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Quantifying hole-motion-induced frustration in
doped antiferromagnets by Hamiltonian
reconstruction
Henning Schlömer1,2,3✉, Timon A. Hilker 2,4, Immanuel Bloch 1,2,4, Ulrich Schollwöck1,2,

Fabian Grusdt 1,2 & Annabelle Bohrdt2,3,5,6✉

Unveiling the microscopic origins of quantum phases dominated by the interplay of spin and

motional degrees of freedom constitutes one of the central challenges in strongly correlated

many-body physics. When holes move through an antiferromagnetic spin background, they

displace the positions of spins, which induces effective frustration in the magnetic environ-

ment. However, a concrete characterization of this effect in a quantum many-body system is

still an unsolved problem. Here we present a Hamiltonian reconstruction scheme that allows

for a precise quantification of hole-motion-induced frustration. We access non-local corre-

lation functions through projective measurements of the many-body state, from which

effective spin-Hamiltonians can be recovered after detaching the magnetic background from

dominant charge fluctuations. The scheme is applied to systems of mixed dimensionality,

where holes are restricted to move in one dimension, but SU(2) superexchange is two-

dimensional. We demonstrate that hole motion drives the spin background into a highly

frustrated regime, which can quantitatively be described by an effective J1–J2-type spin model.

We exemplify the applicability of the reconstruction scheme to ultracold atom experiments

by recovering effective spin-Hamiltonians of experimentally obtained 1D Fermi-Hubbard

snapshots. Our method can be generalized to fully 2D systems, enabling promising micro-

scopic perspectives on the doped Hubbard model.
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M icroscopically understanding the motion of mobile charge
carriers doped into Mott insulators constitutes one of the
key open problems in strongly correlated many-body

physics. When hopping through an insulating spin environment,
holes displace spins along their way, which effectively frustrates the
magnetic background. The arising competition of kinetic energy gain
via delocalization and associated magnetic energy cost leads to the
formation of a plethora of strongly interacting many-body phases1,2,
many of which yet seek to be explained on amicroscopic footing. The
Fermi–Hubbard (FH)model, believed to capture the essential physics
of strongly correlated materials, has been subject to intense numerical
studies that can resolve the intricate competition between various
orders3–9. Nevertheless, despite ongoing theoretical and experimental
efforts over the past decades, a precise microscopic understanding of
the interplay between motional and spin degrees of freedom is still an
unsolved task, whose long-sought understanding may help to reveal
the origin of high-temperature superconductivity and possibly lead to
the discovery of novel pairing mechanisms10,11.

Analog quantum simulation, e.g., via ultracold atoms, can shed
new light on the microscopic mechanisms underlying strongly
correlated quantum many-body states12–17 and paradigmatic
Hamiltonians like the FH model can now be experimentally
explored11,18–24. In particular, these setups allow to perform genu-
ine quantum projective measurements and sample snapshots of the
many-body state in the Fock basis, which in turn allow for insights
into the wave function beyond averages and local observables. This
capability has already been used to unveil highly non-local order
parameters and hidden correlations in many-body systems22,25.

As we demonstrate in our work, the huge amount of information
stored in snapshots of many-body states can further be utilized to
disentangle spin and charge sectors through non-local correlation
functions, which allow us to recover emergent effective spin-
Hamiltonians for parts of the system. The problem of reconstructing
a Hamiltonian from measured correlations via machine learning
schemes26–30 has attracted considerable interest in recent years,
including certifying quantum simulation devices31.

In this article, we present a snapshot-based Hamiltonian
reconstruction scheme for the spin channel alone, which removes
dominant charge fluctuations22,32 from individual snapshots.
This allows us to quantify the effective spin-Hamiltonian, which
includes the back-action of mobile dopants on the spin envir-
onment. We exemplify the proposed method by considering a
system in mixed-dimensions (mixD), where hole motion is
restricted to one dimension (1D), but SU(2) spin-superexchange
is two-dimensional (2D). We find that hole hopping drives and
stabilizes the spins in a highly frustrated regime, which we show
to be accurately described by a J1−J2-type spin-Hamiltonian.

Our method is directly applicable to experimental data
obtained from ultracold quantum gas microscopes. We showcase
this by reconstructing effective Hamiltonians from 1D measure-
ments of the FH model22, where spin-charge separation governs
the physics of the chains. Furthermore, our insights could be used
to effectively simulate the highly frustrated J1–J2 model in ultra-
cold atom experiments by implementing the mixD setting and
post-processing the measurements.

