AΘΘ AΘΥ

AΥΘ AΥΥ

 Θh

Υh

+

 BΘ

0

uh,

yh =
[
CΘ 0

] Θh

Υh

 .
(2.8)

There are several plausible choices for the output matrix CΘ(t), some of which are
introduced in Section 4.4.3. With the zero-blocks in Equation (2.8), the DAE structure
is clearly visible. Here it is important to note that AΥΥ(t) is always non-singular since it
represents the Poisson operator with a Dirichlet boundary part at each time instance t.
Further, the mass matrix with respect to the temperature MΘ(t) is symmetric positive
definite and, in particular, always non-singular as well. In particular, Equation (2.8)
is a DAE in semi-explicit form of differential index 1 (see e.g. [KM06]), for which the
implicit index-reduction techniques from [FRM08] can be applied.

In other words, the Schur complement is used to remove the algebraic conditions.
This results in an equivalent formulation of the Stefan problem on the hidden mani-
fold [KM06], i.e. as an ordinary differential equation (ODE), with the coefficient matrices
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2.1. Modeling and Simulation of the Stefan Problem

M(t) =MΘ(t),

A(t) = AΘΘ(t)− AΘΥ(t)A
−1
ΥΥ(t)AΥΘ(t),

B̂(t) = BΘ(t),

C(t) = CΘ(t).

(2.9)

With the matrices from Equation (2.9), the Stefan problem can be transformed into the
formulation of Equation (2.5) and the LQR approach can be applied for the computation
of a feedback stabilization. In order to have a computationally efficient method, the
sparse structure of the matrices is preserved and the generally dense Schur complement
for A(t) is never computed explicitly. Instead, A(t) is applied implicitly and the matrices
from Equation (2.8) are used. For details, see [FRM08], or the numerical implementation
in [SKB].

Furthermore, to simulate the Stefan problem forward in time, a time discretization is
used with the reference time steps

0 = t0 < t1 < . . . < tnt−1 < tnt = tend,

T ref
fwd = {t0, t1, . . . , tnt−1, tnt}.

(2.10)

The related numerical methods are described in Sections 2.1.4 and 3.4. The LQR
approach requires to solve DREs backwards in time. For this, the same time-steps
t̂k = tnt−k are used in reversed order:

tend = t̂0 > t̂1 > . . . > t̂nt−1 > t̂nt = t0,

Tbwd = {t̂0, t̂1, . . . , t̂nt−1, t̂nt}.
(2.11)

The same time-steps are used because the matrices from Equation (2.9), which form the
coefficients of the differential Riccati equations, are assembled during the forward sim-
ulation. When a time-adaptive method is applied in the forward simulation, additional
time-steps can be added to T ref

fwd.

2.1.3. Interface Representation and Mesh Movement

Having in mind the stabilization problem, which aims to steer the interface position to a
desired trajectory, the interface Γint(t) itself is represented explicitly and sharply through
facets that are aligned with Γint(t) [BBHS18]. In particular, in the initial partition,
the facets of the mesh are aligned with Γint(t). To have these facets aligned with the
interface in every time step, the vertices on the interface are moved with Υint(∇Θ(t))
in normal direction. In order to prevent the mesh from degrading, i.e. avoid extreme
cell deformations, or mesh tangling, Υint(∇Θ(t)) is smoothly extended to Υ(∇Θ(t)) on
the whole domain Ω(t) with Equation (2.3). Figure 2.2 displays a possible mesh for two
different interface positions.
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

Figure 2.2.: Two instances of the mesh with the interface marked as a red line.

To couple Equations (2.1) and (2.3) correctly, it is important to note that the interface
is a non-material surface. This means that the movement Υint(∇Θ(t)) of the interface
and the mesh movement Υ(∇Θ(t)) are not related to the movement of any physical
material points. As pointed out in [BPS13], the non-material movement Υ(∇Θ(t))
needs to be separated from the material movement in Θ(t) with an advection term
−Υ(∇Θ(t)) · ∇Θ(t) in Equation (2.1a).

With the spatial discretization, which is described above, and the mesh movement,
the semi-discrete interface is represented explicitly as the facets of the mesh that are
aligned with it. However, this way, the interface position is not available as a state of
the Stefan problem. Thus, an alternative explicit and sharp representation is used as
well.

In the context of this work, it is assumed that the interface can be represented as a
one-dimensional graph g(t, x1), i.e. a function over the boundary Γcool at the bottom of
the domain:

Γint(t) =

{[
x1

g(t, x1)

]
: x1 ∈ Γcool

}
, with g : [0, tend]× Γcool → R,
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2.1. Modeling and Simulation of the Stefan Problem

where the derivatives of g(t, x1) are abbreviated with

gx1 :=
dg

dx1
, gt := ġ.

To map from Γcool to the interface Γint(t), the function Φ: [0, tend]×Γcool → [0, tend]×
Γint is used, which is defined as

Φ(t, x1) :=

(
t,

[
x1

g(t, x1)

])
.

The unit normal vector nint(t) along the interface Γint(t) points from the solid to the
liquid phase. It can be expressed as (see [Zie08, Sec. 2.1])

nint(t, x1) =
1√

1 + gx1(t, x1)
2

[
−gx1(t, x1)

1

]
. (2.12)

With Equation (2.12), the velocity Υint(∇Θ(t)) of the interface Γint(t) in normal di-
rection nint(t) at every point x1 on the interface can be expressed as

Υint(∇Θ(t), x1) = ∂t

[
x1

g(t, x1)

]
· nint(t, x1) =

[
0

gt(t, x1)

]
· nint(t, x1)

=
gt(t, x1)√

1 + gx1(t, x1)
2
= gt(t, x1)nint(t, x1) · e2,

(2.13)

where e2 = [0, 1]T is the unit vector in vertical direction. Using Equation (2.13), the
Stefan condition (2.3b) can be reformulated to√

1 + g2x1
· [k(∇Θ)]sl ◦ Φ = ℓ · gt, on Γcool. (2.14)

The interface representation with the graph g(t, x1) is used as an output to track the
interface position and deviation from the desired trajectory in the open-loop control
approach in Section 2.2. For this approach, the additional non-linearities introduced by
the graph representation are of no concern. For the closed-loop stabilization approach
in Section 2.3, however, the Stefan problem is first linearized, and the non-linearities
introduced by the graph representation pose additional challenges. Therefore, this rep-
resentation is not used for the closed-loop stabilization approach.

Nevertheless, the numerical simulation of the Stefan problem is performed with the
non-linear model, where different time-stepping schemes can be applied.
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

2.1.4. Time-stepping Schemes

The time-stepping schemes that can be used to simulate the Stefan problem in different
variations, i.e. unstabilized, open-loop, or closed-loop stabilized, are first presented
for an abstract system before the Stefan problem is plugged into these schemes. The
abstract, stabilized, semi-discrete, dynamical system reads

ζ̇h(t) = fh(t; ζh(t), uh(t)) (2.15)

on a finite time horizon t ∈ I = [t0, tend] and a domain Ω ⊂ Rd of dimension d > 0.
The index (·)h indicates that the system (2.15), the state ζh(t), and the input uh(t)
are discretized in space (see Section 2.1.2). The function fh : [t0, tend]× Rn × Rp 7→ Rn

represents the Stefan problem, that is, Equations (2.1) and (2.3), in semi-discretized
form.

For the time discretization, nt sub-intervals [tk−1, tk] are used to partition the time-
interval [t0, tend] with the time grid T ref

fwd as in Equation (2.10):

T ref
fwd = {t0, . . . tnt = tend},
τk = tk − tk−1.

With these time steps, the fully discrete approximations (ζk, uk) are defined by

ζk ≈ ζh(tk),

uk ≈ uh(tk).

For the computation of these discrete approximations, several time-stepping schemes
are formulated in the same framework by denoting the parameter Σ ∈ [0, 1]. With this,
the system (2.15) in discrete form can be approximated by

ζk − ζk−1

τk
= Σfh(ζk, uk) + (1− Σ)fh(ζk−1, uk−1). (2.16)

In case the function fh is non-linear, Equation (2.16) can be solved with, e.g. a Newton
method, otherwise with a direct linear solver. As a result, several time-stepping schemes
can be obtained by choosing different parameters Σ. For Σ = 0, Equation (2.16) is the
explicit Euler scheme and for Σ = 1, the implicit Euler scheme. With Σ = 0.5, the
scheme corresponds to a trapezoidal rule1. These are some straight forward choices for
Σ. Nevertheless, the described framework can be used to formulate more time-stepping
schemes as well, where Σ can vary in between time steps. This is used in Section 3.4 for
time-adaptive fractional-step-theta schemes. For now, the implicit Euler scheme (Σ = 1)
is used for the simulations that are performed during the computation of the open-loop
control, which is described in the next section.

1In different PDE contexts, like in [FW18], the scheme with Σ = 0.5 is also called Crank-Nicolson
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2.2. Open-loop Control of the Stefan Problem

2.2. Open-loop Control of the Stefan Problem

For a non-linear PDE system, like the Stefan problem, an open-loop control problem
can be defined. The aim is to use a control to steer the system to a desired state. In
this case, the desired state is a specific interface position and the control is applied in
Equation (2.1b).

Similar to the previous section, the open-loop control problem is described in this
section for an abstract PDE system. This approach closely follows [BBHS18] which in
turn uses results from [Zie08, Ber10, Bar16]. Then the Stefan problem is plugged into
this more general framework and a cost functional is defined. With this, an adjoint
system is derived via a Lagrange functional. More details on the Lagrange formalism
for the optimal control of PDEs can be found in [Trö10]. This adjoint system is then
solved numerically together with Equations (2.1), (2.3) and (2.14), which describes the
Stefan problem and the interface graph. In a projected gradient algorithm combined
with quadratic line minimization, a control is computed that moves the interface to a
desired position.

For the abstract control problem, the state ζ is an element of the state-space Vx and
the control u is an element of the set of admissible controls V ad

u , which is a subset of
the control space Vu. The abstract state and control spaces are defined for the Stefan
problem later in this section. With these definitions, the optimal control problem is
stated as

min
ζ∈Vx,u∈Vu

J̃(ζ, u)

subject to
f(ζ, u) = 0,

u ∈ V ad
u ⊂ Vu.

(2.17)

It is assumed that for each u ∈ V ad
u there exists a unique state ζ ∈ Vx that satisfies the

constraint f(ζ, u) = 0.

In the present Stefan problem, the state is defined as the tuple ζ = [Θ,Υ, g] and the
control constraint u ∈ V ad

u sets restrictions on the control. The set of admissible controls
V ad
u is usually a convex subset of Vu. In the case V ad

u = Vu, the problem is unrestricted.
The state equation f(ζ, u) = 0 connects the state and the control and represents the
PDE constraints of the Stefan problem defined in Equations (2.1), (2.3) and (2.14).

The objective of the cost functional is to measure the deviation of the interface tra-
jectory from a desired interface trajectory and the control costs. The cost functional is
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

defined as

J̃(ζ, u) :=
λend

2

∫
Γcool

(g(tend, x1)− gd(tend, x1))
2 dx1

+
λall

2

tend∫
0

∫
Γcool

(g(t, x1)− gd(t, x1))
2 dx1dt+

λu
2

tend∫
0

∫
Γu

(u(t, x))2 dxdt.

(2.18)

In detail, the deviation of the interface trajectory is measured in the cost functional
as the difference between the interface graph g(t, x1) and the interface graph gd(t, x1)
corresponding to the desired interface trajectory. The scalars λend, λall, λu ≥ 0 are weight
factors for the cost functional J̃(ζ, u): The first term aims to steer the interface position
to the desired position at the terminal time tend, the second term penalizes the interface
deviation over the entire time horizon (0, tend], while the third term models control costs
and has a regularizing effect [Trö10, p. 3].

Due to the assumption that a unique state ζ exists for every control u ∈ V ad
u , the cost

functional can be simplified to J(u) := J̃(ζ(u), u). As a consequence the optimal control
problem (2.17) can be simplified as well to:

min
u∈V ad

u

J(u). (2.19)

Following [Bar16], to solve this minimization problem, first-order necessary optimality
conditions are derived formally by applying the Lagrange formalism, i.e. a Lagrange mul-
tiplier, a Lagrange functional, and an adjoint system are derived. For this, a Lagrange
multiplier is defined as the tuple of adjoint states γ = [ω, φ, ωint, ψmesh, ψint, ψ, ψcool] and
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2.2. Open-loop Control of the Stefan Problem

the Lagrange functional as

L(ζ, u, γ) := J(ζ, u)− f(ζ, u) · γ

=
λend

2

∫
Γcool

(g(tend, x1)− gd(tend, x1))
2 dx1

+
λall

2

tend∫
0

∫
Γcool

(g(t, x1)− gd(t, x1))
2 dx1dt+

λu
2

tend∫
0

∫
Γu

(u(t))2 dxdt

−
tend∫
0

∫
Ω

(Θ̇ −Υ · ∇Θ − α∆Θ) · ω dxdt (2.20)

−
tend∫
0

∫
Γu

(∂nΘ − u) · φ dxdt−
tend∫
0

∫
Γint

(Θ −Θmelt) · ωint dxdt

−
tend∫
0

∫
Ω

(∆Υ) · ψmesh dxdt−
tend∫
0

∫
Γint

(Υ−
(1
ℓ
[k(∇Θ)]sl

)
· nint) · ψint dxdt

−
tend∫
0

∫
Γcool

(
√

1 + g2x1
· [k(∇Θ)]sl ◦ Φ− ℓ · gt) · ψ dxdt.

The Lagrange multiplier γ is also called adjoint state. As described formally in [Bar16],
the derivatives of L(ζ, u, γ) with respect to the states ζ = [Θ,Υ, g] can be used to derive
the equations of the adjoint system.

The adjoint system is now formulated first as an abstract adjoint equation and then,
as before, the specific equations for the Stefan problem are plugged into this framework.
The adjoint equation

f ∗(ζ, u, γ) = 0 (2.21)

is defined through the requirement that the first variation of the Lagrange functional
vanishes in all admissible directions δζ ∈ Vx, i.e.

f ∗(ζ, u, γ) = 0 ⇔ Lζ(ζ, u, γ)δζ = 0.

All terms from Equations (2.1), (2.3) and (2.14), which do not appear in f(ζ, u) and
thereby in the Lagrange functional (2.20), are treated explicitly as conditions to the
directions of variation δζ (see Equation (2.22)). For the Stefan problem, Equation (2.21)
has the form

D[Θ,Υ,g]L[δΘ, δΥ, δg] = 0.
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The above variation of the Lagrange functional is carried out for Θ,Υ, and g, resulting
in adjoint equations for the adjoint states γ = [ω, φ, ωint, ψmesh, ψint, ψ, ψcool]. Since this
is already done in [Bar16], it is shown here only for the temperature Θ, because the
jump across the interface has to be treated specially and additional jump terms arise in
the respective adjoint equations.

In detail, the explicit conditions to the direction of variation δΘ are

δΘ = 0, on (0, tend]× Γcool,

∂nδΘ = 0, on (0, tend]× ΓN,

δΘ(0) = 0, on Ω,

(2.22)

and the variation of the Lagrange functional with respect to Θ reads

0 = DΘLδΘ

= DΘ

(
−

tend∫
0

∫
Ω

(Θ̇ −Υ · ∇Θ − α∆Θ) · ω dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γu

(∂nΘ − u) · φ dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γint

(Θ −Θmelt) · ωint dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γint

(Υ−
(1
ℓ
[k(∇Θ)]sl

)
· nint) · ψint dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γcool

(
√

1 + g2x1
· [k(∇Θ)]sl ◦ Φ− ℓ · gt) · ψ dxdt

)
· δΘ.

Next, integration by parts as well as the conditions (2.22) are applied to the variation of
the first integral in the equation above with respect to the temperature. This leads to

DΘ

(
−

tend∫
0

∫
Ω

(Θ̇ −Υ · ∇Θ − α∆Θ) · ω dxdt

)
· δΘ

= −
tend∫
0

∫
Ω

˙δΘ · ω dxdt+

tend∫
0

∫
Ω

Υ · ∇δΘ · ω dxdt+

tend∫
0

∫
Ω

α∆δΘ · ω dxdt
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= −
tend∫
0

∫
Ω

˙δΘ · ω dxdt+

tend∫
0

∫
Ωs

Υ · ∇δΘ · ω dxdt

+

tend∫
0

∫
Ωl

Υ · ∇δΘ · ω dxdt+

tend∫
0

∫
Ωs

ks∆δΘ · ω dxdt+

tend∫
0

∫
Ωl

kl∆δΘ · ω dxdt

= −
∫
Ω

ω(tend)δΘ(tend) dx+

∫
Ω

ω(0) δΘ(0)︸ ︷︷ ︸
(2.22)
== 0

dx+

tend∫
0

∫
Ω

ω̇ · δΘ dxdt

+

tend∫
0

∫
∂Ωs

Υ · (ω · n) · δΘ dxdt−
tend∫
0

∫
Ωs

Υ · ∇ω · δΘ dxdt

+

tend∫
0

∫
∂Ωl

Υ · (ω · n) · δΘ dxdt−
tend∫
0

∫
Ωl

Υ · ∇ω · δΘ dxdt

+

tend∫
0

∫
∂Ωs

ksω∂nδΘ dxdt−
tend∫
0

∫
Ωs

ks∇ω · ∇δΘ dxdt

+

tend∫
0

∫
∂Ωl

klω∂nδΘ dxdt−
tend∫
0

∫
Ωl

kl∇ω · ∇δΘ dxdt

= −
∫
Ω

ω(tend)δΘ(tend) dx+

tend∫
0

∫
Ω

ω̇ · δΘ dxdt

+

tend∫
0

∫
Γint

Υ · (ω · n︸︷︷︸
= nint

) · δΘ
∣∣∣
Ωs

dxdt+

tend∫
0

∫
Γint

Υ · (ω · n︸︷︷︸
= −nint

) · δΘ
∣∣∣
Ωl

dxdt

+

tend∫
0

∫
∂Ωs\Γint

ω · (Υ · n︸ ︷︷ ︸
= 0

) · δΘ dxdt+

tend∫
0

∫
∂Ωl\Γint

ω · (Υ · n︸ ︷︷ ︸
= 0

) · δΘ dxdt

−
tend∫
0

∫
Ω

Υ · ∇ω · δΘ dxdt

+

tend∫
0

∫
Γint

ωks(∂nintδΘ)s − ωkl(∂nintδΘ)l dxdt

25



2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

+

tend∫
0

∫
Γu

ksω∂nδΘ dxdt+

tend∫
0

∫
ΓN∪Γcool

αω ∂nδΘ︸ ︷︷ ︸
(2.22)
== 0

dxdt

−
tend∫
0

∫
Γint

ks(∂nω)sδΘ dxdt−
tend∫
0

∫
Γint

kl(∂nω)lδΘ dxdt

−
tend∫
0

∫
ΓN∪Γu

α∂nωδΘ dxdt−
tend∫
0

∫
Γcool

ks∂nω δΘ︸︷︷︸
(2.22)
== 0

dxdt

+

tend∫
0

∫
Ω

α∆ω · δΘ dxdt

= −
∫
Ω

ω(tend)δΘ(tend) dx+

tend∫
0

∫
Ω

(ω̇ −Υ · ∇ω + α∆ω) · δΘ dxdt

+

tend∫
0

∫
Γint

ω[ks(∂nintδΘ)s − kl(∂nintδΘ)l] dxdt

−
tend∫
0

∫
Γint

[ks(∂nintω)s − kl(∂nintω)l]δΘ dxdt+

tend∫
0

∫
Γu

ksω∂nδΘ dxdt

−
tend∫
0

∫
ΓN∪Γu

α∂nωδΘ dxdt.

