
Solving String Constraints Using SAT

Kevin Lotz1(B) , Amit Goel2, Bruno Dutertre2 , Benjamin Kiesl-Reiter2 ,
Soonho Kong2 , Rupak Majumdar2 , and Dirk Nowotka1

1 Department of Computer Science, Kiel University, Kiel, Germany
{kel,dn}@informatik.uni-kiel.de

2 Amazon Web Services, Seattle, USA
{amgoel,dutebrun,benkiesl,soonho,rumajumd}@amazon.com

Abstract. String solvers are automated-reasoning tools that can solve
combinatorial problems over formal languages. They typically operate on
restricted first-order logic formulas that include operations such as string
concatenation, substring relationship, and regular expression matching.
String solving thus amounts to deciding the satisfiability of such formu-
las. While there exists a variety of different string solvers, many string
problems cannot be solved efficiently by any of them. We present a new
approach to string solving that encodes input problems into propositional
logic and leverages incremental SAT solving. We evaluate our approach
on a broad set of benchmarks. On the logical fragment that our tool
supports, it is competitive with state-of-the-art solvers. Our experiments
also demonstrate that an eager SAT-based approach complements exist-
ing approaches to string solving in this specific fragment.

1 Introduction

Many problems in software verification require reasoning about strings. To tackle
these problems, numerous string solvers—automated decision procedures for
quantifier-free first-order theories of strings and string operations—have been
developed over the last years. These solvers form the workhorse of automated-
reasoning tools in several domains, including web-application security [19,31,33],
software model checking [15], and conformance checking for cloud-access-control
policies [2,30].

The general theory of strings relies on deep results in combinatorics
on words [5,16,23,29]; unfortunately, the related decision procedures remain
intractable in practice. Practical string solvers achieve scalability through a judi-
cious mix of heuristics and restrictions on the language of constraints.

We present a new approach to string solving that relies on an eager reduc-
tion to the Boolean satisfiability problem (SAT), using incremental solving and
unsatisfiable-core analysis for completeness and scalability. Our approach sup-
ports a theory that contains Boolean combinations of regular membership con-
straints and equality constraints on string variables, and captures a large set of
practical queries [6].

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 187–208, 2023.
https://doi.org/10.1007/978-3-031-37703-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_9&domain=pdf
http://orcid.org/0000-0001-6759-3304
http://orcid.org/0000-0002-6284-380X
http://orcid.org/0000-0003-3522-3653
http://orcid.org/0000-0003-0984-8078
http://orcid.org/0000-0003-2136-0542
http://orcid.org/0000-0002-5422-2229
https://doi.org/10.1007/978-3-031-37703-7_9

188 K. Lotz et al.

Our solving method iteratively searches for satisfying assignments up to a
length bound on each string variable; it stops and reports unsatisfiability when
the search reaches computed upper bounds without finding a solution. Similar to
the solver Woorpje [12], we formulate regular membership constraints as reach-
ability problems in nondeterministic finite automata. By bounding the number
of transitions allowed by each automaton, we obtain a finite problem that we
encode into propositional logic. To cut down the search space of the under-
lying SAT problem, we perform an alphabet reduction step (SMT-LIB string
constraints are defined over an alphabet of 3 · 216 letters and a naive reduction
to SAT does not scale). Inspired by bounded model checking [8], we iteratively
increase bounds and utilize an incremental SAT solver to solve the resulting
series of propositional formulas. We perform an unsatisfiable-core analysis after
each unsatisfiable incremental call to increase only the bounds of a minimal
subset of variables until a theoretical upper bound is reached.

We have evaluated our solver on a large set of benchmarks. The results show
that our SAT-based approach is competitive with state-of-the-art SMT solvers
in the logical fragment that we support. It is particularly effective on satisfiable
instances.

Closest to our work is the Woorpje solver [12], which also employs an eager
reduction to SAT. Woorpje reduces systems of word equations with linear con-
straints to a single Boolean formula and calls a SAT solver. An extension can
also handle regular membership constraints [21]. However, Woorpje does not
handle the full language of constraints considered here and does not employ the
reduction and incremental solving techniques that make our tool scale in prac-
tice. More importantly, in contrast to our solver, Woorpje is not complete—it
does not terminate on unsatisfiable instances.

Other solvers such as Hampi [19] and Kaluza [31] encode string problems
into constraints on fixed-size bit-vector, which can be solved by reduction to
SAT. These tools support expressive constraints but they require a user-provided
bound on the length of string variables.

Further from our work are approaches based on the lazy SMT paradigm,
which tightly integrates dedicated, heuristic, theory solvers for strings using
the CDCL(T) architecture (also called DPLL(T) in early papers). Solvers that
follow this paradigm include Ostrich [11], Z3 [25], Z3str4 [24], cvc5 [3],
Z3str3RE [7], Trau [1], and CertiStr [17]. Our evaluation shows that our
eager approach is competitive with lazy solvers overall, but it also shows that
combining both types of solvers in a portfolio is most effective. Our eager app-
roach tends to perform best on satisfiable instances while lazy approaches work
better on unsatisfiable problems.

2 Preliminaries

We assume a fixed alphabet Σ and a fixed set of variables Γ . Words of Σ∗

are denoted by w, w′, w′′, etc. Variables are denoted by x, y, z. Our decision
procedure supports the theory described in Fig. 1.

Solving String Constraints Using SAT 189

F := F F  F F F  Atom

Atom := x
.

RE  x .= y

RE := RE RE  RE RE  RE  RE RE  ?  w

Fig. 1. Syntax: x and y denote string variables and w denotes a word of Σ∗. The symbol
? is the wildcard character.

Atoms in this theory include regular membership constraints (or regular con-
straints for short) of the form x

.∈ RE, where RE is a regular expression, and
variable equations of the form x

.= y. Concatenation is not allowed in equations.
Regular expressions are defined inductively using union, concatenation, inter-

section, and the Kleene star. Atomic regular expressions are constant words
w ∈ Σ∗ and the wildcard character ?, which is a placeholder for an arbitrary
symbol c ∈ Σ. All regular expressions are grounded, meaning that they do not
contain variables. We use the symbols � .∈ and � .= as a shorthand notation for
negations of atoms using the respective predicate symbols. The following is an
example formula in our language: ¬(x

.∈ a · ?∗ ∧ y
.∈ ?∗ · b) ∨ x � .= y ∨ x

.∈ a · b.
Using our basic syntax, we can define additional relations, such as constant

equations x
.= w, and prefix and suffix constraints, written w

.� x and w
.� x,

respectively. Even though these relations can be expressed as regular constraints
(e.g., the prefix constraint ab

.� x can be expressed as x
.∈ a · b · ?∗), we can

generate more efficient reductions to SAT by encoding them explicitly.
This string theory is not as expressive as others, since it does not include

string concatenation, but it still has important practical applications. It is used
in the Zelkova tool described by Backes, et al. [2] to support analysis of AWS
security policies. Zelkova is a major industrial application of SMT solvers [30].

Given a formula ψ, we denote by atoms(ψ) the set of atoms occurring in ψ,
by V (ψ) the set of variables occurring in ψ, and by Σ(ψ) the set of constant
symbols occurring in ψ. We call Σ(ψ) the alphabet of ψ. Similarly, given a
regular expression R, we denote by Σ(R) the set of characters occurring in R.
In particular, we have Σ(?) = ∅.

