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Abstract

Canonical models of Markov decision processes (MDPs) usu-
ally consider geometric discounting based on a constant dis-
count factor. While this standard modeling approach has led
to many elegant results, some recent studies indicate the ne-
cessity of modeling time-varying discounting in certain appli-
cations. This paper studies a model of infinite-horizon MDPs
with time-varying discount factors. We take a game-theoretic
perspective—whereby each time step is treated as an indepen-
dent decision maker with their own (fixed) discount factor—
and we study the subgame perfect equilibrium (SPE) of the
resulting game as well as the related algorithmic problems.
We present a constructive proof of the existence of an SPE
and demonstrate the EXPTIME-hardness of computing an
SPE. We also turn to the approximate notion of ϵ-SPE and
show that an ϵ-SPE exists under milder assumptions. An al-
gorithm is presented to compute an ϵ-SPE, of which an up-
per bound of the time complexity, as a function of the con-
vergence property of the time-varying discount factor, is pro-
vided.

1 Introduction
Ever since Samuelson’s foundational work introduced the
discounted utility theory (Samuelson 1937), discounted util-
ity models have played a central role in sequential decision
making. Building on earlier work that recognized the influ-
ence of time on individuals’ valuations of goods (e.g., see
(Rae 1905; Jevons 1879; von Böhm-Bawerk 1922; Fisher
1930) and the discussion in (Loewe 2006)), Samuelson pro-
posed a utility model in which a decision maker attempts to
optimize the discounted sum of their utilities with a constant
discount factor applied in every time step; this is known as
geometric or exponential discounting.

Geometric discounting leads to many elegant and well-
known results. In the context of Markov decision pro-
cesses (MDPs) (Puterman 1994), it results in the decision
maker’s preferences over the policies being invariant over
time. Moreover, it is key to the existence and polynomial-
time computability of an optimal policy. These results have
contributed greatly to the popularity and wide applicabil-
ity of the MDPs. Nevertheless, in many applications, in
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particular those pertaining to human decision making un-
der uncertainty, time-varying discount factors are essential
for capturing long-run utilities. For example, it is shown
in laboratory settings that human decision makers often ex-
hibit time-inconsistent behavior: people prefer $50 in three
years plus three weeks to $20 in three years, yet prefer $20
now over $50 in three weeks (Green, Fristoe, and Myerson
1994). Such behaviors are better explained through time-
varying discount factors. Unfortunately, many of the afore-
mentioned results break with time-varying discounting. As
Strotz showed (Strotz 1955), geometric discounting with a
constant discounting factor is the only discount function that
satisfies dynamic- or time-consistency.

In this paper, we study a model of infinite-horizon MDPs
with time-varying geometric discounting. Our model seizes
the idea of geometric discounting, but generalizes the dis-
count factor to a function of time. In each time step, the func-
tion produces a discount factor, and the agent’s incentive is
defined by the geometrically discounted sum of its future re-
wards with respect to this discount factor. Hence, the agent
aims at optimizing a different objective in each time step.
This changing incentive gives rise to a game-theoretic ap-
proach, proposed and studied in a series of works in the liter-
ature (Strotz 1955; Pollak 1968; Peleg and Yaari 1973; Lat-
timore and Hutter 2014; Jaśkiewicz and Nowak 2021; Les-
mana and Pun 2021). Via this approach, the behavior of the
sole agent in the process is interpreted as playing against its
future selves in a sequential game. Analyzing the subgame
perfect equilibrium (SPE) is therefore a naturally associated
task, which we aim to address in this paper.

More concretely, Figure 1 presents an example that com-
pares the behavior of this model to the standard model of ge-
ometric discounting, illustrating how time-varying geomet-
ric discounting can lead to time-inconsistency. In the exam-
ple, the agent has to decide between getting a reward of 100
at time step 3 (option A) and getting a slightly increased
reward of 110 one time step later (option B). This deci-
sion problem is captured by the MDP in Figure 1c. Under
the standard geometric discounting, the preference order of
these two outcomes does not change over time: as illustrated
in Figure 1a, an agent that discounts its future with a con-
stant factor 0.75 would always prefer option A, no matter
at time step 0 or 1. This is not anymore the case with time-
varying discounting. An agent who applies a discount factor
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(a) Standard geometric discounting.
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Figure 1: Time-consistent vs. time-inconsistent discounting. The blue (resp., orange) curves in (a) and (b) show how the agent
values getting a reward of 100 (resp., 110) in future time steps. We examine the player’s preferences at the beginning (s0) and
one time step later (s1). The colored dots correspond to values of the two possible outcomes of the MDP in (c).

of 0.95 is more farsighted and prefers the higher but delayed
reward (i.e. option B). But if the agent becomes more my-
opic one time step later on by applying a reduced discount
factor of 0.75, the preference order would change, and the
agent would no longer want to stick to its initial plan. This
situation is illustrated in Figure 1b.

