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Abstract. Point-like topological defects are singular configurations that mani-
fest in and out of various equilibrium systems with two-dimensional orientational
order. Because they are associated with a nonzero circuitation condition, the
presence of defects induces a long-range perturbation of the orientation landscape
around them. The effective dynamics of defects is thus generally described in
terms of quasi-particles interacting via the orientation field they produce, whose
evolution in the simplest setting is governed by the diffusion equation. Because of
the multivalued nature of the orientation field, its expression for a defect moving
with an arbitrary trajectory cannot be determined straightforwardly and is often
evaluated in the quasi-static approximation. Here, we instead derive the exact
expression for the orientation created by multiple moving defects, which we find
to depend on their past trajectories and thus to be nonlocal in time. Performing
various expansions in relevant regimes, we demonstrate how improved approxim-
ations with respect to the quasi-static defect solution can be obtained. Moreover,
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our results lead to so far unnoticed structures in the orientation field of moving
defects, which we discuss in light of existing experimental results.

Keywords: Topological defects, liquid crystals, memory effects, Coulomb gas,
multivalued fields
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1. Introduction

Topological defects are intimately associated with the emergence of spontaneous sym-
metry breaking, and the fundamental role they play in condensed matter systems is
now well established. Indeed, point-wise topological defects are commonly observed in
a wealth of two-dimensional systems, such as passive [1, 2] and active [3, 4] liquid
crystals, melting solids [5], turbulent fluids [6], thin superfluid films [7, 8], supercon-
ductors [9, 10], or trapped quantum gases [10]. Defects are known to be the major
drivers of the coarsening dynamics following a quench in numerous passive [11] and
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active [12–15] systems. At equilibrium, defect unbinding is also responsible for the cel-
ebrated Berezinskii–Kosterlitz–Thouless topological phase transition [16, 17] that has
been characterized in many of the systems cited above. Because they continuously dis-
sipate energy at the microscopic scale, active nematics [18] moreover self-organize into
a chaotic ‘turbulent’ phase [19, 20] whose dynamics is driven by the steady creation and
annihilation of defects. Finally, recent studies suggest that the role of defects extends
to biology, as they may play a regulatory role in living tissues [21, 22].

In many of the situations outlined above, it has been argued that defects can
be described as quasi-particles interacting through the surrounding order parameter
field [23]. Because the presence of defects introduces a long-ranged perturbation of
the order with respect to the stationary uniform configuration, the resulting landscape
acts as an effective force that sets the defects into motion. Determining the shape of the
order parameter field created by a defect is therefore central to understanding the global
behavior of the system and has, even until recently, garnered much attention [24–36].
In most practical cases, the norm of the order parameter relaxes fast enough such that
only its local orientation is relevant to the dynamics of defects. Furthermore, a broad
range of theories predicts that the order orientation evolves according to the diffusion
equation [23]. Even in the presence of additional nonlinear terms, for example, due to
coupling with an external flow or activity [37, 38], solutions of the diffusion equation still
play an essential role because they can serve as a foundation for perturbation theory.

Despite its apparent importance, to our knowledge, no explicit solution of the dif-
fusion equation has been derived for a defect moving along an arbitrary trajectory.
Indeed, most studies focusing on characterizing the dynamics of defects rely on a quasi-
static approximation, where the orientation field is calculated from the Laplace equation
assuming immobile defects [2], leading to the well-known Coulomb-type interaction
forces between defects. Some works have gone beyond the quasi-static approximation,
mostly considering defects moving with constant velocity [26, 29]. This approximation,
however, causes unphysical divergences of the solution at large scales. For rectilinearly
moving defects, Rodriguez et al [25] further demonstrated that defect acceleration leads
to noticeable corrections in the resulting orientation field.

In this work, we propose a derivation of the orientation field created by point defects
moving along arbitrary trajectories, in a similar vein to what has been previously
done for defects interacting with elastic waves [28]. Apart from most of the commonly
employed approximations, the exact solution we derive is nonlocal in time and thus
highlights the importance of the memory of past defect configurations to describe the
system dynamics. In particular, we show that considering defect dynamics leads to
new structures in the orientation field solution that are absent in the immobile defect
limit. Our predictions are directly relevant to the dynamics of passive and active liquid
crystals.

The remainder of this paper is organized as follows: section 2 provides a brief intro-
duction to the problem and the main steps leading to the dynamical defect solution
of the diffusion equation. In addition, section 3 describes the expansions of the single-
defect solutions for relevant regimes. Section 4 discusses the implications of our results
in systems presenting multiple defects. Finally, we summarize our results and provide
concluding remarks in section 5.
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2. The orientation field generated by a moving defect

2.1. Topological defects in the two-dimensional Ginzburg–Landau equation

The most natural framework to describe SO(2) spontaneously symmetry broken phases
is the Ginzburg–Landau equation, which for an order parameter ϕ(x, t) follows:

∂tϕ(x, t) =D∇2ϕ(x, t)+χ(1− |ϕ(x, t)|2)ϕ(x, t), (1)

where the parameters D and χ are phenomenological. For instance, a minimal descrip-
tion of polar and nematic liquid crystals is achieved by equation (1) where ϕ represents
the polar and nematic order parameters, respectively:

ϕpolar = ρ

(
cos(θ)
sin(θ)

)
, ϕnematic =

ρ√
2

(
cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)
,

where ρ(x, t) and θ(x, t) set the magnitude and orientation of order, respectively,
whereas |ϕ|2 is a shorthand notation for the sum of the squared components of ϕ.
D in equation (1) plays the role of an effective diffusivity and χ−1 sets the typical relax-
ation timescale of ρ(x, t). In particular, for χ →∞, the norm ρ is instantaneously forced
to its equilibrium value ρ=1. The dynamics of ϕ then reduces to that of its orientation,
which takes a simple form:

∂tθ(x, t) =D∇2θ(x, t). (2)

This picture is, however, incomplete, as for generic initial and boundary conditions in
two dimensions, the field ϕ may not uniformly converge to the ordered state ρ(x, t) = 1,
but present topological defects. These configurations correspond to singularities of the
orientation field θ(x, t) at a set of space points qi(t) (i = 1, . . .) and are by the continuity
of the order parameter admissible solutions of equation (1) only under the condition
ρ(qi(t), t) = 0 for all i. All defect solutions carry a charge s such that 2πs equals the
circuitation of ∇θ(x, t) along any closed curve encircling the defect center. Due to the
total charge conservation, defects are topologically constrained such that they must
be created and annihilated in pairs with opposite charge. For large χ, the condition
ρ(x, t) = 1 nevertheless remains true almost everywhere3, such that the dynamics of a
system with topological defects is fully characterized by that of the defects positions
qi(t) and of the orientation field θ(x, t).

2.2. The multivalued solution of the diffusion equation

In this section, we derive the central result of this work, namely the general solution of
the diffusion equation (2) for a defect moving along an arbitrary trajectory. Otherwise
stated, to lighten the notations, we work in what follows with time units such that the
diffusivity D is set to one without loss of generality.

