
Green Fuzzer Benchmarking

Jiradet Ounjai
jounjai@mpi-sws.org

MPI-SWS
Germany

Valentin Wüstholz
valentin.wustholz@consensys.net

ConsenSys
Austria

Maria Christakis
maria.christakis@tuwien.ac.at

TU Wien
Austria

ABSTRACT

Over the last decade, fuzzing has been increasingly gaining trac-

tion due to its e�ectiveness in �nding bugs. Nevertheless, fuzzer

evaluations have been challenging during this time, mainly due to

lack of standardized benchmarking. Aiming to alleviate this issue,

in 2020, Google released FuzzBench, an open-source benchmarking

platform, that is widely used for accurate fuzzer benchmarking.

However, a typical FuzzBench experiment takes CPU years to

run. If we additionally consider that fuzzers under active develop-

ment evaluate any changes empirically, benchmarking becomes

prohibitive both in terms of computational resources and time. In

this paper, we propose GreenBench, a greener benchmarking plat-

form that, compared to FuzzBench, signi�cantly speeds up fuzzer

evaluations while maintaining very high accuracy.

In contrast to FuzzBench, GreenBench drastically increases the

number of benchmarks while drastically decreasing the duration

of fuzzing campaigns. As a result, the fuzzer rankings generated by

GreenBench are almost as accurate as those by FuzzBench (with

very high correlation), but GreenBench is from 18 to 61 times

faster. We discuss the implications of these �ndings for the fuzzing

community.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Greybox fuzzing [4, 6] has shown to be e�ective in �nding bugs,

thereby improving software quality. In the last decade, it has seen

wide industrial adoption and signi�cant research advancements.

For instance, Google’s OSS-Fuzz service [5] has found 28,000 bugs

across 850 open-source projects using various fuzzers [3, 4, 6, 16],
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and, in 2022 alone, the four top software-engineering conferences

(ASE, FSE, ICSE, ISSTA) published 36 papers containing “fuzz” in

their title.

Over the years however, evaluation of fuzzing techniques has

been challenging, mainly due to lack of standard benchmarking

platforms, metrics, and benchmarks. In early 2020, FuzzBench [26],

an open-source benchmarking service, was released by Google to

alleviate such issues. A FuzzBench experiment typically compares

about 11 fuzzers; each fuzzer is run on about 20 real-world bench-

mark programs; each run involves 20 fuzzing campaigns (i.e., trials)

of 23 hours. All raw data is made available to the user together with

a result report showing statistically signi�cant comparisons among

fuzzers, i.e., fuzzer rankings. FuzzBench is currently widely used

for accurate fuzzer benchmarking.

However, FuzzBench experiments are extremely costly, in terms

of both computational resources and time. It is certainly prohibitive

to regularly run such experiments on “academic-scale” infrastruc-

ture to evaluate improvements to a fuzzer under development. And

even though researchers may request FuzzBench experiments to

be run on Google’s infrastructure for free, these still take days

to complete. Overall, a research project in this area could require

CPU centuries and tens of thousands of dollars [26], regardless of

whether this money is spent by Google.

Setting researcher time aside for the moment, the computational

time needed for fuzzer benchmarking raises signi�cant environmen-

tal and �nancial concerns. The global energy crisis has increased

the cost of such experiments, and many industrial and academic

resources are already under severe scrutiny by cost-saving mea-

sures. So, on the one hand, more comprehensive and statistically

signi�cant fuzzer evaluations advance the state of the art. On the

other hand however, we can’t a�ord them especially since fuzzer

improvements are the result of many iterations and intermediate

experiments that guide research and development e�orts.

Our approach. In this paper, we propose GreenBench, a green

benchmarking platform that aims to run comprehensive fuzzer

evaluations in a fraction of the resources and time required by

FuzzBench. The purpose of GreenBench is to compute quick and

inexpensive fuzzer rankings while maintaining high accuracy with

respect to FuzzBench—in fact,GreenBench’s results are comparable

to those of FuzzBench (with 0.82 correlation in our experiments).

We are exploring a trade-o� here, between speed and accuracy

in ranking fuzzers. With GreenBench, users can obtain highly accu-

rate results without spending prohibitive amounts of time as until

now. However, as expected, GreenBench’s results are not perfectly

accurate with respect to FuzzBench, which is why GreenBench is

not meant to replace large-scale experiments—there is still potential

gain from running them.

The key idea behind GreenBench is to run on a large number

of benchmarks (i.e., thousands) only for a short period of time (i.e.,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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minutes). This is in contrast to FuzzBench, which runs on a few

programs formany hours. As a result,GreenBench generates almost

the same ranking of fuzzers as FuzzBench (with a correlation of

0.82) from 18 to 61 times faster. But how do we obtain thousands of

benchmarks?

GreenBench creates benchmarks by using the existing FuzzBench

programs with diverse seed inputs (i.e., 100 seed inputs per program).

As a result, each GreenBench benchmark is signi�cantly di�erent

from others since seed inputs are known to have major impact

on fuzzer e�ectiveness [20, 21, 29]. Intuitively, providing diverse

seed inputs for a particular program is analogous to exploring the

same maze from di�erent starting positions. In contrast, FuzzBench

always uses the same seed inputs for each program. We argue that

this is a poor design decision independently of approach—it evalu-

ates fuzzers only on a speci�c part of the input state space for each

program, and therefore, it may lead to over-�tting fuzzers under

active development to these particular seeds.

Hence, GreenBench evaluates the e�ectiveness of fuzzers on

benchmarks of the form (%8 , (8 9 ), where %8 is a program and (8 9
a diverse seed input for %8 . As with FuzzBench, the fuzzer that

performs the best (with statistical signi�cance) according to a given

metric, i.e., achieved coverage or detected bugs, within the time

limit wins. Given the challenges of bug-based benchmarking [12],

achieved coverage is typically preferred and the default metric in

FuzzBench.