Time-inconsistent behavior may result from different
forms of discounting. It may arise from a consistent way
of planning but an inconsistent treatment of future time
steps. In hyperbolic discounting, for example, the agent as-
signs a fixed sequence of varying discount factors to future
time steps relative to the current step. In other words, the
agent plans with consistency (using the same sequence over
time) but treats the future inconsistently (discounting dif-
ferent time steps differently). In contrast, in our model, the
agent discounts the future using a constant factor, but this
factor might change over time. Human beings, for exam-
ple, may start with very low discount factors when they are
young, but increasingly think more about the future as they
grow older. Conceivably, a young person, probably through
observing this in elder people, knows that their way of dis-
counting will change when they go into middle age. But still,
they cannot do anything about their urge for immediate re-
wards. Likewise, the agent in our model knows how its rate
changes in the future and tries to find a compromise between
all the different preferences. This motivates the use of the
SPE as our solution concept.

Contributions
Besides introducing a model of MDP with time-varying dis-
counting, we make the following technical contributions.

• We present a constructive proof for the existence of an
SPE. Our proof differs from another non-constructive
approach in the literature (Lattimore and Hutter 2014)
which uses the compactness of the underlying space to
argue about convergence.

• From our constructive proof, an algorithm for comput-
ing an SPE can be readily extracted. Meanwhile, we
demonstrate that the problem of computing an SPE is
EXPTIME-hard even in restricted settings.

• In order to circumvent some of the assumptions needed to
construct an exact SPE, we turn to the relaxed notion of ϵ-
SPE. We show that an ϵ-SPE exists under strictly milder
assumptions and present an algorithm to compute an ϵ-
SPE. Using a continuity argument of the value functions,
we also derive an upper bound on the time complexity of
the algorithm, as a function of the convergence property
of the time-varying discount factors.

Related Work
A large body of experimental evidence suggests that human
behavior is not characterized by geometric discounting with
a constant discount factor. Empirical findings that do not
support the hypothesis that discounting is consistent over
time have been reported (Thaler 1981; Benzion, Rapoport,
and Yagil 1989; Redelmeier and Heller 1993; Green, Fristoe,
and Myerson 1994; Kirby and Herrnstein 1995; Millar and
Navarick 1984), implying dynamic inconsistency of human
preferences. Prior work has also proposed and studied dif-
ferent forms of discounting, such as hyperbolic (Herrnstein
1961; Ainslie 1992; Loewenstein and Prelec 1992) or quasi-
hyperbolic discounting (Phelps and Pollak 1968; Laibson
1997), which are considered to be more aligned with hu-
man behavior (Ainslie 1975; Green, Fry, and Myerson 1994;
Kirby 1997). Interpretations of discounting functions as un-
certainty over hazard rates were also proposed (Sozou 1998;
Dasgupta and Maskin 2005).

Focusing on sequential decision making under uncer-
tainty, this paper closely relates to the line of work that
studies non-geometric discount factors and dynamic in-
consistency in Markov decision processes and stochastic
games (Shapley 1953; Alj and Haurie 1983; Puterman 1994;
Nowak 2010; Jaśkiewicz and Nowak 2021; Lesmana and
Pun 2021). Some recent works studied dynamic inconsis-
tency using a game-theoretic framework akin to the ones
from (Strotz 1955; Pollak 1968; Peleg and Yaari 1973),
where their focus is on the existence of an equilibrium in
randomized stationary Markov perfect strategies (Jaśkiewicz
and Nowak 2021), or an SPE in a finite horizon setting (Les-
mana and Pun 2021). Arguably, the closest work to ours
is the work of Lattimore and Hutter (Lattimore and Hutter
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2014), which considers “age-dependent” (time-varying) ge-
ometric discounting functions. The characterization results
therein prove the existence of an SPE in the resulting game.
Our results are complementary: we provide a constructive
proof of the existence result and additionally study the com-
putational complexity of the problem setting.

MDP-based settings similar to ours have also been con-
sidered in reinforcement learning (Sutton 1995; Sutton et al.
2011; White 2017; Pitis 2019; Fedus et al. 2019). Increasing
the efficacy of learning by using multiple discount factors
has been explored previously (Burda et al. 2018; Romoff
et al. 2019). It is also worth mentioning settings that use
a weighted reward criterion (e.g., (Filar and Vrieze 2012)),
where the objective can be expressed as the weighted sum of
two value functions with different discount factors.