Further, inserting this into the variation of the Lagrange functional with respect to Θ,
gives

0 = DΘLδΘ

= −
∫
Ω

ω(tend)δΘ(tend) dx+

tend∫
0

∫
Ω

(ω̇ −Υ · ∇ω + α∆ω) · δΘ dxdt

+

tend∫
0

∫
Γint

ω[k(∇δΘ)]sl dxdt−
tend∫
0

∫
Γint

[k(∇ω)]sl δΘ dxdt

+

tend∫
0

∫
Γu

ksω∂nδΘ dxdt−
tend∫
0

∫
ΓN∪Γu

α∂nωδΘ dxdt
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+DΘ

(
−

tend∫
0

∫
Γu

(∂nΘ − u) · φ dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γint

(Θ −Θmelt) · ωint dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γint

(Υ−
(1
ℓ
[k(∇Θ(t))]sl

)
· nint) · ψint dxdt

)
· δΘ

+DΘ

(
−

tend∫
0

∫
Γcool

(
√

1 + g2x1
· [k(∇Θ)]sl ◦ Φ− ℓ · gt) · ψ dxdt

)
· δΘ

= −
∫
Ω

ω(tend)δΘ(tend) dx+

tend∫
0

∫
Ω

(ω̇ −Υ · ∇ω + α∆ω) · δΘ dxdt

+

tend∫
0

∫
Γint

ω[k(∇δΘ)]sl dxdt−
tend∫
0

∫
Γint

[k(∇ω)]sl δΘ dxdt

+

tend∫
0

∫
Γu

ksω∂nδΘ dxdt−
tend∫
0

∫
ΓN∪Γu

α∂nωδΘ dxdt

−
tend∫
0

∫
Γu

∂nδΘ · φ dxdt−
tend∫
0

∫
Γint

δΘ · ωint dxdt

+

tend∫
0

∫
Γint

(1
ℓ
[k(∇δΘ)]sl

)
· nint · ψint dxdt−

tend∫
0

∫
Γcool

√
1 + g2x1

· [k(∇δΘ)]sl ◦ Φ · ψ dxdt.

By using proper variation of δΘ, certain terms can be eliminated from the above equa-
tion. Thereby, terms which are integrated over the same domain and have the same
multiplier on the right can be consolidated into one equation so that the following ad-
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

joint equations arise

ω̇ −Υ · ∇ω + α∆ω = 0, on [0, tend)× Ω, (2.23a)
ωint + [k(∇ω)]sl = 0, on [0, tend)× Γint, (2.23b)

ω = 0, on [0, tend)× Γint, (2.23c)
∂nω = 0, on [0, tend)× (ΓN ∪ Γu), (2.23d)

ksω − φ = 0, on [0, tend)× Γu, (2.23e)
ψ = 0, on [0, tend)× Γcool, (2.23f)

ψint = 0, on [0, tend)× Γint, (2.23g)
ω(tend) = 0, on Ω. (2.23h)

The latter equations form the adjoint system for the adjoint state ω, which can be
interpreted as the adjoint temperature variable. The first equation (2.23a) is similar to
the heat equation, while the second equation (2.23b) is analogue to the Stefan condition.
The other equations can be understood as boundary conditions and the initial condition
at time t = tend.

The variation of the Lagrange functional with respect to Υ and g are performed
analogously. A detailed derivation of those can be found in [Bar16].

Similar to the state equation in (2.17), the adjoint Equation (2.21) for the present
optimal control problem is a PDE system, which is called the adjoint system. This
formal approach leads to

ω̇ −Υ · ∇ω + α∆ω = 0, on [0, tend)× Ω,

ωint + [k(∇ω)]sl = 0, on [0, tend)× Γint,

ω = 0, on [0, tend)× Γint,

∂nω = 0, on [0, tend)× (ΓN ∪ Γu),

ksω = φ, on [0, tend)× Γu,

ℓ · ψ̇ (2.24)
+(1 + g2x1

) · [k(∂2x2
Θ)]sl ◦ Φ · ψ

−∂x1(2gx1 · [k(∂x2Θ)]
s
l ◦ Φ · ψ) = λall(g − gd), on [0, tend)× Γcool,

∆ψ = ω∇Θ, on [0, tend)× Ω,

ψ = 0, on [0, tend)× ∂Ω,

∂nψ = 0, on [0, tend)× ΓN,

ψint = 0, on [0, tend)× Γint,

ω(tend) = 0, on Ω,

ψ(tend) +
λend

ℓ
(g(tend)− gd(tend)) = 0, on Γcool.
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2.2. Open-loop Control of the Stefan Problem

In this PDE system, the states Θ, Υ, and g are given and the functions ω, ψ and φ are
unknowns. Initial values for the adjoint states ω and ψ are given at tend. Thus, contrary
to the Equations (2.1), (2.3) and (2.14) that govern the Stefan problem, the equations
in (2.24) must be solved backward in time.

The optimal control problem can be solved with a gradient method [Trö10]. There-
fore, in addition to evaluations of the Equations (2.1), (2.3), (2.14) and (2.24), also the
gradient of the cost functional ∇J with respect to the control u is required. As shown
in [Bar16], ∇J can be expressed in terms of the Lagrange functional (2.20):

Ju(u)δu = Lu(ζ, u, γ)δu =

tend∫
0

∫
Γu

(λuu+ φ))δu dxdt.

With this, the gradient condition can be formulated:

⟨Lu(ζ, u, γ), ũ− u⟩ =
tend∫
0

∫
Γu

(λuu+ φ))(ũ− u) dxdt ≥ 0, for all ũ ∈ V ad
u . (2.25)

To bound the control, box constraints are employed for the control V ad
u = {u ∈ Vu :

u ≤ u(t) ≤ u, t ∈ [0, tend]} with lower and upper bounds u < u. The unrestricted case
V ad
u = Vu can be expressed with u = −∞, u = ∞. In this case, (2.25) simplifies to the

gradient equation

0 =

∫
Γu

λuu+ φ dx, t ∈ (0, tend]. (2.26)

As a consequence, the required gradient of the cost functional can be expressed as

∇J =

∫
Γu

λuu+ φ dx, (2.27)

and can be used in a gradient method, which is described here for the optimal control
problem

min
u∈V ad

u

J(u).

Given a control uk−1 ∈ V ad
u , the projected gradient method [Trö10], described in Algo-

rithm 2.1, uses the negative gradient −∇J(uk−1) as the descent direction (Line 6).
To proceed, a step size sk is computed in Line 5 with Algorithm 2.2. To ensure that

the computed control is admissible, the projection P[u, u] : Vu → V ad
u ,

P[u, u](u) := max{u,min{u, u}},

is applied pointwise in time (Line 7).
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

Algorithm 2.1: Projected gradient method
Input: initial control u0
Output: control ukend

1 k = 1
2 while not converged do
3 Solve Stefan problem (Equations (2.1), (2.3) and (2.14))
4 Solve adjoint system (2.24)
5 Compute step size sk
6 dk =

∫
Γu

λuu+ φ dx

7 uk = P[u, u](u
k−1 − sk · dk)

8 k = k + 1

9 end

The possible stopping criteria2, which are evaluated in Line 2 of Algorithm 2.1, depend
on the norm of the step

∥∥sk · dk∥∥
2
< δabs and the relative change of the cost functional

|J(uk−1)− J(uk)|
|J(uk−1)| < δrel, (2.28)

with certain tolerances δabs, δrel > 0. Besides that, a maximum iteration number kmax is
used.

It is worth noting that the choice of the step size sk is of great importance for the
performance of the projected gradient method. The algorithm to compute the step size
is a modification of the method used in [Zie08]. Three sampling points are evaluated to
approximate q(s) ≈ J(P[u, u](u

k−1 − s · dk)) with a quadratic polynomial q ∈ P2. The
local minimum of q is used as the next sampling point to refine the approximation.

In every iteration of Algorithm 2.2, the cost functional J(P[u, u](u
k−1 − sj · dk)) must

be evaluated at least once. These evaluations require the solution of the Stefan problem,
i.e. Equations (2.1), (2.3) and (2.14), and are computationally expensive. To avoid ex-
cessive computational costs in Algorithm 2.2, a maximum iteration number imax is added
in Line 4. If i > imax, the sampling point sj with the smallest cost value kj, j = 0, 1, 2 is
returned to Algorithm 2.1. Otherwise, with tolerances ϵabs, ϵrel > 0, the algorithm stops
if the newly computed minimum s of the polynomial q is close to an already existing
sampling point

|s− sj| < ϵabs, for any j = 0, 1, 2,

or if the relative change of the value of J at the new sampling point s is small
|J(P[u, u](u

k−1 − s · dk))− kj|
|k1|

< ϵrel.

2Details can be found in the source code ([Bar24, gradient_method.py: line 100 – 114)]

30



2.2. Open-loop Control of the Stefan Problem

Algorithm 2.2: Quadratic line minimization
Input: The step direction dk
Output: step size s

1 i = 1
2 Choose s0 = 0 < s1 < s2, ϵgrow

3 kj = J(P[u, u](u
k−1 − sj · dk)), j = 0, 1, 2 // Needs 2 evaluations of

Equations (2.1), (2.3) and (2.14) on (0, tend]
4 while not converged do
5 q ∈ P2 : q(sj) = kj, j = 0, 1, 2
6 s = argmin

s̃∈[s0,s2]
q(s̃)

7 if |s− s2| < ϵgrow then
8 s0 = s1, k0 = k1, s1 = s2, k1 = k2
9 s2 = 2 · s2 // Alternative s2 = s2 + s1 − s0

10 k2 = J(P[u, u](u
k−1 − s2 · dk)) // Needs 1 evaluation of

Equations (2.1), (2.3) and (2.14) on (0, tend]

11 else if s > s1 then
12 s0 = s1, k0 = k1, s1 = s
13 k1 = J(P[u, u](u

k−1 − s1 · dk)) // Needs 1 evaluation of
Equations (2.1), (2.3) and (2.14) on (0, tend]

14 i = i+ 1

15 else
16 s2 = s1, k2 = k1, s1 = s
17 k1 = J(P[u, u](u

k−1 − s1 · dk)) // Needs 1 evaluation of
Equations (2.1), (2.3) and (2.14) on (0, tend]

18 i = i+ 1

19 end
20 end

The main computational cost for solving the open-loop control problem with these al-
gorithms lies in the evaluation of Equations (2.1), (2.3) and (2.14), which occurs several
times, especially in the iteration steps of Algorithm 2.2. The convergence of Algo-
rithm 2.1 strongly depends on the problem settings and the initial guess for the control.
Also, different choices of the weights in the cost functional influence the convergence be-
havior as well as the choice of the desired interface position. A more detailed discussion
of Algorithms 2.1 and 2.2 can be found in [Bar16, BBHS18].

In the case of a real-world application scenario, the control is computed in advance
in an offline phase, and then the control is applied to the system. In case of any dis-
turbances, perturbations, approximation errors, or model inaccuracies the system can
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

still deviate from the desired trajectory and the open-loop control cannot react to this
deviation. However, it can be used as a reference solution for a closed-loop stabilization
problem, which can overcome the just described shortcomings of the open-loop control.

2.3. LQR for Non-linear Problems

In this section, the Riccati-feedback approach with LQR for general non-linear problems
is rendered. The goal of this approach is to stabilize the pair of reference state and input
(ζhref, u

h
ref). This approach is then further specified for the Stefan problem in Section 3.1.

The main distinction for the Stefan problem is its non-autonomous character. In this
section, the general concept for the autonomous case is introduced, before the details
related to the Stefan problem are presented in Section 3.1.

Similar to Section 2.1.4, an abstract, stabilized, semi-discrete, dynamical system is
considered, which reads

ζ̇h∆(t) = fh(t; ζh∆(t), u
h
K(t)) (2.29)

on a finite time horizon t ∈ I = [t0, tend] and a domain Ω ⊂ Rd of dimension d > 0.
The index (·)h indicates that the system (2.15), the state ζ∆h(t), and the stabilization
uhK(t) are discretized in space (see Section 2.1.2). Additionally, the index (·)∆ indicates
that the difference state and input (ζh∆, u

h
K) are considered

ζh∆(t) = ζh(t)− ζhref(t),

uhK(t) = uh(t)− uhref(t),
(2.30)

where (ζhref, u
h
ref) are the reference state and input that are to be stabilized. The stabi-

lization uhK(t) has the index (·)K to emphasize that it is derived with the feedback gain
matrix K.

For this, the LQR approach is used (e.g. [Son98]) to obtain a feedback-based stabi-
lization of Equation (2.29). This approach is used because it is well studied for types
of problems that are related to the Stefan problem, e.g. convection-diffusion equa-
tions [Wei16], and it demonstrates promising performance for these.

LQR is a method to numerically compute an optimal feedback stabilization for a linear
system in state-space formulation, see, e.g. [Loc01]. Moreover, non-linear systems can be
stabilized with this method if the deviation from the reference trajectory is sufficiently
small [Son98, Section 8.5]. Therefore, the abstract non-linear Equation (2.29) needs to
be linearized and formulated in terms of Equation (2.5).

To formulate the abstract stabilization problem, a quadratic cost functional is defined.
It tracks the deviation of the system from the desired trajectory, which is indicated by
the output yh, and penalizes the input cost with a weight factor 0 < λ ∈ R. Additionally,
the difference state at tend is measured with S positive semidefinite. The cost functional
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2.4. Differential Riccati Equation Solver

is thus defined as

J(ζh∆, y
h, uhK) =

1

2

∫ tend

0

∥∥yh∥∥2 + λ
∥∥uhK∥∥2 dt+ ζh∆(tend)

TSζh∆(tend). (2.31)

This cost functional is minimized subject to the linear time-varying system. With this,
the LQR problem reads

min
uh
K

J(ζh∆, y
h, uhK)

subject to

Mζ̇h∆ = Aζh∆ + B̂uhK,

yh = Cζh∆.

(2.32)

The unique solution to the LQR problem (2.32) (see, e.g. [Meh91, Loc01, Son98, BLP08])
is

uhK = −Kζh∆, (2.33)

where the feedback gain matrix

K=
1

λ
B̂TXM=

1√
λ
BTXM (2.34)

requires the solution X(t) ∈ Rn×n of a DRE. For the abstract autonomous problem, this
is the large-scale matrix-valued autonomous generalized DRE

−MTẊM= CTC+ ATXM+MTXA−MTXBBTXM,

MTX(tend)M= S.
(2.35)

The coefficients of the DRE are the matrices A,M ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
where the input matrix B = 1√

λ
B̂ is scaled with the weight factor from the cost func-

tional (2.31).
To numerically compute the feedback gain matrix Kk = K(tk) and the feedback

stabilization uk = uhK(tk) for tk ∈ Tbwd, the solution of the DRE (2.35) is required.
Efficient low-rank methods can be used for the computation of the numerical solution of
the DRE, Xk = X(tk), since it is assumed that Xk has a low (numerical) rank as shown
by [Sti18b].

2.4. Differential Riccati Equation Solver

In this section, methods to numerically compute the solution X(t) ∈ Rn×n of the
DRE (2.35) are presented. For this autonomous DRE, i.e. when all matrix coefficients
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

are constant in time, many efficient low-rank methods exist, as outlined in Section 1.2.
These methods are mostly tailored for the autonomous DRE and not yet suited to han-
dle time-dependent coefficients. In this section, the existing methods are described and
then adapted to the non-autonomous DRE in Section 3.3.

Analogously to the adjoint system for the open-loop control problem, the DRE is nu-
merically solved backwards in time, starting at tend, with the equidistant time discretiza-
tion Tbwd from Section 2.1.2. For reasons of better readability and for consistency with
previously published material, the methods which are presented here, are formulated
forward in time and a change of variables t→ tend + t0 − t is performed. The DRE to
be solved is

MTẊM= CTC+ ATXM+MTXA−MTXBBTXM,

MTX(t0)M= X0 = S.
(2.36)

The DRE solvers in this section then approximate Xk ≈ X(tk), which can be computed
efficiently with a low-rank factorization (see Section 2.4.2), otherwise the full solutions
can be computed with an ODE approach.

2.4.1. Vectorization to an ODE

A straight forward method to solve DREs is to vectorize them with

vec(A) =

 a1
...
an

 ,
where the matrix A = [a1, . . . , an] ∈ Rn×n has the columns a1, . . . , an ∈ Rn. Conse-
quently, vec(A) is a vector of size n2. This leads to a transformation of the DRE into
an equivalent vector-valued non-linear ODE:

vec(Ẋ) = vec(CTCM−1 +M−TATX+MTXAM−1 −XBBTX),

vec(X(t0)) = vec(M−TX0M
−1).

(2.37)

With the above formulation, existing numerical solvers for ODEs can then be applied.
However, this approach does not exploit the low-rank structure of the solution and is
unfeasible for large-scale problems. Still, for sufficiently small examples, the vectoriza-
tion method can be used and, e.g. the MATLAB® ode*-functions can be applied to
generate a very accurate reference DRE solution for error comparisons.
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2.4. Differential Riccati Equation Solver

2.4.2. Low-rank Methods

As indicated in [Sti18b], with m, p ≪ n, the solution of the DRE has a numerical rank
that is small. Even if the matrices A,M∈ Rn×n are sparse, at each time t, the solution
X(t) ∈ Rn×n is a dense matrix. However, it is symmetric, often has a low numerical
rank, and can therefore be approximated by

X(t) ≈ L(t)D(t)L(t)T, (2.38)

where the low-rank factors L(t) ∈ Rn×s(t) and D(t) ∈ Rs(t)×s(t) have the rank
s(t) ≪ n [LMS15]. With this low-rank factorization, just the low-rank factors L(t) and
D(t) need to be stored. Consequently, the memory requirement for the storage of the
solution reduces to O(s(t)n + s(t)2) instead of O(n2), per time step. This factorization
technique is used by the methods introduced in this section for reasons of runtime and
memory efficiency.