We call a formula conjunctive if it is a conjunction of literals and we call
it a clause if it is a disjunction of literals. We say that a formula is in nor-
mal form if it is a conjunctive formula without unnegated variable equations.
Every conjunctive formula can be turned into normal form by substitution, i.e.,
by repeatedly rewriting ψ ∧ x

.= y to ψ[x := y]. If ψ is in negation normal
form (NNF), meaning that the negation symbol occurs only directly in front of
atoms, we denote by lits(ψ) the set of literals occurring in ψ. We say that an
atom a occurs with positive polarity in ψ if a ∈ lits(ψ) and that it occurs with
negative polarity in ψ if ¬a ∈ lits(ψ); we denote the respective sets of atoms
of ψ by atoms+(ψ) and atoms−(ψ). The notion of polarity can be extended to
arbitrary formulas (not necessarily in NNF), intuitively by considering polarity
in a formula’s corresponding NNF (see [26] for details).

190 K. Lotz et al.

Boolean
Abstraction

Alphabet
Reduction

Bound
Initialization

ψ
Propositional
Encoding

Incremental
SAT Solving Return SAT

Bound
Refinement

Return UNSAT

Σ

SAT

UNSAT

Boolean Abstraction: ψ

Definitions: D

Bounds: b

D b, h b

b

Fig. 2. Overview of the solving process.

The semantics of our language is standard. A regular expression R defines a
regular language L(R) over Σ in the usual way. An interpretation is a mapping
(also called a substitution) h : Γ → Σ∗ from string variables to words. Atoms
are interpreted as usual, and a model (also called a solution) is an interpretation
that makes a formula evaluate to true under the usual semantics of the Boolean
connectives.

3 Overview

Our solving method is illustrated in Fig. 2. It first performs three preprocessing
steps that generate a Boolean abstraction of the input formula, reduce the size of
the input alphabet, and initialize bounds on the lengths of all string variables.
After preprocessing, we enter an encode-solve-and-refine loop that iteratively
queries a SAT solver with a problem encoding based on the current bounds
and refines the bounds after each unsatisfiable solver call. We repeat this loop
until either the propositional encoding is satisfiable, in which case we conclude
satisfiability of the input formula, or each bound has reached a theoretical upper
bound, in which case we conclude unsatisfiability.

Generating the Boolean Abstraction. We abstract the input formula ψ by replac-
ing each theory atom a ∈ atoms(ψ) with a new Boolean variable d(a), and keep
track of the mapping between a and d(a). This gives us a Boolean abstraction
ψA of ψ and a set D of definitions, where each definition expresses the rela-
tionship between an atom a and its corresponding Boolean variable d(a). If a
occurs with only one polarity in ψ, we encode the corresponding definition as an
implication, i.e., as d(a) → a or as ¬d(a) → ¬a, depending on the polarity of a.
Otherwise, if a occurs with both polarities, we encode it as an equivalence con-
sisting of both implications. This encoding, which is based on ideas behind the
well-known Plaisted-Greenbaum transformation [28], ensures that the formulas
ψ and ψA ∧ ∧

d∈D d are equisatisfiable. An example is shown in Fig. 3.

Reducing the Alphabet. In the SMT-LIB theory of strings [4], the alphabet Σ
comprises 3 · 216 letters, but we can typically use a much smaller alphabet with-
out affecting satisfiability. In Sect. 4, we show that using Σ(ψ) and one extra

Solving String Constraints Using SAT 191

x
.
R1 y

.
R2

z
.
= w y

.
R2 z

.
= w

(a) Input Formula ψ

p q

r q r

(b) Boolean Abstraction ψ

Fig. 3. Example of Boolean abstraction. The formula ψ, whose expression tree is shown
on the left, results in the Boolean abstraction illustrated on the right, where p, q, and r
are fresh Boolean variables. We additionally get the definitions p → x

.∈ R1, q ↔ y
.∈ R2,

and r ↔ z .
= w. We use an implication (instead of an equivalence) for atom x

.∈ R1

since it occurs only with positive polarity within ψ.

character per string variable is sufficient. Reducing the alphabet is critical for
our SAT encoding to be practical.

Initializing Bounds. A model for the original first-order formula ψ is a substi-
tution h : Γ → Σ∗ that maps each string variable to a word of arbitrary length
such that ψ evaluates to true. As we use a SAT solver to find such substitu-
tions, we need to bound the lengths of strings, which we do by defining a bound
function b : Γ → N that assigns an upper bound to each string variable. We
initialize a small upper bound for each variable, relying on simple heuristics. If
the bounds are too small, we increase them in a later refinement step.

Encoding, Solving, and Refining Bounds. Given a bound function b, we build a
propositional formula �ψ�

b that is satisfiable if and only if the original formula ψ

has a solution h such that |h(x)| ≤ b(x) for all x ∈ Γ . We encode �ψ�
b as the

conjunction ψA ∧ �D�
b ∧ �h�

b , where ψA is the Boolean abstraction of ψ, �D�
b

is an encoding of the definitions D, and �h�
b is an encoding of the set of possible

substitutions. We discuss details of the encoding in Sect. 5. A key property is
that it relies on incremental SAT solving under assumptions [13]. Increasing
bounds amounts to adding new clauses to the formula �ψ�

b and fixing a set of
assumptions, i.e., temporarily fixing the truth values of a set of Boolean variables.
If �ψ�

b is satisfiable, we can construct a substitution h from a Boolean model
ω of �ψ�

b . Otherwise, we examine an unsatisfiable core (i.e., an unsatisfiable
subformula) of �ψ�

b to determine whether increasing the bounds may give a
solution and, if so, to identify the variables whose bounds must be increased. In
Sect. 6, we explain in detail how we analyze unsatisfiable cores, increase bounds,
and conclude unsatisfiability.

192 K. Lotz et al.

4 Reducing the Alphabet

In many applications, the alphabet Σ is large—typically Unicode or an approxi-
mation of Unicode as defined in the SMT-LIB standard—but formulas use much
fewer symbols (less than 100 symbols is common in our experiments). In order
to check the satisfiability of a formula ψ, we can restrict the alphabet to the
symbols that occur in ψ and add one extra character per variable. This allows
us to produce compact propositional encodings that can be solved efficiently in
practice.

To prove that such a reduced alphabet A is sufficient, we show that a model
h : Γ → Σ∗ of ψ can be transformed into a model h′ : Γ → A∗ of ψ by replacing
characters of Σ that do not occur in ψ by new symbols—one new symbol per
variable of ψ. For example, suppose V (ψ) = {x1, x2}, Σ(ψ) = {a, c,d}, and h is
a model of ψ such that h(x1) = abcdef and h(x2) = abbd. We introduce two new
symbols α1, α2 ∈ Σ \ Σ(ψ) , define h′(x1) = aα1cdα1α1 and h′(x2) = aα2α2d ,
and argue that h′ is a model as well.

More generally, assume B is a subset of Σ and n is a positive integer such
that |B| ≤ |Σ| − n. We can then pick n distinct symbols α1, . . . , αn from Σ \ B.
Let A be the set B ∪ {α1, . . . , αn}. We construct n functions f1, . . . , fn from Σ
to A by setting fi(a) = a if a ∈ B, and fi(a) = αi otherwise. We extend fi to
words of Σ∗ in the natural way: fi(ε) = ε and fi(a · w) = fi(a) · fi(w). This
construction satisfies the following property:

Lemma 4.1. Let f1, . . . , fn be mappings as defined above, and let i, j ∈ 1, . . . , n
such that i �= j. Then, the following holds:

1. If a and b are distinct symbols of Σ, then fi(a) �= fj(b).
2. If w and w′ are distinct words of Σ∗, then fi(w) �= fj(w′).

