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Despite widespread claims of power laws across the natural and social
sciences, evidence in data is often equivocal. Modern data and statistical
methods reject even classic power laws such as Pareto’s law of wealth and
the Gutenberg–Richter law for earthquake magnitudes. We show that the
maximum-likelihood estimators and Kolmogorov–Smirnov (K-S) statistics
in widespread use are unexpectedly sensitive to ubiquitous errors in data
such as measurement noise, quantization noise, heaping and censorship of
small values. This sensitivity causes spurious rejection of power laws and
biases parameter estimates even in arbitrarily large samples, which explains
inconsistencies between theory and data. We show that logarithmic binning
by powers of λ > 1 attenuates these errors in a manner analogous to noise
averaging in normal statistics and that λ thereby tunes a trade-off between
accuracy and precision in estimation. Binning also removes potentially mis-
leading within-scale information while preserving information about the
shape of a distribution over powers of λ, and we show that some amount
of binning can improve sensitivity and specificity of K-S tests without any
cost, while more extreme binning tunes a trade-off between sensitivity and
specificity. We therefore advocate logarithmic binning as a simple essential
step in power-law inference.
1. Introduction
Power laws are ubiquitous in nature and arise from many distinct mechanisms
[1–4]. Probability distributions with power-law tails are called heavy tailed and
fat tailed, because they admit extreme events far more often than normal
random variables. The probability to observe a large event scales inversely
with the αth power of the magnitude x as

Probðobs: . xÞ ¼ x
xm

� ��a

, x . xm . 0, ð1:1Þ

and so forecasting extreme events depends sensitively on estimates of the
exponent α. The self-similar nature of power laws, also called scale-free or
scale-invariant, further enticingly suggests mechanisms that operate with no pre-
ferred scale across many orders of magnitude, such as criticality in earthquakes
[5] or preferential attachment in networks [6,7]. Hence it is often of interest
whether a given phenomenon follows a power law. Power laws have been
observed or claimed in systems as diverse as turbulence, physiology [8], terrorism
[9], baby name popularity [10] and cities [11–13], while the standards for scientific
and statistical justification have varied widely over time and between fields.

Broad potential application and varying standards have led researchers to
underscore an ongoing need for disseminating better statistical methods [14–16].
Ad hoc methods give different answers, which has complicated ongoing discus-
sion of the relevance of power laws in observational studies [12,16–18]. Because
power laws appear as straight lines on log–log plots, fitting by linear regression
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Figure 1. Binning reveals that measurement errors and quantization noise bias maximum-likelihood estimates of the slope α and alter conclusions of goodness-of-
fit tests in (a) earthquake magnitudes and (b) wealth. For (c), wildfire data that does not follow a power law, coarse binning (λ = 4) correctly rejects the power law
when raw data falsely accepts it. Tables list regression estimates, MLEs and goodness-of-fit test p-values with and without binning with ratio λ. Italic p-values reject
the power law with *p < 0.05 or **p < 0.01.
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has a long history [19]. Regression methods continue to be
applied and improved [20] but offer only qualitative assessment
of goodness of fit and suffer from known pitfalls [21]. Maxi-
mum-likelihood and Kolmogorov–Smirnov (K-S) statistics
come with a well-developed theory with clear guarantees
[22,23] and have been advocated for power laws in recent dec-
ades [14,15]. Nonetheless, problems still arise in practice.
Maximum-likelihood estimators (MLEs) give erroneous esti-
mates in the presence of partial censorship [24], measurement
error [25] and quantization noise [26], while K-S tests for good-
ness of fit often reject power laws [27], including such classic
power laws as the Pareto law for wealth [28] and the
Gutenberg–Richter law for earthquakes [19], given high-quality
data [15]. Rejection by the K-S test indicates discrepancy
between the model and the data, but the discrepancies are
often routine data quality problems [12,25,27] rather than rel-
evant features of the phenomena under investigation such as
transient dynamics [29], finite size effects [30,31] or deviations
from criticality [32].