2.4.2.1. Backward Differentiation Formulas

The BDF methods [CH52] are chosen here because existing implementations can be
adapted to the non-autonomous case relatively straight forward since the original method
is designed to handle non-autonomous data. However, the existing BDF methods for
matrix-valued DREs like Algorithm 3.2 in [LMS15] are tuned for constant data.

For solving stiff problems, the BDF methods are a very popular class of linear multistep
methods, which use approximations of previous time steps. On the one hand, higher
orders of convergence can be obtained. On the other hand, additional initial values
are required in order to start the methods of order ℘ ≥ 2. These additional initial
approximations can be computed with any different one-step method of sufficient order
of convergence or with the specific start-up algorithm introduced in Section 3.3.

Following [Die92, BM04, Men12, Lan17], for a general matrix equation

Ẋ(t) = f(t,X), X(t0) = X0, (2.39)

the matrix-valued BDF method of order ℘ can be expressed as

Xk = −
℘∑

j=1

αjXk−j + τkβf(tk,Xk) (2.40)

with the coefficients β and αj from Table 2.1 and the time step size τk.
To apply this general BDF scheme to the DRE (2.36), the DRE can be reformulated

to

Ẋ = M−TCTCM−1 +M−TATX+XAM−1 −XBBTX =: f(t,X),

X(t0) = M−TX0M
−1,

(2.41)
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℘ β α1 α2 α3 α4

1 1 −1

2 2
3

−4
3

1
3

3 6
11

−18
11

9
11

− 2
11

4 12
25

−48
25

36
25

−16
25

3
25

Table 2.1.: Coefficients of the BDF method of order ℘ = 1 . . . 4 [AP98, Table 5.2].

with the assumption that M−1 exists. Now, the above equation is in the format of
Equation (2.39) and can be inserted into Equation (2.40). This yields the BDF scheme
for a DRE:

MTXkM=−
℘∑

j=1

αjM
TXk−jM+ τkβC

TC

+ τkβA
TXkM+ τkβM

TXkA− τkβM
TXkBBTXkM.

(2.42)

Alternatively, if M−1 does not exist, Equations (2.39) and (2.40) can be multiplied with
MT from the left and M from the right to get Equation (2.42). With the low-rank
approximation from Equation (2.38) and the definition of the matrices

Ak = τβA− 1

2
M,

Bk =
√
τβB,

CT
k =

[
CT,MTLk−1, . . . ,M

TLk−℘

]
,

Sk =


τβIp

−α1Dk−1

. . .
−α℘Dk−℘

 ,
(2.43)

Equation (2.42) can be reformulated as

0 = AT
kXkM+MTXkAk + CT

k SkCk −MTXkAkBkB
T
kXkM, (2.44)

which is an algebraic Riccati equation (ARE) with Xk ≈ LkDkL
T
k . Consequently, an

ARE is solved in each step of the BDF method. The whole procedure is summarized in
Algorithm 2.3, see also [LMS15, Algorithm 3.2].

The inputs of Algorithm 2.3 are the matrices A, M, B, C, the time grid T , and the
order ℘ of the BDF method. Further, the low-rank factors L0, . . . , L℘−1, D0, . . . , D℘−1 of
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2.4. Differential Riccati Equation Solver

Algorithm 2.3: Autonomous low-rank factor BDF method of order ℘
Input: A,M,B, C, λ,T , ℘, L0, . . . , L℘−1, D0, . . . , D℘−1

Output: Kk, k = 0, . . . , nt − 1

1 Knt−k =
1√
λ
BTLkDkL

T
kM, k = 1, . . . , ℘− 1

2 for k = ℘, . . . , nt do
3 Ak = τβA− 1

2
M

4 Bk =
√
τβB

5 CT
k =

[
CT,MTLk−1, . . . ,M

TLk−℘

]
6 Sk =


τβIp

−α1Dk−1

. . .
−α℘Dk−℘


7 Solve ARE (2.44) for Lk and Dk

8 Knt−k =
1√
λ
BTLkDkL

T
kM

9 end

the initial values X0, . . . ,X℘−1 are required as inputs with sufficient accuracy to obtain
the desired order of convergence ℘. Instead of storing the approximations for each time
step, Algorithm 2.3 can compute the feedback gain matrices Kk ≈ K(tk), k = 1, . . . , nt,
directly, which further decreases the storage requirements to O(mn) per time step. Note
that the amount of memory on disk after the computation is finished is monitored
here, but more memory may be needed during the computation. However, the Newton
alternating-direction implicit (Newton-ADI) method is used to solve the ARE (2.44),
which can accumulate the feedback gain matrices directly, avoiding the need to assemble
the low-rank solution factors. This is a significant performance advantage in terms of the
memory requirements during the computations, especially for large-scale DREs. Other
low-rank solvers for AREs are not able to accumulate the feedback gain matrices directly,
such as projection-based methods like EKSM and RKSM. Another low-rank ARE solver
that can directly accumulate the feedback gain matrices is RADI. However, this method
is not yet implemented in combination with the BDF method and is therefore not used
for this thesis.

The BDF method for autonomous DREs (Algorithm 2.3) can be extended to the non-
autonomous case, which is required for the non-autonomous DRE that results from the
LQR problem related to the Stefan problem, see Section 3.3.
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2.4.2.2. Autonomous Splitting Schemes

Following [Sti15b], for the general idea of splitting schemes, an abstract equation

Ẋ = (F +G)X, X(t0) = X0, (2.45)

is considered with the abstract operators F and G. The exact analytic solution to the
abstract Equation (2.45) is denoted as et(F+G)X0. For the splitting schemes, Equa-
tion (2.45) is split into the two subproblems

Ẋ = FX and Ẋ = GX, (2.46)

which are approximated numerically instead of the full problem. In most cases, F and
G can be chosen so that the subproblems are cheaper or easier to solve numerically than
Equation (2.45). The solutions of such subproblems can then be combined in different
ways to approximations of different orders of convergence for the full problem.

One example of this approach is the exponential Lie splitting method. For a given
solution Xk = X(tk) at time tk and a step size τk this method can be expressed as

ẊF = FXF , XF (0) = Xk,

ẊG = GXG, XG(0) = XF (τk).
(2.47)

Then, the approximate solution to the full problem is XG(τk) ≈ X(tk+1). Alternatively,
the method described by Equation (2.47) can be denoted with the time-stepping operator

Sτk = eτkF eτkG.

The Lie splitting is a first order method. Higher order methods can be constructed by
combining the solutions of the subproblems from Equation (2.46) in different ways. For
instance, the second-order Strang splitting can be expressed as

Sτk = e
τk
2
F eτkGe

τk
2
F .

This can be generalized to exponential splitting schemes of higher order ℘ by

Sτk =

℘∏
j=1

eαjτkF eβjτkG

with appropriate coefficients αj and βj [MSS99, MQ02, HV03, HWL06].
The splitting schemes just described are particularly interesting for DREs because

they can be split into the affine and quadratic parts of the equation. The two arising
subproblems for a DRE in the format of Equation (2.46) are

MTẊFM= CTC+ ATXFM+MTXFA, (2.48)

MTẊGM= −MTXGBBTXGM, (2.49)
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2.4. Differential Riccati Equation Solver

which have closed-form solutions under the assumption that M−1 exists. Note that the
subproblem (2.49) can be simplified to

ẊG = −XGBBTXG. (2.50)

The solution to the two subproblems are given by [Sti15a]

XF (t) = etM
−TAT

X0e
tAM−1

+

∫ t

0

esM
−TAT

M−TCTCM−1esAM
−1

ds, (2.51)

XG(t) = (I + tX0BBT)−1X0. (2.52)

In addition, these two solutions can be expressed in a computationally more efficient
low-rank representation. To do this, a time step size τk and the approximation at time
tk, represented as Xk = LkDkL

T
k , are given together with CTC = C̃TSC̃. Using a

simplified version of the Woodbury matrix inversion formula as in [Sti18a], the solution
to Equation (2.52) can be expressed as

XG(tk+1) = (I + τkLkDkL
T
kBBT)−1LkDkL

T
k = Lk(I + τkDkL

T
kBBTLk)

−1DkL
T
k

= LkDGL
T
k ,

(2.53)

with DG = (I + τkDkL
T
kBBTLk)

−1Dk. Similarly, the solution to the affine subprob-
lem (2.51) can be expressed in the same low-rank format by

XF (tk+1) = eτkM
−TAT

LkDkL
T
k e

τkAM−1

+

∫ τk

0

esM
−TAT

M−T C̃TSC̃M−1esAM
−1

ds,

= L̃F (tk+1)DkL̃
T
F (tk+1) +

∫ τk

0

LT
C(s)SLC(s)ds,

(2.54)

with L̃F (tk+1) = eτkM
−TAT

Lk and LC(s) = C̃M−1esAM
−1 . Both terms in Equation (2.54)

are of low numerical rank, so their sum has a low rank. The integral in Equation (2.54)
can be efficiently approximated with quadrature formulas of sufficient accuracy, e.g. of
order q = ℘+1, such that the quadrature error does not impair the order of convergence
℘ of the splitting scheme:

XF (tk+1) = L̃F (tk+1)DkL̃
T
F (tk+1) +

∫ τk

0

LT
C(s)SLC(s)ds

≈ L̃F (tk+1)DkL̃
T
F (tk+1) +

nq∑
j=1

wjL
T
C(cj)SLC(cj)

= LF (tk+1)DF (tk+1)L
T
F (tk+1).

(2.55)
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Here, the low-rank factors LF (tk+1) and DF (tk+1) are the block matrices

LF (tk+1) =
[
L̃F (tk+1), L

T
C(c1), . . . , L

T
C(cnq

)
]
,

DF (tk+1) =


Dk

w1S

. . .
wnq

S

 .
(2.56)

Here, {cj}nq

j=1 and {wj}nq

j=1 are the nodes and weights of the quadrature formula. The
integral in Equation (2.55) does not depend on Xk and is the same for every time step.
If the time step size is fixed, it can be approximated once in an offline phase. Even for
time steps that are not equidistant, e.g. in case of an adaptive time discretization, the
integral can be split into∫ τk

0

LT
C(s)SLC(s)ds =

∫ t1

0

LT
C(s)SLC(s)ds+

∫ τk

t1

LT
C(s)SLC(s)ds (2.57)

to avoid recomputing the same integral several times.
The splitting scheme is summarized in Algorithm 2.4. For clarity, only the Lie splitting

case is considered, where the non-linear subproblem is solved over a full time step, then
the affine subproblem is solved over a full time step. Other splitting schemes use different
combinations of these subproblems, see, e.g. [Sti18a], and it is straightforward to adapt
Algorithm 2.4 to these cases. The output and the basic inputs of Algorithm 2.4 are the
same as in Algorithm 2.3. The only difference is in the parameters {cj}nq

j=1 and {wj}nq

j=1,
which denote the quadrature nodes and weights of a quadrature formula.

2.4.2.3. Autonomous Splitting vs. BDF

Splitting schemes have several advantages compared to the BDF methods for autonomous
DREs [BBSS24]. On the one hand, the accuracy is more reliable as the behavior of the
error is more uniform along the time interval. The BDF methods have larger transient
errors at the end of the time interval and can get more accurate at the beginning of the
time interval. On the other hand, the splitting schemes have the ability to pre-compute
parts of the solution in an offline phase and reuse it in every iteration step, which can
make them computationally more efficient than the BDF methods. Further, they do
not require additional initial solutions for higher order schemes as the BDF methods do.
These features make them very promising as solvers for the non-autonomous DREs as
well since they can be extended to the non-autonomous case to a certain extent. The
details are presented in the next section of this work.
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Algorithm 2.4: Autonomous (Lie) splitting scheme
Input: A,M,B, C, λ,T , L0, D0, {cj}nq

j=1, {wj}nq

j=1

Output: Kk, k = 0, . . . , nt − 1

1 for k = 0, . . . , nt − 1 do
2 Set L̂ = Lk and compute D̂ = (I + τkDkL

T
kBBTLk)

−1Dk as in
Equation (2.53)

3 Compute L̃ = eτkM
−TAT

L̂ as in Equation (2.54) and set D̃ = D̂
4 Approximate the integral term in Equation (2.55) by quadrature∑nq

j=1 L̃jD̃jL̃
T
j , where L̃j = C̃M−1ecjAM

−1 , D̃j = wjS

5 Column compress LkDkL
T
k with Lk =

[
L̃ L̃T

1 · · · L̃T
nq

]
and

Dk = blkdiag(D̃, D̃1, . . . , D̃nq
)

6 Knt−k−1 =
1√
λ
BTLkDkL

T
kM

7 end

2.4.2.4. Non-autonomous Splitting Schemes

Following closely [BBSS24], the splitting schemes described in Section 2.4.2.2 can be
partially extended also to the non-autonomous DRE (3.6), which is the relevant matrix
equation for the feedback stabilization of the Stefan problem, as explained in Section 3.1.

The subproblems, which are analogues to Equations (2.48) and (2.50) are

MTẊFM= CTC+ (A+ Ṁ)TXFM+MTXF (A+ Ṁ), (2.58)

ẊG = −XGBBTXG. (2.59)

The solution to Equation (2.59) is given by

XG(t) =
(
I +XG(s)

∫ t

s

B(τ)B(τ)Tdτ
)−1

XG(s) (2.60)

for s ≤ t. This is easily seen by multiplying by the inverted term from the left and then
differentiating. The only difference when solving this subproblem in the non-autonomous
case is that the integral

∫ t

s
B(τ)B(τ)Tdτ has to be evaluated instead of just BBT.

Additionally, for the affine subproblem (2.58), the two-parameter semigroup

T(r, t) = exp

(∫ t

r

(
(A(τ) + Ṁ(τ))M(τ)−1)Tdτ)

is introduced. The integrand is denoted by Q(τ) =
(
(A(τ) + Ṁ(τ))M(τ)−1)T. An

important condition for deriving a solution for the affine subproblem is

Q(t)Q(s) = Q(s)Q(t) (2.61)
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for any t and s. Under this condition, also the integrals commute:∫ t

r

Q(τ)dτ

∫ s

r

Q(τ)dτ =

∫ s

r

Q(τ)dτ

∫ t

r

Q(τ)dτ .

As a consequence, Q(τ) commutes with T(r, t) and

d

dt
T(r, t) = Q(τ)T(r, t).

Then, the solution to Equation (2.58) satisfies

XF (t) = T(r, t)XF (r)T(r, t)T +

∫ t

r

T(s, t)M(s)−TC(s)TC(s)M(s)−1
T(s, t)Tds (2.62)

for t0 ≤ r ≤ t. This follows quickly by differentiating each of the two terms separately
using the above identity and noting that the first term satisfies Equation (2.58) without
the C(t)TC(t) term, and the second satisfies Equation (2.58) but with XF (r) = 0.

The required condition (2.61) holds if, for example, A(t) = σ(t)Ā and M(t) = µ(t)M̄
with constant matrices Ā and M̄ and scalar functions σ(t) and µ(t). This is a common
application, e.g. when considering heat flow with a variable thermal conductivity. In case
a different approach can be used to solve Equation (2.58) efficiently, the condition (2.61)
is not required. However, condition (2.61) does not hold in general, especially not for
the representation of the Stefan problem which is chosen in this thesis. More details can
be found in Section 4.2, where the non-autonomous splitting schemes are compared to
the non-autonomous BDF method from Section 3.3.

Analogous to Equation (2.53), the Sherman-Morrison-Woodbury matrix inversion
lemma can be utilized to express the solution XG of Equation (2.60) in low-rank form.
With XG(s) = LGDGL

T
G, the solution can be expressed as

XG(t) = LG

(
I +DGL

T
G

∫ t

s

B(τ)B(τ)TdτLG

)−1

DGL
T
G. (2.63)

Since the integral does not depend on XG(t) and the integrand has a low-rank factoriza-
tion for each τ , it can easily and efficiently be approximated by applying a quadrature
formula followed by a column compression step. This can potentially even be done in
an offline phase.

For the affine problem, the constant term in Equation (2.62) is in low-rank form if
the initial condition XF (r) is, and so is the integrand in the integral term. Therefore,
a quadrature rule can be applied to approximate the integral and column compress the
resulting sum to acquire an approximation to XF (t). For each of the terms of this sum,
T(c, t)L needs to be evaluated for different values of c and L. For this purpose, the fact
that it is the solution of the system

M(s)TẎ (s) =
(
A(s) + Ṁ(s)

)T
Y (s), Y (r) = L, (2.64)

42



2.4. Differential Riccati Equation Solver

Algorithm 2.5: Non-autonomous (Lie) splitting scheme
Input: A(t),M(t), Ṁ(t),B(t), C(t), λ,T , L0, D0, {cj}nq

j=1, {wj}nq

j=1

Output: Kk, k = 0, . . . , nt − 1

1 Invert the direction of time in all matrix functions, e.g. A(t) → A(tend + t0 − t)
2 for k = 0, . . . , nt − 1 do

3 Set L̂ = Lk and compute D̂ =
(
I +DkL

T
k

∫ tk+1

tk
B(τ)B(τ)TdτLk

)−1

Dk as in

Equation (2.63)
4 Compute L̃ = T(tk, tk+1)L̂ by solving Equation (2.64) and set D̃ = D̂
5 Approximate the integral term in Equation (2.62) by quadrature∑nq

j=1 L̃jD̃jL̃
T
j , where L̃j = T(tk + cj, tk+1)M(tk + cj)

−TC(tk + cj)
T,

D̃j = τkwjI

6 Column compress Lk+1Dk+1L
T
k+1 with Lk+1 =

[
L̃ L̃1 · · · L̃s

]
and

Dk+1 = blkdiag(D̃, D̃1, . . . , D̃s)
7 Knt−k−1 =

1√
λ
B(tk+1)

TLk+1Dk+1L
T
k+1M(tk+1)

8 end

at the time s = t is used.
In the autonomous case, a single integral can be approximated once and then reused

in every splitting step, but in the non-autonomous case an integral term needs to be
approximated in every step. Additionally, in the autonomous case, the semigroup prop-
erty T (r, t)L = T (r, s)T (s, t)L can be used to avoid recomputing the same values in
the quadrature formula, see Equation (2.57). This is no longer possible in the non-
autonomous case, because the semigroup will be applied to different L at different
quadrature nodes. As a consequence, most of the benefits arising from the splitting
that make these methods very competitive in the autonomous case are lost in the non-
autonomous case.