Proof. The first part is an easy case analysis. For the second part, we have
that |fi(w)| = |w| and |fj(w′)| = |w′|, so the statement holds if w and w′ have
different lengths. Assume now that w and w′ have the same length and let v be
the longest common prefix of w and w′. Since w and w′ are distinct, we have
that w = v · a · u and w′ = v · b · u′, where a �= b are symbols of Σ and u and u′

are words of Σ∗. By the first part, we have fi(a) �= fj(b), so fi(w) and fj(w′)
must be distinct. �

The following lemma can be proved by induction on R.

Lemma 4.2. Let f1, . . . , fn be mappings as defined above and let R be a regular
expression with Σ(R) ⊆ B. Then, for all words w ∈ Σ∗ and all i ∈ 1, . . . , n,
w ∈ L(R) if and only if fi(w) ∈ L(R).

Given a subset A of Σ, we say that ψ is satisfiable in A if there is a model
h : V (ψ) → A∗ of ψ. We can now prove the main theorem of this section, which
shows how to reduce the alphabet while maintaining satisfiability.

Theorem 4.3. Let ψ be a formula with at most n string variables x1, . . . , xn

such that |Σ(ψ)| + n ≤ |Σ|. Then, ψ is satisfiable if and only if it is satisfiable
in an alphabet A ⊆ Σ of cardinality |A| = |Σ(ψ)| + n.

Solving String Constraints Using SAT 193

Proof. We set B = Σ(ψ) and use the previous construction. So the alphabet
A = B ∪ {α1, . . . , αn} has cardinality |Σ(ψ)| + n, where α1, . . . αn are distinct
symbols of Σ \B. We can assume that ψ is in disjunctive normal form, meaning
that it is a disjunction of the form ψ = ψ1 ∨ · · · ∨ ψm, where each ψt is a
conjunctive formula. If ψ is satisfiable, then one of the disjuncts ψk is satisfiable
and we have Σ(ψk) ⊆ B. We can turn ψk into normal form by eliminating all
variable equalities of the form xi

.= xj from ψk, resulting in a conjunction ϕk of
literals of the form xi

.∈ R, xi � .∈ R, or xi � .= xj . Clearly, for any A ⊆ Σ, ϕk is
satisfiable in A if and only if ψk is satisfiable in A.

Let h : V (ϕk) → Σ∗ be a model of ϕk and define the mapping h′ : V (ϕk) →
A∗ as h′(xi) = fi(h(xi)). We show that h′ is a model of ϕk. Consider a literal l
of ϕk. We have three cases:

– l is of the form xi

.∈ R where Σ(R) ⊆ Σ(ψ) = B. Since h satisfies ϕk, we
must have h(xi) ∈ L(R) so h′(xi) = fi(h(xi)) is also in L(R) by Lemma 4.2.

– l is of the form xi � .∈ R with Σ(R) ⊆ B. Then, h′(xi) �∈ L(R) and we can
conclude h′(xi) �∈ L(R) again by Lemma 4.2.

– l is of the form xi � .= xj . Since h satisfies ϕk, we must have i �= j and h(xi) �=
h(xj), which implies h′(xi) = fi(h(xi)) �= fj(h(xj)) = h′(xj) by Lemma 4.1.

All literals of ϕk are then satisfied by h′, hence ϕk is satisfiable in A and thus
so is ψk. It follows that ψ is satisfiable in A. �

The reduction presented here can be improved and generalized. For example, it
can be worthwhile to use different alphabets for different variables or to reduce
large character intervals to smaller sets.

5 Propositional Encodings

Our algorithm performs a series of calls to a SAT solver. Each call determines the
satisfiability of the propositional encoding �ψ�

b of ψ for some upper bounds b.
Recall that �ψ�

b = ψA ∧ �h�
b ∧ �D�

b , where ψA is the Boolean abstraction of ψ,
�h�

b is an encoding of the set of possible substitutions, and �D�
b is an encoding

of the theory-literal definitions, both bounded by b. Intuitively, �h�
b tells the

SAT solver to “guess” a substitution, �D�
b makes sure that all theory literals

are assigned proper truth values according to the substitution, and ψA forces
the evaluation of the whole formula under these truth values.

Suppose the algorithm performs n calls and let bk : Γ → N for k ∈ 1, . . . , n
denote the upper bounds used in the k-th call to the SAT solver. For conve-
nience, we additionally define b0(x) = 0 for all x ∈ Γ . In the k-th call, the SAT
solver decides whether �ψ�

bk is satisfiable. The Boolean abstraction ψA, which
we already discussed in Sect. 3, stays the same for each call. In the following,
we thus discuss the encodings of the substitutions �h�

bk and of the various the-
ory literals �a�

bk and �¬a�
bk that are part of �D�

bk . Even though SAT solvers
expect their input in CNF, we do not present the encodings in CNF to simplify

194 K. Lotz et al.

the presentation, but they can be converted to CNF using simple equivalence
transformations.

Most of our encodings are incremental in the sense that the formula for call
k is constructed by only adding clauses to the formula for call k − 1. In other
words, for substitution encodings we have �h�

bk = �h�
bk−1 ∧ �h�bk

bk−1
and for

literals we have �l�
bk = �l�

bk−1 ∧ �l�bk

bk−1
, with the base case �h�

b0 = �l�
b0 = �.

In these cases, it is thus enough to encode the incremental additions �l�bk

bk−1

and �h�bk

bk−1
for each call to the SAT solver. Some of our encodings, however,

introduce clauses that are valid only for a specific bound bk and thus become
invalid for larger bounds. We handle the deactivation of these encodings with
selector variables as is common in incremental SAT solving.

Our encodings are correct in the following sense.1

Theorem 5.1. Let l be a literal and let b : Γ → N be a bound function. Then,
l has a model that is bounded by b if and only if �h�

b ∧ �l�
b is satisfiable.

5.1 Substitutions

We encode substitutions by defining for each variable x ∈ Γ the characters to
which each of x’s positions is mapped. Specifically, given x and its corresponding
upper bound b(x), we represent the substitution h(x) by introducing new vari-
ables x[1], . . . , x[b(x)], one for each symbol h(x)[i] of the word h(x). We call these
variables filler variables and we denote the set of all filler variables by Γ̌ . By
introducing a new symbol λ �∈ Σ, which stands for an unused filler variable, we
can define h based on a substitution ȟ : Γ̌ → Σλ over the filler variables, where
Σλ = Σ ∪ {λ}:

h(x)[i] =

{
ε if ȟ(x[i]) = λ

ȟ(x[i]) otherwise

We use this representation of substitutions (known as “filling the positions” [18])
because it has a straightforward propositional encoding: For each variable x ∈ Γ
and each position i ∈ 1, . . . ,b(x), we create a set {ha

x[i] | a ∈ Σλ} of Boolean
variables, where ha

x[i] is true if ȟ(x[i]) = a. We then use a propositional encoding
of an exactly-one (EO) constraint (e.g., [20]) to assert that exactly one variable
in this set must be true:

�h�bk

bk−1
=

∧

x∈Γ

bk(x)∧

i=bk−1(x)+1

EO({ha
x[i] | a ∈ Σλ}) (1)

∧
∧

x∈Γ

bk(x)−1∧

i=bk−1(x)

hλ
x[i] → hλ

x[i+1] (2)

1 Proof is omitted due to space constraints but made available for review purposes.

Solving String Constraints Using SAT 195

Constraint (2) prevents the SAT solver from considering filled substitutions that
are equivalent modulo λ-substitutions—it enforces that if a position i is mapped
to λ, all following positions are mapped to λ too. For instance, abλλ, aλbλ,
and λλab all correspond to the same word ab, but our encoding allows only
abλλ. Thus, every Boolean assignment ω that satisfies �h�b encodes exactly one
substitution hω, and for every substitution h (bounded by b) there exists a
corresponding assignment ωh that satisfies �h�b.