3 Formally, (D/χ)1/2 defines a typical scale over which ρ(x, t) substantially differs from one around the defects. Outside of this
‘core’ region, the dynamics of ϕ is well captured by that of its orientation.
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As the orientation of ϕ is defined up to a constant phase shift—for example, a
multiple of 2π or π for ferromagnetic and nematic orders, respectively– θ(x, t) is a
multivalued function. In particular, because of the nonzero circuitation condition, an
s-charged defect solution at position q imposes a ±2πs discontinuous jump of θ(x, t)
across an arbitrary branch cut extending from q to infinity. For example, the orientation
field θst(x− q) generated by a static defect satisfies ∇2θst = 0 and can be expressed as
θst(x− q) = sarg(x− q), which corresponds to a choice of cut such that θst ∈ (−π;π].
Based on this solution, it is then straightforward to calculate the physical gradient that
must remain independent of the choice of the cut, namely:

∇θst(x) = sϵ
x

|x|2
, ϵ≡

(
0 −1
1 0

)
, (3)

where ϵ is the two-dimensional antisymmetric Levi–Civita tensor, which here corres-
ponds to the π

2 -rotation matrix.
For the general case of moving defects, however, one does not have an explicit expres-

sion for θ(x, t) such that regularizing the space and time derivative operators is less
straightforward [39]. To circumvent the challenges arising from the discontinuity of θ
at the cut, we thus use the linearity of equation (2) and write the solution for a mov-
ing defect as θ(x, t) = θst(x− q(t))+φ(x, t), where q(t) may now be time-dependent,
whereas the remaining contribution φ(x, t) has zero curl and is thus smooth for all
x ̸= q(t). Defining r ≡ x− q(t), we express equation (2) in the defect frame and find
that φ(r, t) solves:[

∂t−v(t) ·∇−∇2
]
φ(r, t) = v(t) ·∇θst(r), (4)

where v(t)≡ q̇(t) denotes the instantaneous velocity of the defect. To solve equation (4),
we consider the Green’s function G(r, t, t ′) whose evolution is governed by:[

∂t−v(t) ·∇−∇2
]
G(r, t, t ′) = δ2(r)δ(t− t ′). (5)

Assuming uniform orientation at infinity, solving equation (5) is easily achieved in
Fourier space, leading to:

G(r, t, t ′) =
Θ(t− t ′)

4π(t− t ′)
exp

[
−|r+∆q(t, t ′)|2

4(t− t ′)

]
, (6)

where Θ(t− t ′) is the Heaviside step function and ∆q(t, t ′)≡ q(t)− q(t ′). Note that as
equation (4) is in general not invariant under time translations, the Green’s function (6)
depends separately on t and t ′, and not just on the difference t− t ′. The general solution
of equation (4) is therefore given by:

φ(r, t) =

ˆ
d2y

ˆ
dt ′G(r−y, t, t ′)(v(t ′) ·∇)θst(y). (7)

For most applications in the investigation of topological defects, the gradient of the
angular field θ is actually a more useful quantity than θ(r, t) itself. In what follows, we
thus calculate∇φ and show that, in constrast to φ, its expression can be simplified into a
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form that is local in space. As the Green’s function G(r−y, t, t ′) satisfies∇rG=−∇yG,
we obtain from (7) after integration by parts:

∇φ(r, t) = − ϵ

ˆ
Ca
dl

ˆ
dt ′G(r−y, t, t ′)(v(t ′) ·∇)θst(y)

+

ˆ
d2y

ˆ
dt ′G(r−y, t, t ′)(v(t ′) ·∇)∇θst(y), (8)

where the boundary contribution on the first line is retained because of the singular
behavior of ∇θst(y) at y = 0. To evaluate it, we thus consider a circle Ca of radius a→ 0
around the defect. After some calculations detailed in appendix A, we find that this term
indeed leads to a nonvanishing contribution for a =0 given by πsϵ

´
dt ′v(t ′)G(r, t, t ′).

Integrating by parts the remaining term in (8) then leads to a similar boundary contri-
bution, such that we obtain:

∇φ(r, t) =−2πsϵ

ˆ
dt ′v(t ′)G(r, t, t ′)+

ˆ
d2y

ˆ
dt ′ (v(t ′) ·∇r)G(r−y, t, t ′)∇θst(y), (9)

where on the second line we indicate explicitly that the gradient of G is taken with
respect to the variable r in order to avoid possible confusion. To evaluate the spatial
integral on the second line, we note that the Green’s function satisfies the identity
(∂t−v(t) ·∇)G(r, t, t ′) =−(∂t ′ +v(t ′) ·∇)G(r, t, t ′), which can be checked from (6) by
direct calculation. Using moreover equation (5), we get:

(v(t ′) ·∇)G(r, t, t ′) = (∂t ′ +∇2) [GD(r, t− t ′)−G(r, t, t ′)] , (10)

where

GD(r, t− t′)≡ Θ(t− t′)

4π(t− t′)
e
− |r|2

4(t−t′) ,

is the Green’s function of the diffusion equation. Replacing (10) into equation (9),
the ∝ ∂t ′ terms cancel upon integration, whereas the ∝∇2 terms are calculated via
additional integration by parts keeping the associated boundary contributions from the
defect core. After some calculations detailed in appendix A, we obtain:

∇φ(r, t) =−2πsϵ

ˆ
dt ′ [(∇+v(t ′))G(r, t, t ′)−∇GD(r, t− t ′)] . (11)

Noting that the static defect solution fulfills ∇θst(r) =−2πsϵ
´
dt ′∇GD(r, t− t ′), we

finally get after explicitly replacing G by its expression:

∇θ(r, t) =∇[θst(r)+φ(r, t)] =−s

2
ϵ

ˆ t

−∞

dt ′

(t− t ′)
(∇+v(t ′))e

− |r−∆q(t,t ′)|2
4(t−t ′) . (12)

Strikingly, the r.h.s. of (12) cannot be written as the gradient of a scalar field. This
feature is a consequence of the fact that θ is a multivalued function. In fact, we show
in appendix A that ∇θ(r, t) is irrotational everywhere except at the defect position:
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[∇×∇θ(r, t)] · ẑ = 2πsδ2(r). Consequently, for any closed curve Υ oriented along the
counter-clockwise direction, it follows from Green’s theorem that:

˛
Υ

dl ·∇θ(l, t) = 2πs

ˆ
S(Υ)

d2r δ2(r) =

{
2πs if 0 ∈ S(Υ)
0 otherwise

, (13)

where S(Υ) denotes the surface enclosed by Υ.
The r.h.s. of equation (12) is nonlocal in time, which highlights that the orienta-

tion field generated by a moving defect depends on the full history of its trajectory.
Nevertheless, we show in section 3 that in a number of limiting regimes, the expres-
sion (12) can be approximated by forms that are local in time. In these cases, the time
dependency of the orientation is indeed due only to the instantaneous defect position
and velocity. A straightforward example is obtained fixing q(t) = q and v(t) = 0 in
equation (12), leading as expected to ∇θ(r, t) =∇θst(r). In contrast, for motile defects,
the past history of the trajectory still generally appears effectively through the value
of some coefficients. A particularly enlightening case is addressed in section 3.2 where
the far-field limit of equation (12) is derived. Here, we show that, in addition to the
static defect solution (3), an additional contribution given by the average defect angu-
lar momentum arises. This contribution is moreover orthogonal to (3), such that the
solution (12) predicts that a defect with nonzero angular momentum generates spiraling
field lines, as experimentally observed in a number of liquid crystal systems [40, 41].