The procedure is summarized in Algorithm 2.5. For clarity, only the Lie splitting case
is considered, where first the non-linear subproblem is solved over a full time step, then
the affine subproblem over a full time step. Other splitting schemes will use different
combinations of these subproblems, see, e.g. [Sti18a], but it is straight forward to adapt
Algorithm 2.5 to those cases. The output of Algorithm 2.5 is the same as for the
autonomous version in Algorithm 2.4, and so are the basic inputs. The only difference is
that the matrices are time-dependent and the time derivative of the mass matrix Ṁ(t)
is present.

The main drawback of the non-autonomous splitting schemes in the context of the
Stefan problem are that the arising matrices for the DRE are not in the format to fulfill
condition (2.61). Thus, the non-autonomous splitting schemes in their current state are
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2. Mathematical Background for the Feedback Stabilization of the Stefan Problem

not applicable for the Stefan problem.
Instead, the autonomous BDF method, which is described in this chapter, is extended

for non-autonomous DREs in the next chapter. Furthermore, the LQR approach is
adapted together with other methods from this chapter to derive, compute and apply a
feedback stabilization for the Stefan problem.
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METHODS FOR THE FEEDBACK STABILIZATION OF
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The central chapter of this thesis is devoted to the main objective, namely the deriva-
tion, computation and application of a feedback stabilization for the two-phase two-
dimensional Stefan problem. The foundation for this is laid in Chapter 2, where existing
methods for similar stabilization problems and their subproblems are described. These
methods are now adapted or extended to be suitable for the Stefan problem. The main
feature of the Stefan problem that requires special treatment is the moving interface,
which requires careful attention to the associated boundary conditions in the spatial
discretization. Furthermore, it causes the matrices in the resulting DRE to be time-
dependent. Finally, the simulation of the Stefan problem with the applied feedback
stabilization can reveal special numerical issues that can be treated with adaptive time-
stepping.

The main procedure for stabilizing the Stefan problem using LQR is summarized in
Algorithm 3.1.

3.1. LQR for the Stefan Problem

In this section, the Riccati-feedback approach for the Stefan problem is formulated.
After introducing the general principles of LQR in Section 2.3, the focus is on the non-

45



3. Methods for the Feedback Stabilization of the Stefan Problem

autonomous character of this problem, which is induced by the moving interface and
the consequently changing sub-domains. This results in time-dependent coefficients in
Equation (2.5).

To formulate the LQR problem, the same quadratic cost functional J(ζh∆, yh, uhK) is
used as in Equation (2.31). The deviation of the system from the desired trajectory is
tracked via the output, and the input costs are penalized with a weight factor λ > 0.
Additionally, the difference state from Equation (2.30) at tend is measured with S positive
semidefinite. The cost functional is thus defined as

J(ζh∆, y
h, uhK) =

1

2

∫ tend

0

∥∥yh∥∥2 + λ
∥∥uhK∥∥2 dt+ ζh∆(tend)

TSζh∆(tend). (3.1)

This cost functional is minimized subject to a linear time-varying system similar to
system (2.5). The matrices from Equation (2.9) that are used here for the Stefan problem
are time-dependent due to the moving mesh resulting from the moving interface. This
is the main difference to Section 2.3, and the corresponding LQR problem reads

min
uh
K

J(ζh∆, y
h, uhK)

subject to

M(t)ẋh∆(t) = A(t)xh∆(t) + B̂(t)uhK(t),

yh(t) = C(t)xh∆(t).

(3.2)

The unique solution to the LQR problem (3.2) is (see Theorem 3.1)

uhK(t) = −K(t)xh∆(t), (3.3)

where the feedback gain matrix

K(t) =
1

λ
B̂T(t)X(t)M(t) =

1√
λ
BT(t)X(t)M(t) (3.4)

requires the solution X(t) ∈ Rn×n of a DRE. For the Stefan problem, this is the large-
scale matrix-valued non-autonomous generalized DRE

− d

dt
(MTXM) = CTC+ ATXM+MTXA−MTXBBTXM,

M(tend)
TX(tend)M(tend) = S.

(3.5)

All coefficients of Equation (3.5) can be time-dependent (but the t-dependency is omitted
for better readability). The coefficients of the DRE, at each time instance t, are the
matrices A(t),M(t) ∈ Rn×n, B(t) ∈ Rn×m, and C(t) ∈ Rp×n from Equation (2.9),
where the input matrix B(t) = 1√

λ
B̂(t) is scaled with the weight factor from the cost
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functional (3.1). In order to solve the DRE (3.5), the time-derivative requires special
treatment due to the time-dependent mass matrix M(t). The chain rule can be used to
rearrange the left side in Equation (3.5):

− d

dt
(MTXM) = −ṀTXM−MTẊM−MTXṀ.

The two terms containing Ṁ(t) can be subtracted from Equation (3.5) to obtain a DRE
with the time-derivative of M(t) moved to the right-hand side:

−MTẊM= CTC+ (Ṁ+ A)TXM+MTX(Ṁ+ A)−MTXBBTXM,

M(tend)
TX(tend)M(tend) = S.

(3.6)

Assumption 1:
The matrix pencil αM(t)− β(Ṁ(t) + A(t)) is regular. ♢

According to [KM90a], that the matrix pencil is regular results from the underlying DAE
being solvable. Note that Assumption 1 is observed to hold in the numerical experiments
of Chapter 4.

Theorem 3.1:
If Assumption 1 holds, the unique solution to the LQR problem (3.2) is given by the
stabilization function uhK defined by Equations (3.3) to (3.6). ♢

Proof. One result from [KM90a] is that the LQR problem (3.2) can be reduced to a
standard control problem under certain conditions. These are [KM90a, condition (3.4)
and (3.5)].

The condition [KM90a, condition (3.5)] simply requires that the singular value de-
composition of the mass matrix at the final time tend can be used such that

U(tend)M(t) =

 M1(t)
0

 for all t ∈ [0, tend],

with U(tend) being the left singular vectors of M(tend). With the block structure of the
matrices in Equation (2.8), condition [KM90a, condition (3.5)] is fulfilled even without
the singular value decomposition and the resulting transformation that is performed in
[KM90a].

In short, the condition [KM90a, condition (3.4)] requires that M(t) be continuous
and not full rank1. In addition, the matrix pencil αM(t) − β(Ṁ(t) + A(t)) must be

1If M(t) has full rank, the transformation into a standard control problem is not necessary. However,
M(t) does not have full rank due to the algebraic Stefan condition.
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regular and the index ind∞(M(t), Ṁ(t) + A(t)) ≤ 1. Together with Assumption 1, also
[KM90a, condition (3.4)] is fulfilled and Equation (3.12) is already formulated in the
form of [KM90a, Equation (3.12)–(3.16)]. Thus, the stabilization function uhK defined
by Equations (3.3) to (3.6) is equivalent to the unique solution in [KM90a, Equation
(2.19)]. Consequently, uhK is the unique solution to the LQR problem (3.2).

The choice of several problem parameters is crucial in the design of the LQR problem
just described. These parameters strongly influence the performance of the resulting
feedback stabilization.

First, a very important choice in the design of the LQR problem is the weight param-
eter λ in the cost functional (3.1). A smaller λ causes the cost functional to be more
dominated by the output deviation and the input cost term has less influence. Thus,
a smaller λ results in more active feedback stabilization, which prevents the interface
from deviating. However, it should also be noted that the λ is acting as a regularization
parameter for the LQR problem. A smaller λ results in a more dominant quadratic term
for the DRE (3.6). This can affect the accuracy of the solution and can make solving
the DRE more computationally expensive.

Especially important for the purpose of deriving an effective feedback stabilization
for the Stefan problem is the choice of the inputs and outputs to the system, i.e. the
matrices B(t) and C(t). The inputs are typically chosen to act on boundary regions, as
this is a more realistic setting for real-world applications. By selecting different parts of
the boundary as the input boundary Γu(t), different combinations of Neumann boundary
conditions are available for the inputs, see Equation (2.1b) and Section 4.4.2.

When choosing the output y(t), it is particularly important to keep in mind the goal
of feedback stabilization. Since this goal is to stabilize the interface position, the output
should track the deviation of the interface from the desired trajectory. However, the
interface graph of Equation (2.14) is used only for the open-loop control problem be-
cause it introduces additional non-linearities. Applying any of the common methods for
linearizing Equation (2.14) would result in equations that no longer contain enough in-
formation to sufficiently represent the interface position for the purpose of using it in the
cost functional (3.1). Therefore, the interface graph is not included in the system (2.5),
which represents the Stefan problem in the LQR problem. Thus, the interface position
is not explicitly available as a state of the system and cannot be directly tracked in the
cost functional (3.1).

Instead, on the one hand, the interface velocity can be monitored to indicate an
interface deviation. As soon as the interface deviates from the desired trajectory also the
interface velocity changes and indicates in which direction the interface moves. However,
this alone is not sufficient to stabilize the interface position. It is possible that the
interface moves with the same velocity at a different position than the desired trajectory.
This would not be observable by the interface movement alone.

On the other hand, temperature measurements on the boundary can indicate an inter-
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Algorithm 3.1: LQR for the Stefan problem

1 Solve the open-loop control problem (2.17) to get the reference trajectory
and A(t), M(t), Ṁ(t), B(t), C(t) of the LQR problem (3.2)

2 Solve DRE (3.6) with Algorithm 3.2 to get Kk, k = 1, . . . , nt

3 Apply Kk, with Equation (3.3), in a forward simulation of the Stefan problem
(see Section 3.4)

face deviation. Here, the measurements are taken at the boundary, which is a realistic
setting for real-world applications. Especially, point measurements at the desired inter-
face position on the boundary indicate if the interface is on the desired trajectory. This
is because the temperature has to be equal to the melt temperature Θmelt exactly at this
point, see Equation (2.1d). In addition, temperature measurements at boundary regions
near the desired interface position are options considered for the output. With these
temperature measurements, the interface deviation can be sufficiently reconstructed that
the resulting feedback stabilization is able to bring the interface position back to the
desired trajectory even without the interface graph representation. More details and a
comparison of these different choices are discussed in Section 4.4.

Besides the challenges arising from different choices for the problem parameters, the
main computational effort is to solve the non-autonomous DRE (3.6) and compute the
feedback gain matrix K(t) with the non-autonomous BDF method (Algorithm 3.2).
Especially the presence of Ṁ(t) imposes additional difficulties, which are addressed in
Section 3.3.

A major focus of this thesis is to compute and apply a Riccati-feedback stabilization
of the Stefan problem. The overall procedure for this is summarized in Algorithm 3.1 in
three steps. The method that is chosen for the forward simulations of the Stefan problem
in Lines 1 and 3 is a fractional-step-theta scheme (see Section 3.4) and for solving the
DRE in Line 2 the non-autonomous BDF methods, which are described in Algorithm 3.2.
The time discretization T ref

fwd, defined in Equation (2.10), is used in all three steps. In
Line 2, it is used backwards in time (Tbwd, Equation (2.11)) and, for the second forward
solve in Line 3, additional time steps can be added adaptively. The time-adaptivity is
used to prevent numerical issues that can occur with feedback stabilizations that have
very large variation, as demonstrated in Section 4.3. A detailed description of this time-
adaptive fractional-step-theta scheme with a relative input-based indicator function is
presented in Section 3.4.

The references for the codes of the methods above are provided in Section 4.1 and
the behavior of Algorithms 3.1 and 3.2 is showcased by means of several numerical
experiments in Chapter 4.

The next section is dedicated to the special treatment of the boundary conditions
related to the interface, which is essential for the successful computation of a feedback
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stabilization for the Stefan problem.

3.2. Boundary Conditions Related to the Interface

The treatment of most of the boundary conditions from Equations (2.1) and (2.3) can
be straightforwardly done with common FEM techniques. However, the Stefan con-
dition (2.3b) and the melt condition (2.1d) are of special importance for the present
feedback stabilization problem. This section describes the special properties and treat-
ment of these conditions defined on the interface.

In contrast, for the open-loop control problem, all boundary conditions can be treated
with the common FEM approach to remove the corresponding degrees of freedom (DOFs)
from the FEM matrices. This has no effect on the adjoint system, which is solved
separately as a PDE system with its own adjoint boundary conditions. The analogue
of the adjoint system for the LQR problem is the non-autonomous DRE (3.6). The
coefficients of this DRE are the FEM matrices where the interface boundary conditions
play a crucial role.

In this thesis, this is described in detail for the temperature Θh
∆(t) = Θh(t) − Θ̃h(t)

(in difference state and semi-discretized in space as in Section 2.3) and the melt con-
dition (2.1d), which is a Dirichlet condition on the interface. For this, the DOFs cor-
responding to the interface are denoted as Θh

∆,Γ(t) = Θh
∆(t)

∣∣
Γint(t)

, and it is assumed
that

Θh
∆ =

 Θ̄h
∆

Θh
∆,Γ

 (3.7)

can be split accordingly, with Θ̄h
∆(t) being the remaining DOFs. With this, the coefficient

matrices from Equation (2.7) and CΘ(t) can be split analogously:

MΘ =

 MΘ̄ 0

0 MΘΓ

 , AΘΘ =

 AΘ̄Θ̄ AΘ̄ΘΓ

AΘΓΘ̄
AΘΓΘΓ

 , AΘΥ =

 AΘ̄Υ

AΘΓΥ

 ,
AΥΘ =

[
AΥΘ̄ AΥΘΓ

]
, BΘ =

 BΘ̄

BΘΓ

 , CΘ =

[
CΘ̄ CΘΓ

]
.

(3.8)

Note that AΥΥ(t) remains the same. Then, the common FEM approach would be to
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3.2. Boundary Conditions Related to the Interface

remove the DOFs collected in Θh
∆,Γ from Equation (2.8):

 MΘ̄ 0

0 0

 d

dt

 Θ̄h
∆

Υh

 =

 AΘ̄Θ̄ AΘ̄Υ

AΥΘ̄ AΥΥ

 Θ̄h
∆

Υh

+

 BΘ̄

0

uh,

yh =
[
CΘ̄ 0

] Θ̄h
∆

Υh

 .
This demonstrates that the matrices modeling the mesh movement Υh are also affected.
In particular, the Stefan condition (2.3b) is not represented anymore as all relevant
DOFs are removed. In fact, the matrix AΥΘ̄ is an all-zero matrix (see Equation (2.7)).
With this, crucial coupling information of the temperature and the mesh movement is
neglected, the only source term in Equation (2.3) is removed, and the interface movement
is not mapped into the coefficient matrices anymore. Further, the feedback gain matrix
was observed to be numerically zero in experiments that were conducted with these
matrices.

Consequently, a different treatment of the Dirichlet condition (2.1d) is required in this
context where the DOFs corresponding to the interface are still present.

In order to treat the boundary conditions (2.1d) and (2.3b) appropriately for the
present LQR problem, the semi-discrete version of the Dirichlet condition in Equa-
tion (2.1d) in terms of the difference state Θh

∆(t) can be reformulated to

Θ∆,melt = Θh
∆, on (0, tend]× Γint. (3.9)

Moreover, both terms in Equation (3.9) are constant, i.e. Θ∆,melt = Θmelt − Θ̃melt = 0,
since the melt temperature Θmelt and the reference melt temperature Θ̃melt are equal.
Consequently Θh

∆(t)
∣∣
Γint(t)

= 0 and therefore constant. Thus, also the time derivative

equals zero, Θ̇h
∆(t)

∣∣∣
Γint(t)

= 0. As a result, by adding this time derivative to Equa-

tion (3.9), the Dirichlet condition in Equation (2.1d) can be replaced by the modified
condition

Θ̇h
∆ = Θ∆,melt −Θh

∆, on (0, tend]× Γint. (3.10)

To incorporate Equation (3.10) into the matrices in Equation (3.8), the same notation
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3. Methods for the Feedback Stabilization of the Stefan Problem

from Equation (3.7) is used:

MΘ =

 MΘ̄ 0

0 MΘΓ

 , ÃΘΘ =

 AΘ̄Θ̄ AΘ̄ΘΓ

0 −I

 , ÃΘΥ =

 AΘ̄Υ

0

 ,
AΥΘ =

[
AΥΘ̄ AΥΘΓ

]
, BΘ =

 BΘ̄

BΘΓ

 , CΘ =

[
CΘ̄ CΘΓ

]
.

(3.11)

Like this, the conditions in Equations (2.1d) and (2.3b) are incorporated explicitly into
the definition of ÃΘΘ(t) and ÃΘΥ(t). Regarding the remaining boundary conditions,
the Neumann condition in Equation (2.1e) does not need any extra attention, since it
is incorporated automatically. The Dirichlet boundary conditions in Equations (2.1c),
(2.3c) and (2.3d) can be handled by the common approach to remove the rows and
columns corresponding to the DOFs at the related boundary regions from the matrices
as described above.

Finally, Equation (2.8) with the modified block matrices from Equation (3.11), and
thus Equation (3.10) incorporated, reads MΘ 0

0 0

 d

dt

 Θh
∆

Υh
∆

 =

 ÃΘΘ ÃΘΥ

AΥΘ AΥΥ

 Θh
∆

Υh
∆

+

 BΘ

0

uh,

yh =
[
CΘ 0

] Θh
∆

Υh
∆

 .
(3.12)

Notably, this modification preserves the DAE structure and index of Equation (2.8).
Thus, the same index reduction technique that is described in Equation (2.9) can be
applied with the modified matrices:

M(t) =MΘ(t),

A(t) = ÃΘΘ(t)− ÃΘΥ(t)A
−1
ΥΥ(t)AΥΘ(t),

B̂(t) = BΘ(t),

C(t) = CΘ(t).

(3.13)

In summary, it is essential to have the DOFs at the interface Γint(t) represented in
the spatial discretization for two reasons. First, the coupling of the temperature and
the extended interface movement in Equation (2.3) would otherwise be neglected. Sec-
ond, the goal of the feedback stabilization problem is to control the interface position.
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3.3. Non-autonomous BDF for the DRE

Therefore, the DOFs at the interface are needed for the output that goes into the cost
function (3.1).

The matrices in Equation (3.13) are the coefficients of the non-autonomous DRE (3.6).
The numerical solution of this DRE is the main computational step to compute a feed-
back stabilization of the Stefan problem, which is one of the primary focuses of this
thesis. So far, no method exists in the literature to solve this DRE numerically. There-
fore, a major contribution of this thesis is to fill this gap with the non-autonomous BDF
method described in the next section.

