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Plant phenology plays a vital role in assessing climate change. To monitor this,

individual plants are traditionally visited and observed by trained volunteers

organized in national or international networks - in Germany, for example, by

the German Weather Service, DWD. However, their number of observers is

continuously decreasing. In this study, we explore the feasibility of using

opportunistically captured plant observations, collected via the plant

identification app Flora Incognita to determine the onset of flowering and,

based on that, create interpolation maps comparable to those of the DWD.

Therefore, the opportunistic observations of 17 species collected in 2020 and

2021 were assigned to “Flora Incognita stations” based on location and altitude in

order to mimic the network of stations forming the data basis for the

interpolation conducted by the DWD. From the distribution of observations,

the percentile representing onset of flowering date was calculated using a

parametric bootstrapping approach and then interpolated following the same

process as applied by the DWD. Our results show that for frequently observed,

herbaceous and conspicuous species, the patterns of onset of flowering were

similar and comparable between both data sources. We argue that a prominent

flowering stage is crucial for accurately determining the onset of flowering from

opportunistic plant observations, and we discuss additional factors, such as

species distribution, location bias and societal events contributing to the

differences among species and phenology data. In conclusion, our study

demonstrates that the phenological monitoring of certain species can benefit

from incorporating opportunistic plant observations. Furthermore, we highlight

the potential to expand the taxonomic range of monitored species for

phenological stage assessment through opportunistic plant observation data.

KEYWORDS

citizen science, phenology, phenology monitoring, plant identification app,
opportunistic plant observation, German Meteorological Service, DWD
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1 Introduction

In recent years, phenology, the study of recurrent events within

a plant’s life cycle, has received increasing public and scientific

attention: Growing scientific evidence implies that the timings of

certain phenological events, e.g., bud break, flowering, fruiting or

leaf senescence, are significantly affected by climate change (Piao

et al., 2019; Inouye, 2022). The resulting phenological shifts impact

the structure and functioning of ecosystems, ranging from affecting

species dispersal and disrupting species interactions to altering the

carbon cycle (Cleland et al., 2007; Piao et al., 2019). Therefore,

continuous monitoring, assessment and modeling of phenological

dynamics is critical to understand how plants respond to a changing

world and how this affects processes and functions

within ecosystems.

Many methods are available to record plant phenology at

different temporal and spatial scales (Katal et al., 2022). At the

broadest scale, spectral vegetation indices derived by remote sensing

and representing the seasonal dynamics of local vegetation are used

to inform global models of landscape-scale dynamics (Cleland et al.,

2007; White et al., 2009; Richardson et al., 2013). Additionally,

PhenoCams are used to collect ground-based phenological data at a

network of sites across the world (Brown et al., 2016; Richardson,

2019). Over time, these networks provide a continuous record of

plant greening and senescence. Besides these broad-scale

phenological patterns, co-occurring species typically show species-

specific responses to changes in climate (Bucher et al., 2018; König

et al., 2018), that might be only weakly correlated with remotely

sensed data on larger spatio-temporal scales (Badeck et al., 2004;

Montgomery et al., 2020).

To study and systematically collect detailed information about

phenological events at the level of individual species, phenological

networks such as the European Phenology Network (EPN) (van

Vliet et al., 2003), the International Phenological Garden network

(IPG) (Renner and Chmielewski, 2022), the USA National

Phenology Network (USA-NPN) (National Phenology Network,

2022) or the PhenObs network (Nordt et al., 2021), have been

established. Usually, the phenophases recorded by them are leaf-

out, bud break, initial growth for annual plants, expansion of leaves,

first flowering day, appearance of fruits, senescence, and leaf

abscission (Koch et al., 2007; Morisette et al., 2009; Denny et al.,

2014; Berra and Gaulton, 2021; Nordt et al., 2021).

To capture phenological changes at local scales across larger

areas, national authorities often establish and maintain networks

dedicated to this purpose (Beaubien and Hamann, 2011; Taylor

et al., 2019). For example in Germany, the German Meteorological

Service (Deutscher Wetterdienst, DWD) curates and manages a

national phenological network of citizen scientists. As a result, a

growing long-term dataset based on the observations of thousands

of trained, voluntary observers is being collected, covering

phenological observations dating back to 1951 (Kaspar et al.,

2014). Each observer follows a well-defined protocol ensuring

consistency, and contributes spatially highly resolved ground-

based data. This detailed coverage of multiple phenological stages
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of different plant species throughout the growing season can be used

to inform or calibrate global vegetation and climate models (Badeck

et al., 2004). However, the decline in numbers of volunteer

observers within these networks poses a significant threat to the

accuracy of data interpolation. According to Yuan et al. (2021), the

number of volunteer observers in Germany has decreased from over

2,000 in the early 1980s to less than 1,000 in the early 2020s. Similar

trends of decreasing observer numbers have been observed in other

networks, including the Austrian phenology network (Yuan et al.,

2021). To facilitate annual observations, most species observed by

phenology networks are woody or represent herbaceous or grass

species which are relevant to agriculture. Only a small subset of

observed species represents herbaceous wildflowers.

