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ABSTRACT

Swimming at the microscale has recently garnered substantial attention due to the fundamental biological significance of swimming
microorganisms and the wide range of biomedical applications for artificial microswimmers. These microswimmers invariably find
themselves surrounded by different confining boundaries, which can impact their locomotion in significant and diverse ways. In this work,
we employ a widely used three-sphere swimmer model to investigate the effect of confinement on swimming at low Reynolds numbers. We
conduct theoretical analysis via the point-particle approximation and numerical simulations based on the finite element method to examine
the motion of the swimmer along the centerline in a capillary tube. The axisymmetric configuration reduces the motion to one-dimensional
movement, which allows us to quantify how the degree of confinement affects the propulsion speed in a simple manner. Our results show
that the confinement does not significantly affect the propulsion speed until the ratio of the radius of the tube to the radius of the sphere is in
the range of Oð1Þ � Oð10Þ, where the swimmer undergoes substantial reduction in its propulsion speed as the radius of the tube decreases.
We provide some physical insights into how reduced hydrodynamic interactions between moving spheres under confinement may hinder
the propulsion of the three-sphere swimmer. We also remark that the reduced propulsion performance stands in stark contrast to the
enhanced helical propulsion observed in a capillary tube, highlighting how the manifestation of confinement effects can vary qualitatively
depending on the propulsion mechanisms employed by the swimmers.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163348

I. INTRODUCTION

The study of locomotion in fluids at the microscopic scale has
attracted significant attention in recent decades. This growing interest
is not only driven by the motivation to better understand the motility
of swimming microorganisms1–3 but also the potential biomedical
applications of artificial microswimmers such as targeted drug delivery
and minimally invasive microsurgery.4–9 Locomotion of biological and
artificial microswimmers occurs at negligibly small Reynolds numbers
(Re), where viscous forces largely dominate inertial forces. In the iner-
tialess regime, the ability to self-propel is severely constrained owing to
kinematic reversibility. In particular, Purcell’s scallop theorem10 states
that in the absence of inertia, deformations exhibiting time-reversal
symmetry (e.g., the motion of a single-hinged scallop opening and
closing its shell), also known as reciprocal motion, are unable to
produce any net self-propulsion. Common macroscopic swimming

strategies such as rigid flapping motion hence become largely ineffec-
tive at low Re. Microorganisms such as bacteria and spermatozoa have
evolved strategies that utilize biological appendages called flagella with
the action of molecular motors to swim in their microscopic world.
Extensive studies in the past decades have elucidated the physical prin-
ciples underlying their motility.11–16

In parallel efforts, researchers have sought simple and effective
mechanisms to develop artificial microswimmers.17–20 In his pioneer-
ing work, Purcell demonstrated how a three-link swimmer,10 now
known as Purcell’s swimmer,21–25 can generate net translation with
kinematically irreversible cyclic motions. This elegant example has
inspired the subsequent development of mechanisms that can over-
come the fundamental challenge of generating self-propulsion in the
inertialess regime. In particular, Najafi and Golestanian26 developed a
swimmer consisting of three spheres connected by two extensible rods,
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which adjust their lengths in a cyclic manner to ingeniously exploit
hydrodynamic interactions between the spheres for self-propulsion.
The mechanism has also engendered a variety of variants27–37 and
their experimental realizations.38–41 For its simplicity, the three-sphere
swimmer has gained popularity as a useful model for examining differ-
ent fundamental aspects of locomotion at low Re, including the effect
of complex rheology,42,43 optimized locomotion,34,35 interactions
of swimmers,43–45 and swimming near walls.46–49 The three-sphere
model has further been used to investigate the reorientation dynamics
of microswimmers with respect to flow gradients (rheotaxis),50 finding
that payloads can be exploited to enhance their motion against
flows. More recently, the model has also been employed to explore
the integration with machine learning in realizing smart
microswimmers.51–55