2 The Model
We consider an infinite horizon MDP M =
(S,A,R, P, sstart, γ), where S is a finite state space of
the environment, with |S| = n, and A =

⋃
s∈S As is a

union of finite action spaces, with each As being the set of
actions available in state s. Moreover, R : S × A → R is a
reward function, such that when action a is taken in state
s, a reward R(s, a) will be generated, and the state of the
environment transitions according to the transition function
P : S ×A→ S, with probability P (s, a, s′) to another state
s′ ∈ S. Finally, sstart ∈ S is a starting state, and γ ∈ [0, 1) is
a discount factor that is applied for defining the cumulative
reward of a policy π, i.e., the discounted sum of rewards
obtained over an infinite horizon:

E

[ ∞∑
t=0

γt ·R(st, at)

∣∣∣∣ s0 = sstart, π

]
, (1)

where the expectation is over the trajectory (st, at)
∞
t=0 gen-

erated by starting from sstart and following π subsequently.
Two types of policies will be of interest in this paper:

static policies and dynamic policies. A static policy π : S →
A assigns a (deterministic) action to each state, so that us-
ing policy π, an agent performs action π(s) whenever the
environment is in state s, irrespective of the time step. In
contrast, a dynamic policy is time-dependent and is defined
as a sequence π = (πt)

∞
t=0 of static policies. At each time

step t, the static policy πt is employed to determine the ac-
tion to take. Hence, dynamic policies are a generalization of
static policies.1

One may also consider policies that depend on
the history (i.e., the trajectory of states and actions
s0, a0, s1, a1, . . . , st−1, at−1 generated so far), but as it shall
be clear this is unnecessary for the problems studied in this
paper: the underlying process is Markovian and the agent al-
ways observes the state of the environment. Moreover, it is
well-known that when the discount factor γ is a constant, to

1More generally, a static policy can also choose randomized
actions, i.e., π : S → ∆(A). Nevertheless, it is without loss of
generality to consider only deterministic policies with respect to
all the results in our paper. Hence, unless otherwise clarified, all
static policies considered are deterministic ones, whereas we do
allow the agent to use randomized static policies.

maximize the cumulative reward defined in (1) it suffices to
consider static policies. Though this does not hold when the
optimization horizon is finite (Shirmohammadi et al. 2019)
or, as we will study in this paper, when γ varies with time.

Constant Discount Factor and Optimality
When a constant discount factor is applied, the optimality of
a static policy with respect to (1) can be characterized using
the value function V π

γ defined as:

V π
γ (s) := Qπ

γ (s, π(s)) (2)

for all s ∈ S, where

Qπ
γ (s, a) := R(s, a) + γ · Es′∼P (s,a,·)V

π
γ (s′)

= R(s, a) + γ ·
∑
s′∈S

P (s, a, s′) · V π
γ (s′) (3)

is called the Q-function. The value of V π
γ (s) corresponds

to the expected sum of rewards when starting in state s and
following policy π. A static policy π∗ is optimal if for every
state s and every action a ∈ A, it holds that

V π∗

γ (s) = max
a∈As

Qπ∗

γ (s, a). (4)

We denote by Π the set of all static policies, and by Π∗
γ the

set of all optimal policies with respect to a constant γ. It is
well known that Π∗

γ ̸= ∅ for all γ ∈ [0, 1), and one can com-
pute a policy in Π∗

γ in polynomial time (Rincón-Zapatero
and Rodrı́guez-Palmero 2003).

It will also be useful to introduce the notion of equivalent
policies. Two policies are deemed equivalent if their value
functions are identical for all states and discount factors.

Definition 2.1 (Equivalent policies). Two static policies
π1, π2 ∈ Π are equivalent if for all s ∈ S and all γ ∈ [0, 1)
it holds that V π1

γ (s) = V π2
γ (s). We write π1 ∼ π2 if π1 and

π2 are equivalent.

Time-Varying Discounting—Game-Theoretic View
We generalize the above definition to MDPs with time-
varying discounting (hereafter, MDPs for simplicity) by re-
placing the constant factor γ by a discount function g : N→
[0, 1), such that g(t) is the discount factor the agent applies
at time step t. We will only consider discount functions that
converge to a value in [0, 1] when t→∞ in this paper.