3.3. Non-autonomous BDF for the DRE

The solution of the DRE (3.6) is required to numerically compute the feedback gain
matrix Kk = K(tk) and the feedback stabilization uk = uhK(tk) for tk ∈ Tbwd. For the
matrices B(t) and C(t) in this DRE, only a small number of inputs and outputs are
used, i.e. m, p ≪ n. Consequently, it is assumed that Xk has a low (numerical) rank,
motivated by [Sti18b]. This allows to use efficient low-rank methods for computing the
numerical solution of the DRE, Xk = X(tk). As introduced in Section 2.4.2, Xk is
approximated to high accuracy by the decomposition

Xk ≈ LkDkL
T
k ,

where the matrices Lk ∈ Rn×sk and Dk ∈ Rsk×sk have rank sk ≪ n. A promising method
to solve the non-autonomous DRE (3.6) is the low-rank non-autonomous BDF method.
This method is a key contribution of this thesis and described in Algorithm 3.2.

An input to Algorithm 3.2 are the time steps Tbwd in reverse order (see Equa-
tion (2.11)). The DRE is solved backwards in time because it replaces the adjoint equa-
tions of an open-loop control problem. Additional inputs to Algorithm 3.2 are the weight
factor from the cost functional λ and the order of the BDF method ℘ ∈ {1, 2, 3, 4}. Fur-
ther, the low-rank factors L0, . . . , L℘−1, D0, . . . , D℘−1 of the initial values X0, . . . ,X℘−1

are required as inputs with sufficient accuracy to obtain the desired order of convergence
℘.

These initial values could be computed with a different DRE solver. But instead,
the initial solution snapshots are computed with sufficiently small time steps of lower
order BDF in the wind-up procedure given in Algorithm 3.3. This way, the method
becomes entirely self-contained. No additional time steps are needed for ℘ = 1, where
the available initial solution X0 is sufficient, and for ℘ = 2, where the additional initial
solution X1 can be computed with one BDF 1 step [HV03, Section 3.5]. But, extra time
steps are generated for ℘ ∈ {3, 4} with Algorithm 3.3.

This algorithm has the inputs T , ℘, and n℘. With these, the smallest additional
time step is of length τ̃ = t1−t0

2n℘ . This is used, to compute small BDF steps with step
size τ̃ and increasing order from 1 up to ℘ − 1. Then, BDF steps are computed with
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Algorithm 3.2: Non-autonomous low-rank factor BDF method of order ℘
Input: A(t),M(t), Ṁ(t),B(t), C(t), λ,Tbwd, ℘, L0, . . . , L℘−1, D0, . . . , D℘−1

Output: Kk, k = 1, . . . , nt

1 for k = ℘, . . . , nt do
2 Ak = τkβ(Ṁ(t̂k) + A(t̂k))− 1

2
M(t̂k)

3 Mk = M(t̂k)

4 Bk =
√
τβB(t̂k)

5 CT
k =

[
C(t̂k)

T,MT
kLk−1, . . . ,M

T
kLk−℘

]

6 Sk =


τβIp

−α1Dk−1

. . .
−α℘Dk−℘


7 Solve ARE (3.14) for Lk and Dk

8 Knt−k =
1√
λ
B(t̂k)

TLkDkL
T
kMk

9 end

time step lengths that are doubled n℘ times until the time steps coincide with the first
t0, . . . , t℘−1. Usually, n℘ = 10 is chosen. Independently of nt, this results in 10 extra
time steps for BDF 3 and 22 for BDF 4. For implementation details of Algorithms 3.2
and 3.3, see [SKB, mess_bdf_dre.m].

In each step of the BDF method, an ARE is solved, which is similar to the ARE (2.44)
related to the autonomous DRE (2.36). Here, the ARE related to the non-autonomous
DRE (3.6),

0 = CT
k Sk Ck + (Ṁk + Âk)

TXkMk +MT
kXk(Ṁk + Âk)

−MT
kXkBkB

T
kXkMk ,

(3.14)

is solved for the low-rank solution Xk ≈ LkDkL
T
k . The difference between the

AREs (2.44) and (3.14) is the presence of the time derivative of the mass matrix Ṁk
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3.3. Non-autonomous BDF for the DRE

Algorithm 3.3: BDF start-up time-steps
Input: T , ℘, n℘

Output: T

1 if ℘ > 2 then
2 τ = t1 − t0
3 τ̃ = τ

2n℘

4 t̃0 = t0
5 t̃1 = t0 + τ̃
6 if ℘ = 3 then
7 for k = 2, . . . , n℘ + 2 do
8 t̃k = t0 + 2k−1τ̃

9 end
10 T = {t̃0, . . . , t̃n℘+2, t2, . . . , tnt}
11 else if ℘ = 4 then
12 for k = 1, . . . , n℘ + 2 do
13 t̃2k = t0 + 2kτ̃

14 t̃2k+1 = t0 + 3 · 2k−1τ̃

15 end
16 T = {t̃0, . . . , t̃2n℘+5, t4, . . . , tnt}
17 end
18 end

and the definition of the matrices

Âk = τβA(t̂k)−
1

2
M(t̂k), Mk = M(t̂k),

Ak = Ṁk + Âk, Ṁk = τkβṀ(t̂k),

CT
k =

[
CT,MT(t̂k)Lk−1, . . . ,M

T(t̂k)Lk−℘

]
, Bk =

√
τβB(t̂k),

Sk =


τβIp

−α1Dk−1

. . .
−α℘Dk−℘

 ,
(3.15)

which are all time-dependent. The coefficients αj and β are the same as for the au-
tonomous BDF method (see Table 2.1). Note that the formulation of the matrix
Ak = τkβ(Ṁ(t̂k) + A(t̂k)) − 1

2
M(t̂k) = Ṁk + Âk in Equation (3.15) is equivalent to

the definition in Line 2 of Algorithm 3.2.
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Algorithm 3.2 is embedded in the open source software package
M-M.E.S.S. 2.1 [SKB], where it benefits from efficient solvers for the ARE (2.44) such
as the Newton-ADI, which is used in this thesis. It can accumulate the feedback gain
matrices directly, avoiding the need to assemble the low-rank solution factors. This is
a significant performance advantage in terms of the memory requirements during the
computations, especially for large-scale DREs.

With the non-autonomous BDF method that is presented here, the non-autonomous
DRE (3.6) can be solved efficiently and the feedback gain matrices Kk can be com-
puted. This can then be applied to compute an optimal feedback stabilization (see
Equation (3.3)) and stabilize the Stefan problem in a forward simulation. However, to
handle possible numerical issues during the simulation of this closed-loop system, a time
adaptive strategy is applied, which is described in the next section.

3.4. Adaptive Time-stepping for the Simulation of
the Stefan Problem

Once feedback gain matrices Kk are computed with the non-autonomous BDF method
from the previous section, it can be applied to the solution of the non-linear closed-loop
system for the Stefan problem (2.1) and (2.3), as denoted in Equation (3.3) to get a
closed-loop input uhK(t, ζh∆(t)). In that case, the numerical simulation of this closed-loop
system can be challenging if uhK(t, ζh∆(t)) has very large variation. This is demonstrated
in Section 4.3, where numerical issues can cause blow-ups. Similar numerical issues occur
in [FW18] for FSI problems with, e.g. the implicit Euler method and the trapezoidal rule.
There, the numerical issues can be overcome with time-adaptive fractional-step-theta
schemes. Since these FSI problems model moving interfaces and use time-dependent
meshes, similar to the Stefan problem, this section follows [FW18] and the references
therein to overcome the potential blow-up behavior by using time-adaptive fractional-
step-theta schemes for the closed-loop simulation of the Stefan problem.

For this purpose, the system is considered to be spatially semi-discretized with finite
elements (see Sections 2.1.2 and 3.2). The specific spatial discretization is a problem-
related choice, which is specified in Chapter 4. So the closed-loop system for the Stefan
problem (2.1) and (2.3) in semi-discretized form can be formulated as

ζ̇h∆(t) = fh(t; ζh∆(t), u
h
K(t, ζ

h
∆(t))) (3.16)

as in Section 2.1.4, Equation (2.15).
For the time discretization, nt sub-intervals [tk−1, tk] are used to partition the time-

interval [t0, tend] with the time grid Tfwd:

Tfwd = {t0, . . . tnt = tend},
τk = tk − tk−1.
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In contrast to the time discretizations T ref
fwd for Line 1 in Algorithm 3.1 and Tbwd for

the DREs (see Equations (2.10) and (2.11)), the time steps in Tfwd are not necessarily
equidistant to allow time-adaptivity, but T ref

fwd,Tbwd ⊂ Tfwd. With these time steps,
discrete approximations (ζk, uk) are defined by

ζk ≈ ζh∆(tk),

uk ≈ uhK(tk, ζk),

and the discrete approximation (ζk,ref, uk,ref) of the reference trajectory (ζref, uref) on the
corresponding time grid T ref

fwd.
For the computation of these discrete approximations, the closed-loop system (3.16)

in discrete form can be approximated by the time-stepping scheme

ζk − ζk−1

τk
= Σfh(ζk, uk) + (1− Σ)fh(ζk−1, uk−1), (3.17)

with Σ ∈ [0, 1] as in Equation (2.16).
In addition to Section 2.1.4, the described framework can be used to formulate more

time-stepping schemes as well, where Σ can vary in between time steps. This is used to
formulate the fractional-step-theta scheme in terms of the scheme (3.17).

3.4.1. Fractional-step-theta Scheme

Time-adaptivity is combined with the fractional-step-theta scheme to have a more re-
liable and robust method regarding the numerical issues that are mentioned above.
The fractional-step-theta scheme is known to be of second-order accuracy and to be
A-stable [BGP87]. Another advantage is that it has little numerical dissipation, which
is beneficial for many problems. To formulate this method in terms of Equation (3.17),
the two parameters

Θ = 2−
√
2 and

β =
Θ− 1

Θ− 2
= 1−

√
1

2

are defined, following [Fai17]. In each time step, three sub-steps are performed, in which
Equation (3.17) is solved with the parameters

(Θk,0,Θk,1,Θk,2) = (Θ, 1−Θ,Θ),

(τk,0, τk,1, τk,2) = (βτk, (1− 2β)τk, βτk).

For each sub-step, the initial condition is the solution of the previous sub-step.
This fractional-step-theta scheme can be combined with a time-adaptive strategy as

described next.
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Algorithm 3.4: Time-adaptive step-size control
Input: tk, tk+1,ref, ζk, uk, τk,TOL, γ, r, δ, δ
Output: τk+1,RetryStep

1 Compute Ik ∈
{
Ie
k ,I

∆u
k ,Iu̇

k

}
// choose one variant

2 δ =
(
γ TOL

Ik

)r
3 RetryStep = δ < δ

4 if δ < δ < δ then
5 τk+1 = τk
6 else
7 τk+1 = δτk
8 end
9 if tk + τk+1 > tk+1,ref then // ensure to meet the reference time steps

10 τk+1 = tk+1,ref − tk
11 end

3.4.2. Time-adaptive Strategy

The numerical behavior of the methods for solving the closed-loop system significantly
depends on the discretization in space and time. Namely, an equidistant time-discretiza-
tion with too large time steps (nt too small) can lead to several numerical issues. For
instance, for non-linear FSI problems, numerical blow-ups with the implicit Euler scheme
and the trapezoidal rule have been observed in [FW18] even though these two methods
are A-stable. Related to this, similar issues can appear when solving the closed-loop
system (3.17). This can potentially be caused by small weight parameters λ in the cost
functional (3.1), which can cause the feedback stabilization uhK(tk, ζk) to have a very
large variation. Such numerical blow-ups can be prevented by fine time-discretizations.
However, since uhK(tk, ζk) is not known a priori, also the required time step size is un-
known. Especially, choosing a fine, equidistant time-discretization with possibly smaller
time steps than necessary can become very computationally costly.

To overcome this difficulty, the time steps are refined and coarsened adaptively in the
time-intervals that might suffer from numerical blow-ups. In order to determine whether
the time steps are supposed to be larger, smaller, or stay the same, an indicator is used,
which is denoted as Ik = I(tk, ζk, uk).

This indicator is used in Algorithm 3.4, the time-adaptive step size control, which is
similar to [FW18, Algorithm 3]. From the indicator Ik, the threshold δ is computed with
the two parameters 0 < γ ≤ 1 and r > 0. The bounds, δ ≤ 1 ≤ δ, for this threshold
set the interval in which the current solution is accepted and the step size stays the
same. If δ is not in this interval, the algorithm makes one of two choices. Either δ < δ
and the current solution is considered reasonable (RetryStep = False). As a result, the
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step size for the next time step is increased, since it is assumed that the time step was
solved with more accuracy than necessary. Or δ < δ and the solution is recalculated
(RetryStep = True), with the smaller step size δτk. Further, Algorithm 3.4 returns the
possibly updated step size τk+1.

Additionally, it is ensured that the time steps from T ref
fwd are respected in Lines 9

and 10. For these time steps, the feedback gain matrix Kk is computed, as described in
Section 3.1. Otherwise, linear interpolation is used to compute Kk between time steps
from T ref

fwd.
A crucial part of this strategy are the heuristic indicators Ik computed in Line 1.

Three different variants of these indicators are defined here, which indicate whether the
time step size should be changed adaptively. One is an error-based indicator, which
comes with significantly higher computational costs, while the other two monitor the
feedback stabilization and have no extra computational costs.

Error-based Indicator This indicator is based on a heuristic error estimation. First,
the solution (ζ̃k, ũk) is computed with one step of the fractional-step-theta scheme with
step size τk. Additionally, (ζk, uk) is computed with three steps of step size τk

3
. Then,

the indicator
Ie
k =

∥∥∥χ(ζ̃k)− χ(ζk)
∥∥∥
2

estimates the error between ζ̃k and ζk. The function χ : Rn 7→ Rne , with ne ≤ n, selects
certain entries from the solution vector. It can be the identity as well (ne = n).

This indicator is supposed to refine the time steps especially in time-intervals that
might suffer from numerical issues. Since these issues strongly depend on the time-
discretization, Ie

k is expected to be large in these time-intervals. However, the computa-
tion of Ie

k requires extra computational effort. A total of four time steps are computed
instead of one, quadrupling the cost per time step. The approximate solution with the
finer discretization, (ζk, uk), is used to continue the time-stepping.

The two input-based indicators, that are described next, come without the extra
computational effort.

Absolute Input-based Indicator It is assumed that the reference time-discretization
T ref

fwd is chosen such that the reference trajectory snapshots (ζk,ref, uk,ref) are computed
with sufficient accuracy. Thus, no further refinement is required as long as the feedback
stabilization uk is inactive. This is the case as long as the state ζk does not deviate from
ζk,ref. Therefore, no numerical issues occur during the solution of the closed-loop system
as long as the feedback stabilization is inactive. On the other hand, refinement of the
time steps might be necessary, especially, when uk changes quickly.

The indicator
I∆u
k = ∥uk − uk−1∥2
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monitors the absolute change of the feedback stabilization. This indicator is computa-
tionally cheap to evaluate and tailored to the solution of closed-loop systems, i.e. the
feedback stabilization, which is the focus of this manuscript.

Scaled Input-based Indicator Since I∆u
k monitors an absolute value, this indicator

might be sensitive when the time step size τk is large and less sensitive with a small
time step size. Consequently, it can be strongly problem dependent. An alternative is
to monitor the scaled change of the feedback stabilization:

Iu̇
k =

∥∥∥∥uk − uk−1

τk

∥∥∥∥
2

.

The indicator Iu̇
k is an approximation to the norm of the gradient of the feedback

stabilization. Accordingly, it indicates to refine the time steps if uk has very large
variation as well. At the same time, it is more robust with respect to the time step size.

Another possible approach is to combine the two indicators I∆u
k and Iu̇

k to monitor
the absolute and scaled change of the input simultaneously. However, this approach is
not considered in this thesis because I∆u

k and Iu̇
k behave very similarly (see Section 4.3).

The difference is mainly one of scaling, and thus it is not expected that a combination
of both indicators will provide any benefit.

The main goal of this thesis is to derive and compute a feedback stabilization for the
Stefan problem, and then to apply this feedback stabilization in a closed-loop simulation.
The methods to achieve this goal are presented in this chapter and summarized in
the core Algorithm 3.1. In particular, the moving interface and the resulting non-
autonomous nature of the Stefan problem are addressed. With the results of this chapter,
feedback stabilization can be computed and applied in a closed-loop simulation of the
Stefan problem. These computations are investigated in several numerical experiments
in the next chapter.
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NUMERICAL RESULTS
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This chapter examines the core results of this thesis, presented in Chapter 3, regarding
their numerical behavior and performance. All results are made reproducible by provid-
ing the codes and used data for the experiments that are presented in this chapter. The
main computational effort for computing a feedback stabilization for the Stefan problem
is to solve the non-autonomous DRE. Hence, the performance of the non-autonomous
BDF methods is investigated in terms of accuracy and efficiency. Once the feedback
gain matrix is computed, the next crucial step is to apply it in a forward simulation of
the non-linear closed-loop Stefan problem in a reliable and efficient manner. For this,
the behavior of the time-adaptive fractional-step-theta algorithm is laid out in detail.
Finally, with these two components settled, the design of the LQR problem is discussed
in terms of different choices for the problem parameters like the weight factor in the cost
functional, inputs, outputs, and desired trajectories.
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4. Numerical Results

4.1. Code Availability

All codes and data to reproduce the presented results are available at [Bar24]. The non-
autonomous BDF method is incorporated in the software package M-M.E.S.S. 2.1 [SKB].
Other used software packages are

• FEniCS 2018.1.0,

• NumPy 1.20.3,

• SciPy 1.3.3,

• MATLAB R2017b.

The computations are run on a computer with 2 Intel Xeon Silver 4110 (Skylake) CPUs
with 8 cores each and 192GB DDR4 RAM on CentOS Linux release 7.9.2009.

4.2. Non-autonomous BDF for the DRE

In this section, the performance of the non-autonomous BDF method from Section 3.3 is
examined in detail in terms of accuracy and computational efficiency. This is of special
importance as solving the non-autonomous DRE is the step with the highest compu-
tational effort for computing a feedback stabilization for the Stefan problem. The first
examples in this section relate to the Stefan problem, chosen so that a numerical error is
computable and the non-autonomous BDF can be compared with existing methods. In
detail, a small-scale finite-difference approximation of the Laplacian and a steel profile
are used as models for these experiments. Both are non-autonomous and fulfill condi-
tion (2.61) such that the the non-autonomous splitting schemes from Section 2.4.2.4 are
applicable for comparison. Additionally, the first two examples allow to compute the
numerical error since they are available with sufficiently small matrix sizes. Then, the
performance of the non-autonomous BDF method is examined for the large-scale fully
non-autonomous DRE arising from the Stefan problem, which is the focus of this work.