Here, we utilize the three-sphere swimmer model to probe the
effect of confinement on swimming at low Re. Microswimmers invari-
ably find themselves surrounded by different confining boundaries.
Extensive studies have demonstrated how swimming near planar
boundaries can impact locomotion in significant and diverse man-
ners.46–49,56–68 Microorganisms also encounter more complex confine-
ments than planar boundaries, such as spermatozoa swimming
through fallopian tubes, parasites Trypanosomes in blood vessels, and
bacterial motion in microporous soil environments. For swimming
inside a capillary tube, previous studies have shown that whether the
confinement enhances or hinders propulsion largely depends on the
type of swimmers.69–75 For instance, rotating helical flagella, which
generate propulsion as a result of drag anisotropy of the slender fla-
gella, display enhanced propulsion speeds inside a capillary tube.73

However, squirmers with the distribution of tangential surface veloci-
ties always have reduced propulsion speeds.71 These results suggest
that the difference in the propulsion mechanism of the swimmers
plays significant roles in how the confinement impacts propulsion. In
this work, we consider another physically different propulsion mecha-
nism, namely, the three-sphere swimmer model, which relies on the
hydrodynamic interaction between the spheres for self-propulsion.
For simplicity, we focus on the effect of axisymmetric confinement

when the swimmer self-propels along the centerline inside a capillary
tube. We use both the point-particle approximation and the finite ele-
ment method to quantify how the degree of confinement affects the
propulsion speed of this widely used swimmer model. We also provide
some physical insights into the underlying mechanism by which con-
finement influences this specific mode of propulsion.

This paper is organized as follows. We formulate the problem in
Sec. II by presenting the swimmer model, the geometrical setup, and
the methods of analysis. In Sec. III, we first validate our theoretical and
numerical results by revisiting the case of an unbounded fluid domain
(Sec. IIIA), before discussing new results for confined swimming (Sec.
III B). We conclude this study in Sec. IV with remarks on its limita-
tions and potential directions for future studies.

II. PROBLEM FORMULATION
A. Swimmer model

We consider the motion of a three-sphere microswimmer con-
fined axisymmetrically in a capillary tube of radius Rc. The swimmer
was first studied in an unbounded fluid domain by Najafi and
Golestanian.26 As illustrated in Fig. 1(a), the swimmer consists of three
spheres of the same radius R connected by two extensible rods of neg-
ligible hydrodynamic influences. The fully extended length of each
arm is given by D and the fully contracted length of each arm is given
by D� e, where e denotes the amount of contraction or extension in
each stroke (referred to as the contraction length hereafter). In the
main text, we follow Najafi and Golestanian26 to consider a constant
relative speed W in the change of the arm length in the four strokes
illustrated in Fig. 1(b): in stroke I, the swimmer contracts its left arm
of an initial length D by an amount e, keeping the length of the right
arm at D. In stroke II, the swimmer contracts its right arm by an
amount e, keeping the length of the left arm at D� e. In stroke III, the
swimmer extends its left arm to reach the fully extended length D,
with the length of the right arm fixed at D� e. Finally, in stroke IV,
the swimmer extends its right arm to return to its original configura-
tion with both arms fully extended with length D, completing a full
swimming cycle. The net displacement generated by such a cycle is

FIG. 1. Schematic of the problem setup and notations. (a) A swimmer consisting of three spheres of equal radii R connected by two extensible rods is confined axisymmetri-
cally in a capillary tube of radius Rc. The rods have a fully extended length of D and a fully contracted length of D� e, where e denotes the amount of contraction. (b) The
swimmer undergoes a four-stroke cycle designed by Najafi and Golestanian26 to produce a net displacement, D.
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denoted by D. In addition to these original strokes considered by
Najafi and Golestanian,26 harmonic variations of the length of the two
rods have been analyzed in subsequent works.76 We conduct the same
analyses for the case of harmonic deformations of the rods in the
Appendix to assess the generality of our findings.

B. Theoretical analysis: point-particle approximation

The motion of an incompressible flow in a Newtonian fluid at
low Re is governed by the Stokes equation

lr2u ¼ rp; (1)

r � u ¼ 0; (2)

where l is the dynamic viscosity, and u and p are, respectively, the fluid
velocity and pressure fields. We denote the velocity of the i-th sphere as
Vi and the force and torque acting on them as Fi and Ti, respectively.
No-slip boundary conditions are applied on the spheres and the confin-
ing tube, i.e., uon the i�th sphere ¼ Vi and uon the confining tube ¼ 0. Without
external forces and external torques, the system should be force-free

X3
i¼1

Fi ¼ 0 (3)

and torque-free

X3
i¼1

Ti ¼ 0: (4)

As a remark, the torque-free condition is identically satisfied by the
symmetry of the problem setup.