We explain that failures of MLEs and K-S tests often
stem from innocuous errors that the statistics do not account
for, including random measurement noise, data coarsening,
quantization, combining data of varying accuracy and scale-
dependent censorship. These errors often go unnoticed
because in normal statistics, many errors average out without
affecting the shape of the distribution or biasing estimates of
the mean. In power-law distributions, however, even small
normal measurement errors qualitatively change the shape of
the distribution and bias estimates of the exponent.

Logarithmic binning, by powers of λ > 1, mitigates these
errors by averaging data within each scale. Whereas normal
statistics reduce the effects of noise by averaging, we show
that power-law statistics can reduce the effects of noise by
aggregating data at each power of λ. Logarithmic binning cre-
ates equally spaced bins on the log scale, and so evenly covers
the range of power-law data. While the usual MLEs and K-S
statistics are perturbed by arbitrarily small errors, statistics
based on the binned data are only affected by errors large
enough to move data between bins. Greater λ increases
the proportional threshold errors must exceed to affect the
binned data, and so increases robustness to small errors. Log-
arithmic binning is furthermore the only scheme to preserve
self-similarity in the underlying data [26,33]. In particular,
if the input data follow a power law, the binned data follow
a discrete power law distribution with the same exponent,
leading to closed-form solutions for the likelihood and MLE
[26]. Logarithmic binning therefore improves estimates and
conclusions from noisy data by preserving information
about the shape of the distribution over orders of magnitude
while ignoring small errors within each scale.
2. Results
We first show three empirical case studies (figure 1)where trivial
errors in data qualitatively affect conclusions about power laws
and binning increases reliability. Under the pure power law null
hypothesis, results with and without binning should be
mutually consistent [34] and the choice of λ is mostly arbitrary.
In our cases, the results depend significantly on which binning
scheme is used, which indicates deviations from the pure
power law. The cases differ, however, in whether the devia-
tions indicate trivial errors versus potentially real features of
the underlying process. In wealth and earthquakes, binning
removes deviations due to quantization and measurement arte-
facts, afterwhich thedata are consistentwith a scale-free process.
In wildfire area, binning makes tests more likely to reject the
power law, suggesting real deviations in the underlying process.
2.1. Methods overview
Here, we provide a minimal description of the methods
and notation, reserving a detailed description for the electronic
supplementary material, S1, while we discuss analysis and
validation in §3. We estimate α using MLEs and test goodness
of fit using the K-S statistic, in accordancewithwidely accepted
best practices [15]. We bin the input data by truncation,
replacing each data point xi with the binned value
bxicl ¼ xmlblogl xi=xmc, so that the data takes on the discrete set
of values xmλ

k for k = 0, 1, 2,…. The likelihood for power-law
data binned this way is also a power law [26],

LlðxjaÞ ¼
Y
i

ð1� l�aÞ bxicl
xm

� ��a

: ð2:1Þ

Binned data nonetheless entail different MLEs and null distri-
butions of the K-S statistic [34]. We therefore notate the MLEs
âl to emphasize that the MLE depends on the binning ratio λ
and we use an appropriate bootstrapped null distribution of



Table 1. Power-law hypothesis test results compared with expectations

expectation
raw
data

fine
bins

coarse
bins

earthquakes power law [19] reject reject accept

wealth power law [28] reject accept accept

wildfires not power law accept marginal reject

Italic results are consistent with expectations.
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K-S statistics [14,35] (electronic supplementary material, S1).
The limit λ→ 1+ corresponds to no binning, and so we use
the symbol â1 for the usual continuous MLE [15] and λ = 1 to
denote the rawdata.Naively applying â1 to binned data results
in substantially biased estimates even for very fine binning
with λ close to 1 [26,34].
ace
20:20230310
2.2. Earthquakes
Earthquake magnitudes are historically believed to follow a
power law, where the exponent is the Gutenberg–Richter
b-value [5,19,31]. The earthquake dataset [15] contains 17 450
samples ranging over seven orders of magnitude from 0.5 to
7.8 on the Richter scale. Traditional Richter magnitudes inher-
ently constitute a case of logarithmic binning, because
they record the base-10 logarithm of wave amplitudes to two
digits of precision [36]. Exponentiating these magnitudes
onto their natural scale results in a dataset with discrete
values proportional to integer powers of λ = 100.1≈ 1.26 ran-
ging over seven orders of magnitude. Partial censorship is
known to complicate inference below themagnitude of comple-
tenessmc [37], which depends on the density of the earthquake
sensor network. We choose xm = 103.5, or magnitude 3.5,
to visibly exceed mc, retaining 5910 data points.