In some cases, it will be more convenient to work with ∇θ expressed in the lab frame,
which is recovered using x= r+ q(t) in (12):

∇θ(x, t) =−s

2
ϵ

ˆ t

−∞

dt ′

(t− t ′)
[∇+v(t ′)]e

− |x−q(t ′)|2
4(t−t ′) . (14)

In particular, we will show in section 4 how the angular field landscape generated by
multiple defects is trivially obtained from (14) by the summation of the single defects
solutions. Because the exact solution accounts for the full history of the system, it
allows us to derive in section 4.1 the functional form of the propagation of the orientation
perturbation following the creation of a defect pair, as well as that of the field relaxation
after the annihilation of the pair. Our results moreover highlight that the relaxation of
|∇θ| to zero will take different scaling forms depending on the ratio of the time delay
since annihilation and the total lifetime of the defect pair. Finally, we show in section 4.2
that the angular momentum dependency of the far-field limit of equation (14) generically
leads to defect pair solutions with an angular field that cannot be described as the sum
of two static defect configurations and are named mismatched configurations [30, 41,
42]. This result suggests that in complex environments with many interacting defects,
mismatching shall naturally occur even without explicit elastic anisotropy or specifically
imposed boundary conditions.
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3. Some useful expansions

The results derived in the previous section are exact and valid on the whole plane
and for all times, but due to its non-locality in time, the solution (12) is, in practice,
of limited use. In this section, we therefore investigate the relevant limiting cases for
which equation (12) simplifies into more manageable expressions.

3.1. The near-field expansion

Here, we show by performing a near-field expansion of equation (12) that the expression
for the orientation gradient simplifies in the vicinity of the topological defect. Knowing
the structure of the field around a defect is useful in practice to calculate the dynamics of
its position q(t), as it is in particular involved in the expression of the defect mobility [23,
26]. Moreover, as ∇θ(x, t) essentially sets the interaction between defects, our result
highlights its dominating contribution for nearby defects.

Because the diffusion equation (2) does not have any intrinsic scale, we cannot write
the desired expansion in terms of a small length parameter. However, the defect position
r = 0 corresponds by construction to a singularity of the orientation field gradient. In
proximity to the defect core, this diverging contribution thus naturally dominates the
expression of∇θ(r, t). More generally, in this subsection, we will derive a contribution to
the gradient (12) that is discontinuous at the topological singularity. This contribution
contains but is not limited to the dominating singular part.

Firstly, we split the time integral in (12) into two contributions, respectively, over
(−∞; t− τ) and (t− τ ; t) with τ > 0. The first contribution is clearly analytical in r = 0,
whereas the second one is not. In particular, it is easily shown that the non-analyticity
of the second contribution at r = 0 arises because of the (t− t ′)−1 factor in the integral.
Therefore, we show that the near field singular part of the solution depends only on the
defect configuration at time t. Taking τ as small, we Taylor expand around t the defect
velocity and displacement as follows:

v(t′) = v(t)+O(t′− t), ∆q(t, t′) = v(t)(t− t′)+O((t′− t)2).

Substituting these expressions in (12), it is straightforward to demonstrate that the
O(t ′− t) and O((t ′− t)2) terms, respectively, for v(t ′) and ∆q(t, t ′) do not lead to any
singular contribution. We therefore formally write:

∇θ(r, t) =
r→0

−s

2
ϵ

ˆ t

t−τ

dt′

(t− t′)
[∇+v(t)]e

− r2

4(t−t′)−
v(t)·r

2 +c.t.,

where r ≡ |r| and “c.t.”refers to the subdominant continuous terms. The integral in this
expression is in turn evaluated using the change of variables u= r2/(t− t ′). Taking the
limit r → 0, we finally end up with:

∇θ(r, t) =
r→0

sϵ

(
r̂

r
+

v(t)

2
ln
( r
λ

)
− v(t) · r̂

2
r̂

)
+c.t., (15)
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where r̂ ≡ r/r and λ is an unknown length scale introduced for dimensional reasons
that we discuss further below.

The dominating term in the expansion (15) is given by the static defect contribution
sϵr̂/r. Moreover, the motion of the defect leads to additional subdominant discontinuous
terms, which depend only on the instantaneous velocity v(t). The dominating near-field
behavior of ∇θ(r, t) is therefore always local in time, although the full solution (12)
is not. Note that in order to keep the argument of the logarithm in (15) nondimen-
sional, we have included a length scale parameter λ. However, it is clear that λ can
in general be absorbed into the continuous contribution to the gradient. Therefore,
compared to the other discontinuous terms, the scale λ generally depends on the past
positions and velocities of the defect, and cannot be computed by such a near field
expansion.

3.2. The far-field expansion

Having characterized the near-field behavior of the solution (12), we now turn to the
opposite limit of far field. This limit is often used to model the interaction between
defects, which for static defects is of Coulomb-like form [2]. As detailed below, con-
sidering the dynamics of the defect, we uncover a new contribution to the far field,
which is generated by the defect angular momentum. This contribution, to our know-
ledge unreported so far, qualitatively modifies the orientation field generated by the
defect.

As noted previously, the diffusion equation (2) does not carry any intrinsic length
scale, such that to perform the expansion we must introduce one. In this section, we
thus assume that the defect moves inside a bounded region of space. Hence, there exists
a length scale ℓ such that the relative displacement |∆q(t, t ′)|< ℓ for all past times t ′.
As detailed in appendix B, performing an expansion of the solution (12) up to first
order in ℓ/r, we obtain:

∇θ(r, t) = sϵ
r̂

r
+ sr

ˆ t

−∞
dt ′

L(t ′)

8(t− t ′)2
e
− r2

4(t−t ′) +O
(
ℓ

r

)
, (16)

where L(t ′)≡ v1(t
′)∆q2(t, t

′)− v2(t
′)∆q1(t, t

′) denotes the angular momentum of the
defect at time t ′. As for the near field, the first term in the r.h.s. of equation (16) cor-
responds to the solution expected for a static defect. The second term, on the contrary,
bears a dynamical origin as it emerges when the defect spins. Applying the change
of variable u= r2/(t− t ′) in the integral, it is moreover straightforward to show that
the latter effectively scales as r−2, such that for L finite, both contributions to the
far field may have comparable amplitudes. We also note that the new dynamical term
is always radial, which ensures that the circuitation condition (13) is always satisfied.
Finally, although the angular momentum in (16) is computed with respect to the defect
position at time t, any other choice q c with |q(t)− qc|< ℓ would lead to subdominant
contributions ∼O(ℓ/r), such that its dependency in t is left implicit.
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The expression (16) can be simplified further assuming that the defect angular
momentum averages to a finite value L in the long-time limit:

