
 1 

Supplemental Material 

Stripe charge order and its interaction with Majorana bound states 

in 2M-WS2 topological superconductor 

Xuemin Fan1,2,3†, Xiao-Qi Sun4†, Penghao Zhu4†, Yuqiang Fang5,6†, Yongkang Ju7, Yonghao Yuan1,2,3, 
Jingming Yan1,2,3, Fuqiang Huang5,6*, Taylor L. Hughes4, Peizhe Tang7,8*, Qi-Kun Xue1,2,3,9,10* and Wei 
Li1,2,3* 

1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, 

Tsinghua University, Beijing 100084, China 

2Frontier Science Center for Quantum Information, Beijing 100084, China 

3Collaborative Innovation Center of Quantum Matter, Beijing 100084, China 

4Institute for Condensed Matter Physics and Department of Physics, University of Illinois at 

Urbana-Champaign, Urbana, Illinois 61801, USA 

5State Key Laboratory of High Performance Ceramics and Superfine Microstructure, 

Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China 

6State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of 

Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 

7School of Materials Science and Engineering, Beihang University, Beijing 100191 China 

8Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron 

Laser Science, 22761 Hamburg, Germany 

9Beijing Academy of Quantum Information Sciences, Beijing 100193, China 

10Southern University of Science and Technology, Shenzhen 518055, China 

 
†These authors contributed equally to this work. 

*To whom correspondence should be addressed: huangfq@mail.sic.ac.cn;  
peizhet@buaa.edu.cn; qkxue@mail.tsinghua.edu.cn; weili83@tsinghua.edu.cn 

  



 2 

I. DISTRIBUTION OF STRIPES UNDER MAGNETIC FIELD 
To address the magnetic field dependence of the distorted stripes in 2M-WS2, differential 

topographic images of the same area are investigated (Fig. S1) under 0 T and 12 T, respectively. 
The distributions of the stripes in the two images are identical, exhibiting that the stripes are 
not sensitive to the external magnetic field. 

The monoclinic features in large periodicity in Fig. S1 are moiré patterns. 

 

FIG. S1. Robust distribution of stripe modulations under magnetic field. (a)-(b) Derivative 
along the x-axis of a topographic image of WS2 (80 nm × 80 nm; set point, Vs = -5 mV, It = 100 
pA) taken at 0 T (a) and 12 T (b), respectively. (c)-(d) Inverse fast Fourier transform result of 
the stripe-related q0 calculated from (a) and (b). The distributions of stripes in (a) and (b) are 
identical to each other, indicating the robustness of the stripes to the magnetic field. 
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II. ESTIMATION OF HC2 
We estimate the HC2 by analyzing the tunneling spectra acquired from areas away from 

vortices under different magnetic fields. Given the inhomogeneity of HC2, we extracted zero-
bias conductance (ZBC) in the spectra of two typical areas and summarized in Fig. S2. The 
linear fitting results suggest that the upper critical field is between 1.6 T to 1.9 T over the whole 
sample. 

 

 
FIG. S2. Estimation of HC2 of the sample. (a) Zero-bias conductance (ZBC) extracted from 
dI/dV spectra taken in Area I (with lower HC2) away from vortices. (b) ZBC extracted from 
dI/dV spectra taken in Area II (with higher HC2). The spectra are normalized by their dI/dV 
values at -5 mV. Then ZBC values, which reflect the depth of superconducting gaps, are 
extracted from the normalized spectra. Linear fittings are applied to the ZBC plots as a function 
of magnetic field and HC2 are estimated by determining where the linear fits reach unity. 
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FIG. S3. Superconducting gaps on different layers. Raw dI/dV spectra taken on the top, middle 
and bottom layers of Fig. 3(a), respectively (set point, Vs = -4 mV, It = 200 pA). The difference 
in superconducting gap size on these three layers is negligible. The coherence peaks on the top 
layer are slightly lower. The raw dI/dV spectra show consistent results to the averaged spectra 
in Fig. 3(d). 
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III. ENERGY SPACING CALCULATIONS BETWEEN THE MBS AND CBSS 

The energy levels of CBSs are estimated to be Eμ ≈ μΔ2/EF, where μ is the half-integer 
angular momentum quantum number [43], EF is the Fermi energy, and Δ is the superconducting 
gap. The wavefunction maximum of a specific state with an angular momentum of μ is located 
at rμ ≈ |μ|/kF from the vortex core where kF is the momentum of Fermi surface, giving rise to the 
splitting peaks away from the vortex core. The energy spacing ΔE≈Δ2/EF is usually smaller than 
the energy resolution of STM.  