As with fewer numbers of volunteer phenology observers the

collection of systematic phenological records declines, there is a

noticeable increase in a new source of data, consisting of

opportunistic and unsystematic plant observations, originating

from AI-based plant identification applications. With the advent

of deep learning methods (Goodfellow et al., 2016), AI-based

species identification is reaching accuracy levels comparable to

human experts (Wäldchen and Mäder, 2018; Jones, 2020; Villon

et al., 2020; Pärtel et al., 2021). With these technologies, anyone

without prior knowledge of plant species can easily and accurately

identify common vascular plants in the field. The shared ancillary

information on time and location turns these mobile observations

into an invaluable resource for various monitoring tasks (Bonnet

et al., 2020; Mahecha et al., 2021). Despite the popularity of these

apps, little is known about their potential to capture phenological

information (Puchałka et al., 2022). Initial studies show that plants

are mostly observed at specific phenological stages, such as

flowering or fruit ripeness (Mäder et al., 2021). This offers a wide

range of possibilities for plant phenology monitoring and studying

large-scale phenological processes. In this study, for the first time,

we show how opportunistic plant observations can be used as input

data for phenology interpolation models. We use the observations

of 17 species recorded with Flora Incognita; an AI-based plant

identification app developed to automatically identify vascular plant

species (Mäder et al., 2021). Since the actual observation counts

reach their highest numbers in Germany, we chose the interpolation

model for climatological and phenological maps currently

employed by the German Meteorological Service (Müller-

Westermeier (1995); W. Janssen (pers. comm.)) for comparison.

Furthermore, we explore if species with distinct phenological

patterns also share common biological traits, since users of

identification apps might document their plant findings based on

different characteristics than the trained DWD observers.

We ask: (1) Can phenological phases of plant species, such as

onset of flowering be derived from unsystematic and opportunistic

plant observations? (2) How can unsystematic observations be

processed in order to use them as input for interpolation models in

the same way as targeted and systematic observations collected by

trained phenology observers? (3) How do spatially interpolated maps

differ between opportunistic and targeted observations, and do plant

characteristics have an impact on the interpolation validity?
frontiersin.org
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2 Materials and methods

2.1 Data

2.1.1 Phenological observations from German
Meteorological Service

The German Meteorological Service (DWD) is managing a

network of registered and trained voluntary observers who

observe individual plants of a specific set of species throughout

the year, according to a strict protocol (Zimmermann and Polte-

Rudolf, 2013; Kaspar et al., 2014). Each observer is assigned a

unique ID that is referred to as “station”, covering a specific

observation point. Depending on the species, the number of

stations is variable, resulting in a heterogeneous spatial resolution

of the data. During vegetation season, the observers are asked to

visit their observed individuals at least twice a week, noting the day

when certain phenological stages have arrived. The final report lists

are handed back to the DWD by the end of the year and are made

freely available by the organization (https://opendata.dwd.de/

climate/environment/CDC/grids/germany/annual/phenology). We

refer to this kind of data as “targeted” as they are collected with the

purpose of monitoring phenology following a defined standard

protocol. For this study, we considered the DWD reports of 2020
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and 2021 of all species for which an interpolated dataset was

available that reported data on the onset of flowering, resulting in

17 species available for comparison, including 8 trees, 3 shrubs, and

6 herbaceous species (Table 1).

2.1.2 Flora Incognita records
Flora Incognita (FI) is a freely available mobile application

allowing automated, image-based identification of wild flowering

plants (Mäder et al., 2021). Currently, the app is able to identify

more than 16000 vascular plant species with a focus on the Central

European flora. To create an opportunistic plant record, users need

to confirm the identification suggested by the classifier. A record

consists of the species name, its geolocation, time and date of the

observation (Mäder et al., 2021) Since its release in 2018, more than

100 million identification requests have been committed worldwide.

In contrast to DWD’s phenology observations, the Flora Incognita

records are not following any fixed protocol and are not purposely

designed to record phenological data. We refer to this kind of data

as “opportunistic”, as they are collected in an unsystematic manner,

whenever people are interested to take a picture of a plant to

identify it. Due to the AI-based species identification, even botanical

laymen without any prior knowledge can identify a plant and

provide data. For implementing the same interpolation model for
TABLE 1 Observation and station count for FI (Flora Incognita) and DWD (German Meteorological Service) data for 17 species and two years (2020
and 2021).