L ≡ lim
T→∞

1

T + t

ˆ t

−T

dt ′L(t ′). (17)

This scenario is relevant to the case where L(t ′) oscillates around L with a characteristic
timescale τL. Writing L(t ′) = L+Losc(t

′) where Losc(t
′) accounts for the oscillating part

of the angular momentum, we rewrite the integral in (16) as follows:

ˆ t

−∞
dt ′

L(t ′)

8(t− t ′)2
e
− r2

4(t−t ′) =

ˆ t

−∞
dt ′

L
8(t− t ′)2

e
− r2

4(t−t ′) +

ˆ t

−∞
dt ′

Losc(t
′)

8(t− t ′)2
e
− r2

4(t−t ′)

=
L
2r2

−
ˆ t

−∞
dt ′P (t ′)∂t ′

[
1

8(t− t ′)2
e
− r2

4(t−t ′)

]
, (18)

where the second equality was obtained integrating by parts, and P (t ′) is a primitive of
Losc(t

′). Noting that P (t ′) =O(τL) by construction, we conclude that the second term
on the r.h.s. of equation (18) is of order τL/r

2. Therefore, considering length scales

r≫ τ
1/2
L , equation (16) simplifies at leading order to

∇θ(r, t)≃ sϵ
r̂

r
+

sL
2

r̂

r
. (19)

Again, the orientation gradient caries a radial contribution ∝ L due to the defect motion
whose amplitude decays as the inverse of the distance r to the defect center, similarly
to the tangential static contribution.

Because the effective force putting defects into motion is orthogonal to the gradient of
the orientation field (F eff ∝ ϵ∇θ) [23, 26], static defects essentially interact via Coulomb-
type interactions, leading to an elegant analogy with charged particles dynamics. In
contrast, the dynamical contribution to equation (19) leads to tangential (or solenoidal)
forces between the defects. This force is proportional to m≡ sL, which corresponds
to the magnetic moment of a particle of charge s moving along circular trajectories
with associated angular momentum L. The analogy with charged particles is, however,
limited, as the resulting angular momentum induced interaction differs from that of
actual magnetic dipoles. Figure 1 shows that the contribution of the defect angular
momentum leads to a spiraling of the force field lines. As we will discuss further in
section 4.2, oppositely charged rotating defects will thus generally annihilate following
curved trajectories.

Integrating (19) leads to the following expression for the angular field:

θ(r, t) = sarg(r)+ sL
2

ln
( r
λ

)
+ θ0, (20)

where θ0 is an integration constant and the length scale λ was introduced for dimensional
reasons. Despite the fact that equation (20) describes the orientation far field generated
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Figure 1. Streamlines of the effective force field ϵ∇θ for a defect moving at con-
stant speed v =1 along a circular trajectory with radius R=1. The blue lines
show the exact solution obtained by numerically integrating (12) while the far-field
approximation (19) is shown in red.

by a moving charge, it takes a quasi-static form when expressed in the reference frame
of the defect, as it solves the Laplace equation: ∇2θ(r, t) = 0.

We conclude this section by noting that spinning topological defects have recently
been realized in sandwiched liquid crystal suspensions [40]. By adding micro-rods to the
suspension, the former are indeed attracted to the core of topological defects, whereas
the application of an alternating electric field along the third dimension results in a spin-
ning motion of the rods, which drives the defects along circular trajectories. Schlieren
textures of rotating defects then clearly show a characteristic spiral shape with an ori-
entation set by the chirality of the defect trajectory (clockwise or counter-clockwise).
To evaluate the strength of the angular momentum in equation (20), we note that it is
expressed in units of the orientation diffusion coefficient D. [40] reports defect circular
trajectories with typical radius R≃ 7µm and speed v ≃ 7µms−1, leading to an angular
momentum of the order of L ≃ 50µm2 s−1. Because the value of D is expected to lie in
the range 10− 150µm2 s−1 [43], we conclude that in this experiment, L/D can easily
take values of order one, leading to a clear spiraling of director field lines around the
defect.

3.3. The low mobility expansion

3.3.1. The general expression for the slow defect. For the third and final expansion,
we focus on slowly moving defects. The position of a defect indeed generally evolves in
an overdamped manner as [23]:

q̇(t) = µF eff, (21)
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where µ is an effective mobility and F eff denotes the sum of effective forces applied to
the defect, which in our system of units has the dimension of inverse length. F eff can
either result from the application of an external drive such as an electric field, or from
the orientation field of other defects. Estimates of the defect mobility show that it scales
as µ−1 ∼ ln(λ/a) where λ is a macroscopic scale of the problem (e.g., the system size)
and a→ 0 typically sets the size of the defect core [23, 44]. µ, here expressed in units
of the diffusivity D, is thus generally considered small such that most studies adopt the
quasi-static approximation for which the orientation field of the defect is evaluated from
the static solution (q̇(t) = 0). This approximation, which corresponds to a zeroth-order
expansion of (12) in terms of µ, is useful in practice but might break down in cases
where the defect’s velocity is not negligible, as shown in figure 2. Here, we therefore
evaluate the first-order correction terms to the static solution by expanding (12) up to
O(µ).

Due to the presence of the µ factor on the r.h.s. of equation (21), the nth time
derivative q(n)(t) of q(t) is of order µn . Therefore, we can write up to order µ2

q(t ′) = q(t)+v(t)(t ′− t)+O(µ2), v(t ′) = v(t)+O(µ2). (22)

These expansions, however, do not hold in the long time limit where t− t ′ →∞. Indeed,
substituting (22) into the solution (12) results in a diverging integral for t ′ →−∞. We
then regularize the integral by introducing a parameter ε and consider instead of (12):

Kε(r, t)≡−s

2
ϵ

ˆ t

−∞
dt ′ [∇+v(t ′)]

[
ξε(t ′)

(t− t ′)1+ε
e
− |r+∆q(t,t ′)|2

4(t−t ′)

]
, (23)

where ξ(t) is a timescale introduced for dimensional reasons, and it is clear that
∇θ(r, t) = limε→0Kε(r, t). Crucially, for all ε> 0, the integral (23) converges even under
the approximation (22). That is, we find up to O(µ2) terms that

Kε(r, t) =−s

2
ϵ [∇+v(t)]

[(
1− v(t) · r

2

)(
4ξ(t)

r2

)ε

Γ(ε)

]
, (24)

where Γ denotes the standard Gamma function. Expanding this expression for small ε,
we moreover get:

Kε(r, t) = sϵ

(
r̂

r
+

v(t)

2
ln
(

eγE/2r

2
√
ξ(t)

)
− v(t) · r̂

2
r̂− v(t)

4ε

)
+O(ε), (25)

where γE stands for the Euler–Mascheroni constant and we use the approximation of
the Gamma function Γ(ε) = ε−1− γE+O(ε).