We denote by r1 the position of the center sphere, which is cho-
sen as a reference for tracking the movement of the swimmer. We
denote by r2 and r3 the positions of the front and rear spheres, respec-
tively. The temporal change in the mutual distances between the
spheres is set to perform a nonreversible time sequence. Under the
action of the internally generated forces acting between the spheres
along the tube axis (z-axis), the lengths of the rod connecting adjacent
spheres are set as

r2 � r1ð Þ � êz ¼ gðtÞ ; r1 � r3ð Þ � êz ¼ hðtÞ; (5)

where ðg; hÞ ¼ ðD;D�WtÞ for t 2 ½0;T=4�, ðg; hÞ ¼ ðDþ e
�Wt;D� eÞ for t 2 ½T=4;T=2�, ðg; hÞ ¼ ðD� e;D� 3eþWtÞ for
t 2 ½T=2; 3T=4�; ðg; hÞ ¼ ðD� 4eþWt;DÞ for t 2 ½3T=4;T�, and
êz is the unit vector along the z-direction.

At low Re, inertial effects are negligible so that the immersed par-
ticles take on the velocity of the surrounding fluid instantaneously.
Accordingly, the translational velocities of the three spheres are related
to the internal forces exerted on them linearly via

Vi ¼
dri
dt
¼
X3
j¼1

lij � Fj (6)

for i¼ 1, 2, and 3, wherein lij stands for the hydrodynamic mobility
tensor relating between the translational velocity of sphere i and the
force exerted on sphere j. The hydrodynamic mobility incorporates the
effect of the many-body fluid-mediated interactions between suspended
particles. Here, we confine ourselves for simplicity to the situation in

which only contributions stemming from self (i¼ j) and pair ði 6¼ jÞ
hydrodynamic interactions are accounted for. We will assess the accu-
racy of our approach with direct comparison with the fully resolved
numerical simulations based on the finite element method (Sec. IIC).

In the so-called point-particle approximation, in which R� Rc,
the scaled self-mobility function is given to the leading order in R=Rc

by Refs. 77 and 78

lii

l0
¼ 1þ d

R
Rc
; (7)

wherein l0 ¼ 1=ð6pgRÞ is the bulk mobility, and

d ¼ � 3
2p

ð1
0

AðsÞ
BðsÞ ds: (8)

Here, we have defined

AðsÞ ¼ 4I1ðsÞK0ðsÞ þ s2ðI0ðsÞK1ðsÞ þ I1ðsÞK0ðsÞÞ
� 2sðI0ðsÞK0ðsÞ þ I1ðsÞK1ðsÞÞ ; (9a)

BðsÞ ¼ 2I0ðsÞI1ðsÞ þ sðI1ðsÞ2 � I0ðsÞ2Þ; (9b)

with I� and K� denoting the �th order modified Bessel functions (also
known as the hyperbolic Bessel functions) of the first and second
kinds, respectively. A numerical evaluation of the infinite integral in
Eq. (8) yields

d ’ �2:104 44: (10)

Analogously, the hydrodynamic pair mobility in the point-
particle approximation is given in a scaled form by Refs. 78 and 79

lij

l0
¼ 3

2
R
Rc

1
r
þ nijðrÞ

� �
; (11)

where

nijðrÞ ¼ �
1
p

ð1
0

AðsÞ
BðsÞ cos rsð Þ ds; (12)

wherein r ¼ jðri � rjÞ � êzj=Rc. Clearly, lij ¼ lji, as required by sym-
metry. In particular, d=nð0Þ ¼ 3=2.