Our work sheds light on the long-standing question about the
interplay of spin- and motional degrees of freedom in strongly cor-
related materials, and paves the way to gain deepmicroscopic insights
into prototypical systems such as the 2D FH and t− J model.

Results
The model. We consider the t− J model in mixD10,33–35,
described by the Hamiltonian:

Ĥ ¼ �t ∑
hi;jix ;σ

P̂GW ĉyi;σ ĉj;σ þ h.c.
� �

P̂GW þ J ∑
hi;ji

Ŝi � Ŝj �
n̂in̂j
4

� �
: ð1Þ

Here, ĉðyÞi , n̂i and Ŝi are fermionic annihilation (creation), charge
density, and spin operators on site i, respectively; 〈i, j〉(x)

denotes a nearest-neighbor (NN) pair on a 2D square lattice (with
subscript x indicating a NN pair only along the x-direction), and
P̂GW is the Gutzwiller operator projecting out states with double
occupancy. The mixD setting, Eq. (1), has successfully been
implemented in ultracold atom setups using strong tilted poten-
tial gradients11, which effectively restrict hole motion perpendi-
cular to the gradient direction while spin-spin interactions remain
2D36,37.

Recently, we demonstrated how hidden AFM correlations in
the mixD t− J model result in the formation of a remarkably
resilient stripe phase (i.e., a coupled charge- and spin-density
wave38,39), with critical temperatures on the order of the
magnetic coupling J35. Above these critical temperatures of
charge- and spin-density wave formation, holes were found to
form a deconfined chargon gas, i.e., a phase without order34,35.

In the following, we focus on the latter regime, and study how
hole motion distorts the spins in the background. The effect is
qualitatively depicted in Fig. 1a. The upper panel shows an
(idealized) real space snapshot of holes moving through an AFM
Néel background. Bonds correspond to AFM interactions in the
instantaneous charge configuration, illustrated by gray lines. In
between holes on neighboring legs, spins are aligned, leading to a
linearly increasing magnetic energy penalty via the formation of
geometric strings21,40–42 (depicted by green wiggly lines).

As a direct consequence of the restricted charge motion to 1D,
spins can be relabeled by the new positions they have after
moving all holes to the right in each chain—resulting in a distinct
definition of squeezed space32,43. More formally, consider a
Fock state

N
y

��σ ½1;y�; σ ½2;y�; ¼ ; σ ½Lx ;y�
�
, where {0, ↑, ↓}∋ σx,y is

the single particle basis of the t− J model. These local spin
charge configurations are relabeled upon squeezing, whereby
each Fock state is now given by

N
y

��~σ ½~1;y�; σ ½~2;y�; ¼ ; σ ½~Lx ;y�
��

ĥ
y
½x1;y� ¼ ĥ

y
½xNy

;y� 0j i34. Here, ~σ ½~x;y� ¼";# (but note that ~σ ½~x;y� ≠ 0)

denotes spins on the squeezed lattice ~x ¼ 1; ¼ ; Lx � Ny , where

Ny is the number of holes in rung y, and ĥ½x;y� creates a hard core
fermionic chargon at site i= [x, y]. By squeezing the spins out,
spins on the squeezed and real space lattice relate as
~σð~x; yÞ ¼ σð~x þ∑j<~xn

h
½ j;y�; yÞ, where nh½x;y� refers to the number

of chargons at real space lattice site [x, y]. The lower panel of
Fig. 1a illustrates the squeezing process, where the initial Néel
order is restored in the isolated spin background. However,
interactions on diagonal bonds emerge (ocher lines), which cause
geometric frustration of the spins in squeezed space. From now
on, we refer to lattice sites in real and squeezed space by i and ~i,
respectively.

Characterizing the spin state in squeezed space. In order to
quantify the arising frustration on the squeezed lattice, we
simulate the mixD t− J model, Eq. (1), at finite temperature and
fixed doping using imaginary time evolution schemes (purifica-
tion) via matrix product states (MPS)44,45. For faster, more
controllable numerics and to prevent post-selection of snapshots,
we explicitly implement the system’s enhanced U(1) symmetries
in each ladder leg, i.e., we work in an ensemble where we allow for
thermal spin fluctuations but keep the number of holes in each
ladder leg constant35. In particular, we simulate the mixD t− J
model at intermediate temperature T/J= 5/3 (βJ= 0.6), which
lies inside the chargon gas phase (i.e., no charge- and spin-density
waves form) and, furthermore, is in a temperature regime
accessible for quantum gas microscopes.
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From the thermal MPS at inverse temperature β, we sample
uncorrelated snapshots of the corresponding Gibbs state46,47.
After post-processing the individual measurements by squeezing
out the holes, spin-spin correlations hŜz~i Ŝ