Unsurprisingly, the expansion (25) includes a divergent term ∼ ε−1. This term is
unphysical and is due to the fact that the low mobility expansion (22) breaks down at
long times. To regularize Kε(r, t), we note that the function α(r, t)≡ κr · (ϵv(t)) is a
solution of the diffusion equation (up to O(µ2) terms) for arbitrary κ, as ∇2α(r, t) = 0
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Figure 2. Orientation field created by a defect moving along the x -axis following the
trajectory defined by equation (28). Panels (a) and (b) show the y-component of the
gradient function in the defect comoving frame, respectively, as function of x (y =0)
and y (x =0). The inset of (a) shows the same data over a broader x range. The red
continuous lines show the exact solution computed with (12), whereas the dashed
blue and black curves correspond, respectively, to the low mobility expansion (31)
and static approximation (3). Panels (c) and (d) respectively compare streamlines
of the effective force field ϵ∇θ obtained in the comoving frame from the exact
solution (in blue) and the low mobility (c) and static (d) approximation (in red).
In all the panels, the mobility is set to µ= 1/ ln(100) and the fields are evaluated
at q =1.

and ∂tα(r, t) =O(µ2). Hence, based on the superposition principle, the field θ(r, t) satis-
fying∇θ(r, t) = limε→0Kε(r, t)+∇α(r, t) is also a solution of the diffusion equation (2).
Taking κ= s/(4ε), we can thus regularize equation (25) which for ε=0 leads to:

∇θ(r, t) = sϵ

(
r̂

r
+

v(t)

2
ln
(

eγE/2r

2
√
ξ(t)

)
− v(t) · r̂

2
r̂

)
, (26)

up to terms of order µ2.
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Comparing equations (15) and (26), we find that the near-field and low-mobility
expansions take similar expressions. However, compared to equation (15), the undeter-
mined contribution to the expression (26) is not a continuous function, but simply a
uniform (in space) timescale ξ(t). The value of ξ(t) depends on external factors such as
the specific form of the equation of motion (21), but it can generally be obtained by
computing, analytically or numerically, the exact value of the gradient (12) at a given
point in space r∗. Similarly, because the difference Kε(r, t)−Kε(r

∗, t) is convergent
for ε→ 0 and its limit is independent of ξ, the value of the approximation (26) can be
calculated at every point r by adding limε→0Kε(r, t)−Kε(r

∗, t) to the value of the
integral (12) at r∗.

To quantify the disturbances of the orientation field created by the motion of the
defect, we integrate equation (26) and get:

θ(r, t) = sarg[r] + s

2

(
ln
(

eγE/2r

2
√
ξ(t)

)
− 1

)
r · [ϵv(t)]+ θ0, (27)

where θ0 is a constant of integration. Looking at the order orientation profile along
a circle centered in r = 0, equation (27) predicts that the motion of the defect leads
at leading order to a sinusoidal perturbation with respect to the static contribution
sarg[r]. Interestingly, similar sinusoidal profiles have been reported in the chaotic phase
of two-dimensional active nematics, where defects are strongly motile [45].

3.3.2. An explicit expression for defects interacting via Coulomb forces. To exemplify
how the approximation (26) can be applied in practice, we consider the case where the
equation of motion of the defect follows:

q̇ =−µq̂/q+O(µ2). (28)

This choice is of course motivated, as equation (28) is relevant to the annihilation
dynamics of two oppositely charged defects. As noted before, the force acting on a
defect is orthogonal to the gradient of the orientation field landscape due to the presence
of other defects, whereas at zeroth order in the mobility, the perturbation due to the
presence of a defect is given by the static expression (3). Moreover, in this case, the
center of mass of the two defects remains immobile and can be set at 0 without loss
of generality, such that equation (28) indeed corresponds to the expected equation of
motion for a pair of defects at first order in µ. Taking an initial condition for q aligned
with the unit vector ι̂, the solution of equation (28) which passes through the point q(t)
at time t reads:

q(t ′) =
√
q2(t)+ 2µ(t− t ′) ι̂. (29)

As stated previously, to get a closed form of the low mobility expansion (26) we have
to evaluate the value of the gradient (12) at a particular point r∗. Here, a natural
choice is the location x= 0 of the center of mass between the defects, which in the
comoving coordinate frame corresponds to r∗ =−q(t). We can thus fix the value of ξ(t)
by numerically evaluating the integral in (12) at r∗ for all t. In the particular case where
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q(t ′) is given by the solution (29), we can instead proceed analytically. Let us consider
equation (12) with r =−q(t). The resulting time integral can be calculated exactly,
namely we find up to order µ2

∇θ(−q(t), t) =−s

q
ϵι̂

(
1− µ

2
− µ

4
ln
(
8e−1−γE

µ

))
, (30)

while calculation details are presented in appendix C. Comparing equation (30) with
equation (26) for r =−q(t) and v(t) =−µι̂/q(t), the two expressions coincide for ξ(t) =
2q(t)/(eµ) such that we finally obtain the closed form

∇θ(r, t) = sϵ

(
r̂

r
+

v(t)

2
ln
(√

µe
γE+1

2 r

2
√
2q(t)

)
− v(t) · r̂

2
r̂

)
. (31)

Evaluating numerically the exact solution (12) for the trajectory (29), we now verify
how well the low mobility approximation (31) performs. The only free parameter to
fix for the comparison is the value of the mobility µ. Because µ typically decays as
the inverse of the logarithm of the defect core radius [23], it is generally not extremely
small in realistic scenarios. For the present application, we choose in particular µ−1 =
ln(100)≃ 4.6.

As a first remark, we immediately see that because it diverges logarithmically for
r→∞, the expansion (31) is not accurate far away from the defect regardless of the
value of µ. In contrast, figure 2 shows that close enough to the defect center the first
order low mobility expansion (31) convincingly approximates the exact solution (12).
These observations are confirmed by figure 3, which displays maps of the relative error:

εrel(r, t)≡
|∇θ(r, t)−∇θapp(r, t)|

|∇θ(r, t)|
,

where ∇θ(r, t) and ∇θapp(r, t) are the exact and approximated gradients, respectively,
where the latter is given by the low mobility (31) or static (3) solutions. As expected,
the accuracy of the first-order low mobility expansion becomes worse as r increases and
that of the static defect is less sensitive to the distance from the defect center. However,
for distances r comparable to the distance from the annihilation point (which in the
representation of figure 3 is set to one), the low mobility expansion clearly leads to an
improved approximation as compared to the static solution.

4. Multi-defect solutions

So far, our analysis has been restricted to solutions of the diffusion equation for a single
defect. As already mentioned, due to the linearity of the diffusion equation (2) the multi-
defect solution can be expressed as the linear superposition of single-defect solutions.
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Figure 3. Relative error comparing the exact gradient (equation (12)) with the
low mobility ((a), equation (26)) and static ((b), equation (3)) approximations
for a defect moving along the x -axis and following the trajectory defined by
equation (28). In both panels the mobility is set to µ= 1/ ln(100) and the fields
are evaluated at q =1 while coordinates frame are selected such that the defect is
located at the origin.