In 2M-WS2, the Fermi level across not only the topological surface band, but also the bulk 
band. The schematic of the MBS and CBSs was shown in Fig. S4. For the topological surface 
state, the value of the Fermi energy EFsurface equals to the energy difference between the Dirac 
point and the Fermi level, which is around -17.9 meV [28]. The superconducting gap is around 
1.5 meV for our sample [Fig. 1(g)]. At the vortex cores, quasi-particles are quantized with 
integer angular momentum quantum number [44], E ≈ μ1Δ2/EFsurface, among which the zero-
mode state (μ1 = 0) is the Majorana bound state. Thus, the energy spacing ΔE ≈ Δ2/EFsurface is 
0.126 meV [Fig. S4]. Regarding the bulk band, the value of the Fermi energy EFbulk equals to 
the energy difference between the top of the valence band and the Fermi level, which is around 
-84 meV [28]. The energy spacing between the CBSs originated from the bulk band is ΔECBS ≈ 
Δ2/EFbulk ≈ 0.027 meV. And the energy spacing between the MZM and the adjacent CBSs is ΔE’ 
≈ Δ2/2EFbulk ≈ 0.013 meV. Both ΔECBS and ΔE’ are much smaller than our STM energy resolution 
(~0.1 meV). Thus, each of the observed splitting peaks in the spectrum is actually an envelope 
curve of several CBSs. And the spatial non-split branch of zero-bias conductance peak is an 
experimental criterion for the observation of Majorana bound state [5, 14, 16, 24].  

 

 

FIG. S4. Schematic of the MBS and CBSs. The black axes mark the eigenvalues of vortex 
planar angular momenta μ1 and μ2, which correspond to the topological surface band and the 
bulk band, respectively. The gray peaks are the CBSs originated from the topological surface 
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band, which have integer values of μ1. The red peak corresponds to the MBS. The blue peaks 
are the CBSs originated from the bulk band, which possess half-odd-integer angular momenta 
μ2. 
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IV. FIRST-PRINCIPLES CALCULATIONS 

We performed ab initio DFT calculations to obtain the electronic band structures and 
phonon dispersions for monolayer, bilayer and bulk 2M-WS2. The electronic band structures 
are shown in Fig. S5. Our results are consistent with the previous studies[16, 36]. The bulk 2M-
WS2 is topologically non-trivial with inverted band structures around the Γ point. Figure 6 
shows the calculated phonon spectrums under three doping conditions, neutral, electron doped 
and hole doped for monolayer, bilayer, and bulk 2M-WS2, respectively. The red dashed lines 
mark the wave vector q0 for the stripe charge order (approximately 0.48 Å-1 along the direction 
of zig-zag chains) observed in STM. As shown in Fig. S6, we do not observe the softening of 
any phonon modes around q0. Therefore, the electron-phonon interaction cannot be the origin 
of the stripe order. 

First-principles calculations were performed with the Vienna ab initio simulation package 
(VASP). The projector augmented wave (PAW) was used to describe the core level of atomic 
potential[45, 46]. The generalized gradient approximation (GGA) developed by Perdew-Burke-
Ernzerhof[47] was used for the exchange-correlation functional. A plane-wave cutoff of 450 
eV was used for the wavefunctions. For the self-consistent electronic structure calculations, we 
set the energy convergence criterion as 10-6 eV. The bulk lattice structures were fully relaxed 
until the force is smaller than 0.001 eV/Å. For the monolayer and bilayer structures, a vacuum 
layer of 20	Å were adopted along the z axis in the supercell to avoid the coupling between 
neighboring supercells. The phonon band structures for monolayer, bilayer and bulk 2M-WS2 
were calculated by using the PHONOPY package[48]. The spin−orbit coupling effect was 
included in these calculations for electronic structures, but was absent for the phonon 
calculations. For the calculations, the Brillouin zones (BZs) were sampled by16 × 8 × 1 k-grid 
for monolayer and bilayer and 8 × 8 × 10 for bulk. For phonon calculations, we adopted 4 × 2 
× 1 supercells for monolayer and bilayer 2M-WS2 thin film and 2 × 2 × 4 for bulk 2M-WS2. 