When using a coverage-based metric, GreenBench implements

the following optimization for larger cost savings. During fuzzing,

we can of course not know when all possible coverage of a given

benchmark has been achieved. Consequently, fuzzers run until the

time limit even when there are no more branches to cover. However,

to save even more time and energy, we can further specify our

benchmarks with target coverage, i.e., the coverage that a fuzzer

should achieve for the benchmark to be considered complete. If the

fuzzer reaches the target coverage before the time limit, it stops.

We de�ne target coverage as a set of target (control-�ow) edges

that are covered by : target inputs but not by seed input (8 9 . In

particular, each benchmark now becomes (%8 , (8 9 , �
)
8 9
), where �)

8 9

is the set of target edges. Parameter : is important in controlling

the di�culty of each benchmark, that is, it guarantees that the

fuzzer needs to generate at least : inputs to cover all edges in �)
8 9

independently of the size of this set.

When using target coverage to rank fuzzers, GreenBench ranks

the fuzzer that covers the most target edges �rst. To break any ties,

we additionally use the time it takes for fuzzers to cover the target

edges as well as the total number of covered edges.

Contributions. Our paper makes the following contributions:

• We propose GreenBench, a novel benchmarking platform

that speeds up fuzzer benchmarking by orders of magnitude,

thereby saving signi�cant time and energy.

• We implement GreenBench as an open-source extension

of FuzzBench, a widely used platform for accurate fuzzer

benchmarking.

• We evaluate GreenBench against FuzzBench in terms of

speed and accuracy; our results show that GreenBench can

generate a fuzzer ranking with very high correlation with

the ranking generated by FuzzBench but from 18 to 61 times

faster.

• We discuss the implications of our �ndings for the fuzzing

community.

Outline. The rest of this paper is organized as follows. Sec-

tion 2 explains and motivates our fuzzer-benchmarking approach.

In Section 3, we describe our implementation of GreenBench, and

in Section 4, we present our experimental evaluation comparing

GreenBench with FuzzBench in terms of speed and accuracy. Sec-

tion 5 elaborates on the importance of greener fuzzer benchmarking.

We discuss related work in Section 6 and conclude in Section 7.

2 APPROACH

Our GreenBench approach incorporates three key changes in the

FuzzBench platform:

(1) Randomizing initial seed inputs of benchmark programs,

thereby creating benchmarks of the form (%8 , (8 9 );

(2) Drastically reducing the duration of fuzzing campaigns (from

23 hours to 15 minutes in our default con�guration);

(3) Drastically increasing the number of campaigns per bench-

mark program (from 20 campaigns, each running on the

same %8 with the same, �xed seed input (8 , to 100 campaigns

in our default con�guration, each running on the same %8
but with diverse seed inputs (8 9 , where 9 = 1 . . . 100).

Figure 1 illustrates these changes visually. The outer black oval

represents the input state space of a given benchmark program %8 .

For simplicity, since the input state space is typically unbounded,

a point in this oval represents many inputs that exercise the same

program path. FuzzBench runs many fuzzing campaigns from the

same seed (8 . The inputs discovered during those campaigns are

depicted by the red-shaded area. As fuzzers are non-deterministic,

di�erent campaigns naturally discover di�erent sets of inputs. In

the �gure, the inputs within the red line represent the intersection

of these sets, i.e., the inputs discovered by all campaigns.

The �rst two changes in GreenBench are visualized in green in

the �gure. First, there are many diverse initial seeds (8 9 , and second,

each campaign is shorter, thus covering a smaller part of the input

state space. The third change is not explicitly visualized, but intu-

itively, many campaigns starting from diverse seeds aim to evenly

cover the input state space with green areas. Note that starting a

campaign with (85 allows evaluating a fuzzer’s e�ectiveness on a

region of the input space that would hardly be reached when only

starting campaigns with (8 .

To further reduce costs and optimize experiment running time,

we additionally propose a fourth change. Instead of comparing

fuzzer e�ectiveness with respect to the total achieved edge coverage,

we suggest to base the comparison on the achieved coverage of

certain randomly selected target edges. By bounding the number of

edges to be covered, a fuzzing campaign can be terminated as soon

as all target edges are covered instead of allowing it to reach the

time limit. As shown in our experiments, this optimization indeed

results in larger time savings without sacri�cing accuracy of the

benchmarking platform.

In the following, we describe all four changes in more detail and

discuss the motivation behind these design choices.
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Figure 1: Visual comparison of GreenBench (in green) and

FuzzBench (in red) with respect to the input state space of

a given benchmark program %8 (in black). FuzzBench uses

the same set of initial seeds (8 for all campaigns. In contrast,

GreenBench randomly uses diverse initial corpora (8 9 to run

signi�cantly more short campaigns.

2.1 Randomizing Initial Seed Inputs

Seed inputs can have signi�cant impact on the e�ectiveness of a

fuzzing campaign [20, 21, 29], and as a result, the fuzzing commu-

nity has been debating what seeds to use for benchmarking [21].

There are two extreme options, namely, using an empty seed corpus

or a large, almost saturated corpus.

In practice, an empty corpus is mainly relevant for fuzzing a new

program with no existing seed inputs. During the �rst few hours

of a campaign, most fuzzers will discover many new edges. Using

an empty corpus is, therefore, not suitable for comparing fuzzers

with a relatively short time limit as they will all quickly increase

the achieved coverage and the variance of their e�ectiveness will

be high.

In contrast, a large corpus can be used for programs that have al-

ready been extensively fuzzed. In such cases, increasing coverage is

di�cult, and any newly discovered edges provide a good indication

of a fuzzer’s e�ectiveness. However, it may also bias comparisons in

favor of fuzzers that specialize in �nding new coverage using more

expensive techniques. In addition, there may not be any noticeable

coverage increase in a long period of time, thus rendering a very

large corpus less suitable for benchmarking.