Therefore, the counterpart of (14) for multiple defects with positions qi(t), velocities
vi(t) and charges si is given in the lab frame by:

∇θ(x, t) =−
∑
i

si
2
ϵ

ˆ t

−∞

dt ′

(t− t ′)
[∇+vi(t

′)]e
− |x−qi(t

′)|2

4(t−t ′) . (32)

In general, most features of the multi-defect dynamics can be deduced from the single
defect solution upon summation. However, this is not always the case, in particular
because the full solution (32) is nonlocal in time. In what follows, we illustrate nontrivial
consequences of this property by first investigating memory effects in the presence of
defects pair creation and annihilation and then the orientation mismatch between motile
defects.

4.1. Defect pair creation and annihilation

The integral in equation (32) runs from time −∞ as a consequence of the fact that a
single defect can never be spontaneously created. Indeed, due to the topological con-
straint on the total charge of the system, defects can only be created and destroyed in
pairs of opposite charges. Hence, considering two defects with charges ±s and positions
q± allows to describe a pair creation event at time tc by imposing that the trajectories
q±(t) coincide for all t < tc. Similarly, the annihilation of the defect pair at time ta is
modeled imposing that q+(t) = q−(t) for all t > ta. The resulting orientation field then
satisfies:
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∇θ(x, t) =−s

2
ϵ

ˆ min(ta,t)

tc

dt ′

(t− t ′)

{
[∇+v+(t

′)]e
− |x−q+(t ′)|2

4(t−t ′) − [∇+v−(t
′)]e

− |x−q−(t ′)|2

4(t−t ′)

}
,

(33)

where it is clear that taking q+(t) = q−(t) and v+(t) = v−(t) the integrand vanishes as
required.

Unlike the pseudo-static expansions derived in section 3, equation (33) grants us
access to the relaxation dynamics of the orientation field in response to the local perturb-
ations created by the creation and annihilation of defects. Therefore, taking tc < t < ta
and expanding (33) for x far from q±(t), we find that the disturbance generated by the
creation of defect pair scales as:

|∇θ(x, t)| ≃
∣∣∣∣s2ϵ
ˆ t

tc

dt ′

(t− t ′)
[v+(t

′)−v−(t
′)]e

− x2

4(t−t ′)

∣∣∣∣
∝ (t− tc)

x2
exp

[
− x2

4(t− tc)

]
(tc < t < ta). (34)

Compared to the far-field expansion (16), which predicts a power law decay of the gradi-
ent amplitude with the distance to the defect pair, equation (34) shows that this decay
is exponential at distances above the diffusive scale ∼ (t− tc)

1/2 . For x≫ (t− tc)
1/2,

the orientation field thus remains essentially unperturbed by the defects, as expected
from the diffusive dynamics of θ(x, t).

We now investigate the relaxation of ∇θ(x, t) after a defect pair annihilation event
at time ta. To study how the gradient (33) vanishes at t≫ ta, we assume that in the time
interval [tc; ta], the defect trajectories are spread over a typical scale l ≃ |q+(t

′)− q−(t
′)|.

The limit |x| ≫ l clearly corresponds to equation (34) such that here we are instead
interested in the case where |x|⩽ l. Moreover, taking the long time limit l2 ≪ t− ta and
expanding the exponentials we get, after integrating by parts in the velocities,

∇θ(x, t)≃ s

2
ϵ

ˆ ta

tc

dt′

(t− t′)2
[
q+(t

′)− q−(t
′)
]

(t > ta),

where we have used that the surface term vanishes due to the conditions q+(ta,c) =
q−(ta,c). Hence, in the long time limit the scaling of the gradient can be obtained by
substituting q+(t

′)− q−(t
′) with the associated characteristic scale l ≃ |q+(t

′)− q−(t
′)|,

such that:

|∇θ(x, t)| ≃ l

ˆ ta

tc

dt ′

(t− t ′)2
= l

(
1

t− ta
− 1

t− tc

)
≃

{
l

t−ta
(t > ta ≫ tc)

l(ta−tc)
t2 (t≫ ta > tc)

. (35)

Therefore, the amplitude of the orientation gradient following a defect annihila-
tion event decays algebraically over long times. Again, this is in contrast with the
results provided by the expansions carried out in section 3 which imply an infinitely
fast uniformization of the orientation field. Remarkably, equation (35) predicts that the
exponent of the algebraic decay of |∇θ| varies with the life-time of the defect pair. In
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particular, the perturbation following from the presence of long-lived defects (ta ≫ tc)
decays more slowly (∼ t−1) than that corresponding to a short-lived pair (∼ t−2).

Note also that equation (35) is only valid in the long time regime for which
l2 ≪ t− ta. The scaling of ∇θ in the vicinity of the defect pair at intermediate times
t− ta < l2 < t− tc is instead quite nontrivial, at one cannot simplify (33) by approxim-
ating the exponential functions. This case in fact corresponds to the regime where the
perturbation due to the creation of the defect pair has diffused over the scale l but the
field has not yet relaxed over this scale after the annihilation of the defects at time
ta. In this case, the gradient (33) thus explicitly depends on the details of the defects
trajectories.

4.2. Mismatched rotating defects

In section 3.2, we investigated the far-field limit of the orientation field θ(x, t) which
for a defect moving with a long-time averaged angular momentum L is given in the lab
reference frame by:

θ(x, t) = sarg [x− q(t)]+
sL
2

ln
[
|x− q(t)|

λ

]
+ θ0, (36)

where as before we included the scale λ to nondimensionalize the argument of the log-
arithm and θ0 as an integration constant. As previously discussed, a defect moving with
nonzero angular momentum generates an orientation gradient with a radial contribu-
tion, which in turn gives rise to tangential effective forces between defects.

To study this phenomenon in more depth, we now consider a pair of defects of
charges ±s moving along circular trajectories of radius R± ≪ |q+(t)− q−(t)|. Denoting
their angular momenta L±, equation (36) generalizes to

θ(x, t)− θ0 = s
{

arg [x− q+(t)]− arg
[
x− q−(t)

]}
+

s

2

{
L+ ln

[
|x− q+(t)|

λ+

]
−L− ln

[
|x− q−(t)|

λ−

]}
. (37)

Equation (37) describes a pair of the so-called mismatched defects [30, 42], that is a
pair of defects leading to an orientation field different from that predicted by the static
solution for L± = 0. Figure 4 shows two examples of such mismatched configurations.
In fact, taking L+ = L− = L we recover, upon redefinition of the parameters, the mis-
matched solution derived by Tang and Selinger [30] by imposing a finite mismatching
angle δθ ∼ sL between two defects. In equation (37), in contrast, mismatching occurs
spontaneously and is a direct consequence of the fact that the orientation field θ keeps
the memory of the history of the defects. Although the origin of the mismatch is more
easily understood from the far-field approximation equation (37), we emphasize that
for a collection of moving defects, the full solution (33) shall in many cases correspond
to mismatched configurations.