 

FIG. S5. (a) The Brillouin zone (BZ) of monolayer and bilayer 2M-WS2. (b) The BZ of bulk 
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2M-WS2. (c)-(e) Calculated electronic band structures of the monolayer, bilayer, and bulk 2M-
WS2, respectively. The spin-orbit coupling effect is included in the calculation. The red dashed 
lines denote the Fermi levels. 

 

 
FIG. S6. (a)-(c) The phonon dispersions of monolayer, bilayer and bulk 2M-WS2. Three doping 
conditions, including neutral, electron doped and hole doped, are considered. The doping 
concentrations (charge per unit cell) are marked in each plot. For the electron (hole) doping, 
the value of electrons (holes) doped to each layer is kept to be same for monolayer, bilayer and 
bulk 2M-WS2. For example, there are two layers in the one-unit cell of bilayer 2M-WS2, thus 
the doped carriers in bilayer 2M-WS2 per unit cell is twice than that in one-unit cell of 
monolayer WS2. The red dashed lines denote the wave vector (q0) of the observed stripe order. 
No softening of any phonon mode around q0 is observed, indicating that the electron-phonon 
interaction cannot be the origin of the stripe order. 
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V. THE CROSS-CORRELATION ANALYSIS OF THE STRIPES AND MOIRÉ 
PATTERNS 

A recent study on ZrTe3 has shown that local impurities are able to apply strong pinning 
potential and thus introduce distortion and phase modulation to CDW[40]. Since the moiré 
patterns and distorted stripe charge order coexist in WS2, one natural question would be whether 
the moiré patterns play the similar role. The following cross-correlation analysis excludes such 
scenario. 

We first extract the stripe and moiré distribution from the topographic image (Fig. S7). 
Figure S7(b) presents the stripe distribution obtained by taking the inverse fast Fourier 
transform (IFFT) of the stripe wave vectors in the FFT of Fig. S7(a). Figure S7(c) is the AA 
sites of moiré patterns in Fig. S7(a), which is obtained by collecting the maximum DOS value 
in Fig. S7(a). The two images are normalized by the following formula: 

𝐹(𝑥, 𝑦) =
𝑓(𝑥, 𝑦) − 𝜇

√𝑛𝜎
 

Here, 𝐹(𝑥, 𝑦) is the normalized distribution, 𝑓(𝑥, 𝑦) is the raw distribution, 𝑛 is the pixel 
number of 𝑓, 𝜇 and 𝜎 are the mean value and standard deviation of 𝑓, respectively.  

Then the normalized cross-correlation is calculated using the formula below 

[𝐹 ∗ 𝐺](𝑥, 𝑦) =, 𝐹(𝑥!, 𝑦!)𝐺(𝑥! + 𝑥, 𝑦! + 𝑦)
"!,$!

 

Here，[𝐹 ∗ 𝐺](𝑥, 𝑦) is the cross-correlation between 𝐹 and 𝐺 with displacement of (𝑥, 𝑦). 

Figure S7(d) shows the cross-correlation result between Fig. S7(b) and (c). Here we zoom-in 
the displacement to (±10 nm, ±10 nm) region, in the order of single moiré unit cell. The direct 
onsite influence from the AA site on stripes is easily excluded since the cross-correlation at (0 
nm, 0 nm) displacement is negligible. The non-local influence, from long-range interaction or 
AB site, is also excluded for two reasons: (1) the maximum value in Fig. S7(d) is very small, 
only about 0.02. This indicates the influence from finite displacement is also negligible. For 
clarity, a line profile taken along the black arrow is shown in Fig. S7(e) to present the absolute 
cross-correlation value. (2) The same cross-correlation analysis to another topographic image 
[Fig. S7(f)] shows a totally different distribution, which indicates the local maxima in the cross-
correlation are just from random fluctuations rather than the exact interactions between moiré 
pattern and stripes. 
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FIG. S7. The correlation between the stripes and the moiré patterns. (a) Typical topographic 
image of WS2 with stripes and moiré patterns (set points: Vb = -5 mV, Is = 100 pA). (b) The 
stripes map obtained by the IFFT of the stripe wave vectors in the FFT of (a). (c) AA site 
distribution of the Moiré patterns in (a), which is obtained by collecting the maximum local 
DOS value in (a). (d) Normalized cross-correlation between the stripes (b) and moiré patterns 
(c). (e) A line profile along the black arrow in (d). (f) Same cross-correlation analysis to another 
topographic image, which shows a different distribution. 
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FIG. S8. Defects free region with distorted stripe modulations. (a) Atomically resolved 
topographic image of WS2 (10 nm × 10 nm; set point, Vs = -5 mV, It = 300 pA) shows a defect-
free region with stripe modulations. (b) Inverse fast Fourier transform result of the stripe-related 
q0 calculated from a. The stripes are locally distorted in orientation. 
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VI. TIGHT-BINDING CALCULATIONS 