FuzzBench balances these two extremes by using a range of

corpus sizes across di�erent benchmark programs. However, the

corpus is �xed for each program, and consequently, there is a risk

of over-�tting fuzzers as we will see in our experimental evaluation.

More speci�cally, a �xed corpus may bias comparisons in favor of

fuzzers that are under active development and use FuzzBench to

validate algorithmic choices or tune hyper-parameters.

To reduce such bias, we randomize the initial seed corpus for dif-

ferent campaigns run on the same benchmark program. By default,

GreenBench uses a single random seed input, but it may also be

con�gured to use a corpus of any size. We pick seed inputs from an

existing large corpus uniformly at random. The large corpus can

be obtained by running a long fuzzing campaign once per bench-

mark program and using the generated pool as the corpus, or by

directly using Google’s OSS-Fuzz corpus [5]. Since seed selection

is performed randomly, each fuzzing campaign will (most likely)

sample a di�erent part of the input state space—by construction,

each seed is guaranteed to cover a di�erent program path since

this is the criterion that AFL-like fuzzers use for adding seeds to

their corpus. This is most noticeable at the beginning of fuzzing

(i.e., �rst minutes or hours) when there is typically little coverage

overlap between two campaigns started from diverse inputs.

As shown in Figure 1, using a diverse initial corpus for each

campaign explores the input state space more broadly right from

the start. Not only does this change reduce the risk of over-�tting,

but it also allows for drastically reducing the campaign duration—

no time needs to be spent on discovering the same inputs over and

over again across campaigns.

2.2 Drastically Reducing Campaign Duration

Over the last years, fuzzing campaigns have been established to

be relatively long, i.e., lasting one or more days. FuzzBench is no

exception—its campaigns are 23 hours long (they are not 24-hour

campaigns to reduce costs by running on less expensive cloud in-

stances). This practice is mainly motivated by the fact that coverage

variance tends to decrease with time, and of course, less variance

tends to provide more reliable comparisons among fuzzers. How-

ever, the concrete choice of the time limit is not well motivated

since variance depends on the benchmark program, i.e., variance

may decrease more quickly for some benchmarks than others. So,

one way to reduce costs would be to better calibrate the time limit

for each benchmark program.

Our approach is even bolder by using a very short time limit

(15 minutes by default) across all benchmark programs. Viewed in

isolation, this change seems like a poor design decision—our exper-

imental results also substantiate it as such. However, it should be

considered in combination with change 1 (randomizing initial seed

inputs) and change 3 (drastically increasing campaign number). As

shown in Figure 1, by using a large number of short campaigns, each

evaluating fuzzers on a di�erent part of the input state space, we

do not waste time re-discovering the same inputs. Instead, fuzzers

are evaluated on diverse seed corpora and may reach parts of the

input space that they would not with FuzzBench.

2.3 Drastically Increasing Campaign Number

In fuzzer benchmarking, it is customary to run many campaigns per

benchmark program since fuzzers are non-deterministic tools. In

other words, the �nal achieved coverage by two campaigns of the

same fuzzer (with the same seed inputs and benchmark program)

may vary. FuzzBench by default runs 20 campaigns per benchmark

program, thus allowing to compute statistical measures, such as

variance, and to compare statistical signi�cance of any di�erences

in the e�ectiveness among fuzzers.

In practice however, the �nal coverage achieved with FuzzBench

has very low variance for most benchmark programs and fuzzers.

This is due to the long campaign duration as well as due to the use

of the same seed corpus for all campaigns on a given benchmark
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program. Consequently, running 20 such campaigns is a waste of

resources, thereby creating an opportunity for cost savings.

Even though GreenBench only runs a single campaign for each

benchmark, i.e., a benchmark program and its randomized seed cor-

pus, it runs signi�cantly more campaigns for the same benchmark

program. The key idea is to rely on more campaigns to ensure that

the short campaign duration (change 2) still evaluates the fuzzer

for a large space of interesting inputs. Intuitively, many randomly

distributed, small, green areas in Figure 1 cover the black oval more

evenly than a single, large, red area.

2.4 Bounding Target Edge Coverage

Fuzzer benchmarking typically uses two measures of e�ectiveness,

namely achieved code coverage and detected bugs. Due to a number

of challenges with using the number of detected bugs [12], achieved

coverage is a more established metric. (We use code coverage here

even thoughGreenBench could easily be adapted to use the number

of detected bugs instead.) However, it is not tractable to determine

the maximum possible coverage for real-world benchmarks. Other-

wise, fuzzing campaigns could be terminated once this maximum

was reached, allowing to further reduce costs.

In GreenBench, we design an approximate solution that enables

terminating early. On a high level, we randomly select a subset of

all feasible edges that are not already covered by the initial seed

corpus of a benchmark program, i.e., given a benchmark (%8 , (8 9 ),

we select edges in %8 that are not covered by (8 9 . We refer to these

edges as target edges and terminate a campaign as soon as it covers

all target edges. This change of randomly selecting a subset of all

edges resembles bug-based benchmarking since bugs also occur

sparsely in a program.

Under the hood, we �rst need to approximate the set of feasible

edges � that are not already covered by the initial seed corpus. Such

a set can be determined using the existing large corpus, which we

also needed for randomizing initial seed inputs (change 1). � is

then the set of edges covered by the large corpus excluding those

covered by the initial corpus. Even though the target edges �) are a

subset of �, we cannot simply uniformly sample from � to form �) .

This is because we may include edges that are very di�cult to cover

within the short time limit of fuzzing campaigns, consequently

defeating the purpose of saving costs and producing a meaningful

comparison among fuzzers.

Instead, GreenBench implements the following alternative. We

randomly select : inputs from the large corpus that are not already

in the initial corpus. �) is then composed of those edges that are not

covered by the initial corpus but are covered by the : random inputs.