4.2.1. Small-scale Academic Example

This sufficiently small example can be used to analyze the convergence behavior of the
DRE solvers. In particular, the numerical errors and the order of convergence of the BDF
methods and the splitting schemes are compared for this example. More specifically,
it is shown how the BDF methods (Algorithm 3.2) of order 3 and 4 depend on the
parameters for the BDF startup time steps of Algorithm 3.3. The runtimes of these
large-scale methods are not compared because they would have little meaning in this
small-scale example.
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4.2. Non-autonomous BDF for the DRE

To generate this small academic example, a finite-difference approximation of the
Laplacian on the unit square [0, 1]2 is used, and the matrices Â∈ Rn×n, B̂∈ Rn×3, Ĉ∈
R1×n are assembled. Here, the three columns in B̂ correspond to distributed inputs on
the squares [0.25, 0.375]2, [0.5, 0.625]2, and [0.75, 0.875]2 respectively, while the output
vector Ĉ = 1

n
[1, . . . , 1] measures the average of all states. Then, all the matrices are

multiplied with time-dependent scalar functions to get the time-dependent matrices

A(t) =

(
1 +

1

2
sin(2πt)

)
Â,

M(t) =

(
2 +

1

2
sin(2πt)

)
In,

B(t) = (3 + cos(t))B̂,

C(t) = (1−min(t, 1)) Ĉ.

This example is closely related to the Stefan problem because it models the Laplacian
operator, which is one of the terms in Equation (2.1a). Another important property
of this example is that it satisfies condition (2.61). Thus, the splitting methods are
applicable to the non-autonomous DRE (3.6) arising from this model. Additionally, the
size of the matrices is set to n = 25 and the time interval is set to [t0, tend] = [0, 0.1]. As
explained in Section 2.4.1, a reference approximation Xref(t) is computed using ode15s
from MATLAB after vectorization. With this in mind, the quality of the approximate
solutions is evaluated by comparison of the relative error pointwise in time:

eDRE(t) =
∥X(t)−Xref(t)∥2

∥Xref(t)∥2
.

Following the theory presented in [AP98, Section 5.2.3, Example 5.9], a BDF method
with ℘ ≤ 6 stages should converge with order ℘ as well. As described in Section 3.3,
the initialization must be sufficiently accurate to achieve these convergence orders. For
℘ = 3 (BDF 3) and ℘ = 4 (BDF 4), the required initial values are computed with the
extra time steps from Algorithm 3.3. This example shows how different choices of the n℘

parameter used as input to Algorithm 3.3 can affect the order of convergence. However,
for ℘ = 1 (BDF 1) and ℘ = 2 (BDF 2) no extra time steps are required.

Correspondingly, Figure 4.1 shows the estimated order of convergence (EOC) for
BDF 3 and 4 (see Equation (A.1)). In detail, with no extra time steps or n℘ too small
both methods converge with order 2 only. At the same time, for n℘ ≥ 8 both methods
achieve the convergence order ℘ in this example. Moreover, larger values of n℘ have no
(especially also no negative) further effect on the convergence. As a result, n℘ = 10 is
used for all further computations. Note that the choice of n℘ depends on the problem.

As a result, BDF 1, 2, 3, and 4 can fulfill their theoretical convergence orders as well
as the splitting methods of order ℘ = 1 (split 1) and ℘ = 2 (split 2), as can be seen
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Figure 4.1.: Convergence orders of BDF 3 and 4 with different n℘, Small-scale Academic
Example.

in Figure 4.2. This figure displays the error of the DRE solvers for different time step
sizes. Another clear observation is that the splitting methods yield significantly smaller
errors than the BDF methods of the same order.

This is confirmed by Figure 4.3, which shows the error of the different DRE solvers
over the whole time interval for a fixed time step size. The BDF methods start with
larger transient errors at tend. Then, as the BDF methods solve backward in time, the
errors decrease, resulting in BDF 4 being more accurate than the splitting methods
in the first half of the time interval. A possible explanation for this is that the BDF
schemes preserve fixed points, while the splitting schemes do not (see Equation (A.2)).
At the same time, it is important to note that the errors of the splitting methods are
varying less over the time-interval and stay on roughly the same level. Particularly for
order ℘ = 1 and ℘ = 2, the splitting schemes outperform the BDF methods of the same
order. In essence, the errors in Figure 4.3 are a typical behavior for these DRE solvers
which is already known for the autonomous variants of BDF and splitting methods,
see [Sti18a, Lan17].

For the next example, the non-autonomous BDF method presented in this thesis and
the splitting methods benefit from the low-rank factorization of the solution, since the
spatial discretizations can result in large-scale DREs.

4.2.2. Partially Non-autonomous Steel Profile

The semi-discretized heat transfer model for optimal cooling of steel profiles [HKS] is
an autonomous model. Hence, the example is modified to be non-autonomous and
the performance of the BDF and splitting methods is studied for different matrix sizes
and weight parameters in Equation (3.1). This example is chosen for two reasons.
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Figure 4.2.: Convergence of splitting and BDF and the theoretical convergence orders ℘
(dashed), Small-scale Academic Example.

First, the matrices M, S, Mγ, B and C are available for different spatial discretizations
n ∈ {109, 371, 1 357, 5 177, 20 209, 79 841} and the model can easily be modified to be
non-autonomous. Thus, it satisfies the condition (2.61), which is necessary for the
splitting methods. The second reason is that this model is very close to the Stefan
problem, which also models heat transfer.

In detail, the model for the steel profile example has 7 inputs and 6 outputs and the
given matrices form a system equivalent to Equation (2.5):

Mẋh = (
κ

c · ρS+
γ

c · ρMγ)x
h +

γ

c · ρBu
h,

yh = Cxh.

Here, the material parameters are

• κ = 26.4 kgm
s3 ◦C - thermal conductivity,

• c = 7620 m2

s2 ◦C - heat capacity,

• γ = 7.0164 kg
s3 ◦C - coefficient of thermal conductivity at the input boundary regions,
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Figure 4.3.: Errors of splitting and BDF for nt = 512 and n℘ = 10, Small-scale Academic
Example.

n nt m p λ
109 128 7 6 1

Table 4.1.: Partially Non-autonomous Steel Profile default parameters (smallest exam-
ple).

• ρ = 654 kg
m3 - density.

Following [PS05], the real time-interval [0, 45s] is used, which corresponds to model-time
[t0, tend] = [0, 4 500]. Furthermore, a non-linear, smooth and scalar function is added to
the thermal conductivity to make this system partially non-autonomous:

κ(t) = 26.4 + 0.1 ·
(
2 + cos

(
2 · π · t
tend

))
kg m

s3 ◦C
.

With this modification the example is similar to, e.g. [Lan17]. The difference lies in the
scalar function κ(t), where specifically a non-linear function is chosen here. Also, due to
the constant mass matrix, Algorithm 3.2 is equivalent to the BDF method therein. In
addition, the default matrix sizes, number of time steps, and weight parameter for this
example are given in Table 4.1. Those are varied one by one to examine the behavior of
the BDF and splitting methods.

Starting with different matrix dimensions n, Figure 4.4 displays the corresponding
runtimes. The first thing to recognize is that the runtime of the BDF methods grows

66



4.2. Non-autonomous BDF for the DRE

109 371 1 357 5 177 20 209 79 841

0.1

1

10

100

1 000

n

ru
nt

im
e

[h
]

split 1 split 2 BDF 1 BDF 2 BDF 3 BDF 4

Figure 4.4.: Runtime of splitting and BDF for different n (matrix dimension), Partially
Non-autonomous Steel Profile.

linearly with respect to the dimension and there is no significant difference between
the orders ℘ ∈ {1, . . . , 4}. In contrast, the splitting methods require considerably more
runtime. To illustrate, BDF methods take about 2.3 minutes for the smallest dimension
n = 109, while splitting methods take 3.6 and 6.4 hours. In other words, the BDF
methods are faster than split 1 by a factor of 94 and faster than split 2 by a factor of
167. For n = 371 it is 6.1 minutes versus 28.5 and 22.6 hours for BDF and splitting,
respectively, which is a factor of 280 and 222 faster. Forthwith, for dimensions n > 1 357,
the computations are stopped since the splitting methods did not finish in reasonable
time. Accordingly, the remaining tests are continued with n = 109 to have reasonable
runtimes for the splitting methods even though, like this, the problem is not large-scale.
However, this allows the computation of a reference solution and the comparison of
numerical errors, which is not feasible for large-scale matrices.

Next, the runtime is compared in Figure 4.5 for nt ∈ {22, . . . , 213}, which grows with
more time steps for all methods, as expected. Notably, the time needed to execute one
time step is getting slightly smaller since the underlying subproblems converge faster. A
possible explanation is that in Line 4 of Algorithm 3.2 the quadratic term of the ARE
is scaled with

√
τ . Moreover, the additional overhead to compute the initial values for

BDF 3 and 4 with Algorithm 3.3 is visible for nt ∈ {22, . . . , 26}.
While Figure 4.5 shows only the runtime of the methods, Figure 4.6 allows to evaluate

the efficiency of the methods by illustrating the runtime in relation to the relative error.
Similar to the small scale example, a reference solution is computed through vectorizing
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Figure 4.5.: Runtime of splitting and BDF for different nt (no. of time steps), Partially
Non-autonomous Steel Profile.

the DRE. In this example, only A(t) is time-dependent in the sense that it is a scalar
function times a constant matrix. Therefore, it is sufficient to use the MATLAB function
ode45 and no stiff ODE solver is required. For better memory efficiency of the methods,
the DRE solution is no longer stored, but only the feedback gain matrices Kk. As a
consequence, the errors are computed by comparing Kk at t0:

eK(t0) =
∥K0 −K0,ref∥2

∥K0,ref∥2
.

Figure 4.6 shows that the splitting methods achieve better accuracy than the BDF meth-
ods of the same order. However, the main computational benefit of the splitting schemes
is lost in the non-autonomous case. While for an autonomous DRE only one integral
term has to be approximated for the whole time interval, for a non-autonomous DRE
such an integral approximation is needed in each time step. Therefore, the computa-
tional cost is increased by a factor roughly as large as the number of time steps. This is
not the case for the BDF schemes, which therefore require significantly less computation
time in a direct comparison. This effect can be mitigated by choosing larger tolerances
for the splitting subproblem approximations. However, as seen in Figure 4.6 where this
was tried for the 2nd-order splitting scheme, this runs the risk of destroying the overall
convergence behavior. Also note that the BDF methods converge faster for higher or-
ders, while requiring almost the same runtime for the same nt. As an overall result of
Figure 4.6, BDF 4 is the most efficient method for an accuracy below 10−5.
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Figure 4.6.: Runtime vs. relative error (compared with ode45) of splitting and BDF,
nt = 16 384, Partially Non-autonomous Steel Profile.

Further, the influence of the important parameters m, p, and λ on the runtime is stud-
ied. This is important because choosing larger m and p and smaller λ can significantly
improve the performance of the resulting feedback stabilization. On the other hand, it
increases the computational cost and a smaller λ reduces the regularity of the LQR prob-
lem. Therefore, a good trade-off between stabilization performance and computational
cost must be chosen.

Regarding m, this model has 7 inputs and thus 7 columns in B(t) by default. On the
one hand, to test the methods with m ∈ {1, . . . , 7}, B(t) is truncated after m columns.
On the other hand, for m ∈ {8, . . . , 10}, additional columns are generated that are filled
with random values. As a result, Figure 4.7 shows that the BDF methods need more
time with those random columns, which are not physically motivated in the model.
Besides this, the runtimes of the BDF and splitting methods are independent of m.

In contrast, the methods runtimes are affected by different numbers of rows in C(t).
Figure 4.8 displays the runtimes for p ∈ {1, . . . , 10}. Again, the first 6 rows in C(t),
which are defined in the model, are used for p ≤ 6. This time, for p ∈ {7, . . . , 10},
additional physical measurements are added, which are constructed similar to the first
6 outputs. The resulting runtimes grow with more rows in C(t), but the BDF methods
are affected more strongly in this respect. An explanation for this behavior can be
found in the underlying iterative ARE solver (Newton-ADI). It generates solutions that
have p times the number of iterations many columns. As a result, the ARE solution
has significantly more columns for larger p. Hence, the column compression that is
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Figure 4.7.: Runtime of splitting and BDF for different m (columns in B(t)), Partially
Non-autonomous Steel Profile.

performed on these solutions is significantly more expensive.
Lastly, the weight λ in the cost functional (3.1) is an important parameter, as illus-

trated in Sections 4.3 and 4.4.1. For instance, the performance of the BDF methods
is strongly affected by λ, which influences the balance between the quadratic and the
constant term in the ARE (3.14). In detail, a smaller λ makes the quadratic part more
dominant because the input matrix B(t) = 1√

λ
B̂(t) is scaled with λ. Thus, the inner

ARE solver (Newton-ADI) in the BDF methods require more iterations to converge.
This results in larger runtimes of the BDF methods for smaller λ as illustrated in Fig-
ure 4.9. In contrast, the runtimes of the splitting methods are not affected by λ since it
only affects Equation (2.60), which is solved directly. However, note that the temporal
discretization errors for both the BDF and splitting schemes depend on the problem
being solved and thus on λ. To acquire an error of a specific size, differently sized time
steps for different λ might be needed. Thus, the actual computational effort required
for a certain accuracy varies for both classes of methods. A thorough investigation of
these error structures is out of the scope of this work and could be the subject of future
research.

A further observation is that the solutions computed by the splitting methods have
a smaller numerical rank of s(t0) = 68 compared to s(t0) = 84 for the BDF methods
(for more details see Figure A.1). This results in smaller memory requirements for the
low-rank solution factors as well as lower computational effort to compute the feedback
gain matrices Kk. Ultimately, Kk is applied to generate a feedback stabilization and
the actual DRE solution is not needed for this once Kk is computed. Thus, the on-disk
memory requirement can be reduced by storing Kk ∈ Rn×m only, which is of fixed size
and usually much smaller than the low-rank solution factors.

Overall, the splitting methods, in their current state, are not competitive for the
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Figure 4.8.: Runtime of splitting and BDF for different p (rows in C(t)), Partially Non-
autonomous Steel Profile.

non-autonomous case. Other advantages of the splitting methods carry over to the
non-autonomous case, like better predictability of the accuracy due to a more uniform
error distribution and less sensitivity to several problem parameters. Besides the shorter
runtimes, the BDF methods can handle more general time-dependencies in the coefficient
matrices. They are not restricted to condition (2.61) or the case that, e.g. A(t) = α(t)Ā
and M(t) = µ(t)M̄ with constant matrices Ā and M̄. In particular, this condition does
not hold for the matrices arising from the Stefan problem in the present representation.
Thus, the BDF methods are used exclusively for the Stefan problem, which is considered
in the next example.

4.2.3. Two-dimensional Two-phase Stefan Problem

The Stefan problem, which is the focus of this work, provides large-scale DREs with
time-dependent matrices. This time-dependency goes beyond condition (2.61). Both
the splitting methods and the vectorization to an ODE are not applicable here. Hence,
only the non-autonomous BDF method is used to compute the feedback gain matrices
Kk for different combinations of problem parameters. Similar to the previous example,
the influence of these problem parameters is investigated here, namely:

• nt - number of time steps,

• m - number of inputs,

• p - number of outputs,

• λ - weight parameter.

In addition to the previous example, this non-linear problem is a large-scale DAE.
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Figure 4.9.: Runtime of splitting and BDF for different λ (weight in cost functional),
Partially Non-autonomous Steel Profile.

tend ks kl Θcool Θmelt ℓ Θ0 τk

1 6 10 −1 0 10 Θcool · (1− 2 · x2) ∈ [10−4, 2.5 · 10−3]

Table 4.2.: Two-dimensional Two-phase Stefan Problem model parameters

The particular domain Ω(t), chosen for this example, is a rectangle [0, 0.5]× [0, 1] with
the initial interface position at height 0.5 as a horizontal line (see Figure 4.10).

For the discretization, a mesh of triangles with 3 899 vertices and 401 time-steps (T ref
fwd)

is chosen (max. cell width: 0.0268, min. cell width: 0.0061). Using standard P1 elements
in FEniCS, this results in 3 899 DOFs for Θ(t) and 7 798 DOFs for Υ(∇Θ(t)). After
removing the DOFs corresponding to Dirichlet boundary conditions (see Section 3.2), the
size of the full matrices from Equation (3.12) is n = 11 429. The reduced matrices from
Equation (3.13) have size ñ = 3873 but they are never computed explicitly. Instead, the
full size, sparse matrices from Equation (3.12) are used for the computational operations.
The model parameters are listed in Table 4.2.

The default parameters are depicted in Table 4.3. To examine their influence on the
BDF methods, these are individually changed in the following experiments.

First, the number of time steps is varied with nt ∈ {101, 401, 1 001, 2 001, 4 001, 8 001}.
As a result, the runtime of the BDF methods grows linearly with nt as can be seen
in Figure 4.11. Another key point is that the runtimes for ℘ = 1, . . . , 4 are similar. A
possible explanation for this is, that even though more columns are added to the constant
term of the ARE with higher orders, these columns don’t increase the numerical rank
significantly. After adding these columns, a column compression is performed. For nt =
8001, BDF 3 and 4 are even slightly faster than BDF 1 and 2. This observation results
from the fact that the underlying ARE solver (Newton-ADI) requires fewer iterations to
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Figure 4.10.: One instance of the domain Ω(t) ⊂ R2 of the Stefan problem.

nt m p λ n℘

401 1 2 10−4 10

Table 4.3.: Two-dimensional Two-phase Stefan Problem default parameters.

converge in this case.
As in the steel profile example (see Section 4.2.2), the number of inputs m, the number

of outputs p, and the weight λ are varied in the cost functional (3.1). The results are
consistent with these from the previous example and the resulting figures can be found
in Appendix A.

In contrast to the previous example, only the low-rank BDF method is evaluated
since the splitting methods are not applicable and the transformation to an ODE is not
feasible. Thus, no reference solution is computed for the DRE and no exact errors can
be compared. Instead, approximate errors are computed by comparing to the BDF 4
solution with the finest time-discretization (nt = 8001) in Figure 4.12. Similar to the
results in Figure 4.6, the BDF methods are more efficient with higher orders. However,
the difference is smaller especially between BDF 3 and 4, which might not fully meet
their order of convergence. Possible explanations for this are that the highly problem
dependent parameter n℘ is chosen too small in this case or that additional approximation
errors, e.g. from the implicit index-reduction techniques, accumulate and influence the
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Figure 4.11.: Runtime of BDF for different nt (no. of time steps), Two-dimensional Two-
phase Stefan Problem.

convergence behaviour.