Time-varying discounting changes the agent’s incentive
over time and as a result the agent behaves as if they are dif-
ferent agents. Hence, we apply a game-theoretic view and
view the MDP as a sequential game played by countably
many players. Every player is associated with a time step
t ∈ N and decides on a static policy πt to use at that par-
ticular time step. Moreover, player t represents the agent’s
incentive at time step t and cares about the subsequent cu-
mulative reward with respect to the (constant) discount fac-
tor g(t), i.e.,

ut(π|s) := E

[ ∞∑
t′=t

g(t)t
′−t ·R(st′ , at′)

∣∣∣∣ st = s,π

]
(5)
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Figure 2: Optimal static policies for geometric discounting with different values of γ and an SPE. (a) and (b) illustrate the
optimal policies for γ1 = 0.1 (blue) and γ2 = 0.8 (red), respectively. (c) illustrates an SPE under time-varying discounting,
with g(0) = γ1 and g(i) = γ2 for all i ≥ 1. The action chosen by player 0 is depicted in blue, the actions chosen by all
subsequent players are in red.

when the environment is in state s before player t is to
take an action, and the other players t + 1, t + 2, . . . sub-
sequently act according to πt+1, πt+2, . . . given by the dy-
namic policy π = (πt)

∞
t=0. In other words, each player has

the same geometric-discounting-style vision as that defined
in (1). The function ut can be viewed as the utility function
of player t conditioned on st, and π as the players’ strategy
profile. The discount factor stays constant for this particu-
lar player, but it might be different for different players. We
will analyze the subgame-perfect equilibrium (SPE) of the
resulting game, which is the standard solution concept for
sequential games (Osborne et al. 2004).

Definition 2.2 (SPE). A dynamic policy π = (πt)
∞
t=0 is an

SPE if for all t ∈ N and s ∈ S it holds that: ut(π|s) ≥
ut(π

′|s) if π′
i = πi for all i ∈ N \ {t}.

In other words, in an SPE, from any time step t onward,
the players’ policies form a Nash equilibrium of the subse-
quent subgame, no matter what st is. Note that the above
definition takes the same form as a Nash equilibrium of the
players’ policies because every player t only plays at time
step t throughout the game.

We can use value functions to characterize an SPE: a dy-
namic policy π∗ is an SPE if it holds that

V π∗

g(t),t(s) = max
a∈As

Qπ∗

g(t),t(s, a), (6)

for all t = 0, 1, . . . and s ∈ S, where for any π we define

V π
γ,t(s) := Qπ

γ,t(s, πt(s)), and (7)

Qπ
γ,t(s, a) := R(s, a) + γ

∑
s′∈S

P (s, a, s′)V π
γ,t+1(s

′). (8)

Namely, each player t has a value function V π
g(t),i and a Q-

function Qπ
g(t),i for each time step i, defined with respect to

their own discount factor g(t). We can make two observa-
tions below: the first observation follows by definition (i.e.,
(5)), and the second holds as the dynamic policy essentially
degenerates to a static one in the stated situation.

Observation 2.3. ut(π|s) ≡ V π
g(t),t(s) for all s ∈ S.

Observation 2.4. Let π = (πt)
∞
t=0 be a dynamic policy and

π ∈ Π be a static policy. If πt = π for all t ≥ T , then
V π
γ,t(s) = V π

γ (s) for all t ≥ T and all s ∈ S.

We analyze the problem of computing an SPE. Since a
solution to this problem is a dynamic policy over an infinite
horizon, it is not immediately clear whether a solution ad-
mits any concise representation. We therefore consider only
the first step (t = 0) and the following decision problem:
For a given action a ∈ A, is there an SPE π such that
π0(s0) = a? (More formally, see the definition below.) We
refer to this problem as SPE-START.
Definition 2.5 (SPE-START). An instance of SPE-START
is given by a tuple (M, a†), consisting of an MDP M =
(S,A,R, P, sstart, g) (with a time-varying discount function
g) and an action a† ∈ A. It is a yes-instance if there ex-
ists an SPE π such that π0(sstart) = a†; and a no-instance,
otherwise.

It is straightforward that when g is a constant function,
an SPE corresponds to an optimal policy for the MDP. Yet,
it appears that SPE-START is computationally more de-
manding than computing an optimal policy in a constant-
discounting MDP: as we will show in the paper, SPE-START
is EXPTIME-hard, whereas the latter is well-known to be
solvable in polynomial time.

An Illustrating Example
We conclude our description of the model with an illustrat-
ing example. Consider the MDP given in Figure 2, and two
different discount factors, γ1 = 0.1 and γ2 = 0.8. Let s0 be
the starting state. As we are solely considering determinis-
tic state transitions in this example, we will identify actions
starting in a certain state with the state it changes to, e.g.
π(s0) = s1 denotes the action that causes a transition from
s0 to s1.

As shown in Figure 2a and Figure 2b, the optimal static
policy π∗

γ1
of an agent who applies a constant discount fac-

tor γ1 in the classical setting, is given by π∗
γ1
(s0) = s0,

π∗
γ1
(s1) = s0 and π∗

γ1
(s2) = s2. For γ2, the optimal static

policy differs from only in state s0, namely π∗
γ2
(s0) = s1.