5.2 Theory Literals

The only theory literals of our core language are regular constraints (x
.∈ R) and

variable equations (x .= y) with their negations. Constant equations (x .= w) as
well as prefix and suffix constraints (w

.� x and w
.� x) could be expressed as

regular constraints, but we encode them explicitly to improve performance.

Regular Constraints. We encode a regular constraint x
.∈ R by constructing

a propositional formula that is true if and only if the word h(x) is accepted by a
specific nondeterministic finite automaton that accepts the language L(R). Let
x

.∈ R be a regular constraint and let M = (Q,Σ, δ, q0, F) be a nondeterministic
finite automaton (with states Q, alphabet Σ, transition relation δ, initial state
q0, and accepting states F) that accepts L(R) and that additionally allows λ-self-
transitions on every state. Given that λ is a placeholder for the empty symbol,
λ-transitions do not change the language accepted by M . We allow them so
that M performs exactly b(x) transitions, even for substitutions of length less
than b(x). This reduces checking whether the automaton accepts a word to only
evaluating the states reached after exactly b(x) transitions.

Given a model ω |= �h�
b , we express the semantics of M in propositional logic

by encoding which states are reachable after reading hω(x). To this end, we assign
b(x) + 1 Boolean variables {S0

q , S1
q , . . . , S

b(x)
q } to each state q ∈ Q and assert

that ωh(Si
q) = 1 if and only if q can be reached by reading prefix hω(x)[1..i]. We

encode this as a conjunction �(M ; x)� = �I(M ;x)� ∧ �T(M ;x)� ∧ �P(M ;x)� of three
formulas, modelling the semantics of the initial state, the transition relation,
and the predecessor relation of M . We assert that the initial state q0 is the
only state reachable after reading the prefix of length 0, i.e., �I(M ;x)�

b1 = S0
q0 ∧∧

q∈Q\{q0} ¬S0
q . The condition is independent of the bound on x, thus we set

�I(M ;x)�
bk

bk−1
= � for all k > 1.

We encode the transition relation of M by stating that if M is in some state
q after reading hω(x)[1..i], and if there exists a transition from q to q′ labelled
with an a, then M can reach state q′ after i + 1 transitions if hω(x)[i + 1] = a.
This is expressed in the following formula:

�T(M ;x)�
bk

bk−1
=

bk(x)−1∧

i=bk−1(x)

∧

(q,a)∈dom(δ)

∧

q′∈δ(q,a)

(Si
q ∧ ha

x[i+1]) → Si+1
q′

196 K. Lotz et al.

The formula captures all possible forward moves from each state. We must also
ensure that a state is reachable only if it has a reachable predecessor, which we
encode with the following formula, where pred(q′) = {(q, a) | q′ ∈ δ(q, a)}:

�P(M ;x)�
bk

bk−1
=

bk(x)∧

i=bk−1(x)+1

∧

q′∈Q

(Si
q′ →

∨

(q,a)∈pred(q′)

(Si−1
q ∧ ha

x[i]))

The formula states that if state q′ is reachable after i ≥ 1 transitions, then
there must be a reachable predecessor state q ∈ δ̂({q0}, hω(x)[1..i−1]) such that
q′ ∈ δ(q, hω(x)[i]).

To decide whether the automaton accepts hω(x), we encode that it must
reach an accepting state after bk(x) transitions. Our corresponding encoding
is only valid for the particular bound bk(x). To account for this, we introduce
a fresh selector variable sk and define �acceptx .∈M

�bk

bk−1
= sk → ∨

qf ∈F S
bk(x)
qf .

Analogously, we define �rejectx .∈M
�bk

bk−1
= sk → ∧

qf ∈F ¬S
bk(x)
qf . In the k-th call

to the SAT solver and all following calls with the same bound on x, we solve
under the assumption that sk is true. In the first call k′ with bk(x) < bk′(x),
we re-encode the condition using a new selector variable sk′ and solve under
the assumption that sk is false and s′

k is true. The full encoding of the regular
constraint x

.∈ R is thus given by

�x
.∈ R�bk

bk−1
= �(M ; x)�bk

bk−1
∧ �acceptx .∈M

�bk

bk−1

and its negation x � .∈ R is encoded as

�x � .∈ R�bk

bk−1
= �(M ; x)�bk

bk−1
∧ �rejectx .∈M

�bk

bk−1
.

Variable Equations. Let x, y ∈ Γ be two string variables, let l =
min(bk−1(x),bk−1(y)), and let u = min(bk(x),bk(y)). We encode equality
between x and y with respect to bk position-wise up to u:

�x
.= y�bk

bk−1
=

u∧

i=l+1

∧

a∈Σλ

(ha
x[i] → ha

y[i]).

The formula asserts that for each position i ∈ l + 1, . . . , u, if x[i] is mapped to a
symbol, then y[i] is mapped to the same symbol (including λ). Since our encoding
of substitutions ensures that every position in a string variable is mapped to
exactly one character, �x

.= y�bk

bk−1
ensures x[i] = y[i] for i ∈ l + 1, . . . , u. In

conjunction with �x
.= y�

bk−1 , which encodes equality up to the l-th position, we
have symbol-wise equality of x and y up to bound u. Thus, if bk(x) = bk(y),
then the formula ensures the equality of both variables. If bk(x) > bk(y), we add
hλ
x[u+1] as an assumption to the solver to ensure x[i] = λ for i ∈ u + 1, . . . ,bk(x)

and, symmetrically, we add the assumption hλ
y[u+1] if bk(y) > bk(x).

Solving String Constraints Using SAT 197

For the negation x � .= y, we encode that h(x) and h(y) must disagree on at least
one position, which can happen either because they map to different symbols
or because the variable with the higher bound is mapped to a longer word. As
for the regular constraints, we again use selector variable sk to deactivate the
encoding for all later bounds, for which it will be re-encoded:

�x � .= y�bk

bk−1
=

⎧
⎪⎨

⎪⎩

sk → (
∨u

i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) if bk(x) = bk(y)
sk → (

∨u
i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) ∨ ¬hλ
y[u+1] if bk(x) < bk(y)

sk → (
∨u

i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) ∨ ¬hλ
x[u+1] if bk(x) > bk(y)

Constant Equations. Given a constant equation x
.= w, if the upper bound

of x is less than |w|, the atom is trivially unsatisfiable. Thus, for all i such that
bi(x) < |w|, we encode x

.= w with a simple literal ¬sx,w and add sx,w to the
assumptions. For bk(x) ≥ |w|, the encoding is based on the value of bk−1(x):

�x
.= w�bk

bk−1
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∧|w|
i=1 h

w[i]
x[i] if bk−1(x) < |w| = bk(x)

∧|w|
i=1 h

w[i]
x[i] ∧ hλ

x[|w|+1] if bk−1(x) < |w| < bk(x)

hλ
x[|w|+1] if bk−1(x) = |w| < bk(x)

� if |w| < bk−1(x)

If bk−1(x) < |w|, then equality is encoded for all positions 1, . . . , |w|. Addition-
ally, if bk(x) > |w|, we ensure that the suffix of x is empty starting from position
|w| + 1. If bk−1(x) = |w| < bk(x), then only the empty suffix has to be ensured.
Lastly, if |w| < bk−1(x), then �x

.= w�
bk−1 ⇔ �x

.= w�
bk .