It is worth noting that the pair mobility can likewise be expressed
in terms of the converging infinite series of the form80

lij

l0
¼ 3

4

X1
n¼1

une
�anr; (13)

where

un ¼ an cos ðbnrÞ þ bn sin ðbnrÞ: (14)

Here, un :¼ an þ ibn are the complex roots of the equation

unðJ20 ðunÞ þ J21 ðunÞÞ ¼ 2J0ðunÞJ1ðunÞ ¼ 0: (15)

In addition,

an þ ibn ¼ 2ðpð2J1ðunÞY0ðunÞ � unðJ0ðunÞY0ðunÞ
þ J1ðunÞY1ðunÞÞÞ � unÞ=J21 ðunÞ ; (16)

where J� and Y� stand for the �th order Bessel functions of the first
and second kinds, respectively. Accordingly, the pair mobility function
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displays a sharp exponential decay as the distance between particles
becomes larger. In the limit r� 1, the series in Eq. (13) can be trun-
cated to the first term to yield

lij

l0
’ 3

4
ða1 cos ðb1rÞ þ b1 sin ðb1rÞÞe�a1r; (17)

with the numerical estimates a1 ’ 4:466 30; b1 ’ 1:467 47;
a1 ’ �0:036 98, and b1 ’ 13:808 21.

Differentiating Eq. (5) with respect to time yields V2 ¼ V1 þ _g
and V3 ¼ V1 � _h, with dots standing for a time derivative and
Vi ¼ Vi � êz denotes the axial velocity along the centerline of the con-
fining tube. By requiring the force-free condition Eq. (3), we find that
the instantaneous axial velocity of the center sphere is obtained as

V1 ¼
_h lii � l12ð ÞMþ � _g lii � l13ð ÞM�
3l2

ii � 2lii l12 þ l13 þ l23ð Þ � N
; (18)

wherein M6 ¼ lii6l127l13 � l23 and N ¼ l2
12 þ ðl13 � l23Þ2

�2l12ðl13 þ l23Þ. We have ð _g ; _hÞ ¼ ð0;�WÞ for t 2 ½0;T=4�,
ð _g ; _hÞ ¼ ð�W; 0Þ for t 2 ½T=4;T=2�, ð _g ; _hÞ ¼ ð0;WÞ for
t 2 ½T=2; 3T=4�, and ð _g ; _hÞ ¼ ðW; 0Þ for t 2 ½3T=4;T�. We recall
that l12 ¼ lijðr ¼ g=RcÞ; l13 ¼ lijðr ¼ h=RcÞ, and l23 ¼ lijðr
¼ ðg þ hÞ=RcÞ. We note that self, lii, and pair, lij, mobilities are given
by Eqs. (7) and (11), respectively.

Finally, the mean swimming velocity is obtained by averaging
over one full cycle as

�V 1 ¼
1
T

ðT
0
V1ðtÞ dt: (19)

Owing to the delicate and peculiar nature of the resulting axial
speed stated by Eq. (18), an analytical evaluation of the mean is rather
complicated and far from being trivial, even in the simplistic situation
without confinement. To be able to make analytical progress, we
expand perturbatively the axial velocity in the small parameter R/D.
By substituting the expressions of the self- and pair-mobility functions,
given by Eqs. (7) and (11), respectively, into Eq. (18), and noting that
N ¼ OððR=DÞ2Þ, the instantaneous swimming velocity can readily,
upon the Taylor expansion in the small parameter R/D, be cast in the
form

V1 ¼ VB
1 þ VC

1 þ O
R
D

� �2
 !

; (20)

where VB
1 is the instantaneous velocity in the absence of confinement,

given by

VB
1 ¼ ð _g ðR� 2gÞh2 � 2ðRþ hÞg2

� �
þ _hðð2h� RÞg2

þ 2ðRþ gÞh2ÞÞ=6ghðg þ hÞ : (21)

Moreover, VC
1 is the confinement-related contribution to the instanta-

neous velocity, given by

VC
1 ¼

R
6Rc

_g N1 � _h N2

� �
; (22)

wherein N1 ¼ n12 � 2n13 þ n23 and N2 ¼ n13 � 2n12 þ n23.
We find that the bulk-related contribution to the average speed is

obtained as

�V B
1 ¼

R
3T

2e2

DðD� eÞ þ ln
4DðD� eÞ
2D� eð Þ2

 ! !
: (23)

In particular, for e� D, we get

�V B
1 ¼

7R
12T

e
D

� �2

þ e
D

� �3
 !