Species

Stations Special traits

FI records FI DWD Growth
forms*

Cultivation* Flowering
season*

Conspicuo-
smess

2020 2021 2020 2021 2020 2021

Alnus glutinosa 11,741 10,746 486 482 764 840 tree wild pre spring no

Artemisia vulgaris agg. 22,707 22,187 513 539 695 699 herb wild mid-summer no

Betula pendula 5,835 3,890 231 173 901 849 tree wild spring no

Brassica napus 7,400 1,353 280 286 599 590 herb cultivated spring yes

Calluna vulgaris 4,806 5,120 103 122 419 406 shrub wild early autumn yes

Corylus avellana 20,345 17,694 644 703 955 962 shrub wild pre spring no

Fraxinus excelsior 14,483 12,193 565 542 753 733 tree wild spring no

Galanthus nivalis 1,242 4,000 – 226 967 999 herb wild pre spring yes

Malus sylvestris agg. 21,752 18,518 631 593 843 857 tree cultivated spring yes

Prunus avium 15,965 13,395 90 83 134 130 tree cultivated spring yes

Robinia pseudoacacia 14,276 14,276 549 555 723 726 tree wild start summer yes

Salix caprea 6,842 7,749 294 398 895 913 tree wild pre spring yes

Sambucus nigra 26,743 23,339 743 713 962 964 shrub wild early summer yes

Secale cereale 4,063 4,106 157 159 344 346 herb cultivated early summer no

Taraxacum officinale 25,878 25,592 707 740 981 988 herb wild spring yes

Tilia platyphyllos 7,450 5,539 435 355 849 844 tree wild summer no

Tussilago farfara 7,945 13,391 219 453 787 781 herb wild pre spring yes
The first column shows the overall number of observations collected via the FI app in each year. The second column shows the resulting number of stations for both sources of data (see the
methods section for a detailed explanation of the stations). The last column shows the selected traits for each species. *Traits compiled from the BiolFlor database (Kühn et al., 2004).
Conspicuousness was assessed by the authors.
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the FI and the DWD data, we used the 2020 and 2021 records of the

17 DWD-based plant species located in Germany, resulting in

491,989 FI records contributing to this study.
2.2 Processing Flora Incognita records

2.2.1 Definition of Flora Incognita stations
In order to use the opportunistic FI observation data for the

same phenology interpolation models as the DWD, we defined

similar “stations” for the FI data (see Figure 1). We selected all FI

records of a species within a 5,000m buffer radius and an altitude

range of ( ± 25 m asl) around a DWD station, based on the

coordinates of all available DWD stations for that species in a given

year. This relatively narrow range was chosen due to the

significance of altitude as a predictor of phenology and its

utilization as an input in the interpolation model. If this number

of records reached or exceeded a minimum of 35, the selection

process stopped and we used the records within the buffer radius to

calculate their day of onset of flowering. If the number of records

was lower than 35, the circle’s radius was increased by 1,000 m. This

process was iterated until one of the following two conditions was
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fulfilled: at least 35 records were assigned to that station or its buffer

radius exceeded 55,000 m. Records were not necessarily exclusive to

only one station. If an observation already contributed to a station

while being in the vicinity of another one, it contributed to both

stations. If fewer than 35 records were available within a buffer, no

station was established at this location.

2.2.2 Calculating the onset of flowering of Flora
Incognita observations

In the next step, the number of observations was fitted against

their Day-of-Year (DOY) (Figure 1E) to illustrate the local

distribution of observations throughout the year for each species.

By analyzing these observation curves, we determined the onset of

flowering. As the functional relationship underlying the onset of

flowering is unknown and the curve can have different shapes, we

used the R package phenesse (Belitz et al., 2020) to calculate a

suitable percentile of the observations curve that represents the

onset of flowering for each species. Phenesse uses a parametric

bootstrapping approach to calculate phenological metrics for

arbitrary percentiles based on the Weibull distribution. As the

percentile indicating onset of flowering in a distribution of plant

observations from various stages is not obvious, we empirically
A B

D E F

C

FIGURE 1

Process diagram, showing how plant observation data are converted into onset of flowering dates and related to DWD (German meteorological
service) observation stations for one examplary species. (A) Extracting geolocations of DWD stations (B) Extracting geolocations of Flora Incognita
records for a given year and species. (C) Elevation filter: Flora Incognita records in the vicinity of DWD stations are filtered to be in a range of ± 25 m
asl. of the elevation of the respective DWD station. (D) Radius filter: Flora Incognita observations are filtered based on the distance to the DWD
station. Initial radius of 5 km, extendable to max. 55 km until at least 35 observations were present. (E) Estimation of the onset of flowering DOY
(Day-Of-Year). (F) Flora Incognita stations (FI stations) representing onset of flowering DOYs for a subset of the available DWD stations.
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identified the most appropriate percentile for each species by

comparing the median across all gridcells for different percentiles.