The results in figure 1a and table 1 substantially depend on
binning. We conduct inference with no binning (λ= 1), λ= 100.1

and λ= 10. Choosing λ = 100.1 matches the quantization of the
Richter scale. This ‘binning’ preserves the input data exactly
but entails a different MLE and null distribution of K-S
statistics. The raw and fine-binned empirical distributions there-
fore overlap in figure 1a but implydifferent interpretations of the
data. The coarse binning λ= 10 represents increments of 1.0 in
magnitude and divides the data into five bins.

Differences in the results point to features of the data rather
than the underlying mechanisms. The effect of quantization
noise on MLEs is evident from the significant difference
between the continuous MLE â1 ¼ 0:837+ 0:006, which false-
ly assumes no quantization, and the MLE that accounts for the
quantization â100:1 ¼ 0:77+ 0:01. Quantization noise therefore
biases â1 by approximately 0.07 or 9%, comparable to the 12%
bias observed in other earthquake data [26]. Because errors in α
occur in the exponent, however, this 9% correction predicts a
nearly twofold higher rate of earthquakes larger than 7.8, the
largest that appear in the dataset.

Such quantization noise would be sufficient reason
for K-S tests to reject the pure power law, yet the test also rejects
the power law when accounting for quantization with λ = 100.1

(p < 0.01). This is because special magnitudes 3.0, 3.5, 4.0, 4.5,
…, contain an excess of observations, as can be observed in
the histogram (electronic supplementary material, figure S1)
and quantile–quantile (QQ) plot (electronic supplementary
material, figure S2). This excess creates a statistically significant
association between ‘round’ numbers and higher-than-
adjacent frequencies (p < 0.0001, χ2 test, 1 d.f.). The dataset
therefore appears to combine low-precision data quantized at
magnitude increments of 0.5 or 1.0 with high-precision data
at increments of 0.1. The K-S test then understandably rejects
the power law when the preponderance of data at increments
of 0.5 cannot be explained by chance. Coarse binning with
λ = 10 ignores these excesses and the test then accepts the
power law with p = 0.73.

Taking λ= 10 still offers ample power to reject alternative dis-
tributions, aswe reject thepower lawgiven fewerbins and far less
data in other examples. Therefore, by taking its flaws into
account, we conclude that the dataset provides strong evidence
that the earthquakemagnitudes followapower law, inagreement
with long-held conventional wisdom in geology (table 1).

2.3. Wealth
Vilfredo Pareto—for whom the continuous power law distri-
bution is named—observed power laws in wealth and
income as early as 1895 [28]. Measuring wealth remains a dif-
ficult and important problem in economics, social science and
government [38]. The Forbes 400 list (subsequently The Forbes
World’s Billionaires) famously tracks the wealth of the world’s
richest people. Prior work, however, found the 2003 dataset
inconsistent with a power law [15]. We analyse the dataset’s
261 billionaires, using xm = 109 and binning by powers of
λ = 2 and λ = 4 (table 1 and figure 1b).

The Forbes lists are subject to limitations on accurate
measurements of extreme wealth as well as data collection
artefacts. The quantization scheme is inconsistent, with
values truncated to the nearest 5million or 100million depend-
ing on whether net worth exceeded one billion. Among the
billionaires, all three MLEs and regression give mutually con-
sistent α estimates, which suggests overall conformity to a
power law, but K-S tests disagree depending on binning.

Bumps evident in the tail distribution (figure 1b) and QQ
plot (electronic supplementary material, figure S2) between 4
billion and 10 billion cause the K-S test on the raw data to
reject the power law with p = 0.03, suggesting further inconsis-
tency in representation of values. Indeed, many billionaires are
listed has having either 4 or 5 billion while others are distin-
guished between 4.4, 4.7 or 4.9. In a case of heaping or
attraction to particular values, higher-precision values occur
noticeably more often just shy of round numbers, for example
6.9, 8.9, 9.7 and 9.8. Any larger amount of binning such as λ = 2
or 4, however, effectively removes these artefacts (figure 1b,
dotted lines) and causes the test to accept the power law,
vindicating Pareto’s seminal observation.