þ O
e
D

� �4
 !

: (24)

The contribution to the averaged speed due to confinement can
be approximated in the limit R� D as

�V C
1 ¼

R
3pT

ð1
0

AðsÞ
BðsÞ

2e
Rc

w1ðsÞ �
w2ðsÞ
s

� �
ds; (25)

where

w1ðsÞ ¼ cos
D
Rc

s

� �
� cos

D� e
Rc

s

� �
;

w2ðsÞ ¼ sin
2D
Rc

s

� �
� 2 sin

2D� e
Rc

s

� �
þ sin

2 D� eð Þ
Rc

s

� �
:

Here, we have swapped the order of integration with respect to s and t.
It is worth highlighting that Eq. (25), which provides the confinement-
related contribution to the averaged swimming speed, remains valid
across the entire range of values for D and Rc. The only assumption
made to derive the approximate expressions for the swimming speed
is that R is significantly smaller than D. Since Eq. (25) involves infinite
integrals over the scaled wavenumber s, the corresponding analytical
expressions cannot be obtained in the limit e� D, unlike the case for
the bulk-related contribution given by Eq. (24).

C. Finite element method

We also perform fully coupled numerical simulations of the
momentum Eq. (1) and continuity Eq. (2) equations using the finite
element method (FEM) implemented in the COMSOL Multiphysics
environment. We compare these numerical simulation results, which
capture the full sphere–sphere and sphere–confinement hydrody-
namic interactions, with predictions based on the point-particle
approximation in Sec. II B. The axisymmetry of the problem setup
reduces the computational complexity of the problem from three-
dimensional to two-dimensional. Since Stokes flows have a slow spatial
decay, in order to minimize any hydrodynamic influence from the
ends, we consider the cylindrical computational domain of radius Rc
and a long axial length of approximately 2000R (1000R in each direc-
tion away from the outer spheres). The domain is discretized by about
20 000–35 000 P3–P2 (third-order for fluid velocity and second-order
for pressure) triangular mesh elements, with the local mesh refinement
in the proximity of the three spheres. The degree of freedom is of the
order of (0.5–1)�106, depending on the radius of the confining tube.
We use the Multifrontal Massively Parallel Sparse (MUMPS) direct
solver for all simulations.

Due to the time independence of Stokes flows, the motion of the
swimmer is completely determined by its instantaneous movement
and geometrical configuration. To simulate the swimming motion
over a full cycle, the movement of the swimmer is broken down into
separate, stationary simulations for different time instants in
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individual strokes. At each instant, the velocities of the spheres are
determined by the relative motion of the three spheres plus an
unknown swimming speed in the axial direction on all spheres. These
prescribed velocities on the spheres are implemented as boundary con-
ditions on the spheres. To determine the unknown swimming speed,
the force-free condition Eq. (3) is implemented as a global equation,
which is solved together with the momentum and continuity equa-
tions to obtain the swimming speed, velocity field, and pressure field
simultaneously at each time instant in the swimming cycle. We then
perform numerical integration of the swimming speed over a full cycle
to obtain the net displacement of the swimmer per cycle, D.

III. RESULTS AND DISCUSSION

In Secs. III, we first cross-validate the point-particle approxima-
tion and numerical simulations based on the finite element method by
considering the motion of a three-sphere swimmer in an unbounded
fluid domain in Sec. IIIA. We then characterize in Sec. III B the effect
of axisymmetric confinement on the propulsion performance of the
three-sphere swimmer for different levels of confinement and proper-
ties of the swimmer.

A. Swimming in an unbounded fluid

For validation, we consider the motion of the three-sphere swim-
mer in an unbounded fluid domain. In the particle–particle approxi-
mation (Sec. II B), the bulk-related contribution to the average speed
�VB
1 is given by Eq. (23), which can be multiplied by the period T to

obtain the net displacement of the swimmer per cycle, D, shown in
Fig. 2 (black solid line). When e� D, the net displacement is calcu-
lated from Eq. (24) as

D � 7R
12

e
D

� �2

þ e
D

� �3
 !