Algorithm 1 shows our approach for generating a benchmark of

the form (%8 , (8 9 , �
)
8 9
) for a benchmark program %8 when given an

existing large corpus and parameter : .

Lines 2–3 randomly select an initial seed input from the large

corpus and determine the coverage it achieves in the benchmark

program. Next, lines 4–7 randomly select : target inputs and de-

termine their coverage. The �nal target coverage is computed by

removing any edges that are already covered by the initial seed

input (line 8). If the �nal target coverage is non-empty (line 9),

Algorithm 1:GreenBench’s benchmark-generation al-

gorithm for a given benchmark program % , a large set

of potential initial seed inputs corpus, and a number

: of target inputs. On a high level, we �rst randomly

select an initial seed ( and : target inputs from the

corpus. The benchmark then consists in program % ,

the initial seed ( , and the set of edges that are covered

by the target inputs but are not covered by ( .

1 Function generateRandomBenchmark(%, corpus, :):

/* randomly pick initial seed input S from corpus */

2 S := randomPick(corpus);

/* compute the edges ES that S covers in % */

3 ES := coveredEdges(%, S);

/* initialize the target edges ET to an empty set */

4 ET := ∅;

5 repeat : times

/* randomly pick a target input T from corpus */

6 T := randomPick(corpus);

/* add the edges that T covers in % to ET */

7 ET := ET ∪ coveredEdges(%, T );

/* remove from ET any edges already covered by S */

8 ET := ET \ ES ;

/* if ET is non-empty */

9 if ET ≠ ∅ then

/* return the new benchmark */

10 return (%, S, ET );

/* otherwise try again */

11 return generateRandomBenchmark(%, corpus, :)

a new benchmark is returned (line 10), otherwise the algorithm

attempts to generate another random benchmark (line 11).

This approach of selecting target edges bounds the di�culty of

the generated benchmarks as : inputs su�ce for covering all target

edges. It also allows for a smooth increase in di�culty for a given

benchmark. In particular,GreenBench gives partial credit to fuzzers

for covering only some of the target edges, e.g., the shallower (and

therefore easier) ones.

When the same number of target edges is covered by multiple

fuzzers, GreenBench breaks the tie by, �rst, using the time to �nd

the target edges, and �nally, the total number of covered edges for

each fuzzer.

3 IMPLEMENTATION

Our implementation reuses and extends the existing FuzzBench

infrastructure (e.g., benchmark programs and fuzzer runners) as

much as possible. This section provides a short overview of the most

important implementation changes, some of which are incorporated

in the mainline FuzzBench project.
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First, we made it possible to compare fuzzers based on edge

coverage—previously, FuzzBench used region coverage. Edge cov-

erage is a more common and well understood metric, and is now

the default in FuzzBench.

Second, we added a feature in FuzzBench to provide custom

initial seed inputs (instead of the �xed seed corpus) for di�erent

benchmark programs and campaigns. In GreenBench, we use this

feature to start campaigns with randomized seed inputs.

Third, we extended the coverage-measurement module to keep

track of target-edge coverage in addition to measuring the overall

edge coverage.

Moreover, in our implementation, we adjusted several FuzzBench

settings. First, we use a coverage-measurement interval of 1 minute

instead of 15 minutes. Second, we reduce the time limit for cam-

paigns from 23 hours to 15 minutes. Third, we increase the number

of campaigns per benchmark program from 20 to 100. These are

our default settings, but we also consider several variants in our

experimental evaluation.

4 EXPERIMENTAL EVALUATION

In this section, we address the following research questions:

RQ1: How long does it take to generate random benchmarks

of the form (%8 , (8 9 , �
)
8 9
) from existing benchmark programs

%8 and a large seed corpus?

RQ2: How much time does GreenBench save with respect to

FuzzBench?

RQ3: How accurate is GreenBench versus FuzzBench?

RQ4: Can GreenBench run fewer campaigns without sacri�c-

ing accuracy?

RQ5: Can GreenBench run shorter campaigns without sacri-

�cing accuracy?

RQ6: Are GreenBench results stable?

4.1 Setup

Large corpora. Recall that large corpora are needed in changes 1

and 4 of GreenBench. We used AFL++ [16] (commit 45668bb) to gen-

erate a large corpus for each benchmark program. For generating

a corpus, we used the default settings from the AFL++ FuzzBench

setup. We selected AFL++ for this purpose since it was the winning

fuzzer in the FuzzBench paper [26], but we could have also used

another fuzzer.

Fuzzers. Due to the large computational cost of our experimen-

tal evaluation, we used a subset of six diverse fuzzers (namely,

AFL [6], AFL++ [16], Eclipser [14], Entropic [11], Honggfuzz [3],

and libfuzzer [4]) instead of all eleven fuzzers benchmarked in the

FuzzBench paper.

Con�gurations. We used commit e816b71 of FuzzBench for

our comparisons. Our con�gurations for GreenBench are described

in detail in the rest of this section.

Machine. We performed all experiments on a 32-core Intel Xeon

E5-2667 v2 CPU (3.30GHz) machine with 256GB of memory, run-

ning Debian GNU/Linux 11.

4.2 Results

We now discuss our �ndings for each research question.

RQ1: How long does it take to generate random bench-

marks of the form (%8 , (8 9 , �
)
8 9
) from existing benchmark pro-

grams %8 and a large seed corpus? Figure 2 shows how long it

takes to generate 100 benchmarks of the form (%8 , (8 9 , �
)
8 9
) for each

of the benchmark programs, %8 , in FuzzBench and a corresponding

large seed corpus. As shown in the �gure, for most benchmark

programs, the time is less than 5 minutes, whereas for two pro-

grams, more time is spent than for all others together. For these

two outliers, the average running time per input is much higher

than for other programs. The total time for all programs is 120.28

minutes, and the majority of this time is spent on executing inputs

to compute their achieved edge coverage.