z
~j i can directly be

evaluated in squeezed space. In Fig. 2a, nearest-neighbor as well
as diagonal spin-spin correlations are shown on the squeezed
lattice. In the bulk of the squeezed ladder, both nearest neighbor
as well as diagonal correlators are negative and comparable in
magnitude, signaling strong frustration in the spin background
induced by the motion of the holes. In contrast, at both edges of
the ladder, low average hole concentrations lead to only marginal
perturbations of the spin background—resulting in AFM type
correlations that are negative (positive) along nearest (diagonal)
neighbors.

Figure 2b shows nearest-neighbor rung (blue) and diagonal
(red) correlators. Dashed-dotted lines correspond to rung and
diagonal correlations for a Heisenberg ladder with solely nearest-
neighbor couplings (where βJx1 ¼ βJy1 ¼ 0:44), which describe the
physics at the edges qualitatively well, but fail to reproduce the
measured correlations in the bulk. Due to the frustrating effect of
the hopping holes, diagonal couplings need to be taken into

account to accurately capture the physics of the squeezed
background. To this end, we introduce an effective Jx1 � Jy1 � J2
Heisenberg model48, given by the Hamiltonian:

ĤfJH g ¼ ∑
μ¼x;y

Jμ1 ∑
h~i;~jiμ

Ŝ~i � Ŝ~j þ J2 ∑
hh~i;~jiidiag

Ŝ~i � Ŝ~j: ð2Þ

Here, Ŝ~i is the spin-1/2 operator at site ~i, and fJHg ¼ fJx1; Jy1; J2g
are the coupling strengths of neighboring spins in x, y and
diagonal direction on the squeezed lattice, respectively.

To quantitatively pin down the strength of the arising
frustration, we perform a Hamiltonian reconstruction with input
Hamiltonian ĤfJH g, Eq. (2), together with the measured spin-spin

correlations in squeezed space. Couplings in ĤfJHg are chosen to
be homogeneous throughout the bulk of squeezed space, justified
by the approximately constant behavior of correlations in the
bulk region of Fig. 2b—solid lines are averages of the correlations
over the marked box. Due to the underlying SU(2) symmetry of
the mixD t− J model, many-body snapshots along a single spin
axis—here chosen along z—are sufficient to reconstruct the full
effective Hamiltonian, Eq. (2). Results of the reconstruction
correspond to the parameter configuration {JH} that best describe
the measured correlations.

On a more formal footing, we follow the procedure introduced
in ref. 30 and minimize the objective function G over all possible
coupling parameters {JH}:

G ¼ lnZðβ; fJHgÞ þ 3β ∑
μ¼x;y

Jμ1Mμ
1 þ J2M2

� �
; ð3Þ

with Z ¼ Tr½e�βĤfJH g � the partition function and Mμ
1 ¼ ∑0

h~i;~jiμ
hŜz~i Ŝ

z
~j i, M2 ¼ ∑0

hh~i;~jiidiaghŜ
z
~i Ŝ

z
~j i the summed correlations along

nearest- and diagonal neighbors within the considered window
in the bulk of squeezed space. Figure 2c shows how approxima-
tions for Mx;y

1 ;M2 quickly saturate with the number of used
snapshots, suggesting a qualitatively satisfactory proxy for the
spin-spin correlators after a few thousand projective measure-
ments. For the rest of the analysis, we use sample sizes of
7000 snapshots for each approximation of the correlations.

The minimization process is done via standard gradient
descent (GD) methods, where in each iteration the parameters
are updated according to the gradient ∇0G within the considered
bulk window of squeezed space. The temperature β−1 of the
Jx1 � Jy1 � J2 Heisenberg Hamiltonian is chosen identically to the
underlying simulations of the mixD t− J system during the GD.
Note that this choice might not reflect the actual effective
temperature of the spin background. However, the relevant ratios
Jy1=J

x
1, J2=J

x
1 that quantify the frustration in the system are

independent of the true temperature of the squeezed magnetic
environment.