Conversely, for an inequality x � .= w, if bk(x) < |w|, then any substitution
trivially is a solution, which we simply encode with �. Otherwise, we introduce
a selector variable s′

x,w and define

�x � .= w�bk

bk−1
=

⎧
⎪⎨

⎪⎩

s′
x,w → ∨|w|

i=1 ¬h
w[i]
x[i] if bk−1(x) < |w| = bk(x)

∨|w|
i=1 ¬h

w[i]
x[i] ∨ ¬hλ

x[|w|+1] if bk−1(x) < |w| < bk(x)

� if |w| < bk−1(x) ≤ bk(x)

If bk(x) = |w|, then a substitution h satisfies the constraint if and only if
h(x)[i] �= w[i] for some i ∈ 1, . . . , |w|. If bk(x) > |w|, in addition, h satisfies the
constraint if |h(x)| > |w|. Thus, if bk(x) = |w|, we perform solver call k under
the assumption s′

x,w, and if bk(x) > |w|, we perform it under the assumption
¬s′

x,w. Again, if |w| < bk−1(x), then �x � .= w�
bk−1 ⇔ �x � .= w�

bk .

Prefix and Suffix Constraints. A prefix constraint w
.� x expresses that

the first |w| positions of x must be mapped exactly onto w. As with equations
between a variable x and a constant word w, we could express this as a regular

198 K. Lotz et al.

constraint of the form x
.∈ w·?∗. However, we achieve a more efficient encoding

simply by dropping from the encoding of �x
.= w� the assertion that the suffix

of x starting at |w +1| be empty. Accordingly, a negated prefix constraint w � .� x
expresses that there is an index i ∈ 1, . . . , |w| such that the i-th position of x
is mapped onto a symbol different from w[i], which we encode by repurposing
�x � .= w� in a similar manner. Suffix constraints w

.� x and w � .� x can be encoded
by analogous modifications to the encodings of x .= w and x � .= w.

6 Refining Upper Bounds

Our procedure solves a series of SAT problems where the length bounds on string
variables increase after each unsatisfiable solver call. The procedure terminates
once the bounds are large enough so that further increasing them would be futile.
To determine when this is the case, we rely on the upper bounds of a shortest
solution to a formula ψ. We call a model h of ψ a shortest solution of ψ if ψ has
no model h′ such that

∑
x∈Γ |h′(x)| <

∑
x∈Γ |h(x)|. We first establish this bound

for conjunctive formulas in normal form, where all literals are of the form x � .= y,
x

.∈ R, or x � .∈ R. Once established, we show how the bound can be generalized
to arbitrary formulas.

Let ϕ be a formula in normal form and let x1, . . . , xn be the variables of ϕ.
For each variable xi, we can collect all the regular constraints on xi, that is, all
the literals of the form xi

.∈ R or xi � .∈ R that occur in ϕ. We can characterize
the solutions to all these constraints by a single nondeterministic finite automa-
ton Mi. If the constraints on xi are xi

.∈ R1, . . . , xi

.∈ Rk, xi � .∈ R′
1. . . . , xi � .∈ R′

l,

then Mi is an NFA that accepts the regular language
⋂k

t=1 L(Rt) ∩ ⋂l
t=1 L(R′

t),
where L(R) denotes the complement of L(R). We say that Mi accepts the regu-
lar constraints on xi in ϕ. If there are no such constraints on xi, then Mi is the
one-state NFA that accepts the full language Σ∗. Let Qi denote the set of states
of Mi. If we do not take inequalities into account and if the regular constraints
on xi are satisfiable, then a shortest solution h has length |h(xi)| ≤ |Qi|.

Theorem 6.1 gives a bound for the general case with variable inequalities.
Intuitively, we prove the theorem by constructing a single automaton P that
takes as input a vector of words W = (w1, ..., wn)T and accepts W iff the sub-
stitution hW with hW (xi) = wi satisfies ϕ. To construct P, we introduce one
two-state NFA for each inequality and we then form the product of these NFAs
with (slightly modified versions of) the NFAs M1, . . . , Mn. We can then derive
the bound of a shortest solution from the number of states of P.

Theorem 6.1. Let ϕ be a conjunctive formula in normal form over variables
x1, . . . , xn. Let Mi = (Qi, Σ, δi, q0,i, Fi) be an NFA that accepts the regular con-
straints on xi in ϕ and let k be the number of inequalities occurring in ϕ. If ϕ
is satisfiable, then it has a model h such that

|h(xi)| ≤ 2k × |Q1| × . . . × |Qn|.

Solving String Constraints Using SAT 199

Proof. Let λ be a symbol that does not belong to Σ and define Σλ = Σ∪{λ}. As
previously, we use λ to extend words of Σ∗ by padding. Given a word w ∈ Σ∗

λ, we
denote by ŵ the word of Σ∗ obtained by removing all occurrences of λ from w.
We say that w is well-formed if it can be written as w = v · λt with v ∈ Σ∗ and
t ≥ 0. In this case, we have ŵ = v. Thus a well-formed word w consists of a
prefix in Σ∗ followed by a sequence of λs.

Let Δ be the alphabet Σn
λ , i.e., the letters of Δ are the n-letter words over

Σλ. We can then represent a letter u of Δ as an n-element vector (u1, . . . , un),
and a word W of Δt can be written as an n × t matrix

W =

⎛

⎜
⎝

u11 . . . ut1

...
...

u1n . . . utn

⎞

⎟
⎠

where uij ∈ Σλ. Each column of this matrix is a letter in Δ and each row is a word
in Σt

λ. We denote by pi(W) the i-th row of this matrix and by p̂i(W) = p̂i(W)
the word pi(W) with all occurrences of λ removed. We say that W is well-formed
if the words p1(W), . . . , pn(W) are all well-formed. Given a well-formed word W ,
we can construct a mapping hW : {x1, . . . , xn} → Σ∗ by setting hW (xi) = p̂i(W)
and we have |hW (xi)| ≤ |W | = t.

To prove the theorem, we build an NFA P with alphabet Δ such that a well-
formed word W is accepted by P iff hW satisfies ϕ. The shortest well-formed
W accepted by P has length no more than the number of states of P and the
bound will follow.

We first extend the NFA Mi = (Qi, Σ, δi, q0,i, Fi) to an automaton M ′
i with

alphabet Δ. M ′
i has the same set of states, initial state, and final states as Mi.

Its transition relation δ′
i is defined by

δ′
i(q, u) =

{
δi(q, ui) if ui ∈ Σ
{q} if ui = λ

One can easily check that M ′
i accepts a word W iff Mi accepts p̂i(W).

For an inequality xi � .= xj , we construct an NFA Di,j = ({e, d},Δ, δ, e, {d})
with transition function defined as follows:

δ(e, u) = {e} if ui = uj

δ(e, u) = {d} if ui �= uj

δ(d, u) = {d}.