; (26)

which is represented by the black-dashed line in Fig. 2. We remark
that the asymptotic result given in Eq. (26) is consistent with that given
by Earl et al.,28 which rectified the result presented in Najafi and
Golestanian.26 The asymptotic result in Eq. (26) reveals that the net
displacement of the swimmer per cycle scales quadratically with the
contraction length of the swimmer, D ¼ Oðe2Þ, in the regime of
e=D� 1.

To compare with the above theoretical results, in the FEM
simulations, we use an exceedingly large radius of confinement
(Rc=R ¼ 1000) to simulate the swimming motion in an unbounded
fluid domain. The FEM results are represented by blue circles in
Fig. 2. The comparison between theoretical and numerical results
shows that the point-particle approximation captures quantitatively
the propulsion behaviors for small to moderate contraction lengths
of the swimmer, where the spheres are sufficiently distanced from
each other throughout the swimming cycle. For larger contraction
lengths, the spheres come closer to each other during contraction,
leading to more significant hydrodynamic interactions between the
spheres. Consequently, the point-particle approximation starts to
deviate from the FEM results, over-estimating the net displacement
of the swimmer.28,54 Despite these deviations, the point-particle
approximation continues to capture the qualitative trend of the
propulsion behavior.

B. Swimming under axisymmetric confinement

In Fig. 3, we probe the effect of axisymmetric confinement by
examining the net displacement of the three-sphere swimmer along
the centerline of a capillary tube. Here, we keep the contraction length

FIG. 2. The scaled net displacement of the swimmer per cycle, D=R, in an
unbounded fluid as a function of the scaled contraction length of the swimmer, e=R.
The black solid line represents results based on the point-particle approximation,
D ¼ �V

B
1T , where �V

B
1 is given by Eq. (23), whereas the black dashed line corre-

sponds to the asymptotic results given by Eq. (24) (or Eq. 26) in the limit e� D.
The blue circles are simulation results based on the finite element method with a
large radius of confinement Rc=R ¼ 1000 to simulate an unbounded fluid domain.
Here, D=R ¼ 10.

FIG. 3. The scaled net displacement of the swimmer per cycle, D=R, as a function
of the scaled capillary tube radius, Rc=R, for different values of scaled rod lengths,
D/R. Here, e=R ¼ 4. The symbols represent numerical results from FEM simula-
tions (see legends); the lines with the same colors represent the corresponding pre-
dictions from the point-particle approximation by integrating the instantaneous
velocity given by Eq. (18) over one full cycle. Inset: a magnified view of the rela-
tively small scaled net displacements.
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constant (e=R ¼ 4) and only vary the radius of the tube, Rc. For a
given fully extended arm length D, the effect of confinement becomes
significant when Rc=R is of Oð1Þ � Oð10Þ: in this regime, the results
reveal that a tighter confinement (decreasing Rc) substantially reduces
the net displacement of the swimmer. We note that this trend is in
stark contrast with the helical propulsion in a capillary tube,73 where
the confinement largely enhances propulsion, illustrating how confine-
ment can have qualitatively distinct effects on swimming depending
on the underlying propulsion mechanisms. Results from the FEM sim-
ulations (symbols) and point-particle approximation (lines) agree well
when the spheres are separated by large arm lengths (e.g.,
D=R ¼ 15; 20), when the sphere–sphere and sphere–confinement
hydrodynamic interactions are expected to be weaker. For D=R ¼ 10,
the point-particle approximation still properly captures the qualitative
feature of the confined swimming motion when the spheres are in
closer proximity, where the near-field effects become more
pronounced.