Note that the time for benchmark generation does not have to be

spent when reusing benchmarks across experiments, which is the

most common use case. In addition, note that we do not consider

the time to obtain the large corpus needed for changes 1 and 4 in

this research question. For each benchmark program, we built a

large corpus by running a single fuzzing campaign (with AFL++),

however such a corpus may also be obtained di�erently.

Given a benchmark program %8 and a corresponding large

corpus, it typically only takes a few minutes to generate 100

benchmarks of the form (%8 , (8 9 , �
)
8 9
).

RQ2: How much time does GreenBench save with respect

to FuzzBench? A regular FuzzBench experiment with 6 fuzzers

takes 55,200 CPU hours (6 fuzzers x 20 benchmark programs x 20

campaigns x 23 CPU hours), which is approximately 6.4 CPU years.

In contrast, the corresponding GreenBench experiment without

change 4 takes only 3,000 CPU hours (6 fuzzers x 20 benchmark pro-

grams x 100 benchmarks x 0.25 CPU hours), which is approximately

4.2 CPU months. This constitutes a speedup of 18.4x.

We have also investigated the additional savings of GreenBench

by enabling change 4. In general, the savings depend on the number

of target edges. Fewer target edges should result in more savings,

possibly at the expense of accuracy (see RQ3 below). The number

of target edges can be controlled by changing the number of target

inputs : , i.e., larger values of : should result in more target edges.

We have compared di�erent values of : to explore how the savings

decrease as : increases.

For : = 2, the running time of a GreenBench experiment is

further reduced by 31.92%. However, this comes at the cost of sig-

ni�cantly reduced accuracy (see RQ3). For : = 3, the reduction is

12.70%, and for : = 5, the time is reduced by 8.89%. Both of these

settings have good accuracy. By setting : to a much higher value

(: = 50), the reduction is only 3.35% without notably increasing ac-

curacy. Our default con�guration with : = 5 and change 4 enabled

provides a speedup of 20.2x over FuzzBench.

As we discuss in the following research questions, there are

a number of important hyper-parameters that can further a�ect

speedup. For instance, GreenBench could even achieve a speedup
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Figure 2: Benchmark-generation time for di�erent benchmark programs. The bar chart shows how long it takes to generate 100

benchmarks for the given programs. The majority of time is spent on executing inputs to obtain edge-coverage information.

of 61.3x over FuzzBench by reducing the number of benchmarks

from 100 to 30 without signi�cantly sacri�cing accuracy (see RQ4).

The defaultGreenBench con�guration runs in 3.8 CPUmonths,

in contrast to FuzzBench, which takes 6.4 CPU years. There

are GreenBench con�gurations that can even bring its run-

ning time down to 37.5 CPU days without signi�cantly sacri-

�cing accuracy.

RQ3: How accurate is GreenBench in comparison with

FuzzBench? In this research question, we investigate the accu-

racy of GreenBench (and each of its design choices) by comparing

the correlation of its fuzzer ranking with the FuzzBench ranking—

we use the standard ranking function from FuzzBench [26]. We

consider the following nine con�gurations:

FB: The vanilla FuzzBench con�guration that runs 20 cam-

paigns per benchmark program, each of 24 hours and with

the same initial seed corpus1;

R: A variant of FB that applies change 1 of randomizing initial

seed inputs, i.e., it runs 20 campaigns per benchmark pro-

gram, each of 24 hours but with a randomized initial seed

input;

RD: A variant of R that additionally applies change 2 of dras-

tically reducing the campaign duration, i.e., it runs 20 cam-

paigns per benchmark program, each of 15 minutes and with

a randomized initial seed input;

RDN: A variant of RD that additionally applies change 3 of

drastically increasing the campaign number, i.e., it runs 100

1Note that, for technical reasons, FuzzBench runs campaigns of 23 hours instead of 24.
For our evaluation, we follow the commonly used recommendation of running for 24
hours [21].

campaigns per benchmark program, each of 15 minutes and

with a randomized initial seed input;

RDN-2: A variant of RDN that additionally applies change 4

of bounding the target edge coverage with : = 2;

RDN-3: A variant of RDN that additionally applies change 4

with : = 3;

RDN-5: A variant of RDN that additionally applies change 4

with : = 5;

RDN-50: A variant of RDN that additionally applies change 4

with : = 50;

Table 1 shows the fuzzer rankings that are produced by these

di�erent con�gurations and Table 2 the correlation between the

fuzzer rankings of all con�gurations.

When comparing FB and R, the correlation (Table 2) drops to

0.89, con�rming the substantial e�ect of initial seeds on benchmark-

ing results. Certain fuzzers, such as AFL++ and Eclipser, seem to

signi�cantly bene�t from the �xed seed corpus (Table 1). In fact,

AFL++ seems to have been extensively tuned using FuzzBench

experiments2, which could explain why there is over-�tting to

these speci�c seeds. To reduce such potential bias, we will use R

as our main baseline. A very recent study on explainable fuzzer

evaluation [28] independently makes a similar observation and

tries to explain a fuzzer ranking through properties, such as size or

coverage, of the initial corpus or of the benchmark programs.

When comparing R and RD, the correlation drops signi�cantly,

to 0.60. This is, of course, not surprising and con�rms that 20 short

campaigns per benchmark program are not able to reliably cover

their input state space. By increasing the number of campaigns to

2See, for instance, the > 150 public benchmark results with aflpp and aflplusplus in
their directory name under https://www.fuzzbench.com/reports/experimental/index.
html (accessed on May 5, 2023). Many of these experiments compare several variants
of AFL++; consider the computational, environmental, and �nancial concerns raised
by these experiments.
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Table 1: Fuzzer ranking for di�erent benchmarking con�gurations.