Intermediate temperature regimes T/J≳ 1—as also chosen in
our simulations—have been shown to work best for reconstruc-
tions of the underlying coupling parameters, as both in the low
and high-temperature limit the energy landscape defined by G is
entirely flat30. Given a size Lx × Ly of the mixD system, the
dimensions of the reconstructed Jx1 � Jy1 � J2 Heisenberg ladder
on the squeezed lattice is given by ~Lx ´ ~Ly ¼ ð1� nhÞLx ´ Ly .

Hamiltonian reconstruction results for a single run are
presented in Fig. 2d. Evaluated correlations of the best fitting
Jx1 � Jy1 � J2 model are seen to perfectly match the measured
mean correlations in the bulk of squeezed space, hence strongly
supporting that the physics of the magnetic background in the
mixD t− J model is well captured by Jx1 � Jy1 � J2 Heisenberg
interactions on a square lattice. We have explicitly checked that
independent of the initially chosen parameter values for the GD,

Fig. 1 Hole-motion-induced spin frustration. a Schematic of how hole
hopping induces frustration in the spin background. Upper panel: Snapshot of
holes moving through a Néel background. Spatial separation of holes on
neighboring legs lead to the formation of geometric strings (green wiggly
lines) costing magnetic energy. Lower panel: Upon transforming the snapshot
to squeezed space, originally vertical bonds Jy1 in between two holes on
neighboring legs become effective diagonal couplings J2. The resulting energy
penalty of aligned diagonal spins leads to frustration in the magnetic
background. b Hamiltonian reconstruction results (blue) for hole dopings
nh=0.05… 0.2 of a mixD t− J ladder with t/J= 3, Lx × Ly= 20 × 2 and
T/J= 5/3 ~ 1.67. Reconstructions of squeezed space according to the input
Jx1 � Jy1 � J2 Heisenberg Hamiltonian, Eq. (2), are presented in a Jy1=J

x
1 ; J2=J

x
1

diagram. Light regions in the background signal the presence of either AFM or
stripe AFM order in the purely magnetic Jx1 � Jy1 � J2 model in the ground
state by plotting the sum of the spin structure factors S(π, π)+ S(0, π). Dark
regions correspond to a highly frustrated regime without apparent order.
Upon doping the system, the background spins are driven into a strongly
frustrated state. Error bars correspond to the standard error to the mean
when averaging over ten reconstruction runs. Red connected symbols show
theoretical expectations assuming no spin-hole correlations in the mixD t− J
model, i.e., ρ̂ ¼ ρ̂s � ρ̂c, evaluated via Eqs. (4) and (5).
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{JH} always converge to identical points in parameter space,
underlining the robustness of the GD scheme—see Supplemen-
tary Note 1.

To characterize and classify the reconstructed spin states in
squeezed space as a function of doping, we perform ground
state calculations of the Jx1 � Jy1 � J2 Heisenberg model and evaluate
the static spin structure factor (SSSF) given by Sðqx; qyÞ ¼
1

L2xL
2
y
∑i;je

iq�ði�jÞhŜi � Ŝji. For Jx1 ¼ Jy1 ¼ J1, it has been demonstrated

that a highly frustrated magnetic regime exists for 0.4≲ J2/J1≲ 0.6
that is sandwiched by a Néel and stripe AFM phase49–54. Though
the exact nature of the non-magnetic ground state in the frustrated
regime is still controversial, it remains a promising candidate for the
realization of a quantum spin liquid phase possibly described by
Anderson’s resonating valence bond (RVB) paradigm55–62. We
evaluate the hybrid order parameter S(π, π)+ S(0, π) in the Jy1=J

x
1 �

J2=J
x
1 parameter space, signaling whether AFM or stripe AFM order

exists in the system. Dark regions in the background of Fig. 1b
correspond to no apparent spin ordering, and hence signal the
existence of a strongly frustrated spin state akin to the observations
in the homogeneous J1− J2 model.

The reconstruction process, consisting of (1) approximating
correlations in squeezed space using snapshots and (2) perform-
ing the GD, is repeated a total number of ten times. Averaging
over the converged results of all runs leads to the main result of
this paper, presented in Fig. 1b by blue connected symbols. We
observe how the spin state in squeezed space rapidly approaches
the highly frustrated regime upon increasing the doping level,
until seemingly saturating within it to a certain configuration
fJ�Hg. We note that at the considered system sizes, boundary
effects become especially pronounced at low hole concentrations
nh= 0.05, 0.1. This leads to a slow saturation of the correlations
in the bulk of squeezed space, which in turn shifts effective
couplings averaged within the fixed window to smaller (larger)
values of J2=J

x
1 (Jy1=J

x
1), see Supplementary Note 2. In the

thermodynamic limit, we in fact expect any finite hole doping in
the chargon gas phase to drive the squeezed spin system into a
highly frustrated state. A numerical study of longer ladders of size
40 × 2 support this assumption, where already for nh= 0.05 the
spin state is reconstructed to lie deep inside the frustrated regime.