We want to compute an SPE for the setting where the first
player discounts with γ1 and all subsequent players discount
with γ2. Since the discount factor is constant from time step
1 onward, we can fix the policies of players 1, 2, . . . to π∗

γ2

to derive an SPE. Player 0 knows all future players’ poli-
cies and can influence future rewards merely by choosing
the current action. Starting in s0, the action given by pol-
icy π∗

γ1
would be the one that transitions to itself. As player
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0 is fairly short-sighted, knowing that player 1 will choose
an action leading to reward 0 in the subsequent time step,
it prefers taking an immediate reward of 4 and transitioning
into state s2 to stay there forever and keep receiving rewards
of 3. Hence, an SPE is given by πSPE = (π′, π∗

γ2
, π∗

γ2
, . . .),

where π′(s0) = s2; see Figure 2c.

3 Existence of an SPE
We investigate the existence of an SPE. Indeed, the follow-
ing result has already answered this question in affirmative.
Theorem 3.1 (Lattimore and Hutter 2014). An (exact) SPE
always exists.

The result applies even without our assumption on the
convergence of the discount function but it is obtained via
a non-constructive approach: by reasoning about a sequence
of policies that are optimal for the truncated versions of the
problem, each with a longer horizon than their predecessors.
Hence, the proof does not yield any algorithm or procedure
for obtaining an SPE. We next provide a constructive proof.
The proof also forms the basis for deriving a complexity up-
per bound of SPE-START as we will demonstrate later.

We will in particular show that there exists an SPE that is
eventually constant, i.e., there exists a time step after which
all the subsequent players use the same static policy. A mild
assumption is needed for our proof: g converges to a value
outside of a set of degenerate points defined below.
Definition 3.2 (Degenerate point). A discount factor γ is
called a degenerate point if Π∗

γ contains more than one non-
equivalent policy (see Definition 2.1), i.e., |Π∗

γ/ ∼| > 1,
where Π∗

γ/ ∼ is the set of equivalence classes on Π∗
γ under

the equivalence relation ∼ defined in Definition 2.1, i.e., an
element {π′ ∈ Π : π′ ∼ π} ∈ Π∗

γ/ ∼ contains all policies
equivalent to π.

In what follows, let

Γ :=
{
γ ∈ [0, 1) : |Π∗

γ/ ∼| > 1
}

be the set of degenerate points in [0, 1). The assumption
above ensures that the players will eventually adopt the same
behavior after some time step T , as if the subsequent process
is a constant-discounting MDP. From that point on, the dy-
namic policy can be represented as a static one and we can
use backward induction to derive policies for players in the
previous time steps. More formally, the main result of this
section is formulated as follows.
Theorem 3.3. Suppose that γ∗ := limt→∞ g(t) exists and
γ∗ ∈ [0, 1]\Γ. Then there exists an SPE π that is eventually
constant, i.e., there exists a number T ∈ N such that πt =
πT for all t ≥ T .

Proof of Theorem 3.3
The key to the proof is to argue that Π∗

g(t) is eventu-
ally constant after a certain time step T . With this prop-
erty, we can pick an arbitrary π̃ ∈ Π∗

g(T ) and assign
it to all the players t ≥ T . This forms an SPE for
the subgame starting at T , and according to Observa-
tion 2.4, we can use V π

g(t),T as a basis and use backward

Algorithm 1: Constructing an SPE π = (πt)
∞
t=0, given

that πt = π̃ for all t ≥ T

Input : a static policy π̃ ∈ Π, and a time step T ∈ N
Output: an SPE π = (πt)

∞
t=0

for t = T − 1, T − 2, . . . , 0 do
Compute V π̃

g(t) defined according to (2) and (3);
Vt,T (s)← V π̃

g(t)(s) for all s ∈ S;
// so Vt,T = V π

g(t),T (Observation 2.4)

for i = T − 1, T − 2, . . . , t do
for each s ∈ S, a ∈ As do
Qt,i(s, a)←
R(s, a) + γ

∑
s′∈S P (s, a, s′) · Vt,i+1(s

′);
Vt,i(s)← Qt,i(s, πt+1(s)); //so Vt,i=V π

g(t),i

in (7)

for each s ∈ S do
πt(s)← arbitrary action in
argmaxa∈As

Qt,t(s, πt+1(s));

induction to construct πT−1, πT−2, . . . , π0 as the optimal
policies of players T − 1, T − 2, . . . , 0 with respect to
V π
g(T−1),T , V

π
g(T−2),T−1, . . . , V

π
g(0),1, respectively. The ap-

proach is summarized in Algorithm 1.
Now to show that Π∗

g(t) is eventually constant, we argue
that the set Γ of degenerate points is finite (Lemma 3.4).
Since γ∗ /∈ Γ, there must be a neighbourhood of γ∗ in R
which does not intersect Γ. After a certain time step, the
tail of g will be contained inside this neighbourhood, so
Lemma 3.6 then implies that Π∗

g(t) becomes constant after
a finite number of time steps.
Lemma 3.4. Γ is a finite set.