2.4. Wildfires
A wildfire dataset demonstrates a contrasting example in
which binning leads hypothesis tests to reject the power laws
when they otherwisewould not, despite removing information
from the sample. Some models of wildfire spread exhibit
power-law scaling, for example through self-organized critical-
ity [39]. However, the power law distribution is not borne out
in this empirical data.

The data include 203 784 precise observations of wildfire
area over 10 years in the USA recorded consistently to ±0.1
acre with up to six digits of precision over a range from 0.1
to 412 050 acres. A basic visual inspection of the distribution
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in figure 1c reveals smooth and substantial curvature clearly
inconsistent with a power law, even allowing for error and
statistical variation. Methods for fitting xm have nonetheless
been devised to locate a fraction of the tail distribution that
is consistent [15]. This method finds power-law behaviour
only in the highest 0.3% of the data—520 data points.

This xm = 6324 acres indicates either a cusp beyond which
the distribution follows a power law, or else the limit at which
there is insufficient statistical power to reject the power law
due to too little data. We conduct the inference with this xm
for λ = 1, 2 and 4. The MLEs â1, â2 and â4 give mutually
consistent results but differ from the regression estimate,
which hints at persistent curvature beyond xm.

The tests, however, are more likely to reject the power law
the coarser the binning. The test accepts the power law in the
raw data (p ¼ 0:26) as stipulated by the calibration of xm.
Binning with increasing λ, however, drives the test to reject
the power law, with fine bins giving p = 0.09 and coarse bins
ultimately rejecting the power law with p = 0.01. The coarse
binning with λ = 4 corresponds to four bins, the last with
only one data point. K-S statistics for binned data are therefore
capable of rejecting the power law with 10-fold less data and
fewer bins than in the earthquake data with λ=10.

While the earthquake and wealth examples show how raw
K-S statistics ascribe undue weight to smoothness in the data,
conversely, if smoothness is removed from consideration, the
test must ascribe more weight to the shape of the distribution
over powers of λ. Binning therefore causes K-S statistics to
reveal curvature in the empirical distribution by allowing
across-scale curvature to stand out from within-scale noise.
3. Analysis
The foregoing cases illustrate how binning can be used in con-
junction with careful data analysis to explain trivial deviations
from a power law and support more robust inference, or else to
reject the power law based on consistently contra-indicative
evidence. For the remainder, we show how binning provides
a tool to control for error and improve inferences, by exploring
the effects of errors and binning in simulated cases where the
errors and alternative distributions are known.

Ideal prescriptions for binningwould depend on the nature
of errors, possible alternative distributions, the size of the data,
and the scientific question. We assume the errors and alterna-
tives are unknown in practice; otherwise, better methods
exist such asmodelling the error distribution [40]. Nonetheless,
binning makes relatively weak assumptions about the error
model, and therefore supports general strategies to control
for unspecified error and mitigate bias in inferences.

3.1. Effects of normal and lognormal noise
We investigate particular cases of normal and lognormal noise
where samples from the power-law equation (1.1) with xm = 1
are convolved with unbiased additive normal noise with var-
iance s2

þ or multiplicative lognormal noise with variance s2
�,

then truncated again at xm for inference. This scheme represents
several common sources of error: additive and proportional
measurement error, censorship of small values, error in
estimating xm (the tail fraction [24,41]), and contamination
from a bulk distribution [42]. The convolution createsmeasure-
ment error, while the truncation creates both a case of
censorship—because data reduced below xm by noise are
removed from the sample—and a bulk distribution distinct
from its tail—because applying normal or lognormal error to
power law samples yields a unimodal distribution peaked
near xm. Normal error is furthermore a pessimistic case for
binning. The quantization and heaping observed in the empiri-
cal cases can be completely removed by coarser binning,
whereas normal error is always capable of large adjustments
with some probability, and so no λ can completely prevent
normal error from moving data between bins. In this way,
our noisy power laws are chosen as representative and difficult
cases of dirty data.