The reconstruction scheme as introduced above takes into
account spin-spin correlations directly measured in squeezed
space, hence providing an unbiased platform for the analysis of the
spin background by explicitly including the back-action of hole
motion on the spins. Motivated from the separation of energy
scales in the mixD t− J model with t/J≫ 1, we make the ansatz of
a fully decoupled thermal density matrix given by separate spin (s)
and charge (c) sectors, ρ̂ ¼ ρ̂s � ρ̂c, and aim to test the resulting
predictions against the unbiased reconstruction output.

Within the separation ansatz, interaction strengths in squeezed
space are obtained by conditioned probabilities in real space22.
Two nearest neighbors along x in squeezed space interact only if
the corresponding sites are nearest neighbors along x in real
space, leading to an effective coupling strength (assuming
homogeneous hole density hnhi i ¼ nh)—see i.p. the Supplemen-
tary Materials of ref. 22:

Jx1=J / hð1� n̂hi Þð1� n̂hiþex
Þi ¼ 1� 2nh þ gð2Þx : ð4Þ

Here, gð2Þμ ¼ hn̂hi n̂hiþeμ
i with eμ the unit vector in direction μ= x, y.

Vertical and diagonal bonds are obtained similarly by condition-
ing the correlators by the total number of holes to the left of site i,
νhi¼½x;y� ¼ ∑x0<xN

h
½x0;y�, with Nh

i the number of holes on site i.
Diagonal coupling strengths Jn spanning a distance of Δx= n− 1
(vertical bonds Jy1 correspond to J1 in this notation) are then given
by:

Jn=J / 1� n̂hi
� 	�

1� n̂hiþey

	D E
jνhi �νhiþey

j¼n�1
: ð5Þ

Fig. 2 Correlations in squeezed space and Hamiltonian reconstruction. a Spin-spin correlations hŜz~i Ŝ
z
~j i on the squeezed lattice of an original 20 × 2 mixD

t− J ladder, with nh= 0.2, T/J= 5/3 ~ 1.67, and using 20,000 snapshots. In the bulk of squeezed space, hole motion distorts the spin background, leading to
negative correlations across diagonals. In this region, effective J1− J2 physics is expected, as captured by the Hamiltonian Eq. (2). As holes are rarely located at
the open boundaries of the system, correlations are left almost undisturbed and are of AFM type. Correlations along nearest neighbors in x go beyond the cutoff
of the colorbar. b Rung Cy

1 ð~xÞ ¼ hŜz½~x;~0�Ŝ
z
½~x;~1�i and diagonal C2ð~xÞ ¼ hŜz½~x;~0�Ŝ

z
½~xþ1;~1�i þ hŜz½~xþ1;~0�Ŝ

z
½~x;~1�i correlations. In the central bulk region of the ladder, correlations

are approximately constant, the average being used as the input for Jx1 � Jy1 � J2 Hamiltonian reconstructions. In particular, we discard the two outer sites in
squeezed space, as illustrated by the yellow box. Dashed-dotted lines correspond to rung and diagonal correlations for a nearest-neighbor Heisenberg model
with βJx1 ¼ βJy1 � 0:44, which captures the physics at the edges, but fails to describe the correlations in the bulk of squeezed space. The introduction of
diagonal (frustrating) bonds is hence an essential step to describe the spin system on the squeezed lattice. c Summed correlations in the boxed bulk in (b) along
rungs, legs and diagonals for varying snapshot set sizes. Light regions correspond to the standard error to the mean. After a few thousand measurements,
convergence of the correlator proxies is reached. d Results show perfect agreement between the correlations emerging from a reconstructed effective
Jx1 � Jy1 � J2 Heisenberg model (black crosses) and bulk averaged correlations of the doped mixD model in squeezed space (solid lines).
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We evaluate the estimated effective couplings, Eqs. (4) and (5),
using the mixD t− J snapshots. Results are shown by red
connected symbols in Fig. 1b. We observe that the theoretically
predicted expectations for Jx1; J

y
1; J2 within the separation ansatz

agree remarkably well with the full reconstruction. Deviations
from the above description, in particular the consistent under-
estimation of relative diagonal coupling strengths J2=J

x
1, are likely

caused by non-trivial spin-hole correlations in the mixD t− J
model, which are implicitly included in the reconstruction
analysis but discarded in the separation ansatz.