To capture the nontrivial topology and the resulting MBS on the surface of 2M-WS2, we 
can study a simple Fu-Kane type tight-binding model[3], which is a 3D topological insulator 
(TI) in a cubic lattice with s-wave superconducting pairing. We conduct calculations for such a 
tight-binding model to show that (i) the surface charge order can indeed suppress the MBS from 
the top surface, and (ii) the suppression of the MBS in position space can be understood from 
the bulk flux tube topology with the bulk superconductivity and nontrivial topological surface 
states. 

The Bogoliubov-de-Gennes (BdG) Hamiltonian of our tight-binding model is 

𝐻!"# =
1
2
7Ψ𝐤

%[𝑡 sin 𝑘&𝜉'𝜏'𝜎& + 𝑡 sin 𝑘(𝜉'𝜏'𝜎( + 𝑡 sin 𝑘'𝜉'𝜏(𝜎)
*

 

+(𝑚 + 7 𝑡 cos 𝑘+
+,&,(,'

)𝜉'𝜏&𝜎) + (𝑉(𝐤) − 𝜇)𝜉'𝜏)𝜎) + Δ./(cos𝜙 𝜉&𝜏)𝜎) + sin𝜙 𝜉(𝜏)𝜎))]Ψ0 

where 𝑘&,(,' are the momenta along 𝑥, 𝑦, 𝑧 directions, 𝜉&,(,' are the Pauli matrices for the 
particle and hole degree of freedom, 𝜏&,(,' are Pauli matrices for the atomic orbital, and 𝜎&,(,' 
are Pauli matrices for the spin. 𝜉), 𝜏),	and 𝜎) are 2 × 2 identity matrices. The electrons are 
considered to be living on discrete atomic sites and the 𝑡	is the hopping strength among them. 
For simplicity, we set 𝑡 = 1	in the following. 𝜇 is the chemical potential. Δ12 = Δ)𝑒+3 is the 
s-wave superconductivity pairing parameter. 𝑚 is the mass term that controls the topology of 
the insulating ground state in the absence of the superconductivity and charge order potential: 
i.e., if we take −3 < 𝑚 < −1 , then without superconductivity pairing and charge order 
potential, the model is a 3D TI that has one surface Dirac cone on each surface. Ψ𝐤 is the 
Nambu basis that takes the form 

Ψ𝐤 = L𝑐𝐤,4↑	𝑐𝐤,4↓	𝑐𝐤,7↑	𝑐𝐤,7↓	𝑐8𝐤,4↓
% − 𝑐8𝐤,4↑

% 	𝑐8𝐤,7↓
% − 𝑐8𝐤,7↑

% N
9
 

Where 1 and 2 (up and down arrows) label orbital (spin) degrees of freedom. V(𝐤) is a 
momentum-dependent potential function. With zero V(𝐤), the model is insulating in the bulk, 
and with nonzero V(𝐤), the model generally has no direct gap in the energy spectrum, which 
is more closed to the experimental situations. However, since the bulk Fermi surface does not 
qualitatively affect the physics (topology) related to the existence and distributions of MBS, we 
set V(𝐤) = 0 for results shown in the main text, and relegate the calculations with nonzero 
V(𝐤) in Fig. S9. 

To directly observe charge-order induced suppression of MBS from the top surface, we 
Fourier transform the above Bloch Hamiltonian into real space and calculate the eigenstate 
wavefunctions for a 10 × 10 × 10 lattice with open boundary conditions along all three 
directions. We introduce a vortex in the x-y plane (i.e., a flux tube along the z-direction) by 
assigning different phases of pairing parameters, 𝜙 , in different patches of the lattice, as 
illustrated in Fig. S10. 