Interestingly, taking L+ ̸= L− in equation (37), it is straightforward to demonstrate
that the associated free energy of the configuration is infinite. Indeed, for equation (37)
to be valid infinitely far away from the defect pair the defects must have spun from an
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Figure 4. Map of sin2 2θ(x, t) for a defect pair with charges s=±1 at positions
q± =±x̂. Panels (a) and (b) respectively correspond to equal (L+ = L− = 1) and
different (L+ = 1, L− = 0) angular momenta.

infinite time, which requires an infinite amount of energy. A finite free energy of the
system is then naturally recovered considering defects that have started to rotate at a
finite time T. Similarly to the defect creation phenomenology discussed above, a similar
calculation as the one leading to equation (34) reveals that the diverging contribution
to (37) is negligible on scales ≫ T 1/2, which ensures that the total free energy of the
system remains finite.

5. Discussion

We have derived the exact two-dimensional orientation field generated by a collection of
moving topological defects. The primary addition of our work to the existing literature
is the derivation of the full-time dependency of the orientation field in terms of the
defect dynamical degrees of freedom. Indeed, our calculations reveal striking features
that are not captured by previous approaches.

For instance, our results indicate that defects carrying angular momentum generate
spiraling force fields beyond the typical scale of their rotating motion (equation (19)).
This property moreover generally leads to mismatched defect configurations even in
the absence of elastic anisotropy or imposed boundary conditions on the orientation.
This indicates that in generic situations, defects may spontaneously annihilate following
curved trajectories simply because the orientation field has kept the memory of their
past history and is not accurately described by the static solution (3). We moreover
stress that the mismatched solution (37) is conceptually different from that derived in
[30]. Indeed, equation (37) is formally only valid beyond the typical scale of defects
motion, such that it remains compatible with the near-field expansion result (15) that
takes a different functional dependency in the defect velocity. In contrast, the expression
derived in [30] is assumed valid down to a cutoff scale given by the defect core radius
and thus becomes incompatible with our near-field expansion when this cutoff is made
arbitrary small.
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We furthermore show in section 4.1 that the amplitude of the orientation field gradi-
ent decays algebraically in time after the annihilation of a defect pair (equation (35)).
Therefore, the orientation field θ(x, t) may keep a long-time memory in the presence of
defects, even after they have annihilated.

In all this work we have worked on the full R2 plane assuming uniform boundary
conditions at infinity. In contrast, it is well known that the presence of boundaries
substantially affects the behavior of defects [2, 31]. Thus, to account more quantitatively
for realistic situations, the present work would have to be generalized to support general
boundary conditions. We do not expect this point to raise major difficulties as it can
be straightforwardly addressed using an appropriately modified Green’s function.

Further extensions of the formalism studied here to more complex scenarios include
the presence of backflow [37, 46], elastic anisotropy [47], activity [18, 38], or the extension
to three dimensions. These, however, quickly become more complex as in all these cases
the dynamics of θ(x, t) becomes nonlinear. Nevertheless, in some cases, perturbative
derivations based on the solution of the linear problem might still be possible.

We shall finally comment on the fact that throughout this work, the trajectory of the
defect was assumed to be known. Several approaches exist to derive q(t) from the order
parameter dynamics (e.g., equation (1)) [23, 26, 29, 33, 34, 36]. How the dynamical
contributions to the solution (14) affect the single- and multi-defect dynamics will be
addressed in a future work [48].

Appendix A. Derivation of the orientation gradient for a moving defect

In this section, we present additional calculation details for the derivation of the expres-
sion of the orientation field created by a moving defect given in equation (12). We start
from the expression for ∇φ(r, t) given in (8):

∇φ(r, t) = − ϵ

ˆ
Ca
dl

ˆ
dt ′G(r−y, t, t ′)(v(t ′) ·∇)θst(y)

+

ˆ
d2y

ˆ
dt ′G(r−y, t, t ′)(v(t ′) ·∇)∇θst(y), (A.1)

To evaluate the boundary term in (A.1), we consider a circle Ca of radius a→ 0 around
the defect. Using the expression of ∇θst given in (3), we find after some algebra that
the nonvanishing contribution for a =0 reads:

ϵ

ˆ
Ca
dlG(r−y, t, t′)(v(t′) ·∇)θst(y) =−s

ˆ 2π

0

dϑ ê(ϑ)G(r, t, t′) [v(t′) · ϵê(ϑ)]+O(a),

=
a→0

πsϵv(t′)G(r, t, t′),

where ê(ϑ) is the unit vector oriented along the direction set by ϑ. Integrating by parts
the second term on the r.h.s. of (A.1) we get another boundary contribution:
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ϵ

ˆ
Ca
dl ·v(t′)G(r−y, t, t′)∇θst(y) =−s

ˆ 2π

0

dϑv(t′) · ê(ϑ)G(r, t, t′)ϵê(ϑ)+O(a),

=
a→0

−πsϵv(t′)G(r, t, t′),

such that the resulting expression for ∇φ(r, t) reads:

∇φ(r, t) = − 2πsϵ

ˆ
dt ′v(t ′)G(r, t, t ′)

+

ˆ
d2y

ˆ
dt ′ (v(t ′) ·∇r)G(r−y, t, t ′)∇θst(y). (A.2)

As discussed in the main text, using the relation satisfied by the Green’s functions:

(v(t′) ·∇)G(r, t, t′) = (∂t′ +∇2) [GD(r, t− t′)−G(r, t, t′)] ,

withGD(r, t− t ′) the Green’s function of the diffusion equation, we recast equation (A.2)
into:

∇φ(r, t) = − 2πsϵ

ˆ
dt ′v(t ′)G(r, t, t ′)

+

ˆ
d2y

ˆ
dt ′ (∂t ′ +∇2) [GD(r−y, t− t ′)−G(r−y, t, t ′)]∇θst(y). (A.3)

Clearly, the∼ ∂t ′ vanish while we calculate the∼∇2 terms by integrating again by parts.
Namely, considering a generic function Γ(r, t, t ′), we get after integrating by parts twice:

ˆ
d2y∇2Γ(r−y, t, t ′)∇θst(y) =

ˆ
Ca
[(ϵdl) ·∇yΓ(r−y, t, t ′)]∇θst(y)

−
ˆ
Ca
[(ϵdl) ·∇∇θst(y)]Γ(r−y, t, t ′)

+

ˆ
d2yΓ(r−y, t, t ′)∇∇2θst(y). (A.4)

The last term on the r.h.s. of (A.4) vanishes due to the condition ∇2θst = 0. The first
term can be treated similarly to the boundary term in (A.1), which leads to:

ˆ
Ca
[(ϵdl) ·∇yΓ(r−y, t, t′)]∇θst(y) = πsϵ∇Γ(r, t, t′).