The percentile closest to the median of the DWD interpolation in

2020 was then chosen as species-specific value and used for both

years (Table 2). The only exception here was Galanthus nivalis,

where we could only use the 2021 data as the number of

observations in 2020 was too low to define meaningful stations.
2.3 Spatial interpolation of onset
of flowering

Based on the available station data, the DWD employs spatial

interpolation techniques to estimate phenology data for each

observed stage of various species across Germany. The resulting

maps offer a highly resolved spatial representation, providing

interpolated Day-Of-Year values for each observed species within

1x1 km grid cells. Our spatial interpolations follow the same

procedure as implemented by the DWD, which relies on the

longitude, latitude, and elevation of each station location. To

achieve this, the administrative area of Germany is divided into

overlapping circles with a radius of 1.95°. This division results in a

total of 30 circles, with 6 circles in the latitudinal direction and 5

circles in the longitudinal direction. The centers of these circles are

also positioned 1.95° apart in both the latitudinal and

longitudinal directions.

For each circle we fitted a multiple linear regression based on

the onset of flowering dates of the DWD or FI stations:

DOY = a0 + a1 · h + a2 · lon + a3 · lat

where h refers to elevation, lon refers to longitude and lat refers

to latitude of the respective station. The corresponding regression

coefficients a0,a1,a2 and a3 were attributed to the circle centers and

used for inverse distance weighting interpolation for all grid cells,
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is described in more detail by Yuan et al. (2021).

The interpolation was based on the digital terrain model

(DGM1000), based on a 1,000 × 1,000m raster file which is

publicly available from the Federal Agency for Cartography and

Geodesy (https://daten.gdz.bkg.bund.de/produkte/dgm/dgm1000).

As almost all DWD stations and most FI stations are located

below 1,000m asl we interpolated only grid cells below 1,000m

asl, leaving 355,615 grid cells forming the basis for this analysis.

The resulting phenological map was assessed by calculating the

root-mean-square errors (RMSE) based on the DWD and FI

stations. RMSE is a measure to describe the difference between

observed and modelled values and is calculated according to:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(yobs − ypred)

2

Nstn

s

Here, yobs and ypred represent observed and modelled values and

Nstn is the number of stations. All RMSE values for the DWD-based

interpolated maps were lower than 20, so we chose this as a

threshold below which we considered interpolations based on FI

data as valid in both years. In the following, we refer to values > 20

as “high error” and values<=20 as “low error” and only examined

the results for the species with an RMSE value below 20. This

interpolation routine developed by the DWD depends on a

preferably equal distribution of stations across the single circles

for which the multiple regressions are carried out. In cases where

there are only a limited number of stations within a single circle, the

calculated coefficients heavily rely on these few observations. This

dependence can lead to abrupt changes in the Day-Of-Year (DOY)

values at the boundaries of the circles. This characteristic is an

inherent aspect of the interpolation method and can be alleviated by

incorporating a larger number of stations. By doing so, the influence

of a single station with potentially extreme values on the regression
TABLE 2 Observed Median (Mdn) and Median absolute deviation (MAD) for the interpolated phenological maps compared across data origin DWD
(German meteorological service) and FI (Flora Incognita) in both observed years (2020/2021).

2020 2021

DWD FI FI-DWD DWD FI FI-DWD

Species PCTL Mdn MAD Mdn MAD Diff Mdn MAD Mdn MAD Diff

Artemisia vulgaris agg. 0.55 204 3 205 4 1 208 3 209 4 1

Fraxinus excelsior 0.07 – – – – – 110 5 117 7 7

Galanthus nivalis 0.2 – – – – – 50 4 49 6 1

Malus sylvestris agg. 0.2 111 4 113 4 2 126 5 118 6 -8

Salix caprea 0.05 67 4 63 7 -4 76 7 62 7 -13

Sambucus nigra 0.3 140 6 140 5 0 155 4 153 4 2

Secale cereale 0.2 – – – – – 155 3 157 7 2

Taraxacum officinale 0.2 90 6 93 4 3 101 5 102 4 1

Tilia platyphyllos 0.35 – – – – – 173 3 175 7 2

Tussilago farfara 0.15 63 4 69 9 6 75 7 68 6 -7
fr
The last column for each year (FI-DWDDiff) shows the differences of the medians between DWD and FI. Onset of flowering in the FI data was estimated as a species-specific percentile (PCTL) of
the Weibull distribution.
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coefficients of a specific circle can be minimized. (see Figure S3,

Tussilago farfara 2020, Salix caprea 2020, Galanthus nivalis 2021).

We still decided to stick to this interpolation method in order to

allow full comparability to the interpolation performed by DWD.

All analyses, the interpolation and map visualization were

performed using the R programming language (R Core

Team, 2022).
2.4 Species characteristics

The 17 selected species are widespread and common in

Germany, and it is important to understand why observations of

certain species show strong phenological patterns and others don’t:

Observations spike when there is a sudden change in attraction to

identification app users (i.e. in most cases an attractive and

conspicuous flowering phase). As for the targeted phenological

observations collected by DWD, the onset of flowering is

explicitly recorded for stated plant individuals. In contrast, the

probability of a species being identified by app users will depend on

certain species characteristics. So we compiled a list of relevant

characteristics from the BiolFlor database (Kühn et al., 2004)