Next, we probe how the net displacement of the swimmer varies
with its contraction length when swimming in a capillary tube (Fig. 4).
While the net displacement of the swimmer grows with the contrac-
tion length in general, it occurs at different rates depending on the
degree of confinement (i.e., the value of Rc=R). In an unbounded fluid,
the net displacement grows quadratically with the contraction length,
D=R � 7e2=ð12DÞ, as given by Eq. (26). In Fig. 4 inset, we consider a
log–log plot of the results to better visualize the scaling. For a relatively
loose confinement Rc=R ¼ 10 (downside black triangles and black
dot-dash line), the log–log plot shows an approximately quadratic scal-
ing between the net displacement and the contraction length, similar
to the case in an unbounded fluid. However, as the environment
becomes more confined (Rc=R ¼ 2:5 and 5), results from both point-
particle approximation (red dashed line and blue solid line) and FEM

(red upside triangles and blue circles) indicate slopes increasingly
greater than two in the inset. These results illustrate that the scaling
goes beyond second-order in confined swimming; the three-sphere
mechanism becomes increasingly ineffective in generating a net dis-
placement under tighter confinement.

To develop a more physical understanding of the above
results, we revisit the symmetry arguments by Najafi and
Golestanian26 that showed how the four strokes in the cycle are
related. These arguments remain valid for the swimmer under axi-
symmetric confinement considered in this work: stroke III is
related to stroke II upon a left–right reflection and a time-reversal
transformations, whereas stroke IV is related to stroke I with the
same transformations. Consequently, the net displacement of the
swimmer after executing a full cycle is simply reduced to (two
times) the difference in the net displacement of the center sphere
generated by strokes I and II. Stroke I generates a net displacement
to the left, while stroke II generates a net displacement to the right.
It is crucial to note that these net displacements differ in their mag-
nitudes because the force acting on the spheres when they are far
apart (in stroke I) is different from when they are in closer proxim-
ity (in stroke II) due to interactions between the spheres via their
surrounding flows. The hydrodynamic interactions lead to only
partial cancelation of the displacements generated by strokes I and
II, giving rise to the net displacement of the swimmer after a cycle.
When the hydrodynamic interaction is neglected, the two
strokes would generate displacements with equal magnitudes in
opposite directions, canceling each other and yielding a zero net
propulsion.

Based on the above understanding of the propulsion mechanism,
we attribute the reduced net displacement of the confined swimmer to
weakened hydrodynamic interactions among the spheres under con-
finement as follows. It was shown that the flow due to a Stokeslet
decays exponentially in a capillary tube due to the confinement,81 as
opposed to decaying as the inverse of the distance in an unbounded
fluid. The flow around the moving spheres of the swimmer in a capil-
lary tube is therefore expected to decay more rapidly in space. To visu-
alize this effect, we plot in Fig. 5 the flow field surrounding the
swimmer at different time instants in a swimming cycle with different
levels of confinement. As the radius of the confining tube decreases
from Rc=R ¼ 10 in panel (a) to Rc=R ¼ 2:5 in panel (c), the magni-
tude of the flow around individual spheres can be observed to decay
more rapidly away from the spheres. These faster spatial decays of
the flow velocity weaken the hydrodynamic interaction between the
spheres, thereby reducing the hydrodynamic difference between the
case when the spheres are more far apart in stroke I and the case when
they are in closer proximity in stroke II. The reduced hydrodynamic
difference between the two strokes therefore generates displacements
with more similar magnitudes, leading to the reduced net displace-
ments of the swimmer in a capillary tube as observed in Fig. 3.

IV. CONCLUDING REMARKS

In this work, we examine the propulsion of a three-sphere swim-
mer along the centerline of a capillary tube at low Re. We combine the
theoretical analysis via the point-particle approximation and simula-
tions based on the finite element method to uncover how the propul-
sion speed varies with the radius of the confining tube as well as the
geometric and kinematic properties of the swimmer. The results show