Figure 2 shows the effect of normal and lognormal noise
with σ = 0.2 on MLEs and K-S statistics in samples of size 500
with α = 1.5. The noise is barely visually discernible on log–
log plots of the tail distribution, but nonetheless biases the
raw MLE â1 by 10–13% on average depending on noise treat-
ment. This bias substantially exceeds the approximately 3.5%
standard deviation of the estimator, causing the 95% confidence
intervals (CIs) to exclude the true value 68% of the time, and
corresponds to a twofold higher prediction for the frequency
of extreme events larger than those observed in the dataset.

The theory of maximum likelihood guarantees that â1 is the
most efficient [22] and indeed the distribution of â1 is the most
sharply peaked (figure 2b). However, â1 is correspondingly the
most sensitive to errors while all other estimates are more
robust to noise. Coarser binning, with larger values of λ,
brings theMLEs âl closer to the true value on average. For addi-
tive noise, binning with λ = 2 approximately halves the bias
relative to the standard deviation of the estimator (z-score of
the true value) to 1.56. Using λ = 4 further reduces the z-score
of the true value to 0.84 and CIs exclude the true value only
15% of the time. In this example, regression minimizes the
total root mean squared (RMS) error due to bias and variability,

ðSiða� âiÞ2Þ1=2, although regression is known to produce
biased estimates in other cases [20,21] such as earthquakes
above.

The raw K-S p-values are sensitive detectors of noise
(figure 2c). For pure samples, the distribution of p-values is uni-
form. Uniform p-values control the false positives rate because,
for a given stipulated allowable false positive rate ρ, uniformity
implies that p < ρ exactly ρ fraction of the time.With noise, how-
ever, the p-values reject the power law at ρ = 5% nearly all of the
time (additive: 98%, multiplicative: 99%). Binning with suffi-
ciently large λ restores a uniform distribution of p-values
(figure 2c), making the hypothesis test robust to noise. With
λ = 2, rejection rates fall to 23% and 34%, while with λ = 4 the
rejection rates are statistically consistent with r ¼ 5% over
1000 trials (additive noise: 5.4%, multiplicative noise: 6.1%).

The validity of the p-values with and without binning
depend on the scientific question. If the question is whether
the data follow the continuous power law exactly, then the
raw p-valueswith λ = 1are valid and the test is adept at rejecting
power lawswith even small amounts of noise. If the question is
whether the data follow a power law allowing for some exper-
imental noise, then the raw p-values fail to control the false
positives rate and nearly always falsely reject the power law
even when the data do follow a power law. The p-values for
binned data are valid for either question by controlling the
false positives rate when λ is sufficently large. The distribution
of binned data (equations (1.1), electronic supplementary
material, equation (S3)) is therefore a better null distribution
for the more practical latter question.
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A classical strategy for removing the effects of censorship of
small values, contamination from a bulk distribution, and error
in estimating the tail fraction or xm is to simply increase xm, as
more extreme values are more likely to follow the limiting tail
distribution and larger values are less likely to be contaminated
by error [15,24,41,42]. This strategy also applies here, and so we
compare its effectiveness against binning with xm fixed at 1. Fit-
ting xm by minimizing K-S distance, the power law [15,41]
selects xm = 1.4 ± 0.8 (+1:96 s:d:) and â1 ¼ 1:52+ 0:21 for
additive error and xm = 1.5 ± 0.9, â1 ¼ 1:50+ 0:23 for multipli-
cative error (figure 2b). This strategy minimizes bias by
throwing away the most contaminated data, typically 20–25%,
but comes at the cost of nearly doubling the variability of the
estimator. Binning with λ= 4 and xm = 1 performs slightly
better in representing the true value—with RMS error of 0.09
and 0.11 for additive and multiplicative noise in contrast to
0.11 and0.12when fitting xm. Fitting xm, on the other hand,mini-
mizes bias. Neither method alone outperforms linear regression
by either standard in this example.