(Table 1): We considered growth form, flowering period,

cultivation and conspicuousness as candidates for affecting the

probability of observation by identifcation app users. As there is

no standard method to evaluate the conspicuousness of a plant we

decided to score each species based on our own experience. The

basic guideline for this evaluation was whether the species shows an

attractive flowering stage that stands out from the non-flowering

stage. Three authors (NK, MR and JW) evaluated conspicuousness

individually, with disagreements being discussed and collectively

resolved afterwards.
3 Results

3.1 Patterns in the collected
plant observations

In the two years, 219,546 (2020) and 207,656 (2021)

observations of the 17 species were recorded by Flora Incognita

app users (Table 1). The number of observations per species ranged

between 1,242 (Galanthus nivalis; 2020) and 25,878 (Taraxacum

officinale; 2020), resulting in FI stations ranged between 61

(Galanthus nivalis; 2020) and 740 (Taraxacum officinale; 2020).

The number of DWD stations ranged between 130 (Prunus avium;

2021) and 999 (Galanthus nivalis; 2021). The majority of FI stations

were based on records with a median distance between 25 and 40

km to the center of the station (Figure S1). Figure 2 presents the

density of the total Flora Incognita observations per species, and a

comparison between both years.

In general, the density of observations follows three different

patterns (Figure 2). The largest fraction of species shows a single

peak during the vegetation season (e.g.,Taraxacum officinale,

Calluna vulgaris, Malus sylvestris). A number of other species

show a more or less pronounced two-peak pattern (e.g., Betula
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pendula, Brassica napus). One species (Alnus glutinosa) shows a

uniform pattern without distinct peaks throughout the growing

season. For some species, observation peaks match very closely the

onset of flowering observed by DWD (Prunus avium, Malus

sylvestris, Sambucus nigra). When comparing the same species,

the density curves exhibit a high degree of similarity between the

two observed years. Conversely, the density curves of different

species tend to consistently differ from one another. Examining

these density curves reveals that, for most species, observations

began earlier in 2020 compared to 2021, aligning with the earlier

onset of flowering observed by the DWD stations (Figure 2).
3.2 Spatial interpolation of onset
of flowering

The percentiles representing onset of flowering as differed

between the species and ranged from 0.07 (Fraxinus excelsior) to

0.55 (Artemisia vulgaris) (Table 2) with a majority of values around

0.2. We applied the described interpolation process for the Flora

Incognita stations of each species. The calculated RMSE values for

11 out of 17 species were at least in one year below 20 (Artemisia

vulgaris, Galanthus nivalis, Prunus avium, Sambucus nigra, Secale

cereale, Malus sylvestris, Tussilago farfara, Salix caprea, Fraxinus

excelsior, Tilia platyphyllos and Taraxacum officinale) (Figure 3),

indicating a comparable quality as the models produced from the

DWD stations. In the case of Artemisia vulgaris, Taraxacum

officinale and Galanthus nivalis, the observed RMSE values for

both years are even lower than the RMSE values based on the DWD

(see Figure 3). However, for some species, the available FI stations

were too scarce and/or they were not well distributed across

Germany, resulting in some multiple-regression-circles with very

few or even without any FI station. To avoid unbalanced

predictions, we decided to exclude cases with less than 100 FI

stations available (Calluna vulgaris, Prunus avium and the 2020

observations of Galanthus nivalis). For all remaining species we

interpolated maps for different years and for both datasets (DWD +

FI), resulting in a total of 32 maps (Figure S3). The interpolated

maps for Sambucus nigra and Taraxacum officinale are presented in

Figure 4. These maps show very similar phenological patterns for

the DWD and FI stations within but also between these two years.

The onset offlowering of Sambucus nigra has occurred 15 days later

(median) in 2020 according to the DWD stations and 13 days later

according to the Flora Incognita observations Table 2. Similarly, the

onset of flowering of Taraxcum officinale has occurred 11 days later

(median) according to DWD and 8 days later according to the Flora

Incognita observations. For Artemisa vulgaris, both data sources

agree that onset of flowering occurred 4 days earlier in 2020.

Especially for the two tree species with values from both years,

the differences in the medians between both years are much larger

Salix caprea (DWD: 9 days FI: -1 day),Malus sylvestris agg.: (DWD:

15 days FI: 5 days). The differences between the two data sources

within the same year are rather low (0-3 days) for Taraxacum

officinale, Sambucus nigra and Artemisia vulgaris but rather large

(2-13 days) for Salix caprea, Tussilago farfara and Malus

sylvestris (Table 2).
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In general, the estimated values for onset of flowering of the FI

stations are highly correlated to onset of flowering observed for the

DWD stations (Figure 5).
3.3 Impact of station count and species
traits on interpolation validity

A number of variables might be related to the RMSE of the

interpolated model. On the one hand the number of stations may

play a role, as fewer stations result in less precise predictions. On the

other hand, certain species traits may affect the phenological

patterns in opportunistic species observations. The number of

available stations was not significantly correlated with the

observed RMSE values in any case (DWD (2020): r=0.35; P>0.1;