FIG. 4. The scaled net displacement of the swimmer per cycle, D=R, as a function
of the scaled contraction length of the swimmer, e=R, for different values of the
scaled capillary tube radius, Rc=R. Here, D=R ¼ 10. The symbols represent
numerical results from FEM simulations (see legends); the lines with the same col-
ors represent the corresponding predictions from the point-particle approximation
by integrating the instantaneous velocity given by Eq. (18) over one full cycle. The
inset displays a log –log plot of the results, where a dotted gray line of slope 2 is
added to aid visualization.
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that the presence of confinement does not significantly affect the pro-
pulsion speed until the scaled radius of the confining tube is in the
range of Rc=R ¼ Oð1Þ � Oð10Þ, where the swimmer exhibits sharp
decays in propulsion speed as the radius of the tube decreases. The
presence of confinement also leads to a higher-order scaling between
the net displacement and the contraction length of the swimmer,
reducing the effectiveness of this propulsion mechanism. We contrast
the reduced propulsion speed observed here with the enhanced helical
propulsion inside a capillary tube reported earlier,73 highlighting how
the effect of confinement can manifest in qualitatively different man-
ners depending on the swimmer’s propulsion mechanism. While heli-
cal propulsion is based on the drag anisotropy of slender bodies, the
three-sphere swimmer here relies on the sphere–sphere hydrodynamic
interactions—a physically different mechanism—to self-propel. The
reduced propulsion performance observed here is attributed to the
more rapid spatial decays of the flow velocity of moving bodies in a
tube, which reduces the hydrodynamic interaction between the
spheres and thereby the net displacement of the swimmer.

Based on the above physical understanding of the results, we
hypothesize that the propulsion of a three-sphere swimmer in porous
media may also be hindered due to the screening of hydrodynamic
interactions by networks of obstacles, in contrast to enhanced propul-
sion predicted for different types of swimmers in heterogeneous vis-
cous environments.82–88 An investigation is under way to evaluate this
hypothesis and will be reported in a future work. Furthermore, we
considered the effect due to rigid confinement in this work, while the
fluid–structure interaction between the swimmer and elastic confine-
ments can have profound impacts on the swimming perfor-
mance.72,89,90 It would be worthwhile to consider the case of an elastic
tube and systematically examine the interplay between shear and
bending deformation modes in prescribing the hydrodynamics of the
swimmer under elastic confinement. Finally, we focus on the effect of
axisymmetric confinement here to preserve the one-dimensional
nature of the motion, which allows us to measure how the degree of
confinement affects the propulsion speed in a simple manner. Lifting
this restriction to examine more general motion of a three-sphere

swimmer in a capillary tube could lead to more complex and interest-
ing swimming dynamics in future studies.
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FIG. 5. The scaled flow speed distribution, juj=W , around the swimmer at the end of individual strokes I–IV (from left to right panels) illustrated in Fig. 1 for different values of
the scaled capillary tube radius: (a) Rc=R ¼ 10, (b) Rc=R ¼ 5, and (c) Rc=R ¼ 2:5. The black arrows indicate the relative motion (contraction or extension) of the pair of
spheres in different strokes. Here, D=R ¼ 10 and e=R ¼ 4.
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APPENDIX: A CONFINED THREE-SPHERE SWIMMER
WITH HARMONIC OSCILLATIONS OF THE ROD
LENGTHS

We follow Najafi and Golestanian26 in the main text in consid-
ering a constant relative speed W in the change of arm length. In
this appendix, we also consider harmonic deformations of the
arms76 to establish some generality of the conclusion. Specifically,
we prescribe the following variations, respectively, for the length of
the front and rear rods:

gðtÞ ¼ D� e
2
þ e
2
cos ðxtÞ; (A1)

hðtÞ ¼ D� e
2
þ e
2
cos ðxt þ /Þ: (A2)

The two rods have an equilibrium length of D� e=2 with sinusoidal
oscillations of amplitude e=2, angular frequency x, and a phase
mismatch /. Here, we set x ¼ pW=e, so that the period of oscilla-
tion is given by T ¼ 2e=W. As a remark, when / ¼ 0, the swimmer
generates a zero net propulsion by symmetry; when / ¼ p, the
overall deformation of the swimmer becomes a reciprocal motion,
which also leads to a zero net propulsion as dictated by the scallop
theorem. Here, we present results for the specific case of / ¼ p=2,
which was shown to generate the maximum amount of net dis-
placement of the swimmer in an unbounded fluid.76 As shown in
Figs. 6 and 7, a confined swimmer with harmonic variations of its
arm lengths exhibits qualitatively the same behaviors, compared
with the case of a constant rate of change of the arm lengths exam-
ined in the main text (Figs. 3 and 4).
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