We note that the conditioned correlators Eqs. (4) and (5)
calculated from mixD t− J snapshots are numerically almost
identical to calculations of free spinless fermions (free chargon
gas), see Supplementary Note 3. This lets us conclude that holes,
while behaving like free fermions in the chargon gas phase of the
mixD t− J model, nevertheless correlate non-trivially with the
spin background.

So far, our approach has been to restrict the effective
Hamiltonian Eq. (2) to first order diagonal couplings J2. To assess
the systematic error related to this approximation, we estimate the
magnitude of longer-range couplings Jn by evaluating the condi-
tioned correlators Eq. (5) for n ≥ 3. Relative strengths of couplings
up to J4 are depicted in Fig. 3, where a rapid decrease with real space
distance is observed. The relative strength of J2 in units of Jx1 is of
order ~10%, cf. Fig. 1b. J3, on the other hand, reaches only a few
percent in terms of Jx1, suggesting that n ≥ 3 couplings are negligible
for the effective description. We implement the Hamiltonian
reconstruction scheme outlined above also for a Jx1 � Jy1 � J2 � J3
Heisenberg model including interactions in squeezed space up to J3.
We find that this results in only very minor corrections to the
reconstructed ratios Jy1=J

x
1, J2=J

x
1, supporting that the spin physics is

well captured by nearest-neighbor and frustrating (first order)
diagonal bonds—see Supplementary Note 4.

Spin-charge separation in 1D. In the 1D FH model, the ground
state wave function is known to factorize into fully separated spin
and charge channels in the strongly interacting limit, leading to
the celebrated phenomenon of spin-charge separation (i.e., the
exact absence of spin-hole correlations)43. In 1D, is has been
demonstrated that hidden spin correlations—distorted in real
space by the motion of holes—can be revealed by transformation
to squeezed space, effectively described by a 1D Heisenberg
Hamiltonian with nearest neighbor interaction Jx1ðnhÞ on the
squeezed lattice22,63, cf. Fig. 4a:

ĤJx1
¼ Jx1 ∑

h~i;~ji
Ŝ~i � Ŝ~j: ð6Þ

We apply our squeezed space Hamiltonian reconstruction
scheme and recover the effective spin-Hamiltonian of the doped
1D FH model using experimentally obtained snapshots in a
degenerate two-component ultracold Fermi gas carried out by
some of us22. Results are shown in Fig. 4b by blue data points,
where a consistent decrease of effective coupling strength Jx1ðnhÞ is
observed upon increasing the hole doping—as expected from Eq.
(4). For comparison, we further simulate the 1D t− J model with
identical parameters as estimated in the experiment (t/J= 1.82,
T/J= 0.87) and use sampled thermal snapshots in squeezed space
for reconstructions, shown by red squares in Fig. 4b.

Effective interactions Jx1=J reconstructed for an underlying 1D
t− J model are seen to consistently lie below recovered coupling
strengths of the 1D FH model. This discrepancy can be explained
by higher order virtual processes in the FH model, which we
illustrate by comparing the reconstructions to theoretical
predictions within a separation ansatz. In the 1D t− J model,
effective spin interactions in squeezed space can be calculated via
Eq. (4), yielding:

Jx1=J ¼ 1� nh � 1
1� nh

Gð1Þ½ �2: ð7Þ

Here, GðdÞ ¼ 1
π

R π
0 dk cosðkdÞnFðnh;TÞ with nF(nh, T) the Fermi-

Dirac distribution of free chargons hopping on a 1D lattice at
temperature T. When generalizing the t− J model to include
next-nearest neighbor hole hopping processes mediated by
doubly occupied virtual states as possible in the FH model, the
effective coupling reads22:

Jx1=J ¼ 1� nh þ Gð2Þ; ð8Þ
with J= 4t2/U and U the Hubbard interaction.

Reconstructed values of Jx1=J are observed to match the
theoretical predictions for spin-charge separated systems well,
depicted by red and blue dashed lines corresponding to Eqs. (7)
and (8), respectively. This illustrates the (approximate) presence

Fig. 3 Significance of longer ranged couplings. By evaluating the
conditioned correlators, Eqs. (4) and (5), we estimate the strengths of longer
ranged couplings up to J4. In units of the strongest interaction Jx1 , first order
diagonal bonds J2 are of the order of ~10%, whereas couplings J3 reach relative
magnitudes of a few percent. Due to the finite system size, J3 (J4) and higher
order couplings drop to zero for nh=0.05 (nh=0.1), as the corresponding
conditioned probabilities Eq. (5) vanish for a single (two) hole(s) per leg.