In summary, BDF 4 is the most accurate and computationally efficient method. Al-
though it is of a higher order than BDF 1-3, it requires less runtime. Therefore, BDF 4 is
the method of choice for numerically solving the non-autonomous DREs in the remainder
of this thesis.

The main computational task for computing feedback stabilization for the Stefan prob-
lem is the numerical solution of the non-autonomous DREs. This section has shown that
this task can be performed in an accurate and computationally efficient manner using
the non-autonomous BDF methods, which is a major contribution of this thesis. The
result that is used to compute feedback stabilizations from the numerical solution of
the DREs is not the solution itself, but the feedback gain matrices computed with the
solution (see Equation (3.4)). These feedback gain matrices can then be used in the
closed-loop simulation of the Stefan problem to compute the actual feedback stabiliza-
tion. This important step is performed for several examples in the next section using
adaptive time stepping schemes.
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Figure 4.12.: BDF runtime vs. approximate error (compared with BDF 4, nt = 8001),
Two-dimensional Two-phase Stefan Problem.

4.3. Adaptive Time-stepping for the Simulation of
the Stefan Problem

One of the main goals of this thesis is to compute and apply feedback stabilizations for
the Stefan problem. This is done in a closed-loop simulation where the feedback gain
matrices computed in the previous section are used to compute feedback stabilizations.
In this section, it is shown that in these closed-loop simulations, numerical problems
can lead to blow-up behavior when conventional time-stepping methods are used. This
challenge is overcome by the adaptive time stepping methods of Section 3.4, which are
specifically tailored to this numerical challenge and represent a key contribution of this
thesis.

For this example, a perturbation to Equation (2.1) is introduced by augmenting the
Dirichlet boundary condition (2.1c) at the bottom of the domain (see Figure 4.13) with
the function φ(t):

Θ = Θcool + φ, on (0, tend]× Γcool.

Since the objective of the LQR problem is to stabilize the interface position from the
discrete reference approximation (xk,ref, uk,ref), a single input (m = 1) at the top of the
domain is used as depicted in Equation (2.1b). Note that with the present formulation
of the Stefan problem in Equation (2.1), the interface position cannot be measured
explicitly. Thus, the interface position does not enter the cost functional (3.1). With
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Figure 4.13.: Example of one input, one perturbation (left), and two point measurements
(right)

this in mind, two temperature measurements at the walls ΓN of the domain (p = 2) are
used as output. These two outputs are intended to indicate the deviation of the interface
from the reference position.

As a result, several feedback stabilizations are obtained by applying the feedback
gain matrices computed in Section 4.2 with different weight factors λ. For these weight
factors, the time-stepping methods implicit Euler (IE), trapezoidal rule (TR) and the
fractional-step-theta scheme (FT) from Section 3.4.1 are tested to numerically solve
Equation (3.16). A special feature of FT is that it is combined with the different time-
adaptivity strategies of Section 3.4.2, which are the error-based indicator (FT-err), the
absolute input-based indicator (FT-u), and the scaled input-based indicator (FT-dt-u).
This comparison shows, which of the presented time-stepping methods is best suited for
the closed-loop simulation of the Stefan problem.

Figure 4.14 displays the relative interface position

Γint,∆(t, x
∗) = Γint,ref(t, x

∗)− Γint(t, x
∗),

x∗ = argmax
x1∈[0,0.5]

|Γint,ref(t, x1)− Γint(t, x1)| ,

at the point x∗ on the interface which has the largest deviation from the reference tra-
jectory. With a weight factor λ = 10−4, the computed feedback stabilization successfully
steers the interface back to the desired trajectory. In addition, with smaller weight fac-
tors, this can be achieved even quicker. Decreasing λ means that the cost functional (3.1)
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Figure 4.14.: Perturbed interface position relative to the reference trajectory with dif-
ferent feedback stabilizations.

is more dominated by the output deviation and the input cost term has less impact.
Thus, a smaller λ leads to a more active feedback stabilization, which prevents the in-
terface from deviating. In Figure 4.14 this is demonstrated with λ ∈ {10−4, 10−7, 10−12}.
Note that IE, TR, and FT give similar results for λ = 10−4 and are not plotted separately
because the difference is small enough not to be visible.

For smaller λ, the interface can be steered back even faster but IE and TR show a
numerical blow-up behavior similar to the experiments in [FW18]. This is shown in
Figure 4.14 for λ = 10−7. In the experiments with the closed-loop simulation of the
Stefan problem, these blow-ups occur while the feedback stabilization has very large
variation and the time step size is too large to properly resolve this.

To overcome this issue, the time-adaptive FT is used, which uses smaller time steps to
prevent these blow-ups. In Figure 4.14, this is demonstrated with λ = 10−12 and FT-dt-
u (the other time-adaptive strategies are discussed further below). Here, the computed
feedback stabilization is able to steer the interface position back to the reference trajec-
tory shortly after the perturbation.

The time-adaptive FT-dt-u comes with extra computational cost compared to IE and
TR, which require both 15.6 minutes to numerically solve the closed-loop system with
nt = 401 time steps. On the contrary, for the same closed-loop system (λ = 10−4),
FT-dt-u computes 5 761 time steps and requires 546.3 minutes. This is partly due to the
long time that is needed to steer the interface back to the desired trajectory. Hence, the
input is active in this time period and the time-adaptivity is very expensive. In contrast,
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with λ = 10−12, the interface is back to the reference position in shorter time and the
feedback stabilization becomes inactive earlier as well as the time-adaptivity. Thus,
FT-dt-u computes 2 405 time steps and requires 232.3 minutes. However, IE and TR
fail with nt = 401 and λ ≤ 10−7 and are therefore not suitable methods for closed-loop
simulation of the Stefan problem, which justifies the additional computational effort of
the time-adaptive strategies.

The time-adaptive strategy that produces the most reliable and computationally effi-
cient behavior is FT-dt-u, which will now be discussed in detail with the results shown in
Figure 4.15. The top part of Figure 4.15 shows the feedback stabilizations for λ = 10−12

computed with FT-dt-u, FT-u, and FT-err. Further, the figure displays the perturbation
φ(t) as a dotted line. For clarity, it is important to note that the labeling of the y-axis is
relative to the original boundary value Θcool. The center part of Figure 4.15 shows the
corresponding perturbed interface trajectories, and the bottom part shows the different
time step sizes.

An important parameter for the adaptive step size computation in Algorithm 3.4 is
the tolerance TOL. With smaller tolerance, Algorithm 3.4 computes smaller time step
sizes when the indicator grows. On the one hand, a larger tolerance can save some time
steps by increasing the time step size earlier when indicator values are falling. This
also reduces the computational effort. On the other hand, Algorithm 3.4 can fail to
prevent a numerical blow-up if TOL is chosen too large and the time step sizes grow too
early. This effect is presented in Figure 4.15 for FT-u with TOL = 10−2 and FT-err with
TOL = 10−8. Both increase the time step size when the feedback stabilization is nearly
inactive. However, in this case the time step is increased too early, causing blow-up
behavior. This blow-up then leads to an increase of the indicator, and consequently
a decrease of the time step size such that the feedback stabilizations become inactive
again. The result is that the feedback stabilization is quickly bouncing back and forth
between large and small values. To sum this up, for both, FT-u and FT-err, the choice
of TOL is strongly problem dependent.

In contrast to this, the indicator FT-dt-u monitors the relative change of the feedback
stabilization. Thus, as long as the feedback stabilization is active, the algorithm sets τk
to the minimum value (τk = 0.0001). However, when the input is inactive the algorithm
sets τk back to the maximum value (τk = 0.0025) as can be seen in Figure 4.15 (bottom,
dashed line). This is expected to be the general behavior of FT-dt-u if TOL is chosen
sufficiently small.

To emphasize a meaningful comparison, for FT-u, the indicator monitors the absolute
change of the feedback stabilization. This means, with a smaller tolerance, FT-u behaves
the same as FT-dt-u (TOL < 10−5). In particular, it depends on the magnitude of the
feedback stabilization values, and the right choice of TOL is therefore strongly problem
dependent. The numerical experiments performed indicate that FT-dt-u is more reliable
with respect to the magnitude of the feedback stabilization values and thus the problem
dependent choice of TOL. Also, a smaller TOL can be chosen to ensure reliable perfor-

78



4.3. Adaptive Time-stepping for the Simulation of the Stefan Problem

−50%

0%

50%

ϕ
(t
),
u
K
(t
)

no feedback FT-err TOL = 10−8 FT-err TOL = 10−9

FT-err TOL = 10−10 FT-u TOL = 10−2 FT-dt-u TOL = 10−2

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Γ
in

t,∆
(t
,x

∗ )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−4

10−3

t

τ k

Figure 4.15.: Perturbation and different time-adaptive feedback stabilizations (clipped,
max. value: 8.4, min. value: -39.3) (top), Perturbed interface position
(center), and time step sizes (bottom) for λ = 10−12. 79



4. Numerical Results

mance and get the same nt, since it jumps back and forth from the maximum to the
minimum τk.

In contrast to the FT-u and FT-dt-u indicators, the FT-err indicator monitors the
difference between the computed solutions for two different time step sizes. This re-
sults in a larger computational effort for a single time step compared to the alternative
indicators. For instance, τk is reduced if the feedback stabilization has a very large
variation and consequently the solution changes more. However, FT-err cannot distin-
guish between high activity of the reference and the perturbed solution. In addition, it
enlarges τk gradually. Altogether, it requires significantly smaller TOL, larger nt, and,
consequently, increases the runtime to prevent a blow-up. In order to illustrate this,
the computed time steps for three different choices of TOL are shown in Figure 4.15
(bottom). It can be seen that FT-err causes the time steps to jump back and forth
between larger and smaller values very quickly. Some of this quick jumping is caused
by restricting Algorithm 3.4 to match the reference time steps T ref

fwd. This can result
in time step sizes smaller than the minimum τk if the adaptively computed time steps
would otherwise skip the next time step from T ref

fwd.
The effects and differences between the time-adaptive strategies, which are described

above also result in different runtimes and total number of time steps nt, which are
shown in Figure 4.16. Notably, IE and TR require 2.3 seconds per time step and it
would take 390 minutes to solve the closed-loop system with 10 000 equidistant time
steps. This number of time steps corresponds to the step size that FT-dt-u uses while
the input is active. In comparison, FT-u requires 48% less runtime and 82% fewer time
steps, and FT-dt-u requires 40% less runtime and 76% fewer time steps while using the
same small time step size locally. Further, they simulate the closed-loop system more
reliably in presence of strongly varying inputs due to their adaptivity, which is tuned
to this problem. In detail, the runtime per time step is 6.9 seconds for FT-u and 5.8
seconds for FT-dt-u on average. FT-u takes longer on average because it discards time
steps more often than FT-dt-u due to its attempt to take larger time steps too early.
A discarded time step results in a re-computation of this time step with a smaller step
size, which makes this time step more expensive. Finally, with around 21 seconds per
time step and a larger number of time steps, FT-err is significantly more expensive than
FT-dt-u.

As a consequence, FT-dt-u is chosen for the computations in the remaining sections,
which discuss the influence of the problem parameters in the LQR-design for the Stefan
problem.

4.4. LQR for the Stefan Problem

The last two sections showed the importance of the methods for the computation and
numerical application of the feedback stabilization for the Stefan problem. In addition,
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Figure 4.16.: Number of time steps nt and runtimes of IE, TR, and FT with different
time-adaptive strategies, λ = 10−12.

the design of the LQR problem, i.e. the choice of the different problem parameters, is
crucial for the performance of the feedback stabilization. In this section, several choices
for the weights, inputs, and outputs are examined and compared. Further, the per-
formance of the derived feedback stabilization is demonstrated for different scenarios of
perturbations and various desired trajectories. The feedback gain matrices are computed
with BDF 4 and the closed-loop simulations are performed with FT-dt-u in this entire
section.

4.4.1. Choice of the Weight Parameter

As shown in Sections 4.2 and 4.3, the weight parameter λ in the cost functional (3.1) is
a very important choice in the design of the LQR problem. It has a strong influence on
the computational cost and the performance of the feedback stabilization. Decreasing λ
results in the cost functional (3.1) being more dominated by the output deviation while
the input cost term has less impact. Thus, a smaller λ leads to a more active feedback
stabilization, which prevents the interface from deviating. However, note that λ acts as a
regularization parameter to the stabilization problem. For the DRE, a smaller λ results
in a more dominant quadratic term. Thus, solving the DRE becomes computationally
more expensive for the BDF methods since the underlying ARE solver (Newton-ADI)
requires more iterations to converge.

In Figure 4.17, the influence of the weight parameter on the behavior of the feedback
stabilization is displayed for λ ∈ {10−3, 10−4, 10−6, 10−12}. Here, the top part shows
the perturbation as well as the computed feedback stabilizations (relative to the cooling
temperature Θcool). Further, the bottom part shows the resulting interface trajectories
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over time, again at the point on the interface with largest deviation. With a weight factor
λ = 10−3 and larger, the computed feedback stabilization shows very low activity. As a
result, with λ = 10−3, the feedback stabilization is not able to steer the interface back
towards the reference trajectory, whereas the feedback stabilization is successful with λ =
10−4. The interface is steered back to the desired trajectory before the next perturbation
occurs. Moreover, as expected from the theory, with an even smaller weight, i.e. λ =
10−6, the feedback stabilization is even more active and able to stabilize the interface
even quicker. This does extend further for even smaller weights, as demonstrated with
λ = 10−12 in Figure 4.17.

At first glance, the input seems to be more active for λ = 10−6 than for λ = 10−12.
However, it can be observed that for λ = 10−12 the magnitude of the input increases
slightly faster than for λ = 10−6, if one pays attention to the moments when the interface
is perturbed. This results in the interface deviating less while the perturbation is active
and returning faster to the desired trajectory. For weight parameters smaller than
λ = 10−12, the BDF methods fail to converge in this example, probably due to the
loss of the regularization effect of λ.

In conclusion, the weight parameter λ is a very important choice in the design of the
LQR problem as it can be used to improve the performance of the feedback stabilization
by steering the interface back to the desired trajectory quicker. In addition, the behavior
of the feedback stabilization also strongly depends on the choice of inputs and outputs,
as is demonstrated in the next sections.

4.4.2. Choice of the Controls

A crucial parameter for the design of the LQR problem for the feedback stabilization of
the Stefan problem is the choice of the inputs that are applied to Equation (2.1). Since
in a real world scenario it is more realistic to have inputs at the boundary than inside
the domain or inputs acting on Equation (2.3), only boundary conditions modeled by
Equation (2.1b) are used.

Figure 4.18 shows the domain Ω(t) and one example of a distribution of input bound-
ary areas can be seen on the left side (orange lines). Here, the top boundary is split
into four equidistant segments and there is one additional input boundary segment at
each side wall slightly above the desired interface position. Within this context, other
combinations of these are possible with only the segments at the top, only the segments
at the walls, or with a different number of segments at the top boundary.

The same desired trajectory as in the previous section is used to compare the perfor-
mance of feedback stabilization with different input choices. Two different perturbations
φ1(t), φ2(t) ∈ [−Θcool, Θcool] are generated, acting on the left part (Γcool,1(t)) and right
part (Γcool,2(t)) of the Dirichlet boundary at the bottom of the domain Ω(t) (see Fig-
ure 4.18, left). For this, three random values are generated for each side, which are
applied at the times 0.1, 0.4325, and 0.765 (see Figure 4.19, top). In detail, two pertur-
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Figure 4.18.: Example of input, perturbation (left), and output areas (right)

bation functions are applied to

Θ = Θcool + φ1, on (0, tend]× Γcool,1,

Θ = Θcool + φ2, on (0, tend]× Γcool,2.

The effect of these perturbations is not only to move the interface away from the desired
position, but also to add a certain amount of curvature to the deviated interface.

First, 1 to 10 inputs distributed equidistantly over the top boundary are compared to
stabilize this interface position. Consequently, the input matrices are Bm(t) ∈ Rm×n,
for m = 1, . . . , 10. The same two outputs are used at ΓC,3(t), ΓC,4(t) as in the previous
experiments (C(t) ∈ R2×n). Additionally, the weight factor is set to λ = 10−9 in the
cost functional1. An example of the interface positions Γint,∆(t) relative to the desired
interface trajectory is in Figure 4.19 at the time points t ∈ [0.465, 0.56, 0.75, 1]. Here, the
unstabilized interface position and the feedback-stabilized interface positions with one
and two inputs are displayed. This example shows that, as expected, one input has no
effect on the curvature of the interface, while two inputs are sufficient. In detail, with the
first two perturbations, the interface is pushed down and takes on a distinct curvature.
Just after the second perturbation (t = 0.465), the feedback-stabilized interfaces are

1For different numbers of inputs m, the considered stabilization problems are not directly comparable
even with the same λ. E.g., ∥B(t)∥2 is different for different m. To compensate this at least partially,
the input matrices are normalized Bm(t) =

∥B2(t)∥2

∥B̃m(t)∥
2

B̃m(t) to all have the same norm as B2(t).
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Figure 4.20.: Perturbed interface position relative to the reference trajectory with dif-
ferent number of inputs at the top of the domain.

basically back to the desired interface, but still have an undesired curvature. Already
before the third perturbation, at t = 0.56, it is clearly visible that with two inputs the
interface is almost flat again, like the desired interface, while the stabilization with only
one input is not able to influence the curvature. A similar behavior is observed after
the first perturbation. Right before the third perturbation (t = 0.75), the stabilization
with two inputs steered the interface back to the desired interface position while the
curvature did not change with one input. In contrast to the first two perturbations, the
third perturbation moves the interface upwards above the desired position. At the end
of the time interval (t = 1), the feedback stabilized interface with two inputs is again
flat and back to the desired position. With one input and no feedback stabilization, the
interface is curved or still has a certain distance to the desired position at the end of the
time interval.