3.2. Power-accuracy trade-off in maximum-likelihood
estimators

Much as increasing xm removes potentially erroneous data at
the cost of statistical power, binning also removes information
from the sample, inducing a trade-off between accuracy and
power in estimation. Increasing λ increases variability on the
estimator (electronic supplementary material, S1),

s2
âl

¼ ðlâl � 1Þ2
ðnlâl log2 lÞ , ð3:1Þ

but potentially reduces unknown bias, depending on errors in
the data. The binning ratio λ can therefore trade unknown bias
for a calculable increase in variability. Better trade-offs are
achievable with larger sample size, as larger samples both
reduce variability on the estimator and expand the range of the
data, allowing larger λ. Increasing λwith sample size, byholding
variability constant, therefore allows larger samples to decrease
bias due to error, in contrast to the typical cases of estimation in
which bias is independent of sample size. We investigate the
trade-off numerically in samples of size n = 1 000 000 (200 repli-
cates; α = 1.5; σ+,s� ¼ 0:02, 0:2). Figure 3 shows a clear trade-off
between accuracy and precision as a function of λ in our normal
and lognormal noisy power-law data.

We then compute the λRMS that minimizes the RMS error in
representing the true value for each noise treatment. This λRMS

ranged from 20 to 330, corresponding to dividing the data into
two to four bins. In comparison with the proportional range of
the data r :=maxi xi/xm, the fraction of log-range covered by
the first bin log λRMS/log r varied only from 0.32 to 0.61
(median r: 12 500,

ffiffi
r

p
: 111). That is, the λRMS that best
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represents the true value typically divided the data into two or
three bins despite a 10-fold difference in error magnitudes.

3.3. Sensitivity and specificity of Kolmogorov–Smirnov
tests

Hypothesis testing generally involves a trade-off between
sensitivity and specificity. The test should reject the null
hypothesis when it is false (sensitivity) and accept it when
it is true (specificity). Statistical variability makes perfect per-
formance on both measures impossible, whereas sensitivity
often can be increased at the cost of specificity and vice
versa. While greater λ generally increases specificity by ignor-
ing errors in power-law data, it is possible for greater λ to
increase sensitivity as well, as observed in the wildfires
example. Here, we show in simulations of power law, noisy
power law and lognormal distributions that λ may increase
specificity with no cost to sensitivity, or else tune a trade-off
between sensitivity and specificity (figure 4).

We evaluate the performance of hypothesis testing using
lognormal samples truncated below xm = 1 as an alternative,
non-power-law distribution. The lognormal distribution is
heavy-tailed and so its extremes can be difficult to distinguish
from a power law [15]. Both tail distributions can appear
straight on a log–log plot, but the lognormal has curvature
that depends on its parameters (figure 4a). The truncated
lognormal probability density function is

f ðxÞ ¼
lðxÞ
Z x � xm
0 otherwise

�
, lðxÞ ¼ exp [ð�ðln x� mÞ2Þ=2s2

ln]

xsln
ffiffiffiffiffiffi
2p

p ,

where l(x) is the usual lognormal density function and Z is
the normalization

Ð1
xm

lðuÞdu. Its three parameters are the
mean μ, variance s2

ln and tail threshold xm. As σln goes to
infinity, the curvature diminishes and f (x) converges to a
power law with a fixed α = 1. The lognormal tail can therefore
approximate a power law with any α > 1 arbitrarily well for
sufficiently large but finite σln. We set xm to 1, use σln to
adjust curvature, and finally choose μ so that the slope is
equal to α = 1.5 at xm to approximate the small power law
samples of figure 2 where n = 500.

We find that binning entails no loss of sensitivity or
statistical power, provided λ divides the data into at least
four bins (figure 4b). The sensitivity itself depends strongly
on the curvature of the lognormal. At σln = 1, the most
curved, sensitivity is approximately 90% whereas at σln = 2,
28% is the best attainable. However, sensitivity was indepen-
dent of λ for λ < 2 for any given curvature. The median range
of all samples was 12.8, and so λ = 2 typically puts the
maximum data point in the fourth bin, [8,16) (figure 4a).