This NFA has two states. It starts in state e (for “equal”) and stays in e as long
as the characters ui and uj are equal. It transitions to state d (for “different”)
on the first u where ui �= uj and stays in state d from that point. Since d is the
final state, a word W is accepted by Di,j iff pi(W) �= pj(W). If W is well-formed,
we also have that W is accepted by Di,j iff p̂i(W) �= p̂j(W).

Let xi1 � .= xj1 , . . . , xik
� .= xjk

denote the k inequalities of ϕ. We define P to be
the product of the NFAs M ′

1, . . . , M
′
n and Di1,j1 , . . . , Dik,jk

. A well-formed word

200 K. Lotz et al.

W is accepted by P if it is accepted by all M ′
i and all Dit,jt

, which means that
P accepts a well-formed word W iff hW satisfies ϕ.

Let P be the set of states of P. We then have |P | ≤ 2k × |Q1| × . . . × |Qn|.
Assume ϕ is satisfiable, so P accepts a well-formed word W . The shortest well-
formed word accepted by P has an accepting run that does not visit the same
state twice. So the length of this well-formed word W is no more than |P |. The
mapping hW satisfies ϕ and for every xi, it satisfies |hW (xi)| = |p̂i(W)| ≤ |W | ≤
|P | ≤ 2k × |Q1| × . . . × |Qn|. �

The bound given by Theorem 6.1 holds if ϕ is in normal form but it also holds
for a general conjunctive formula ψ. This follows from the observation that
converting conjunctive formulas to normal form preserves the length of solutions.
In particular, we convert ψ ∧x

.= y to formula ψ′ = ψ[x := y] so x does not occur
in ψ′, but clearly, a bound for y in ψ′ gives us the same bound for x in ψ.

In practice, before we apply the theorem we decompose the conjunctive for-
mula ϕ into subformulas that have disjoint sets of variables. We write ϕ as
ϕ1 ∧ . . . ∧ ϕm where the conjuncts have no common variables. Then, ϕ is satisfi-
able if each conjunct ϕt is satisfiable and we derive upper bounds on the shortest
solution for the variables of ϕt, which gives more precise bounds than deriving
bounds from ϕ directly. In particular, if a variable xi of ψ does not occur in any
inequality, then the bound on |h(xi)| is |Qi|.

Theorem 6.1 only holds for conjunctive formulas. For an arbitrary (non-
conjunctive) formula ψ, a generalization is to convert ψ into disjunctive normal
form. Alternatively, it is sufficient to enumerate the subsets of lits(ψ). Given a
subset A of lits(ψ), let us denote by dA a mapping that bounds the length of
solutions to A, i.e., any solution h to A satisfies |h(x)| ≤ dA(x). This mapping
dA can be computed from Theorem 6.1. The following property gives a bound
for ψ.

Proposition 6.2. If ψ is satisfiable, then it has a model h such that for all
x ∈ Γ , it holds that |h(x)| ≤ max{dA(x) | A ⊆ lits(ψ)}.
Proof. We can assume that ψ is in negation normal form. We can then convert ψ
to disjunctive normal form ψ ⇔ ψ1∨· · ·∨ψn and we have lits(ψi) ⊆ lits(ψ). Also,
ψ is satisfiable if and only if at least one ψi is satisfiable and the proposition
follows. �

Since there are 2|lits(ψ)| subsets of lits(ψ), a direct application of Proposition 6.2
is rarely feasible in practice. Fortunately, we can use unsatisfiable cores to reduce
the number of subsets to consider.

6.1 Unsatisfiable-Core Analysis

Instead of calculating the bounds upfront, we use the unsatisfiable core produced
by the SAT solver after each incremental call to evaluate whether the upper

Solving String Constraints Using SAT 201

bounds on the variables exceed the upper bounds of the shortest solution. If
�ψ�

b is unsatisfiable for bounds b, then it has an unsatisfiable core

C = CA ∧ Ch ∧
∧

a∈atoms+(ψ)

Ca ∧
∧

a∈atoms−(ψ)

Cā

with (possibly empty) subsets of clauses CA ⊆ ψA, Ch ⊆ �h�
b , Ca ⊆ (d(a) →

�a�
b), and Cā ⊆ (¬d(a) → �¬a�

b). Here we implicitly assume ψA, d(a) → �a�
b ,

and ¬d(a) → �¬a�
b to be in CNF. Let C+ = {a | Ca �= ∅} and C− = {¬a | Cā �=

∅} be the sets of literals whose encodings contain at least one clause of the core
C. Using these sets, we construct the formula

ψC = ψA ∧
∧

a∈C+

d(a) → a ∧
∧

¬a∈C−
¬d(a) → ¬a,

which consists of the conjunction of the abstraction and the definitions of the
literals that are contained in C+, respectively C−. Recall that ψ is equisatisfiable
to the conjunction ψA ∧ ∧

d∈D d of the abstraction and all definitions in D. Let
ψ′ denote this formula, i.e.,

ψ′ = ψA ∧
∧

a∈atoms+(ψ)

d(a) → a ∧
∧

¬a∈atoms−(ψ)

¬d(a) → ¬a.

The following proposition shows that it suffices to refine the bounds according
to ψC .

Proposition 6.3. Let ψ be unsatisfiable with respect to b and let C be an unsat-
isfiable core of �ψ�

b . Then, ψC is unsatisfiable with respect to b and ψ′ |= ψC.

Proof. By definition, we have �ψC�
b = ψA ∧ �h�

b ∧ ∧
a∈C+ d(a) → �a�

b ∧
∧

¬a∈C− ¬d(a) → ¬�¬a�
b . This implies C ⊆ �ψC�

b and, since C is an unsat-

isfiable core, �ψC�
b is unsatisfiable. That is, ψC is unsatisfiable with respect

to b. We also have ψ′ |= ψC since C+ ⊆ atoms+(ψ) and C− ⊆ atoms−(ψ). �

Applying Proposition 6.2 to ψC results in the upper bounds of the shortest
solution hC for ψC . If |hC(x)| ≤ b(x) holds for all x ∈ Γ , then ψC has no solution
and unsatisfiability of ψ′ follows from Proposition 6.3. Because ψ and ψ′ are
equisatisfiable, we can conclude that ψ is unsatisfiable.

Otherwise, we increase the bounds on the variables that occur in ψC while
keeping bounds on the other variables unchanged: We construct bk+1 with
bk(x) ≤ bk+1(x) ≤ |hC(x)| for all x ∈ Γ , such that bk(y) < bk+1(y) holds for
at least one y ∈ V (ψC). By strictly increasing at least one variable’s bound, we
eventually either reach the upper bounds of ψC and return unsatisfiability, or we
eliminate it as an unsatisfiable implication of ψ. As there are only finitely many
possibilities for C and thus for ψC , our procedure is guaranteed to terminate.