This experiment shows that the feedback stabilization with two inputs can move the
perturbed interface back to the desired trajectory and additionally stabilize the curvature
of the interface. With the chosen input and output setting, the position of the interface
is corrected as fast as in the previous experiments. The curvature correction requires
some more time but is still performed during the considered time interval. While one
input is not sufficient to influence the curvature, the feedback stabilization behaves
basically the same for m = 2, . . . , 10. This is shown exemplarily for m ∈ {1, 2, 6, 10}
in Figure 4.20.The feedback stabilizations that are not shown have a similar behavior.
Here, the interface trajectories are plotted over time, again at the point on the interface
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Figure 4.21.: Perturbed interface position relative to the reference trajectory with dif-
ferent number of inputs at the wall and the top of the domain.

with largest deviation. After the first two perturbations, it can be seen by the jumps
in the curves that this point is changing. Again, while it is clear that one input is
not sufficient, the interface trajectories for m = 2, . . . , 10 inputs are not significantly
different.

In contrast to that, the feedback stabilization can stabilize the interface position sig-
nificantly faster if two additional inputs are added at the side walls in the liquid phase
of the domain (see Figure 4.18, Γu,5 and Γu,6). These two additional inputs are closer to
the interface and therefore have a greater effect on its position. This is shown in Fig-
ure 4.21 where the interface stabilization with two inputs at the top of the domain from
before is compared to the stabilizations with six, eight, and ten inputs including the two
inputs at the walls. Again the interface trajectories are very similar for m = 6, . . . , 10,
thus additional inputs at the top do have have a significant influence. Interestingly, for
m ≤ 5, the feedback stabilization does not succeed to steer the interface back to the
desired trajectory.

In summary, the number of inputs that are well suited for the stabilization task de-
pends on the LQR problem. In the example from Section 4.4.1 with just one perturbation
at the bottom of the domain, a single input was sufficient. However, with a perturbation
that introduces curvature to the interface, additional inputs are necessary to stabilize
the interface position.

In addition to that, a very important parameter for the feedback stabilization problem
is the choice of the outputs, which is discussed in the next section.
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4.4.3. Choice of the Outputs

The outputs of the stabilization problem are an essential parameter as they determine
the measured quantities in the cost functional (3.1). A useful example to demonstrate the
importance of this choice is to consider only a single output at Γint(t) (see Figure 4.18).
It monitors the difference between the interface movement and the desired movement,
i.e.

⟨Cint(t), vh(t)⟩ =
∫

Γint(t)

(1
ℓ
[ks(∇Θ∆(t, s))s − kl(∇Θ∆(t, s))l]

)
· nint(t) · vh(t)ds

and is defined via the jump term of the Stefan condition (Equation (2.3b)). Only while
the perturbation is actively driving the interface away from the desired trajectory would
it generate a significant output, and thus an active feedback response. However, it
cannot detect a difference in the position of the interface. Consequently, it would not
steer the interface back but would keep it on a “parallel trajectory“. However, the output
modeled by Cint(t) can be used in combination with additional measurements.

In contrast to just one output, ΓC,3(t) and ΓC,4(t) (see Figure 4.18) represent point
measurements of the temperature at the location of the desired interface on the walls.
These point measurements do not only indicate if the interface is deviated from the
desired trajectory but also measure if the interface is above or below. Specifically, they
measure whether the temperature at these points on the walls is above or below the melt
temperature. This indicates the direction in which the interface is deviating. Additional
outputs, which provide even more information, are ΓC,1(t), ΓC,2(t), ΓC,5(t), and ΓC,6(t).
They measure averaged temperatures on the corresponding interval on the side walls.

The influence on the LQR problem of these different outputs is compared for a single
perturbation and, consequently, a single input uK(t). This input has the same value
on Γu,1(t) ∪ . . . ∪ Γu,4(t), i.e. B(t) ∈ Rn×1. The top part of Figure 4.22 shows the per-
turbation and feedback stabilizations for two different LQR designs resulting from two
different combinations of weights and outputs:

u1 : λ = 10−12, 2 outputs: ΓC,3,ΓC,4,

u2 : λ = 1.6 · 10−2, 7 outputs: ΓC,1, . . . ,ΓC,6,Γint.

More detailed, in the first LQR design, the stabilization u1(t) is based on two outputs
that measure the temperature at the desired interface position on the boundary, such
that C(t) ∈ R2×n, while u2(t), in the second setting, uses seven outputs, i.e. C(t) ∈ R7×n.
The resulting interface positions are displayed in the bottom part of Figure 4.22. As
described in the previous section, the interface positions are relative to the desired
interface position at the point x∗(t) with the largest deviation on the interface.

The feedback stabilization u1(t) is most active shortly after the perturbation starts
and it steers the interface back to the desired position in much reduced time compared
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Figure 4.23.: Different desired interface trajectories

to no feedback stabilization, as expected from theory. Unlike a single output at Γint(t),
the two point measurements enable the stabilization to steer the interface back to the
desired trajectory.

However, with additional outputs the stabilization can be accelerated even further.
The weight for the LQR setting of u1(t) is not directly comparable to the setting for
u2(t), since this is based on different outputs. The outputs at ΓC,5(t) and ΓC,6(t) allow to
detect the temperature perturbation earlier and the output that monitors the movement
of Γint(t) can observe the deviation of the interface earlier. Thus, u2(t) is most active
immediately after the perturbation starts and moves the interface back much faster.

4.4.4. Different Desired Interface Trajectories

A major contribution of this thesis is to handle a moving interface and thus non-
autonomous data by using a moving mesh in the spatial discretization. In this sec-
tion, the feedback stabilization is tested for three different desired interface trajectories
Γint,1(t), Γint,2(t), and Γint,3(t) that are displayed in Figure 4.23. The desired interface
trajectory Γint,1(t), which is used in the examples from the previous sections, is a flat
horizontal line. At the beginning of the time interval, it moves down slightly from its
initial height of 0.5 and then stays there. To clearly demonstrate that the proposed
methods are capable to handle significantly stronger time-dependence in the data, two
additional desired interface trajectories are tested in this section. The trajectory Γint,2(t)
is a flat horizontal line moving from its initial height at 0.5 upward by 0.1. Contrary to
this, Γint,3(t) moves downward by 0.1, starting from the same initial position.
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Figure 4.24.: Perturbation and feedback (top) and relative interface position (bottom)
for an interface moving upwards

For the investigated LQR design, one input at the top of the domain, two outputs at
ΓC,3(t) and ΓC,4(t), as well as the weight λ = 10−6 are chosen. This time, four randomly
generated perturbations are applied at the times 0.1, 0.3, 0.5, and 0.7.

These perturbations can be seen in the top part of Figure 4.24 together with the
feedback stabilization that is applied to the upward moving desired interface trajectory
Γint,2(t). Despite the stronger time-dependence of the data, the BDF 4 method and
FT-dt-u successfully work together to compute a feedback gain, apply it in the non-
linear-closed loop simulation, resulting in a feedback stabilization that behaves similarly
to the previous experiment. It stops the interface from deviating and drives it back to
the desired position, as expected from the theory. This is displayed in the bottom part
of Figure 4.24, which shows the interface position Γint,∆(t, x

∗) relative to the desired
interface position.

Similar to this, Figure 4.25 displays another set of perturbations and a feedback sta-
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Figure 4.25.: Perturbation and feedback (top) and relative interface position (bottom)
for an interface moving downwards

bilization for the downward moving desired interface trajectory Γint,3(t). Again, the
feedback stabilization shows the expected behavior and successfully stabilizes the inter-
face trajectory after each deviation, which is caused by the perturbations.

The experiments demonstrate the performance of the proposed method with strongly
time-varying coefficients in the DRE. This demonstrates that BDF 4 and FT-dt-u can
also cope with the stronger time dependence without difficulties. Note that the feedback
stabilizations resulting from BDF 1 to 3 behave the same.

The numerical experiments in this chapter show that applying the LQR approach to
the two-dimensional two-phase Stefan problem is a viable method to derive feedback
stabilizations. The numerical experiments also confirm that the methods proposed in
this thesis are a reliable and computationally efficient choice to compute and apply
feedback stabilizations for the Stefan problem. Furthermore, the effects of the most
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important problem parameters on the LQR design are demonstrated in detail.
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CONCLUSION & OUTLOOK
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5.1. Conclusion

This thesis investigates both conceptually and numerically the derivation and compu-
tation of a feedback stabilization for the two-dimensional two-phase Stefan problem.
In addition, this thesis applies the feedback stabilization in a closed-loop simulation.
Therefore, it fills a significant gap in the existing literature between closed-loop stabi-
lizations for the one-dimensional case, e.g. [EWFR+22], or the one-phase Stefan problem,
e.g. [KDK19], and the open-loop control with two spatial dimensions and two phases,
e.g. [BBHS18]. The simplifications of the model of the Stefan problem for the exist-
ing approaches have been made in order to make the approach numerically feasible
or theoretically approachable. In detail, this reflects the challenges that are posed by
this non-linear, discontinuous, differential-algebraic phase-change problem involving a
moving interface.

A major contribution of the work consists in the adaptation, extension, and combi-
nation of well-established approaches and methods for related problems. In this way,
a sharp interface representation with mesh movement and a FEM discretization, see
e.g. [BPS13], is combined with the LQR approach, which has shown promising perfor-
mance for related problems, see e.g. [Wei16].

Despite some specific details in the spatial discretization, a linearization of the non-
linear Stefan problem is presented, which is essential for the LQR approach. By applying
LQR to the Stefan problem, additional challenges arise, like time-dependent matrices
in the resulting DRE, which go beyond e.g. [Lan17]. For this non-autonomous large-
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scale DRE, only the theoretical concept of the numerical solvers was available in the
literature. As a result, this work provides a non-autonomous implementation of the
BDF schemes that allows the numerical solution of these non-autonomous large-scale
DREs. The presented numerical comparisons demonstrate that these non-autonomous
BDF methods are computationally efficient and competitive, despite the fact that in
the autonomous case other methods like splitting schemes [Sti18a] or Krylov subspace
methods [BBH21] outperform BDF methods.

Another contribution of this thesis is an adaptive time-stepping strategy for the closed-
loop simulation of the Stefan problem. This strategy resolves numerical issues that
arise in the application of the computed feedback stabilization and that have not been
addressed in the existing literature. It is a novel adaptation of similar strategies [FW18]
specifically to the closed-loop simulation of the Stefan problem. This allows the feedback
stabilization to be applied reliably with reasonable computational effort during closed-
loop simulations of the Stefan problem.

The main contribution of this work is a core algorithm for the computation and
application of a closed-loop stabilization to steer the interface position to a desired
trajectory. Detailed numerical tests are performed to demonstrate the usability of the
proposed methods for this important stabilization problem. The contributions of this
work are important for a number of reasons. One is that in many solidification and
crystallization processes, stabilizing the interface position is critical to material quality.
On the other hand, closed-loop stabilization is key to making real-world applications
more time and energy efficient. By focusing on the Stefan problem with two spatial
dimensions and two phases, this work can be used as a cornerstone on the path to the
application to real-world applications. In addition, all of the numerical implementations,
data, and results are made available for easy use in future research.

5.2. Outlook

The focus of this thesis is on demonstrating the conceptual and numerical applicability
of the proposed methods. For this purpose, several assumptions are made to ensure the
existence and uniqueness of the computed solutions. However, a theoretical investigation
and analytical proof of these assumptions is beyond the scope of this work and is a matter
for future research.

Furthermore, the performance of the presented methods, especially of the feedback
stabilization, depends strongly on the problem and the choice of the problem parame-
ters. For instance, parameters such as the number of outputs or the weight in the cost
functional are chosen manually and require extensive testing to obtain satisfactory re-
sults. Research directions that consider the optimal placement of the sensors that collect
the measurement information are an interesting question that is likely to significantly
improve the performance of the stabilization and are therefore worth considering.
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Although the proposed adaptive time-stepping was able to solve all the test scenarios
considered, certain drawbacks occurred. In particular, several tolerance values for the
time-stepping are chosen manually. Moreover, the proposed methods have a significantly
higher computational cost compared to standard methods such as Implicit Euler, which,
in turn, are not able to reliably simulate the closed-loop system. A more thorough
theoretical understanding of the numerical issues, which require the more sophisticated
time-stepping, could significantly improve the performance and reliability.

The numerical implementation uses existing software packages such as M-M.E.S.S.
and FEniCS wherever appropriate. This allows the implementation to benefit from easy-
to-use user interfaces and built-in performance optimizations. Although the code for
the implementation is available, some parts of it are not included in existing software
packages. Thus, there is potential for numerical performance optimization and usability
improvements. The additional implementation effort is significant and may be tackled
in future work.

A promising direction for future research is to extend the class of problems considered.
One way to do this is to allow other types of moving boundaries, such as a free outer
boundary that changes the shape of the domain. Another important milestone on the
way to a real-world application of the proposed methods is the incorporation and valida-
tion of the results from the numerical simulations by applying them to an actual physical
experiment. A strong interdisciplinary collaboration is required for all developments in
this direction, working at the intersection of physics and applied mathematics.

Furthermore, convection in the liquid phase can be included by coupling the Stefan
problem with the Stokes or Navier-Stokes equations. To lay this out exemplary one can
follow [BBHS18]. Here, the velocity v(t) and the pressure p(t) in the liquid phase are
described by the incompressible Navier–Stokes equations for Newtonian fluids [Glo91]:

v̇ + ((v −Υ) · ∇)v − η∆v +∇p= 0, on (0, tend]× Ωl, (5.1a)
∇ · v = 0, on (0, tend]× Ωl, (5.1b)

p · n− η∂nv = u · n, on (0, tend]× Γu, (5.1c)
p · n− η∂nv = 0, on (0, tend]× (Γout ∩ ∂Ωl). (5.1d)

The constant η is the kinematic viscosity. In addition to the momentum and mass
balance Equations (5.1a) and (5.1b), Equation (5.1c) can define an inflow boundary
condition on Γu(t) which might be used instead of or in combination with Equation (2.1b)
for the input. Other input boundary conditions are also possible, such as a Dirichlet
condition at the top of the domain representing a driven cavity. Further, the mesh
movement Υ(t) is coupled to v(t) in Equation (5.1a). To couple the temperature with
the Navier–Stokes equations, Equation (2.1a) is reformulated to:

Θ̇ + (v −Υ) · ∇Θ − α∆Θ = 0, on (0, tend]× Ω. (5.2)
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Besides the additional non-linearities that are introduced in Equations (5.1a) and (5.2),
another algebraic condition is added to the system by Equation (5.1b). While the alge-
braic Stefan condition Equation (2.3b) can be treated with index reduction techniques as
described in Equation (3.13), these techniques do not transform the system to an ODE
here. A possible approach for the Navier–Stokes equations is to use a projection tech-
nique for index-2 DAE systems [GSW13]. However, this projection technique is not suit-
able for the algebraic structure arising from the Stefan condition (see Equation (3.12)).
This can be seen by looking at the block structure resulting from the linearization and
discretization in space of the Stefan problem coupled with the Navier–Stokes equations:

MΘ 0 0 0

0 Mv 0 0

0 0 0 0

0 0 0 0


d

dt


Θh

vh

Υh

ph

 =


AΘΘ AΘv AΘΥ AΘp

AvΘ Avv AvΥ Avp

AΥΘ AΥv AΥΥ AΥp

ApΘ Apv ApΥ 0




Θh

vh

Υh

ph

+


BΘ

Bv

0

0

uh,

yh =
[
CΘ Cv 0 0

]

Θh

vh

Υh

ph

 .

Note that all these matrices are time-dependent. The index reduction technique from
Equation (3.13) applied here leads to the matrices

A =

 AΘΘ AΘv

AvΘ Avv

 , J =

 AΘp

Avp

−

 AΘΥ

AvΥ

A−1
ΥΥAΥp,

M =

 MΘ 0

0 Mv

 , G =
[
ApΘApv

]
− ApΥA

−1
ΥΥ

[
AΥΘAΥv

]
.

Necessary assumptions for these transformations and the projection techniques from
[GSW13] to be applicable are that AΥΥ and GM−1J are non-singular, ApΥA

−1
ΥΥAΥp = 0,

and the matrices J and G have full rank. These assumptions are usually fulfilled for
the Stefan problem, because AΥΥ is always non-singular, since it represents the Poisson
operator with a Dirichlet boundary part (see Equation (2.7)). Furthermore, the pressure
p is not directly coupled to the mesh movement Υ, which means that ApΥ, AΥp = 0.
It follows that the rank of J and G is not changed by the transformation, and since M
is the mass matrix for temperature and velocity, it is non-singular by construction. As
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a result, the above assumptions are fulfilled for the case of the Stefan problem. The
resulting block structure of the system reads:

 M 0

0 0

 d

dt


Θh

vh

ph

 =

 A J

G 0



Θh

vh

ph

+


BΘ

Bv

0

uh,

yh =
[
CΘ Cv 0

]
Θh

vh

ph

 .
(5.3)

For this system, the projection technique for index-2 DAE systems from [GSW13] can
be applied to bring it into the state-space formulation for Equation (3.2). To apply
the methods from Chapter 3, the problem parameters such as inputs, outputs, and the
weight factor in the cost functional must be chosen in a manner appropriate for this
setting.
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APPENDIX

Estimated Order of Convergence A BDF method with ℘ ≤ 6 stages is expected
to converge with order ℘ as well. This can be validated numerically by computing the
estimated order of convergence. For this, the relative error pointwise in time is compared
for two different time discretizations:

EOC(n℘) =
log
(

eDRE(t0,τk−1,n℘)

eDRE(t0,τk,n℘)

)
log
(

τk−1

τk

) (A.1)

Here, τk−1 and τk are the two smallest time step sizes used in the experiments (see
Figure 4.2).

Fixed Point Property of BDF Methods Let’s assume that the solution to the general
matrix equation (2.39) is constant:

X(t) = C.

Then, the general matrix equation (2.39) simplifies to

f(t,X) = Ẋ(t) = 0.

Additionally, the coefficients of BDF 1-4 sum up to
∑℘

j=1 αj = −1 (see Table 2.1). Thus,
the error for BDF 1-4 (Equation (2.40)) is zero:

C = Xk = −
℘∑

j=1

αj Xk−j︸ ︷︷ ︸
= C

+τkβ f(tk,Xk)︸ ︷︷ ︸
= 0

= −
℘∑

j=1

αjC = C. (A.2)

Consequently, the matrix-valued BDF 1-4 preserve fixed points.
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Figure A.1.: s(t0) (numerical rank of the solution) for BDF for different nt (no. of time
steps), Partially Non-autonomous Steel Profile.
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Figure A.2.: Runtime of BDF for different m (columns in B(t)), Two-dimensional Two-
phase Stefan Problem.
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Figure A.3.: Runtime of BDF for different p (rows in C(t)), Two-dimensional Two-phase
Stefan Problem.
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Figure A.4.: Runtime of BDF for different λ (weight in cost functional), Two-dimensional
Two-phase Stefan Problem.
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