Fuzzer
Config FB R RD RDN RDN-2 RDN-3 RDN-5 RDN-50

AFL 4.20 4.30 4.25 3.58 3.87 3.51 3.68 3.60

AFL++ 2.25 2.45 2.65 2.35 2.90 2.90 2.89 2.91

Eclipser 3.20 3.80 4.25 4.20 3.96 3.72 3.75 3.75

Entropic 3.10 2.33 3.42 3.28 3.36 3.52 3.41 3.47

Honggfuzz 3.43 3.20 2.88 3.02 2.98 3.25 3.14 3.22

libFuzzer 4.83 4.93 3.55 4.58 3.66 3.88 3.96 3.96

Table 2: Correlation between the fuzzer rankings that are produced by di�erent benchmarking con�gurations. The Pearson

correlation coe�cient ranges from -1 (no correlation) to 1 (perfect correlation). Values in the [0.8, 1] interval are commonly

considered to indicate very strong correlation, and values in the [0.6, 0.8) interval are commonly considered to indicate strong

correlation.

Config FB R RD RDN RDN-2 RDN-3 RDN-5 RDN-50

FB 1.00

R 0.89 1.00

RD 0.50 0.60 1.00

RDN 0.78 0.82 0.71 1.00

RDN-2 0.58 0.69 0.98 0.82 1.00

RDN-3 0.77 0.72 0.73 0.97 0.82 1.00

RDN-5 0.82 0.83 0.81 0.97 0.90 0.97 1.00

RDN-50 0.81 0.80 0.76 0.98 0.85 0.99 0.99 1.00

100 in RDN, the correlation with R increases substantially, to 0.82.

Therefore, more campaigns compensate for their short duration.

Let us now evaluate the e�ect of change 4 by considering dif-

ferent values for parameter : , namely, 2, 3, 5, and 50. We observe

that the correlation with R drops for : = 2, but it increases again as

we increase : . For : = 5, the correlation even surpasses the RDN

con�guration, thereby improving both accuracy and time savings.

Notice that : = 50 does not increase accuracy with respect to R

while also saving less time in comparison with smaller : values

(see RQ2). We, therefore, consider RDN-5 the default GreenBench

con�guration.

The �xed initial seeds of FuzzBench may lead to over-�tting.

The fuzzer ranking generated by the defaultGreenBench con-

�guration has an 0.83 correlation with the ranking generated

by FuzzBench when randomizing the initial seeds, but it is

computed 20 times faster.

RQ4: CanGreenBench run fewer campaigns without sacri-

�cing accuracy? In our default con�guration, RDN-5, we use 100

campaigns per benchmark program. However, this number could

potentially be reduced further without sacri�cing accuracy. In this

research question, we investigate how the choice of this parameter

a�ects accuracy.

Figure 3 plots the correlation in fuzzer ranking for di�erent

campaign numbers (2 = 1, . . . , 100) with respect to baseline R. Recall

that, for each benchmark program %8 , GreenBench has generated

100 benchmarks of the form (%8 , (8 9 , �
)
8 9
). In this experiment, for

every value of 2 , we shu�e these benchmarks 100 times, and each

time, we select the �rst 2 benchmarks for fuzzing. In the �gure, we

compute the median correlation with R (dark line) and determine

95%-con�dence intervals (shaded area).

Even with lower values for 2 , such as 30, we already obtain a

similar median correlation as our default con�guration. In fact, for

2 = 28, the correlation is already 0.83—the same as for RDN-5. This

demonstrates that GreenBench could, in principle, save even more

time: when changing RDN-5 to set 2 = 30, GreenBench is over 61x

faster than FuzzBench. Overall, the number of campaigns provides

a knob for controlling the accuracy-vs-speed trade-o�.

GreenBench could run as few as 28 campaigns per benchmark

programwithout sacri�cing its accuracy while being 61 times

faster than FuzzBench.

RQ5: Can GreenBench run shorter campaigns without

sacri�cing accuracy? In our default con�guration, RDN-5, we

use a time limit of 15 minutes (or 900 seconds) for each campaign.

In this research question, we investigate how this time limit a�ects
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Figure 3: Correlation with baseline con�guration R for di�erent values of 2 (number of campaigns per benchmark program).

After about 30 campaigns, the correlation only improves minimally.
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Figure 4: Correlation with baseline con�guration R for di�erent values of ; (time limit for campaigns). After about 10 minutes,

the correlation only improves minimally.

accuracy, and in particular, by how much it could be shortened

without sacri�cing accuracy.

Figure 4 plots the correlation in fuzzer ranking for di�erent

time limits (; = 60, . . . , 900 seconds) with respect to baseline R. As

shown in the �gure, the correlation converges quickly, and after

about 10 minutes (or 600 seconds), it barely changes. In fact, at 600

seconds, the correlation is already 0.83—the same as for RDN-5.

Again, GreenBench could save even more time: when changing

RDN-5 to set ; = 600,GreenBench is over 27x faster than FuzzBench.

We also experimented with time limits of up to 30 minutes, and

the correlation did not increase further. In general, the campaign

duration also controls the accuracy-vs-speed trade-o� and could

be dynamically adjusted for di�erent benchmark programs.

GreenBench could reduce the campaign duration down to 10

minutes without sacri�cing its accuracy while being 27 times

faster than FuzzBench.

RQ6: Are GreenBench results stable? Since fuzzers are non-

deterministic, a benchmarking experiment may generate slightly

di�erent results from another. To investigate the stability of Green-

Bench results across di�erent benchmarking experiments, we per-

formed three independent runs of our default con�guration, RDN-5,

on three di�erent machines with the same hardware con�guration.