Fig. 4 Reconstructing 1D systems from experiments. a Illustration of
snapshots of the 1D FH model in real (top) and squeezed (bottom) space.
b Evaluation of 1D FH snapshots of a cold atom experiment22.
Reconstructions of the effective spin-Hamiltonian Eq. (6) in squeezed space
for varying hole densities are shown by blue data points. Red data points
correspond to reconstructions of the 1D t− J model, which we simulate
using MPS for parameters as estimated in ref. 22, i.e., t/J= 1.82 and
T/J= 0.87. Results are compared to theoretical predictions (dashed lines)
assuming spin-charge separation, Eqs. (7) and (8), showing a good match
with the reconstructed data. In particular, higher order hopping processes
lead to the FH measurement reconstructions of Jx1=J to consistently lie
above predictions for the t− J model. Error bars are too small to be visible
for the t− J reconstructions on the scale of the plot. The T=∞ limit is
shown by the gray dashed line, where a linear decrease Jx1 ¼ 1� nh is
expected for both the FH and t− J model.
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of spin-charge separation in the 1D FH and t− J model away
from the T= 0 and strongly interacting limit, ultimately being
mediated by their separation of energy scales.

Discussion
Using Hamiltonian reconstruction schemes, we have proposed a
method to quantify hole-motion-induced frustration in a doped
antiferromagnet by exploiting the full information stored in
many-body snapshots. An advantage of the reconstruction pro-
cess as introduced above is that the effective Hamiltonian—
defined on the squeezed lattice—describes a reduced number of
degrees of freedom, i.e., its local Hilbert space dimension is
smaller than the one of the original system. In particular, the
effective spin-Hamiltonian in squeezed space is of local dimen-
sion d= 2, rendering reconstructions for a given set of snapshots
feasible even for larger system sizes. Experimental data of 2D
systems that are inaccessible with classical simulations but within
reach of current experiments11 could be used as input for a
computational reconstruction of the spin background. We
benchmarked this for wide Heisenberg ladders, where we
reconstruct unknown coupling parameters to high accuracy from
snapshots, see Supplementary Note 5.

By analyzing a setting in mixed-dimensions, we have firmly
established a quantitative connection between the doped mixD
t− J model and the paradigmatic frustrated J1− J2 model. In
particular, we demonstrated how hole motion drives the spin
background into a highly frustrated state, whereby effective
diagonal, frustrating magnetic bonds are induced on the squeezed
lattice formed by the spins alone. Our results match theoretical
predictions based on spin-charge separation reasonably well,
differences being likely caused by weak remaining spin-hole
correlations that deserve further investigation in the future. We
note that due to the formation of stripes below temperatures
T ~ J/235 in the mixD t− J model, its ground state is not directly
related to a quantum spin liquid phase. Nevertheless, the ordered
stripe phase at lower temperature may be merely covering a
disordered quantum phase that dominates the physics of the
model once the stripe order is melted away above the stripe
critical temperature. Though this perspective is admittedly spec-
ulative, a similar view is often evoked in the context of describing
the pseudogap with its associated small Fermi surface as origi-
nating from a covered ground state fractionalized Fermi liquid,
see e.g. ref. 64.

Utilizing snapshots of a cold atom experiment simulating the
1D FH model, we already demonstrated the direct applicability of
the reconstruction method to existing experimental data. From a
converse experimental point of view, the above insights could
further be utilized to effectively simulate the highly frustrated
J1− J2 model by implementing the mixD setting and post-
processing the measurements.

The reconstruction scheme can be generalized and applied to a
variety of many-body phases. In the stripe phase, for instance,
fluctuating holes bound into stripes are expected to lead to spatial
modulations of the couplings between spins which can be recon-
structed using the scheme we described. Moreover, our method can
be extended from mixD to fully 2D settings with homogeneous
charge motion, where e.g., a weak easy-axis anisotropy of the
Heisenberg interactions can enable string retracing40 to remove
dominant charge fluctuations and define a squeezed lattice.
Applying our scheme to such snapshots will provide a microscopic
perspective on the doped FH model and its relation to putative
topological order in his enigmatic model. Making explicit use of all
accessible correlation functions in squeezed space to further
enhance the accuracy of the reconstructions is a promising

direction for future research, for instance by directly comparing the
distributions of measured and reconstructed snapshots.