202 K. Lotz et al.

We do not explicitly construct formula ψC to compute bounds on hC as we
know the set lits(ψC) = C+ ∪ C−. Finding upper bounds still requires enumerat-
ing all subsets of lits(ψC), but we have |lits(ψC)| ≤ |lits(ψ)| and usually lits(ψC)
is much smaller than lits(ψ). For example, consider the formula

ψ = z � .= abd ∧ (x .= a ∨ x
.∈ ab∗) ∧ x

.= y ∧ (y .= bbc ∨ z ∈ a(b|c)∗d) ∧ y
.∈ ab·?∗

which is unsatisfiable for the bounds b(x) = b(y) = 1 and b(z) = 4.
The unsatisfiable core C returned after solving �ψ�

b results in the for-
mula ψC = (x .= a ∨ x

.∈ ab∗) ∧ x
.= y ∧ y

.∈ ab·?∗ containing four literals. Finding
upper bounds for ψC thus amounts to enumerating just 24 subsets, which is sub-
stantially less than considering all 27 subsets of lits(ψ) upfront. The conjunction
of a subset of lits(ψC) yielding the largest upper bounds is x

.∈ ab∗ ∧ x
.= y ∧ y

.∈
ab·?∗, which simplifies to x

.∈ ab∗ ∩ ab·?∗ and has a solution of length at most 2
for x and y. With bounds b(x) = b(y) = 2 and b(z) = 4, the formula is satisfiable.

7 Implementation

We have implemented our approach in a solver called nfa2sat. nfa2sat is
written in Rust and uses CaDiCaL [9] as the backend SAT solver. We use the
incremental API provided by CaDiCaL to solve problems under assumptions.
Soundness of nfa2sat follows from Theorem 5.1. For completeness, we rely
on CaDiCaL’s failed function to efficiently determine failed assumptions, i.e.,
assumption literals that were used to conclude unsatisfiability.

The procedure works as follows. Given a formula ψ, we first introduce one
fresh Boolean selector variable sl for each theory literal l ∈ lits(ψ). Then, instead
of adding the encoded definitions of the theory literals directly to the SAT
solver, we precede them with their corresponding selector variables: for a pos-
itive literal a, we add sa → (d(a) → �a�), and for a negative literal ¬a, we
add s¬a → (¬d(a) → �¬a�) (considering assumptions introduced by �a� as unit
clauses). In the resulting CNF formula, the new selector variables are present
in all clauses that encode their corresponding definition, and we use them as
assumptions for every incremental call to the SAT solver, which does not affect
satisfiability. If such an assumption failed, then we know that at least one of the
corresponding clauses in the propositional formula was part of an unsatisfiable
core, which enables us to efficiently construct the sets C+ and C− of positive and
negative atoms present in the unsatisfiable core. As noted previously, we have
lits(ψC) = C+ ∪C− and hence the sets are sufficient to find bounds on a shortest
model for ψC .

This approach is efficient for obtaining lits(ψC) but since CaDiCaL does not
guarantee that the set of failed assumptions is minimal, lits(ψC) is not minimal
in general. Moreover, even a minimal lits(ψC) can contain too many elements
for processing all subsets. To address this issue, we enumerate the subsets only
if lits(ψC) is small (by default, we use a limit of ten literals). In this case, we
construct the automata Mi used in Theorem 6.1 for each subset, facilitating the
techniques described in [7] for quickly ruling out unsatisfiable ones. Otherwise,

Solving String Constraints Using SAT 203

instead of enumerating the subsets, we resort to sound approximations of upper
bounds, which amounts to over-approximating the number of states without
explicitly constructing the automata (c.f. [14]).

Once we have obtained upper bounds on the length of the solution of ψC , we
increment bounds on all variables involved, except those that have reached their
maximum. Our default heuristics computes a new bound that is either double
the current bound of a variable or its maximum, whichever is smaller.

8 Experimental Evaluation

We have evaluated our solver on a large set of benchmarks from the ZaligVin-

der [22] repository2. The repository contains 120,287 benchmarks stemming
from both academic and industrial applications. In particular, all the string prob-
lems from the SMT-LIB repository,3 are included in the ZaligVinder reposi-
tory. We converted the ZaligVinder problems to the SMT-LIB 2.6 syntax and
removed duplicates. This resulted in 82,632 unique problems out of which 29,599
are in the logical fragment we support.

We compare nfa2sat with the state-of-the-art solvers cvc5 (version 1.0.3)
and Z3 (version 4.12.0). The comparison is limited to these two solvers because
they are widely adopted and because they had the best performance in our evalu-
ation. Other string solvers either don’t support our logical fragment (CertiStr,
Woorpje) or gave incorrect answers on the benchmark problems considered
here. Older, no-longer maintained, solvers have known soundness problems, as
reported in [7] and [27].

We ran our experiment on a Linux server, with a timeout of 1200 s seconds
CPU time and a memory limit of 16 GB. Table 1 shows the results. As a single
tool, nfa2sat solves more problems than cvc5 but not as many as Z3. All three
tools solve more than 98% of the problems.

The table also shows results of portfolios that combine two solvers. In a port-
folio configuration, the best setting is to use both Z3 and nfa2sat. This com-
bination solves all but 20 problems within the timeout. It also reduces the total
run-time from 283,942 s for Z3 (about 79 h) to 28,914 s for the portfolio (about
8 h), that is, a 90% reduction in total solve time. The other two portfolios—
namely, Z3 with cvc5 and nfa2sat with cvc5—also have better performance
than a single solver, but the improvement in runtime and number of timeouts is
not as large.

Figure 4a illustrates why nfa2sat and Z3 complement each other well. The
figure shows three scatter plots that compare the runtime of nfa2sat and Z3 on
our problems. The plot on the left compares the two solvers on all problems, the
one in the middle compares them on satisfiable problems, and the one on the right
compares them on unsatisfiable problems. Points in the left plot are concentrated
close to the axes, with a smaller number of points near the diagonal, meaning
that Z3 and nfa2sat have different runtime on most problems. The other two
2 https://github.com/zaligvinder/zaligvinder.
3 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF S.

https://github.com/zaligvinder/zaligvinder
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S

204 K. Lotz et al.

Table 1. Evaluation on ZaligVinder benchmarks. The three left columns show results
of individual solvers. The other three columns show results of portfolios combining two
solvers.

cvc5 Z3 nfa2sat cvc5

Z3
nfa2sat

cvc5

nfa2sat

Z3

SAT 22895 22927 22922 22934 22934 22934

UNSAT 6259 6486 6405 6526 6598 6645

Timeout 445 185 206 139 67 20

Out-of-memory 0 1 66 n/a n/a n/a

Total Solved 29154 29413 29327 29460 29532 29579

Total Runtime (s) 655877 283942 275420 169553 126655 28914

Fig. 4. Comparison of runtime (in seconds) with Z3 and cvc5. The left plots include
all problems, the middle plots include only satisfiable problems, and the right plots
include only unsatisfiable problems. The lines marked “failed” correspond to problems
that are not solved because a solver ran out of memory. The lines marked “timeout”
correspond to problems not solved because of a timeout (1200 s).

plots show this even more clearly: nfa2sat is faster on satisfiable problems while
Z3 is faster on unsatisfiable problems. Figure 4b shows analogous scatter plots
comparing nfa2sat and cvc5. The two solvers show similar performance on
a large set of easy benchmarks although cvc5 is faster on problems that both

Solving String Constraints Using SAT 205

solvers can solve in less than 1 s. However, cvc5 times out on 38 problems that
nfa2sat solves in less than 2 s. On unsatisfiable problems, cvc5 tends to be
faster than nfa2sat, but there is a class of problems for which nfa2sat takes
between 10 and 100 s whereas cvc5 is slower.

Overall, the comparison shows that nfa2sat is competitive with cvc5 and
Z3 on these benchmarks. We also observe that nfa2sat tends to work better on
satisfiable problems. For best overall performance, our experiments show that a
portfolio of Z3 and nfa2sat would solve all but 20 problems within the timeout,
and reduce the total solve time by 90%.