FI (2020): r=0.15; P>0.1, DWD (2021): -0.01; P>0.1, FI (2021):

-0.14; P>0.1, see Figure S2). Additionally, the collected traits showed

rather inconsistent relationships to the quality of the interpolation

result (Figure 6). Only the growth form “tree” tended to be

associated with high RMSE values, as the interpolation of only

two out of 7 tree species (Salix caprea and Malus sylvestris) resulted

in a valid interpolation. None of the remaining considered traits

(cultivation, conspicuousness, phenological season) was associated
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with low or high RMSE values. Species with valid interpolations are

well distributed across the phenological seasons.
4 Discussion

In this study, we found that the onset of flowering derived from

opportunistic and unsystematic plant observations produce

comparable results, at least for certain species, when compared to

the data gathered through targeted observations conducted by

phenological observers. Especially observations from herbaceous

species or shrubs with a conspicious flowering stage e.g. Sambucus

nigra, Taraxacum officinale or Galanthus nivalis resulted in very

similar estimates of onset of flowering as the reference data.

However, for certain species, the RMSE values of the calculated

estimates of flowering onset were much higher compared to the

DWD reference dataset (Figure 3) indicating a less precise

interpolation. This was especially the case for tree species, where

the density curve of the observations already implies that the

observations are not linked to the flowering period (Figure 2). If

onset of flowering is to be estimated from opportunistic plant

observations it is necessary to identify the suitable percentile in

the observation curve that represents the flowering stage. In the
FIGURE 2

Density of all FI (Flora Incognita) records used in this study collected in 2020 and 2021. The species are ordered along their flowering time. The
distribution of DOYs (day of year) for onset of flowering observed across all DWD (German meteorological service) stations are referenced for each
species and year in an accompanying boxplot (grey: 2020; blue: 2021). The line in the boxplot represents the median of the distribution.
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current analysis we deduced the most suitable percentile per species

based on a comparison to the median of the actual DWD estimates

in 2020 if present. We always used the same percentile for the 2021

estimates and found very similar results for the 2021 interpolations.

Here we assume a consistent, species-specific pattern of

observations throughout the year which is mainly affected by

phenological differences between the years (Figure 2). Once

longer time series of opportunistic observation data have been

accumulated it would be possible to better validate these species-

specific values. An alternative approach would be to use the same

percentile for all species (e.g. 50th percentile i.e. median observation

date). The resulting estimate would be equally well suited to

represent a robust means to enable inter-species phenological

comparisons. However, it cannot be directly linked to the onset of

the flowering. Based on the relative timing of flowering compared to

the overall observation curve, we found different percentiles useful

for different species. For example the percentile for Salix caprea or

Fraxinus excelsior are lower than 0.1 These species are an example

of trees flowering prior to leaf-out very early in the year at the edge

of their overall observation curves. For most of the herb or shrub

species, a percentile of 0.2 represented the onset of flowering.
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Artemisa vulgaris is an exception here. This species is a

herbaceous, perennial plant that is often found growing on

roadsides, field margins and uncultivated areas in urban context,

where it starts growing in early spring and reaches heights of up to

2m. Therefore, Artemisia vulgaris may attract peoples’ interest

already through its dominant appearance which is only slightly

changed with the onset of flowering of the inconspicuous, wind-

pollinated flower heads. Yet, we explicitly decided to choose the

same set of species that is observed by the German Meteorological

Service to allow a direct comparison of the interpolated products

based on the different data sources.

In general, the interpolated maps based on the opportunistic

plant records capture the differences in onset of flowering between

years in many cases very similar to the targeted observations (e.g.,

Taraxacum officinale, Sambucus nigra, Artemisia vulgaris).

However, the median estimate for Tussilago farfara was 6 days

earlier in 2020 but 7 days later in 2021 when compared to the

reference observations form DWD. The overall observation density

distribution curve for Tussilago farfara (Figure 2) shows a different

pattern for 2020 and 2021. The peak during flowering time around

DOY 100 is much less pronounced compared to 2021 while the
FIGURE 3

Root-mean-square errors (RMSE) values of the interpolation models compared across data source, year and species. The blue dots represent the
RMSE values resulting from the interpolations based on the targeted observations collected by DWD (German meteorological service), the orange
dots represent the RMSE values derived from the interpolations based on the opportunistic observations collected by the FI (Flora Incognita) users.
We decided to only consider models with RMSE values below 20 (marked with the dashed line) as valid and compared only those to the DWD
interpolations (which always yielded values below 20).
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relative fraction of observations of the later stages is higher in 2020.

Additionally, the number of observations in 2020 is much lower

(7,945) compared to the number of observations in 2021 (13,391),

resulting in only half the number of FI Stations in 2020 (Table 1).