Methods
Finite-temperature DMRG. We simulate the mixD t− J model at finite tem-
perature using mixed state purification schemes while conserving the system’s
symmetries65. In particular, we expand the ladder system by introducing auxiliary
sites, which act as a finite temperature bath via their entanglement to the physical
system. In order to calculate thermal matrix product states, we first generate the
infinite temperature, maximally entangled state Ψðβ ¼ 0Þ

�� �
in a given symmetry

sector35—see also Supplementary Note 6.
A pure state in the enlarged system at finite temperature is then calculated by

evolving Ψðβ ¼ 0Þ
�� �

in imaginary time under the physical Hamiltonian, ΨðτÞ
�� � ¼

e�τĤ Ψðβ ¼ 0Þ
�� �

, where τ= β/2 with β the inverse temperature. The corresponding
mixed state of the physical system is computed by tracing out all auxiliary degrees
of freedom when computing expectation values in the physical subset.

During the imaginary time evolution, we conserve the particle number in each
physical leg Nℓ, ℓ= 1 .. Ly, the total particle number in the auxiliary system N tot

aux:, as
well as the total spin Sz;totphys:þaux: (the latter allowing for finite total magnetizations of
the physical system at finite temperate). This results in a total of Ly+ 2 symmetries
employed by the DMRG implementation.

Given a generic observable Ô of the physical chain, the thermodynamic average
can be calculated in the enlarged space by tracing out the ancilla degrees of freedom:

hÔiβ ¼
ΨðβÞ Ô

�� ��ΨðβÞ
 �
hΨðβÞjΨðβÞi : ð9Þ

Here, the norm 〈Ψ(β)∣Ψ(β)〉∝ Z(β) is proportional to the partition function at
temperature β−1.

The maximally entangled state needed as a starting point of the imaginary
time evolution is generated using the concept of entangler Hamiltonians65,66,
which we specifically tailor for our “leg-canonical” ensemble35. Since the
maximally entangled state is usually of low bond dimension, we first employ
global MPS imaginary time evolution schemes to evolve the system away from
infinite temperature. Once bond dimensions are sufficiently high, we switch to
local approximation methods. In particular, we use the Krylov scheme and the
time-dependent variational principle (TDVP) for global and local evolutions,
respectively45.

Hamiltonian reconstruction. Due to the non-Markovian nature of quantum
states, it is a priori unclear whether measured correlations are sufficient to learn the
quantum interactions of the underlying Hamiltonian67. However, it has been
shown that the strongly convex property of the free energy with respect to the
interaction parameters renders the Hamiltonian learning problem feasible30.

In each GD step, we compute the partition function and relevant correlations

Mx=y
1 ;M2 using the MPS schemes described above. Due to the numerical

complexity, we do not consider advanced GD methods with varying step size e.g.,
given by the Amijo rule, but stick to a straightforward optimization using a fixed
descent step. In particular, we choose the step a to be 20% of the objective gradient,
i.e., a ¼ 0:2∇0G, where ∇0 is the gradient in parameter space within the fixed
window in the bulk of squeezed space as introduced in the main text. When the
norm of the gradient reaches a certain threshold, here chosen as j∇0Gj<10�6, we
stop the descent and assume converged results.

In our simulations, we work at intermediate temperatures, i.p. T/J= 5/3. On
the one hand, this ensures that the mixD t− J system is in the chargon gas
phase, i.e., stripes do not form35. On the other hand, intermediate temperature
regimes have been shown to yield best reconstruction results from projective
measurements30. To illustrate the latter argument, consider for instance the
ferromagnetic (FM) Ising model, featuring a FM ground state for any non-zero
interaction strength. Therefore, at low temperatures close to the ground state,
the energy landscape G is nearly flat, resulting in bad reconstructions. Similarly,
for T/J≫ 1 measured correlations only weakly depend on the underlying
coupling parameters (e.g., the infinite temperature state is identical for all
interaction strengths), which hinder precise reconstructions. By reconstructing
purely magnetic models for various temperatures, we demonstrate this explicitly
in Supplementary Note 5.

Data availability
The datasets generated and/or analyzed during the current study are available from the
corresponding author on reasonable request.

Code availability
The data analyzed in the current study have been obtained using the SyTen package68,69.
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