Increasing λ removes noise, and so increases the speci-
ficity of the test, when we take rejections of the power law
due to noise as false positives. The specificity given pure con-
tinuous power-law data is always 1− ρ = 0.95, whereas
specificities on noisy data are not always 0.95, but instead
depend on λ due to noise biasing K-S p-values. The range
2 < λ < 4 shows a trade-off between sensitivity and specificity
(figure 4b), in which increasing λ decreases sensitivity to
reject lognormal tails and increases specificity for accepting
comparable noisy power-law samples with sþ, s� ¼ 0:2
(cf. electronic supplementary material, section (a)).

Overall, increasing λ increases specificity at no cost to sen-
sitivity up to a point. This much is always desirable. Further
increases in λ sacrifice sensitivity for specificity, which may be
desirable, up to such λ as the test becomes useless because it
is unable to reject the power law more often than ρ under any
circumstances. In general, these thresholds of λ depend on
sample size, type and magnitude of errors in the data, and
possible alternative distributions, but reasonable guesses
can be made based on number of bins.
4. Discussion
We argue here that logarithmic binning can reveal noise in
otherwise power-law-distributed data, attenuate bias in
estimation and reduce false positives in hypothesis tests. Bin-
ning thereby provides a tool for the empiricist to see through
noise in power-law distributed data.

We have shown in empirical and simulated cases that
errors such as quantization, data coarsening, combining
data of different precision, measurement error, censorship
of small values, and error in estimating xm can all affect infer-
ences. This implies that MLEs and K-S statistics that assume a
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pure, continuous power law cannot be trusted when the data
may contain small errors. However, logarithmic binning,
using the discrete power law of equation (1.1), attenuates
some of these errors or removes them from consideration.

When different binning schemes reveal inconsistencies
among estimators, or contrasting conclusions of hypothesis
tests, at most one of the contradictory inferences can be accu-
rate, and more careful data analysis may support or discredit
one or another inference. Binning the data with different λ
thereby reveals important features of the data. If hypothesis
tests accept the power law at λ = 1, estimates at other λ are
mutually consistent and independent of λ, and hypothesis
tests accept the power law approximately 1− ρ fraction of
the time regardless of λ [34], then there is no evidence of devi-
ation from a pure power law. In that case, λ = 1, that is, no
binning, offers the most precise estimates. However, if bin-
ning reveals inconsistency among the estimators âl or
causes hypothesis tests to reject the power law, as in the
case of wildfires, this is evidence against the power law
that is only revealed through binning.

If hypothesis tests reject the power law at λ = 1, however,
it may be due simply to errors in the data rather than any
underlying phenomena. Inference at different λ may reveal
threshold beyond which the test accepts the power law, as
in earthquakes, wealth, and the simulated errors of figure 4.
Thresholds provide clues to features of the data, such as the
quantization and special values of earthquake data, the heap-
ing in the wealth distribution, or the type and magnitude of
error in simulation. We explore how the threshold depends
on σ+, s�, α and sample size for our cases of normal and log-
normal error and truncation in electronic supplementary
material, section (a) and figure S5 over a wide range of
physically reasonable α from 0.5 to 3.5.

Windows of consistency among estimators and tests over
a range of λ are assurance against cherry-picking results in
pseudoreplicated multiple hypothesis testing such as p-hack-
ing [43]. Conversely, results that hold only for a particular λ
and fail to replicate at different λ should be considered sus-
pect. This caution applies equally to results for λ = 1, and so
replicating results for other λ > 1 should be incorporated
into common practice. Finally, estimation is also predicated
on the assumption that the data come from a power law,
and so estimates using a λ for which the hypothesis test
fails are suspect.
4.1. Choosing values of λ
Considerations involved in choosing values of λ include the
nature of the errors in the data, possible alternative distri-
butions, the sample size and the scientific question. For
example, binning should always respect the quantization in
the data, if present. If the data are logarithmically quantized
at some λ0 as in the earthquake data, only integer powers of
the quantization, l ¼ lk0, should be considered. If the data are
quantized to a linear or inconsistent scale, λ should be chosen
large enough to make the differences negligible, or more
complicated binning schemes should be devised (cf. [34]).