Proof. Define

hs
π1,π2

(γ) := V π1
γ (s)− V π2

γ (s) (9)

By definition, for any γ ∈ Γ, there exist π1, π2 ∈ Π∗
γ

such that π1 ̸∼ π2, which means that hs
π1,π2

(γ) = 0 for
all s ∈ S. Hence, |Γ| is bounded from above by the num-
ber of γs such that hs

π1,π2
(γ) = 0 for some s ∈ S and

some π1, π2 ∈ Π that are not equivalent. By Lemma 3.5,
hs
π1,π2

(γ) = Ψ(γ)/Φ(γ), where both Ψ(γ) and Φ(γ) are
polynomial functions of γ with finite degrees. Hence, the
number of zeros of hs

π1,π2
(γ) is finite.

Lemma 3.5. Let π1, π2 ∈ Π be two policies and γ ∈ [0, 1).
The function hs

π1,π2
(γ) can be written as

hs
π1,π2

(γ) = Ψ(γ)/Φ(γ), (10)

where Ψ and Φ are polynomials of γ with finite degrees.2

Lemma 3.6. For any interval I ⊆ [0, 1) such that I∩Γ = ∅,
we have Π∗

γ = Π∗
γ′ for any γ, γ′ ∈ I .

2Omitted proofs can be found in the full version of this paper.
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Proof. Without loss of generality, suppose that γ < γ′ and,
for the sake of contradiction, Π∗

γ ̸= Π∗
γ′ . The fact that

γ, γ′ /∈ Γ directly implies that Π∗
γ ∩ Π∗

γ′ = ∅ as both sets
contain only equivalent policies. Pick arbitrary π ∈ Π∗

γ and
π′ ∈ Π∗

γ′ . We have hπ,π′(γ) > 0 and hπ,π′(γ′) < 0. As
hπ,π′ is a continuous function, there exists a γ̃ ∈ (γ, γ′) ⊆ I
such that hπ,π′(γ′) = 0, which implies |Π∗

γ̃/ ∼| > 1
and hence γ̃ ∈ Γ. This contradicts the assumption that
I ∩ Γ = ∅.

4 Complexity of SPE-START
Consider using Algorithm 1 to construct an SPE. It requires
specifying T in the input which we have not yet described
how to obtain. Indeed, this replies on the specific format of
g. In addition to the computational cost of obtaining T , Al-
gorithm 1 includes O(T 2 · |S|) iterations, so the overall time
complexity also depends on the magnitude of T . The latter
cost prevents the algorithm from being efficient if T is expo-
nential in the size of the problem, so the question is whether
there are better algorithms that solve SPE-START without
going through all the iterations. It turns out that this is in
general not possible: as we will show next, even for discount
functions that admit efficient computation of T , computing
an SPE can be EXPTIME-hard.

EXPTIME-Hardness
We show that SPE-START is EXPTIME-hard even when
g : N→ [0, 1) is a down-step function defined as follows.

g(t) :=

{
γ if t ≤ T

0 otherwise
(11)

where γ ∈ (0, 1) and T ∈ N is encoded in binary. Arguably
this is one of the simplest forms of time-varying discounting,
and g can be encoded as (γ, T ).

Note that (11) does not define a finite horizon MDP. In-
stead, it defines a game where eventually all the players from
time step T onward exhibit a discount factor of 0. We will
show that SPE-START is EXPTIME-hard even when the
discount function is restricted to this simple form. The proof
uses a reduction from the following problem, termed VALIT
(value iteration), which is known to be EXPTIME-complete
(Shirmohammadi et al. 2019).
Definition 4.1 (VALIT). An instance of VALIT, given by
(M, a†, T ), consists of an MDPM = (S,A,R, P, sstart, γ)
with constant discount factor γ > 0, an action a† ∈ A,
and finite time horizon T ∈ N encoded in binary. It is a
yes-instance if there exists a dynamic policy π such that
π0(sstart) = a† and πt(s) ∈ argmaxa∈As

Qt(s, a) for all
t = 0, . . . , T − 1 and s ∈ S, where

Qt(s, a) := R(s, a) + γ
∑
s′∈S

P (s, a, s′) · Vt+1(s
′), (12)

Vt(s) := max
a∈As

Qt(s, a), (13)

and QT (s, a) ≡ 0. Otherwise, it is a no-instance.
The Vt functions in the above definition are akin to the

value functions defined in (4) but with a time-dependency.
Using VALIT, we prove the following result.

s s∗ s∗∗
a∗

U + 1
a∗∗

−2(U+1)
γ

M
. . .