9 Conclusion

We have presented the first eager SAT-based approach to string solving that is
both sound and complete for a reasonably expressive fragment of string theory.
Our experimental evaluation shows that our approach is competitive with the
state-of-the-art lazy SMT solvers Z3 and cvc5, outperforming them on satisfi-
able problems but falling behind on unsatisfiable ones. A portfolio that combines
our approach with these solvers—particularly with Z3—would thus yield strong
performance across both types of problems.

In future work, we plan to extend our approach to a more expressive logi-
cal fragment, including more general word equations. Other avenues of research
include the adaption of model checking techniques such as IC3 [10] to string
problems, which we hope would lead to better performance on unsatisfiable
instances. A particular benefit of the eager approach is that it enables the use
of mature techniques from the SAT world, especially for proof generation and
parallel solving. Producing proofs of unsatisfiability is complex for traditional
CDCL(T) solvers because of the complex rewriting and deduction rules they
employ. In contrast, efficiently generating and checking proofs produced by SAT
solvers (using the DRAT format [32]) is well-established and practicable. A chal-
lenge in this respect would be to combine unsatisfiability proofs from a SAT
solver with proof that our reduction to SAT is sound. For parallel solving, we
plan to explore the use of a parallel incremental solver (such as iLingeling [9])
as well as other possible ways to solve multiple bounds in parallel.

References

1. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: 2018 Formal
Methods in Computer Aided Design (FMCAD), pp. 1–5 (2018). https://doi.org/
10.23919/FMCAD.2018.8602997

2. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp.
1–9 (2018). https://doi.org/10.23919/FMCAD.2018.8602994

https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602994

206 K. Lotz et al.

3. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13243, pp. 415–442. Springer (2022). https://doi.org/10.1007/
978-3-030-99524-9 24

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). www.smt-
lib.org

5. Berzish, M., et al.: String theories involving regular membership predicates: From
practice to theory and back. In: Lecroq, T., Puzynina, S. (eds.) Combinatorics on
Words, pp. 50–64. Springer International Publishing, Cham (2021)

6. Berzish, M., et al.: Towards more efficient methods for solving regular-expression
heavy string constraints. Theoretical Computer Science 943, 50–72 (2023). https://
doi.org/10.1016/j.tcs.2022.12.009, https://www.sciencedirect.com/science/article/
pii/S030439752200723X

7. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic
over string length. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification,
pp. 289–312. Springer International Publishing, Cham (2021)

8. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009). https://doi.org/10.3233/
978-1-58603-929-5-457

9. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

11. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290362

12. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.:
On solving word equations using SAT. In: Filiot, E., Jungers, R., Potapov, I.
(eds.) Reachability Problems, pp. 93–106. Springer International Publishing, Cham
(2019)

13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003). https://doi.org/10.
1016/S1571-0661(05)82542-3, https://www.sciencedirect.com/science/article/pii/
S1571066105825423, bMC’2003, First International Workshop on Bounded Model
Checking

14. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
CoRR abs/1509.03254 (2015), http://arxiv.org/abs/1509.03254

15. Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model checking.
In: Lin, A.W. (ed.) Programming Languages and Systems, pp. 19–30. Springer
International Publishing, Cham (2019)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.smt-lib.org
www.smt-lib.org
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://www.sciencedirect.com/science/article/pii/S030439752200723X
https://www.sciencedirect.com/science/article/pii/S030439752200723X
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/3290362
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://www.sciencedirect.com/science/article/pii/S1571066105825423
http://arxiv.org/abs/1509.03254

Solving String Constraints Using SAT 207

16. Jez, A.: Word Equations in Nondeterministic Linear Space. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 80, pp. 95:1–95:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.
4230/LIPIcs.ICALP.2017.95, http://drops.dagstuhl.de/opus/volltexte/2017/7408

17. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: A certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs, pp. 210–224. CPP 2022, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3497775.3503691

18. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM 47(3), 483–505 (may 2000). https://doi.org/
10.1145/337244.337255

19. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: A solver for
string constraints. In: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pp. 105–116. ISSTA ’09, Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1572272.1572286

20. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from N objects. In:
Fourth Workshop on Constraints in Formal Verification (CFV) (2007)

21. Kulczynski, M., Lotz, K., Nowotka, D., Poulsen, D.B.: Solving string theories
involving regular membership predicates using SAT. In: Legunsen, O., Rosu, G.
(eds.) Model Checking Software, pp. 134–151. Springer International Publishing,
Cham (2022)

22. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Zaligvinder: A
generic test framework for string solvers. J. Softw.: Evolution and Process
n/a(n/a), e2400. https://doi.org/10.1002/smr.2400, https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2400

23. Makanin, G.S.: The problem of solvability of equations in a free semi-
group. Math. USSR, Sb. 32, 129–198 (1977). https://doi.org/10.1070/
SM1977v032n02ABEH002376

24. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A multi-
armed string solver. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) Formal Meth-
ods, pp. 389–406. Springer International Publishing, Cham (2021)

25. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

26. Murray, N.V.: Completely non-clausal theorem proving. Artificial Intelligence
18(1), 67–85 (1982). https://doi.org/10.1016/0004-3702(82)90011-X, https://
www.sciencedirect.com/science/article/pii/000437028290011X

27. Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C.W., Tinelli, C.: Even faster
conflicts and lazier reductions for string solvers. In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes in Computer Sci-
ence, vol. 13372, pp. 205–226. Springer (2022). https://doi.org/10.1007/978-3-031-
13188-2 11, https://doi.org/10.1007/978-3-031-13188-2 11

28. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Computation 2(3), 293–304 (1986). https://doi.org/10.
1016/S0747-7171(86)80028-1, https://www.sciencedirect.com/science/article/pii/
S0747717186800281

https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
http://drops.dagstuhl.de/opus/volltexte/2017/7408
https://doi.org/10.1145/3497775.3503691
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/1572272.1572286
https://doi.org/10.1002/smr.2400
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2400
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2400
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1016/0004-3702(82)90011-X
https://www.sciencedirect.com/science/article/pii/000437028290011X
https://www.sciencedirect.com/science/article/pii/000437028290011X
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://www.sciencedirect.com/science/article/pii/S0747717186800281
https://www.sciencedirect.com/science/article/pii/S0747717186800281

208 K. Lotz et al.

29. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), pp. 495–500 (1999). https://doi.org/10.1109/SFFCS.1999.814622

30. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Computer Aided Verification. pp. 3–18. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 1

31. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528 (2010). https://doi.org/10.1109/SP.2010.38

32. Wetzler, N., Heule, M., Jr., W.A.H.: Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applica-
tions of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8561, pp. 422–429.
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3 31, https://doi.org/
10.1007/978-3-319-09284-3 31

33. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Design 44(1), 44–
70 (2014). https://doi.org/10.1007/s10703-013-0189-1, https://doi.org/10.1007/
s10703-013-0189-1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
http://creativecommons.org/licenses/by/4.0/

	Solving String Constraints Using SAT
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Reducing the Alphabet
	5 Propositional Encodings
	5.1 Substitutions
	5.2 Theory Literals

	6 Refining Upper Bounds
	6.1 Unsatisfiable-Core Analysis

	7 Implementation
	8 Experimental Evaluation
	9 Conclusion
	References