Estimating α requires λ to be within the proportional range
of the data r, so that theMLE âl is well defined (electronic sup-
plementarymaterial, equation (S4)). At the two extremes of the
range 1 < λ≤ r, â1 maximizes bias while minimizing statistical
variability, whereas âr minimizes bias but maximizes variabil-
ity. Neither extreme is desirable unless the data is perfect, in
which case there is no bias and â1 minimizes variability. On
imperfect data, equally dividing the logarithmic range of the
data using l ¼ ffiffi

r
p

balances bias against variability to some
degree, and is reasonable unless more detailed information is
available. Indeed, in the numerical experiments of figure 3,
increasing noise by a factor of 10 only doubles log λRMS/log
r, so that l ¼ ffiffi

r
p

achieves comparable performance to λRMS

over a wide range of error magnitudes. This λ corresponds to
a minimum of bins, however, which offers the hypothesis test
no information, and so these estimates are predicated on
other belief that the data do indeed follow a power law.
Other reasonable prescriptions for estimation are to minimize
bias subject to an allowable statistical error using equation
(2.1) or choosing λ to greatly exceed a known magnitude or
proportional error.

Hypothesis testing imposes different limits on λ because
more bins are required to distinguish the shapes of alternative
distributions. Increasing λ reduces the chance of a false rejec-
tion due to trivial errors, but also might reduce capacity to
reject alternative distributions.Numerical experiments indicate
that choosing λ < r1/4 entails no loss of power to reject lognor-
mal data, whereas choosing λ > r0.4 offers no power to reject
alternatives. Binning the data into at least five bins by choosing
λ up to r1/4 is therefore a prescription for detecting curvature
over the range of the data, whereas detecting deviations over
a limited range such as roll-off [31,44] or censorship of small
values [37] would require more bins within the interval of
interest. Coarser binning than r1/4 may sacrifice sensitivity
for a possible increase in specificity, but binning beyond
λ = r0.4 is likely to have no sensitivity and is therefore useless.
5. Conclusion
MLE and K-S tests offer strong mathematical guarantees, but
only if the error model is well specified. The fragility of these
methods in power laws has thus far been underappreciated.
Loose specification of errors is convenient in practice because
the details of error sources are often unknown. Regression
offers a one-size-fits-all model which is robust to error (cf.
Figure 2, [20]), but not without other drawbacks [15,21].
Detailed specification of errors provides a more accurate
solution [40] but requires careful work that is not always feas-
ible. Using the discrete distribution of equation (1.1) makes
strictly weaker assumptions about the data than the usual
continuous power law and is therefore more tolerant of
error while retaining the clarity and benefits of likelihood
methods and K-S tests.

Considerable discussion in recent decades has questioned
the validity and value of power laws [15–17]. Often, however,
these studies have left zero tolerance for error [26,27]. Binning
offers a way to re-evaluate the quality of empirical power
laws with some allowance for trivial experimental or data col-
lection error. The same debate has sometimes conflated
establishing the existence of a power law with measuring
its exponent, whereas these are distinct scientific questions
that require different assumptions and contextual infor-
mation. Binning likewise offers different models within the
same family suited to the different goals and assumptions
of parameter estimation and hypothesis testing.

Binning offers a complement and alternative to classical
methods of removing error by increasing xm [15,24,41,42].
Both binning and increasing xm are appropriate to different
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circumstances and are not mutually exclusive. Increasing xm
cannot remove the effects of quantization and heaping that
occur in our empirical cases of wealth and earthquakes.
Indeed, fitting xm leads to rejecting the power law in both
cases and a substantially biased â1 = 0.64 for earthquakes
[15]. Furthermore, there are often scientific reasons for specify-
ing xm, such as direct knowledge ofmagnitude of completeness
mc in earthquakes [37] or the imaging resolution in vascular
data [8]. In such cases, fitting xm can lead to ignoring valid
data and a sacrifice of statistical power.

We conclude that logarithmic binning—combined with
appropriate MLEs and goodness-of-fit tests—offers a rough
but effective control for common data errors that otherwise
make power-law inference unreliable. Common errors
necessitate the development and wider application of more
robust inference methods in the many scientific contexts in
which power laws arise. Given the ubiquity of power laws
in nature and errors in data, we urge the incorporation of
binning into standard practice for power-law inference.
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