Figure 3: Reduction from VALIT to SPE-START. The blue
disk represents the original MDPM in the VALIT instance,
and the outer nodes indicate how to extend M to an MDP
for the SPE-START instance, where the discount rate is fixed
to the original discount rate γ in the first T time steps and
set to 0 afterwards. Labels above edges are action names and
labels below are rewards.

Theorem 4.2. SPE-START is EXPTIME-hard even when
the discount function is a down-step function.

Proof sketch. We reduce VALIT to SPE-START. The main
idea of the reduction is to construct an SPE-START instance
where all players t > T will stick to the same static poli-
cies regardless of policies chosen by the preceding players.
Figure 3 illustrates the MDP in the SPE-START instance.
A chain consisting of two states s∗ and s∗∗ is appended
to every state s in the VALIT instance. The high reward
at a∗ ensures that a∗ is the dominant action for player T ,
who has g(T ) = 0 and only cares about the immediate re-
ward; whereas the high penalty at a∗∗ ensures that a∗ is a
dominated action for all players t = 0, . . . , T , who have
g(t) = γ. Hence, for every player t ≤ T in the SPE-START
instance, the process is equivalent to an MDP with time hori-
zon T + 1. The procedure to derive πT , πT−1, . . . , π0 in an
SPE using backward induction is the same as computing the
value functions of the VALIT instance. Every SPE is then
associated to an optimal policy of VALIT.

We remark that the binary encoding of T plays a crucial
role in the EXPTIME-hardness of SPE-START. Indeed, if T
is encoded in unary or is a constant, the hardness will disap-
pear. In general, an efficient algorithm for computing an SPE
is possible but requires the assumption of g converging fast
enough to an interval between two consecutive numbers in
Γ. To ease part of the intricacies introduced by the require-
ment, a practical approach which we will present next is by
considering the approximate notion of the SPE, the ϵ-SPE.

5 Approximate SPEs
The ϵ-SPE, defined below, assumes that the players are re-
luctant to deviate as long as the potential improvement is
smaller than some ϵ > 0.
Definition 5.1 (ϵ-SPE). A dynamic policy π = (πt)

∞
t=0

forms an ϵ-SPE if for all t ∈ N it holds that for all s ∈ S:
ut(π|s) ≥ ut(π

′|s) − ϵ for all π′ = (π′
t)

∞
t=0 such that

π′
i = πi for all i ∈ N \ {t}.
The notion allows us to relax the assumption that g con-

verges to a point outside of Γ and allows us to derive an
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upper bound of the computational complexity, too. Indeed,
the existence of an ϵ-SPE, in particular an eventually con-
stant one, does not require this assumption. Instead, we use
the following continuity argument.
Lemma 5.2. Suppose that all rewards are bounded by M .
Then for any discount factors γ, γ̃ ∈ [0, 1) and static policy
π ∈ Π, we have the following bound for all s ∈ S:

|V π
γ (s)− V π

γ̃ (s)| ≤ 2M · |S| · |γ − γ̃|
(1−max{γ, γ̃})3 · (1−min{γ, γ̃})

.

Theorem 5.3. Suppose that γ∗ := limt→∞ g(t) exists and
γ∗ ∈ [0, 1]. For any ϵ > 0, there exists an ϵ-SPE π that
is eventually constant, i.e., there exists a T ∈ N such that
πt = πT for all t ≥ T .

Computing an ϵ-SPE
The ϵ slackness introduced by ϵ-SPE appears to suggest that
it suffices to consider a finite time horizon: a player can cut
off the time horizon up to a certain (finite) future time step,
beyond which the sum of the discounted rewards is suffi-
ciently small to be ignored. This is nevertheless not the case.
Even if the horizon is cut off, there are still infinitely many
players in the game and each player’s payoff is influenced by
the subsequent players before the cutting off point. Hence,
cutting off the time horizon does not reduce our considera-
tion to a finite number of time steps.