Table 3 shows the fuzzer rankings that are produced by these

three runs and Table 4 their correlation. We observe that all runs

have very high correlation. In fact, runs 1 and 3 generate the same
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Table 3: Fuzzer rankings for three independent benchmark-

ing runs with our default con�guration (RDN-5). We also

show the ranking for baseline con�guration R for compari-

son.

Fuzzer

Config R RDN-5

Run 1 Run 2 Run 3

AFL 4.30 3.68 3.45 3.52

AFL++ 2.45 2.89 2.84 2.85

Eclipser 3.80 3.75 3.66 3.69

Entropic 2.33 3.41 3.50 3.48

Honggfuzz 3.20 3.14 3.34 3.31

libFuzzer 4.93 3.96 4.01 3.98

Table 4: Correlation between the fuzzer rankings for three

independent benchmarking runs with our default con�gu-

ration (RDN-5). We also show the correlation with baseline

con�guration R for comparison.

Config R RDN-5

Run 1 Run 2 Run 3

R 1.00

RDN-5

Run 1 0.83 1.00

Run 2 0.74 0.93 1.00

Run 3 0.77 0.96 0.99 1.00

fuzzer ranking. Run 2 also agrees with the exception of ranking

Entropic and AFL in the reverse order.

Multiple repetitions of each independent run can obviously help

to obtain even more stable results. However, such a design choice

comes at a cost and, as we argue over Figure 1, the time might

be better spent on running with di�erent seed inputs, e.g., 100

campaigns by default in GreenBench.

The results of independent GreenBench experiments have

very high correlation.

4.3 Threats to Validity

We have identi�ed the following threats to the validity of our ex-

periments.

Benchmark programs. The choice of benchmark programs is

important when evaluating fuzzers [21] as well as benchmarking

platforms. For our experiments, we used 20 benchmark programs

from the FuzzBench platform. These are diverse, well established

programs from various application domains and have already been

used in multiple fuzzer evaluations. However, our results may not

generalize to a di�erent selection of benchmark programs.

Fuzzers. Due to the large computational cost, we used a subset

of six fuzzers for our experiments (namely, AFL [6], AFL++ [16],

Eclipser [14], Entropic [11], Honggfuzz [3], and libfuzzer [4]) in-

stead of all eleven fuzzers from the FuzzBench paper. We tried to

select a diverse subset, but our results may not generalize to a dif-

ferent selection of fuzzers. Moreover, by building on FuzzBench,

GreenBench is as applicable to di�erent fuzzers as FuzzBench.

Large corpus. Our approach uses a large, but �xed, corpus of

seed inputs per benchmark program. These inputs are used both for

randomizing the initial corpus for our benchmarks and for selecting

target edges. Therefore, they may in�uence the accuracy of our

approach. We used the winning fuzzer from the FuzzBench paper

(AFL++) to generate these corpora. AFL++ only adds inputs to

its corpus when they increase coverage, thereby guaranteeing a

diverse set of inputs. However, our results may not generalize to a

di�erent seed corpus.

Choice of GreenBench parameters. The choice of : (number

of target inputs), 2 (number of campaigns per benchmark program),

and ; (time limit per campaign) can in�uence the accuracy and

performance of our approach. To mitigate this threat, we have eval-

uated our approach using a range of values for all these parameters

(see RQ2–5). However, our results may not generalize to di�erent

choices of GreenBench parameters.

Fuzzer non-determinism. Since fuzzers are non-deterministic,

one benchmarking run may produce slightly di�erent results from

another. To mitigate this threat, we ran our default-con�guration

experiment three times (see RQ6).

E�ectiveness metric. We use code coverage as our main ef-

fectiveness metric for fuzzers. An alternative would be to use the

number of detected bugs—in fact, changes 1–3 are directly appli-

cable to bug-based evaluations when appropriately adjusting the

campaign duration such that bugs are found. However, coverage is

used more often in practice since bugs are rare in real-world code.

A recent study [12] discusses some of the challenges with using

bugs as an e�ectiveness metric, and in any case, found that there is

very high correlation between the two metrics. Nevertheless, our

results may not generalize to a di�erent e�ectiveness metric.

5 DISCUSSION

IsGreenBench green? GreenBench brings us a signi�cant step

forward in mitigating environmental concerns with fuzzer bench-

marking. It allows fuzzer developers to speed up evaluations by

orders of magnitude, and in addition, it provides knobs to adjust

the accuracy guarantees depending on the stage of fuzzer devel-

opment (e.g., when evaluating a pull request, or when preparing a

new release). On the other hand, GreenBench does not completely

eliminate environmental concerns, and more research is needed.

Implications for the fuzzing community. While we have

highlighted environmental concerns, the main issue with current

fuzzer benchmarking is multi-faceted, and raises economic, social,

and methodological questions, such as:

• Will fuzzer developers with limited �nancial resources still

be able to publish their research at top venues?

• Will the success of fuzzers hinge on the ability to run huge

numbers of experiments?
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• How will a fuzzer be able to beat the state of the art without

years of expensive hyper-parameter tuning?

• Will we end up with a fuzzer mono-culture consisting of

minor tweaks to AFL++?

• How can artifact-evaluation committees reproduce fuzzer

evaluations within short review periods and on a tight bud-

get?

• How can we prevent fuzzer developers from over-�tting to

speci�c, well established benchmarks?

To continue to thrive, the fuzzing community should try to engage

with these questions.

Going forward. Looking beyond our community, we can ob-

serve similar trends in machine learning, where it seems to have

become an arms race to build larger and larger models using more

and more resources. This puts academic institutions and small

companies at a competitive disadvantage. However, there are also

practices in the machine-learning community that could inspire

and bene�t us. For instance, machine-learning models are typi-

cally trained and evaluated on separate datasets. Assuming that the

datasets are su�ciently di�erent, this mitigates the risk of over-

�tting.