The most likely explanation for these different patterns is the first

Covid lockdown in Germany lasting from DOY 82 to 125. This may
Frontiers in Plant Science 09
have resulted in a reduced number of observations during peak

flowering time of Tussilago farfara thereby increasing the relative

fraction of observations collected at the later stages when the

lockdown was lifted. The resulting different shapes of the

observation curves will affect the estimates of the 0.15 percentiles

of the curves and lead to the observed discrepancies. This implies a
FIGURE 4

Spatially interpolated maps based on the DWD and FI stations for onset of flowering of Sambucus nigra and Taraxacum officinale in 2020 and 2021.
The colour scale indicates the day of the year of the onset of flowering in each grid cell. The interpolation model is described in more detail in the
methods section. Note that the range of colour scales differ between the species.
FIGURE 5

Onset of flowering day of year (DOY) estimated from opportunistic FI (Flora Incognita) records (x-axis) vs. onset of flowering DOY of targeted
observations collected by DWD (German meteorological service) (x-axis) in 2020 (left) and 2021 (right). Each dot represents the interpolated DOY for
each station with observations from both data sources. Different species are coded by color. Note that the species names in the legend are arranged
according to their respective DOY to improve readability The latest flowering species (Artemisia vulgaris) is shown at the top of the legend while the
earliest flowering species (Galanthus nivalis) appears at the bottom. The line represents a linear regression conducted separately for each species.
The R2 values for each linear regression model are shown on the upper left part of each panel. Note that Galanthus nivalis, Fraxinus excelsior and
Tilia platyphyllos are missing in the 2020 panel due to either data scarcity or high RMSE values. *** Indicates p-value ≤ 0.001, suggesting a highly
statistically significant correlation.
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certain degree of caution, as overall societal events suddenly

affecting the behavior of people may influence the estimates of

phenology. The focus on trees and cultivated plants is useful in

national monitoring programs, as it allows to observe an individual

tree over a longer time period, longer than a single year. But tree

species often do not exhibit the key traits that makes them suitable

for opportunistic phenology monitoring (Figure 6). The observed

number of species in this study is not sufficient to identify the most

suitable set of traits that characterize plants as susceptible for

phenology monitoring via app observations. However, Our results

showed that suitable species are typically abundant, herbaceous and

have only a single, temporarily limited and prominent flowering

stage (Figure 6). This is in line with observations by Puchałka et al.

(2022). These authors found that unstructured citizen science data

can be a reliable source allowing to develop a model of plant

phenology for Anemone nemorosa. The authors state that they

could conduct their approach so successfully because there were

many observations available for Anemone nemorosa, for it is a

common spring flower that people often search for and document

using citizen science apps. Opportunistic, crowdsourced plant

images have also been successfully used to detect unusual

flowering events in Yucca (Barve et al., 2020) and to identify

drivers of flowering duration (Li et al., 2021). Based on our

results we suggest that unsystematic, opportunistic plant

observation can be used as input for the interpolation models in a

similar way as systematic phenological observations. The onset of

flowering estimates based on such opportunistic plant observations

could be easily integrated in annual phenology monitoring schemes

and complement the systematic observations, thereby filling the

data gaps created by the decline in phenology observers. However,

unlike systematic observations, they cannot be directly used as data

points, because the phenological stage of a single observation is

unknown. Instead, opportunistic data need to be prepared in a way

that allows comparison. Our example uses the estimation of the

onset of flowering for a larger sample of observations within a

limited distance to the location and a suitable elevation range. We

used a minimum of 35 observations per location to estimate onset of
Frontiers in Plant Science 10
flowering which represents a compromise between accuracy and

coverage. Still this resulted in insufficient coverage of some regions

for some species with few occurrences (e.g. Brassica napus, Calluna

vulgaris) and ultimately to their exclusion due to data scarcity. The

approach used here was tailored towards the direct comparison

against systematically collected reference data. For other purposes,

it is also possible to use a grid cell raster and estimate onset of

flowering for each gridcell separately.
4.1 Caveats

Both datasets are influenced by inherent biases that might affect

the resulting interpolations. The number of FI observations strongly

correlates to the populated area in a specific region (Mahecha et al.,

2021). Consequently, more observations are collected in densely

populated urban areas, which also tend to be connected with higher

air temperatures (Wohlfahrt et al., 2019; Li et al., 2021) and in

consequence may affect the flowering phenology of the observed

plants. However, it is likely that, although to a lesser degree, the

location of the DWD stations are prone to the same bias. In general,

both datasets had relatively scarce covering of areas at higher

elevations (Yuan et al., 2021), which will lead to more

considerable uncertainties in the interpolation at higher

elevations. Since we created FI stations based on the locations of

existing DWD stations, we avoided some of these biases and related

problems and made both datasets as comparable as possible. The

number of observations was not directly linked to the RMSE of the

resulting interpolation in FI data (see Figure S3), a result that was

also observed for the DWD data by Yuan et al. (2021).
4.2 Perspectives

Opportunistic plant observations represent a massively

increasing and powerful source of data (Moles and Xirocostas,

2022). Despite the biases and challenges discussed above, such data
FIGURE 6

Alluvial plot showing the distribution of plant traits with respect to high/low RMSE values of the resulting interpolation model for each species. The
classification of plant traits for each species corresponds to the traits in Table 1.
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provide a unique chance to complement targeted observations

collected by trained observers from phenological monitoring

networks and also make a crucial long-term contribution in

measuring phenological shifts and investigating their impact on

the structure and functioning of ecosystems (Iwanycki Ahlstrand

et al., 2022). However, our approach does not work well for all

species to the same extent.