To compute an ϵ-SPE, we use the continuity argument in
Lemma 5.2. If we can pin down a time step t after which the
tail of g is contained in a sufficiently small interval, we can
use g(t) to compute an SPE for the subgame as if g is con-
stant after t. This approximates an actual SPE provided that
the tail of g(t) is sufficiently small. Hence, the time com-
plexity depends on the rate at which g converges. In accor-
dance with our existence proof, let d be a number such that

min
γ∈Γ

∣∣∣ lim
t→∞

g(t)− γ
∣∣∣ ≥ d.

To derive a general result, we also assume that there is an
oracle A that, for any given δ > 0, computes a time step T
such that |g(t)− g(T )| ≤ δ for all t ≥ T . More specifically,
we introduce the following notion called (α, β)-convergence
for the discount function.
Definition 5.4 ((α, β)-convergence). Let α : R2 → R
and β : R2 → R. A class G of discount functions is
(α, β)-convergent if there is an oracle A such that: for any
g ∈ G and any δ > 0 with bit-size d, A computes an inte-
ger T in time α(|g|, d) such that |g(t) − g(T )| ≤ δ for all
t ≥ T , and T ≤ β(|g|, d), where |g| denotes the bit-size of
the representation of g.

For example, the class of down-step functions, defined in
(11) and encoded as (γ, T ) (in binary), is (α, β)-convergent
with α(x, y) = x and β(x, y) = O(2x). Our next lemma
provides a lower bound on the distance between any two
points in the set Γ.
Theorem 5.5. Suppose that g is (α, β)-convergent and
limt→∞ g(t) < 1 − c for a known constant c. Then an ϵ-
SPE can be computed in time α(|g|, d) + poly(|A|, |S|) ·
(β(|g|, d))2, where d = log(M |S|/ϵ) + o(1).

Algorithm 2: Computing an ϵ-SPE

Input : ϵ > 0
Output: an ϵ-SPE π = (πt)

∞
t=0

D ← c4 ·min{ϵ/4M |S|, c};
T ← A(D);
π̃ ← an arbitrary policy in Π∗

g(T );
πt ← π̃, for all t = T, T + 1, . . . ;
Run Algorithm 1 on input π̃ to construct π0, . . . , πT−1;

Proof. We use Algorithm 2 to compute an ϵ-SPE. To see
that it correctly computes an ϵ-SPE, it suffices to argue that
(πT , πT+1, . . . ) form an ϵ-SPE for the subgame after T .

Indeed, for any player t ≥ T , we have |g(t) − g(T )| ≤
D ≤ c4·ϵ

2M |S| . Hence, according to Lemma 5.2, we have
|V π

g(t)(s) − V π
g(T )(s)| ≤ ϵ/2 for any static policy π and

s ∈ S. Let π ∈ Π∗
g(t). We have

V π
g(t)(s)− V π̃

g(t)(s) ≤ V π
g(T )(s)− V π̃

g(T )(s)+

|V π
g(t)(s)− V π

g(T )(s)|+ |V π̃
g(t)(s)− V π̃

g(T )(s)| ≤ ϵ,

where π̃ ∈ Π∗
g(T ) as in Algorithm 2. Moreover, since the

optimal static policy is at least as good as any dynamic pol-
icy for player t. This means that for any strategy profile π′

resulting from a deviation of player t,

ut(π
′|s)− ut(πT , πT+1, . . . |s) ≤ V π

g(t)(s)− V π̃
g(t)(s) = ϵ.

Hence, Algorithm 2 generates an ϵ-SPE.
To see the time complexity of the algorithm, note that

it takes time α(|g|, logD) to run A. In addition to that,
the time it takes to run Algorithm 1 is bounded by
(β(|g|, d))2 · poly(|A|, |S|).

We remark that Theorem 5.5 only requires the mild as-
sumption of a known constant gap between 1 and the limit
point of g. If c is unknown or the gap cannot be bounded by
a constant, an ϵ-SPE can be computed via a more sophisti-
cated algorithm with a higher time complexity. We provide
this algorithm in the full version of this paper for theoretical
interest.

Via Theorem 5.5, an exponential upper bound of the
complexity of computing an ϵ-SPE that is can be derived
when g is the down-step function defined in (11) (for which
β(|g|, d) = 2O(|g|)). This does not require any assumption
on the convergence of g with respect to Γ. Better bounds can
be derived if g converges faster, e.g., β(|g|, d) = d or even
2O(d), or when g is not a variable of the model.

6 Conclusion
We study a model of infinite-horizon MDPs with time-
varying discounting. Our model seizes the idea of geometric
discounting, but with time-varying discount factors, and it
allows for a game-theoretic interpretation. We study the SPE
of the underlying game. Results on the existence and com-
putation of an exact or an ϵ-SPE are presented. Future work
can be done to consider other types of discount functions,
such as the ones described in (Lattimore and Hutter 2014).
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