Perhaps fuzzer developers should use di�erent sets of bench-

marks during development and when running �nal experiments

for scienti�c publications. A potential �rst step could be to use

GreenBench during development and FuzzBench for preparing

a paper. However, more thought is needed to develop rigorous

methodologies.

In GreenBench, we have proposed to randomize the initial seed

corpus for di�erent campaigns. A logical next step would be to also

randomize the benchmark programs themselves. Of course, this

would require a larger selection of suitable benchmark programs.

Perhaps Google’s OSS-Fuzz corpus [5] (containing about 850 open-

source programs) could serve as a diverse set of such programs,

and GreenBench or FuzzBench could randomly select programs

from this set.

Such a larger space of possible benchmarks could reduce the

feasibility of systematic hyper-parameter tuning. During artifact

evaluations, a di�erent (possibly smaller) set of benchmarks could

easily be generated (i.e., by providing a di�erent random seed to

GreenBench or FuzzBench) to validate that the key claims general-

ize beyond the benchmarks that were used by the authors.

InGreenBench, we have also proposed to run shorter campaigns.

We have already discussed the reasoning behind this choice. How-

ever, there is one additional bene�t we would brie�y like to discuss

here. Currently, benchmarking platforms focus on the �nal results

(often after 24 or more hours of fuzzing) but tend to de-emphasize

how these results are achieved. Two fuzzers that both achieve cov-

erage X after 24 hours are considered to perform equally well, even

if fuzzer A already reaches coverage X much earlier. In other words,

fuzzer A may be superior, but due to the long running time, the

advantage becomes less signi�cant.

Shorter campaign duration may not be the only solution to ad-

dress this issue, but it does put more emphasis on the early stages of

fuzzing campaigns when most inputs tend to be discovered. While

we tried to make sure that the fuzzer ranking generated by Green-

Bench is similar to the ranking generated by FuzzBench, the latter

should not be considered as ground truth but only as part of the

current state of the art, which may evolve over time.

6 RELATED WORK

There is a large body of work on fuzzing [18, 24, 27]. In this sec-

tion, we only focus on fuzzer benchmarking, which is more closely

related to our approach.

Guidelines for fuzzer evaluations. Over the years, several

guidelines for fuzzer evaluations and benchmarking have been

created; from very general guidelines for empirical evaluations [1],

to more speci�c guidelines for randomized algorithms (including

fuzzers) [7, 8], and—most recently—even speci�c guidelines for

fuzzers [21]. The latter, for instance, highlights the importance of

initial seed inputs, time limits, e�ectiveness metrics, and benchmark

programs.

Benchmarks. The last two concerns—e�ectiveness metrics and

benchmark programs—have also motivated the creation of several

di�erent benchmark sets for fuzzers. On the one hand, there are

synthetic benchmark sets, such as LAVA [15] and Fuzzle [22]. The

former is based on real-world programs where hard-to-reach bugs

are added, while the latter synthesizes maze-like programs where

transitions from one position to another are guarded by conditions

of varying di�culty.

On the other hand, there are benchmarks—such as those in

FuzzBench [2, 26], Magma [19], and UNIFUZZ [23]—that are based

on real-world programs, and both real bugs or coverage can be

used for comparing fuzzer e�ectiveness. Two recent studies [13, 17]

identi�ed signi�cant di�erences between arti�cial/synthetic bench-

marks and ones based on real-world bugs. Another recent study [12]

compared the two e�ectiveness metrics, namely code coverage

and bugs. They found that there is very high correlation between

achieved coverage and found bugs, although—surprisingly—the

best fuzzer in terms of coverage may not be the best fuzzer in terms

of found bugs. For all of the above benchmarks (independently of

the e�ectiveness metric), the default campaign duration is at least

23 hours. For bug-based benchmarks, such as Magma, the actual

duration may be shorter if the fuzzer �nds all target bugs earlier

(similar to change 4). However, the worst-case resource usage is

still high.

Finally, there are also e�orts for porting benchmarks from the

program-veri�cation and model-checking community [9] to test-

ing tools (including fuzzers) [10]. This may allow for comparisons

beyond fuzzers; for instance, with software model checkers [25].

Properties of fuzzer rankings. A very recent study on ex-

plainable fuzzer evaluation [28] tries to explain a fuzzer ranking

through properties—such as size or coverage—of the initial corpus

or of the benchmark programs. Like us, they independently point

out the risk of over-�tting fuzzers to speci�c benchmark sets, such

as FuzzBench. While they aim to quantify the risk of using speci�c

initial corpora or benchmark programs, our proposed changes aim

to mitigate some of this risk.

7 CONCLUSION

We have presented GreenBench, the �rst benchmarking platform

that aims to reduce the exceedingly large computational cost of
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fuzzer benchmarking. The default con�guration of GreenBench

o�ers a speedup of 20.2x over FuzzBench, thereby enabling much

faster turnaround times. GreenBench also provides a number of

knobs to tune the accuracy-vs-speed trade-o�, making it possible

to favor speed for incremental changes (e.g., for merging a pull

request) and accuracy for larger changes (e.g., before a new fuzzer

release).

In future work, we plan to investigate if and how GreenBench

could be used to provide e�cient regression testing for fuzzers

and to pin-point fuzzer weaknesses or even bugs. A �rst step for

achieving the latter could be to suggest tailored fuzzer “challenges”,

that is, benchmarks for which a fuzzer’s e�ectiveness is signi�cantly

below average for short campaigns.

We also hope that the community will start using GreenBench.

This would allow us to gather additional empirical and anecdotal

evidence about usage scenarios (such as regression testing) where

GreenBench can reliably be used as a substitute for FuzzBench or

other benchmarking tools.

8 DATA AVAILABILITY

GreenBench is available on GitHub: https://github.com/Rigorous-

Software-Engineering/greenbench

Our large seed corpora are available on Zenodo: https://doi.org/10.

5281/zenodo.7645179
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