Species that are suitable for phenological monitoring based on

opportunistic observations often exhibit different traits than species

that are monitored by phenological observers of the DWD so far.

While e.g. trees are an important cornerstone in the phenological

monitoring program of the DWD, most trees have proven rather

unsuitable in the current study (Figure 5). As phenological

observers can repeatedly visit the same tree and observe buds and

flowers to determine the onset of leaf folding or flowering, specific

phenological stages of widespread trees in Germany often do not

attract the eye and interest of identification app users. Therefore,

although high numbers of observations are present for many tree

species (Table 1), the observation dates are often not clearly linked

to a specific phenological stage and are rather constant during the

vegetation season. An example would be Alnus glutinosa, which

shows multi-peak patterns or follows a pattern with less

pronounced peaks stretching over longer time periods (Figure 2).

However, it is noteworthy that the shape of the observation density

curves are on the one hand often very different between species, but

on the other hand remarkably similar across the two observed years

for the same species (Figure 2). This suggests a consistent, species-

specific, sometimes phenology-related observation pattern that can

be utilized using new approaches. Here we chose to estimate the

onset of flowering based on the species observations in order to

directly compare it with longer time series such as the DWD data.

However, the mean observation date usually represents a more

robust estimate for opportunistic plant observation data (de Keyzer

et al., 2017; Iwanycki Ahlstrand et al., 2022). Therefore, comparing

time series only covering opportunistic plant observations, using

the peak of observation could potentially yield more robust results.

But comparing methods for the robustness of the flowering date

estimates was not the focus of this study.

One logical next step would be to additionally analyze the

images taken by the users during the identification process, to

recognize different phenological stages directly on the image.

However, as shown in earlier attempts in previous studies with

citizen science data, this involves time-consuming, manual

annotation, e.g., whether a flower is present or not (Barve

et al., 2020).

A first published study shows that deep learning algorithms can

be used to successfully extract phenological information from

citizen science images (Reeb et al., 2022). They used a

convolutional neuronal network to classify Alliaria petiolata

images into different phenological stages. In the first step for a

two-stage phenology (flowering and non-flowering), they reached

95.9% accuracy while in the second step with four-stage phenology

(vegetative, budding, flowering, and fruiting), they reached 86.4%.

Another study conducted image-based monitoring of field plots

using near-surface time-lapse cameras, subsequent automated
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detection and counting of flowers in the images by using a

convolutional neural network. This study also shows that

automatic identification of phenological stages of two Arctic

species (Dryas octopetala and Dryas integrifolia) is possible. In the

long term, applying these techniques to opportunistically collected

images might contribute to fine-scale phenological monitoring.

Moreover, phenophases such as fruitification, leaf onset, and

senescence can also be detected and analyzed, which allows

analyses of multiple phenological phases at the same time and on

smaller scales. Last but not least, phenological phases, inferred from

crowd-sourced data could help to validate plant phenology from

remote sensing and will be used to parametrize phenological models

(Puchałka et al., 2022). It would be an important task for the future

to identify plant species that are suitable for phenological

monitoring, especially since the number of crowd-sourced and

opportunistic data will continue to increase in the future. As

many citizen-science-based phenological monitoring networks

such as DWD suffer from decreasing numbers of participants

(Yuan et al., 2021), followed by reduced coverage of the

phenological observations, utilizing crowd-sourced plant

observation data of suitable species could help to compensate the

loss of phenological observers.
5 Conclusions

Extracting phenological patterns from opportunistic species

observations may compensate for the ongoing loss of observers in

phenological citizen science networks. We argue that opportunistic

plant observations could easily be integrated into existing

phenology monitoring efforts, extending the set of monitored

species to those that are frequently observed by identification app

users, therewith providing more fine-grained phenological data. By

harnessing unstructured and opportunistic data in this manner, we

can make a valuable contribution to quantifying phenological shifts

associated with ongoing climatic changes.
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SUPPLEMENTARY FIGURE 1

Distribution of the buffer radii of FI stations for observed species in 2020
and 2021.

SUPPLEMENTARY FIGURE 2

RMSE in relation to the number of observation stations for DWD (blue) and

Flora incognita observations (orange). DWD (2020): r=0.35; P>0.1; FI (2020):
r=0.15; P>0.1, DWD (2021): -0.01; P>0.1, FI (2021): -0.14; P>0.1.

SUPPLEMENTARY FIGURE 3

Spatially interpolated maps for eight species based on the DWD and FI
stations for onset of flowering in year 2020 and 2021.
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