We label the ten discrete atomic layers in our tight-binding model along z direction by 
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𝑧 = 1,2, … ,10 , where 𝑧 = 1  corresponds to the top layer and 𝑧 = 10	corresponds to the 
bottom layer. We add the surface charge order potential on the layer at 	𝑧 = 1  as 
Δ2: cos(𝑄𝑥)𝛿',4𝜉'𝜏)𝜎) , where 𝛿',4  is the Kronecker Delta function. When Δ2:  is large 
enough, we can observe the suppression of MBS from the top surface to the deeper region as 
discussed in the main text. Without loss of generality, in all our calculations, we use 𝑚 = −2𝑡, 
Δ) = 𝑡, and 𝑄 = 2π/3. The choice of 𝑄 will not influence the suppression of MBS from the 
top surface induced by the surface charge order (see Fig. S11). For the plots shown in Fig. 4(a), 
we fix 𝜇 = 0, and choose	Δ2: = 10𝑡 (Δ2: = 0) for the second and third (first) panel. Since 
we are doing calculations in a finite system, there are no exact zero modes - MBS localized on 
opposite surfaces due to the hybridization between each other. We use a symmetric linear 
combination for two eigenstates, which are closest to zero energy in our calculations. Then we 
plot the symmetric results as the probability of the MBS localized on the top surface [i.e., the 
surface at z = 1 as shown in Fig. 4(c)]. 

Interestingly, if we switch on charge order deeper in the bulk, the MBS is suppressed 
further into the bulk and appears at the interface between regions with and without charge order 
[see Fig. 4(c)]. Consequently, a global downward displacement of the entire MBS wavefunction 
can be observed with the appearance of surface charge order on the top layers [see Fig. 4(c)]. 
This is because, with the Nambu basis and considering the superconducting pairing, the charge 
order can lead to a bulk topological phase transition in the 1D flux tube [see Fig. 4(e)], and the 
interface between regions with and without charge order is a domain wall between distinct 
topological phases. At the interface [see Fig. 4(d)], the MBS is trapped. Technically, the bulk 
topological property for each region on opposite sides of the domain wall [marked as blue and 
yellow in Fig. 4(d)] could be captured by the Zak phase along z-direction (i.e., the direction of 
the flux tube) computed in the translationally invariant bulk, respectively. Conventionally, a 
system with Zak phase 𝜋(0) is identified as topologically nontrivial (trivial), which hosts (no) 
MBS on its boundary. In order to calculate the Zak phase, instead of having all three directions 
open, we need to keep the z-direction periodic so that the momentum along the z-direction, 𝑘', 
is a good quantum number. Furthermore, our model has a mirror-z symmetry (𝑀' = 𝜉)𝜏&𝜎') 
and this simplifies the calculation of Zak phase along z direction as the product of eigenvalues 
of the mirror-𝑧	operator for occupied eigenstates at 𝑘' = 0 and 𝑘' = 𝜋. Given a chemical 
potential	𝜇, a charge order parameter Δ2:, and a superconductivity pairing order parameter 
Δ12, we can calculate the corresponding Zak phase. By scanning these parameters, we plot the 
phase diagram in Fig. 4(e). 
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FIG. S9. Phase diagram and Majorana bound states when V(k) = 1 − 0.5cos	𝑘' . (a) Bulk 
Fermi surface of the tight-binding Hamiltonian. (b) Bulk phase diagram in parameters space 
spanned by the chemical potential μ, the charge order strength ΔCO, and the superconductivity 
pairing strength ΔSC from tight-binding calculations. The blue region has Zak phase π 
(topologically nontrivial) and the yellow region has Zak phase 0 (topologically trivial). (c) 
Tight-binding lattice calculation results for wavefunctions of MBS on the top surface without 
and with strong surface charge order. The top three panels show the real space distribution of 
the wavefunctions for the MBS, and the bottom three panels show wavefunctions along the 
normal direction of the layers. 
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FIG. S10. Implementation of vortex in the x-y plane. A vortex is implemented by assigning 
different 𝜙 for different patches, such that 𝜙	changes	2π around a loop encircling the red 
cross. The arrow indicates the direction of the paring parameter in the complex plane. 

 
 
 

FIG. S11. The layered dependent distribution for MBS with the charge order and different Q 
value. These plots show the norm-squared of wavefunctions along the normal direction of the 
layers, corresponding to ∑&,(|ψ;<.(r)|7. The change order is added to the top layer and the 
value of Q changes. 
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VII. THE ZERO-BIAS CONDUCTANCE MAP ON THE BOTTOM LAYER 
 
 

 
FIG. S12. Spatial distribution of the magnetic vortex on the bottom layer. A zero-bias 
conductance map (70 nm × 70 nm; set point, Vs = -10 mV, It = 100 pA) of the vortex at 0.36 T. 
The series of dI/dV spectra in the middle panel of Fig. 3(e) was taken along the white dashed 
line. 
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