As the second term involves second-order derivatives of θst, we expand Γ in the integrand
w.r.t. y in order to get:

−
ˆ
Ca
[(ϵdl) ·∇∇θst(y)]Γ(r−y, t, t′) =−s

a

ˆ 2π

0

dϑϵê(ϑ)(1− aê(ϑ) ·∇)Γ(r, t, t′)+O(a)

=
a→0

πsϵ∇Γ(r, t, t′),
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where we have used that the O(a−1) contribution vanishes by symmetry. Replacing
Γ =GD−G, we thus obtain from (A.3) the expression of ∇φ(r, t) given in (11).

As presented in the main text, using the relation between ∇θst and GD the resulting
expression for the full solution ∇θ reads:

∇θ(r, t) =−2πsϵ

ˆ +∞

−∞
dt ′ [∇+v(t ′)]G(r, t, t ′). (A.5)

Because θ is a multivalued function, the r.h.s. of (A.5) is not written as the gradient
of a scalar function. Nevertheless, we show now that ∇θ(r, t) is irrotational almost
everywhere on the plane. Namely, we find:

(ϵ∇) ·∇θ(r, t) =−2πs

ˆ +∞

−∞
dt′
[
∇2+v(t′) ·∇

]
G(r, t, t′)

=−2πs

ˆ +∞

−∞
dt′
[
(∂t+(v(t′)−v(t)) ·∇)G(r, t, t′)− δ2(r)δ(t− t′)

]
,

where to obtain the second line we have used the definition of G. Finally, using the
identity (∂t−v(t) ·∇)G(r, t, t ′) =−(∂t ′ +v(t ′) ·∇)G(r, t, t ′) leads to

(ϵ∇) ·∇θ(r, t) = [∇×∇θ(r, t)] · ẑ = 2πsδ2(r). (A.6)

Appendix B. The far-field expansion of equation (12)

Here, we detail the calculation steps leading to the far field approximation (16). We
keep the same notations as in the main text, in particular with ℓ denoting the typical
length scale of the defect motion. Let us split the integral on the r.h.s of equation (12)
into two contributions, one given by the gradient and the second by the defect velocity
v(t ′). Expanding the gradient part of the integral up to leading order in ℓ/r yields:
ˆ t

−∞

dt′

(t− t′)
∇
[
e
− |r+∆q(t,t′)|2

4(t−t′)

]
=−r

2

ˆ t

−∞

dt′

(t− t′)2
e
− r2

4(t−t′) +O
(
ℓ

r

)
=−2

r̂

r
+O

(
ℓ

r

)
.

For the velocity contribution, we first integrate by parts to obtain:

ˆ t

−∞
dt ′

v(t ′)

(t− t ′)
e
− (r+∆q(t,t ′))2

4(t−t ′) =

ˆ t

−∞
dt ′

∆q(t, t ′)

(t− t ′)2
e
− |r+∆q(t,t ′)|2

4(t−t ′) (B.1)

×
[
1− |r+∆q(t, t ′)|2

4(t− t ′)
+

v(t ′) · (r+∆q(t, t ′))

2

]
.

Due to the ∆q(t, t ′) prefactor in the integral, at first order in ℓ/r, we can approximate
in (B.1) r+∆q(t, t ′) by r . Then, using the change of variable u= r2/(4(t− t ′)), we
obtain:
ˆ t

−∞
dt ′

v(t ′)

(t− t ′)
e
− (r+∆q(t,t ′))2

4(t−t ′) ≃ 4

r2

ˆ +∞

0

du∆q(t,u)e−u

(
1−u+

v(u) · r
2

)
. (B.2)
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It is thus easy to see that for large r the dominant term in the r.h.s. of (B.2) is the
one proportional to v · r.

Coming back to the t ′ variable, we can therefore write that the velocity part of the
integral is given up to order ℓ/r in index notations by:

ˆ t

−∞
dt ′

vj(t
′)

(t− t ′)
e
− (rk+∆qk(t,t

′))2

4(t−t ′) =
ri
2

ˆ t

−∞
dt ′

vi(t
′)∆qj(t, t

′)

(t− t ′)2
e
− r2k

4(t−t ′) +O
(
ℓ

r

)
, (B.3)

and where summation over repeated indices is implied. Integrating again by parts the
r.h.s. of (B.3), it is straightforward to show that for all i and j:

ˆ t

−∞
dt′

vi(t
′)∆qj(t, t

′)+ vj(t
′)∆qi(t, t

′)

(t− t′)2
e
− r2

4(t−t′) =O
(
ℓ

r

)
.

Hence, we can anti-symmetrize the integrand on the r.h.s. of equation (B.3), which
naturally involves the angular momentum of the defect L(t ′) = v1(t

′)∆q2(t, t
′)−

v2(t
′)∆q1(t, t

′):

1

2
[(vi(t

′)∆qj(t, t
′)− vj(t

′)∆qi(t, t
′)] =−ϵij

2
L(t′).

Going back to vector notations, we thus obtain

ˆ t

−∞
dt′

v(t′)

(t− t′)
e
− (r+∆q(t,t′))2

4(t−t′) = ϵr

ˆ t

−∞
dt′

L(t′)

4(t− t′)2
e
− r2

4(t−t′) +O
(
ℓ

r

)
.

Multiplying the integral by −sϵ/2 and combining everything together finally leads to
equation (16) of the main text.

Appendix C. The low mobility expansion for defects interacting via the Coulomb
force

The expression of the gradient (12) evaluated at the position r =−q(t) reads:

∇θ(−q(t), t) =−s

2
ϵ

ˆ t

−∞

dt′

(t− t′)

(
q(t′)

2(t− t′)
+v(t′)

)
e
− q2(t′)

4(t−t′) .

Below we treat the ∝ q(t ′) and ∝ v(t ′) parts of the integrand separately. Using q(t ′) =√
q2(t)+ 2µ(t− t ′) ι̂ and substituting u= q(t)2/[4(t− t ′)], we obtain:

ˆ t

−∞
dt ′

q(t ′)

2(t− t ′)2
e
− q2(t ′)

4(t−t ′) =
4
√
π

q(t)
e−

µ
2U

(
−1

2
,0,

µ

2

)
ι̂, (C.1)

where U denotes the confluent hyper-geometric function, which for Re(a)> 0 is
defined as:

U(a,b,z) =
1

Γ(a)

ˆ ∞

0

dxe−zxxa−1(1+x)b−a−1,
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while the definition can be analytically continued to a=−1
2 by using the relation

U(a,b,z) = z1−bU(1+ a− b,2− b,z). Expanding (C.1) up to order µ, we find:

4
√
π

q(t)
e−

µ
2U

(
−1

2
,0,

µ

2

)
ι̂≃ 2

q(t)

[
1− µ

2
+

µ

4
ln
(
8e1−γE

µ

)]
ι̂. (C.2)

We moreover derive the second part of the integral in an analogous way, which yields:

ˆ t

−∞
dt ′

v(t ′)

(t− t ′)
e
− q2(t ′)

4(t−t ′) ≃− µ

q(t)
ln
(
8e−γE

µ

)
ι̂. (C.3)

Combining (C.2) and (C.3), we finally recover (30) of the main text.
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