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In turbulent flows, kinetic energy is transferred from large spatial scales to small ones, where it is
converted to heat by viscosity. For strong turbulence, i.e., high Reynolds numbers, Kolmogorov
conjectured in 1941 that this energy transfer is dominated by inertial forces at intermediate spatial scales.
Since Kolmogorov’s conjecture, the velocity difference statistics in this so-called inertial range have been
expected to follow universal power laws for which theoretical predictions have been refined over the years.
Here we present experimental results over an unprecedented range of Reynolds numbers in a well-
controlled wind tunnel flow produced in the Max Planck Variable Density Turbulence Tunnel. We find that
the measured second-order velocity difference statistics become independent of the Reynolds number,
suggesting a universal behavior of decaying turbulence. However, we do not observe power laws even at
the highest Reynolds number, i.e., at turbulence levels otherwise only attainable in atmospheric flows. Our
results point to a Reynolds number-independent logarithmic correction to the classical power law for
decaying turbulence that calls for theoretical understanding.
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Introduction.—Turbulent flows feature a self-organized
net transfer of kinetic energy from the large energetic length
scales (L) to the small viscous and dissipative scales (η).
The statistical properties of incompressible turbulent flows
in the inertial range (η ≪ r ≪ L) have long been proposed
to depend only on the rate of kinetic energy transfer (ε) and
otherwise to follow universal relations [1]. Universality,
thus, is expected to emerge as the turbulence intensity,
i.e., the Reynolds number increases—the larger it is, the
larger the expected universal inertial range should be. This
prediction relies on dimensional arguments and is sup-
ported to some extent by experiments and by numerical
simulations of the Navier-Stokes equation [2–5]. The
central parameter is the Reynolds number given by

Rλ ≡ u0λ
ν

ð1Þ

(also known as the Taylor-scale Reynolds number), where
u0 is the rms velocity of the velocity fluctuations, λ2 ¼
15νu02=ε is the (square of the) Taylor scale, and ν is the
kinematic viscosity.
In his seminal work, called K41, Kolmogorov [1]

assumed that the statistics of a given flow are defined
entirely by the rate of energy transfer to dissipation ε in the
inertial range. Dimensional analysis then leads to the
inertial-range scaling law

SnðrÞ ¼ CnðεrÞn=3; ð2Þ

where the structure function of nth order is given by
SnðrÞ ¼ h½ðuðxÞ − uðxþ rÞ� · r=jrjÞni. It is well known
that the intermittent spatial distribution of ε leads to a
dependence of the inertial-range scaling exponent of the
longitudinal structure function Sn on n that is a convex
function of n and different from n=3 [6]. This does not hold
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for n ¼ 3, where the inertial-range scaling exponent is
unchanged by the presence of intermittency.
Scaling is expected to hold in the limit Rλ → ∞ for

statistically homogeneous and isotropic turbulence and
there will always be corrections to these power laws in
real flows and noninfinite Reynolds numbers. However,
these corrections are expected to diminish with an increas-
ingly extended inertial range, i.e., with increasing Rλ. One
way for power laws to be approached, for example, would
be for the local slope of the structure functions to become
constant and independent of r within an interval of spatial
scales that increases with Reynolds number.
The way in which the limit of large Rλ is approached

appears to depend on the type of flow. For instance, it has
been observed that structure functions in numerical sim-
ulations in a periodic box forced continuously at large
scales may approach power laws faster with increasing Rλ

than in grid-generated turbulence decaying in wind tunnels
(e.g., [7–9]). Atmospheric flows exhibit the largest Rλ and
the largest scale separation of any available data, but also
exhibit anisotropy and nonstationarity that tend to obscure
scaling [3,10–12]. Low temperature liquid helium labora-
tory flows (e.g., [13]) reach atmospheric Reynolds num-
bers, but have until now been constrained by a lack of
instrumentation with sufficient resolution [14–16].
In this Letter, we present experimental results from

decaying turbulent flows in the Max Planck Variable
Density Turbulence Tunnel over a wider range of Rλ than
in any previous experiment and find that ζ2ðrÞ—a measure
for the local scaling exponent observed at a given r, see
Eq. (3)—is independent of the Reynolds number, but
dependent on the separation r. We discuss the possible
physical origins of this unexpected result and consequences
of the finding.
Experiment and results.—In the Max Planck Variable

Density Turbulence Tunnel (VDTT) 88 m3 of sulphur
hexaflouride (SF6) at pressures between 1 and 15 bar are
circulated at up to 5.5 m=s. Turbulence is generated with an
active grid with individually controllable paddles [17,18] at
the inlet of a measurement section. The turbulence in the
main measurement location on the tunnel center line 8.3 m
downstream from the active grid is approximately sta-
tistically homogeneous and isotropic [18,19]. The devel-
oping turbulent boundary layers on the tunnel walls do not
influence the central measurement region, and the turbu-
lence decays downstream from the grid [20,21].
In the VDTT, the Reynolds number can be adjusted in

three different ways by changing (i) the kinematic viscosity
ν with pressure, (ii) the energy injection scale L with the
active grid protocol, and (iii) the fluctuation velocity u0 with
the mean flow speed. The primary means, however, of
effecting large changes in the Reynolds number was by the
first mechanism (i), so that the small scales [η ¼ ðν3=εÞ1=4]
differed by up to 2 orders of magnitude between experi-
ments, while the large scales differed by up to a factor of 4.

We recorded time series of the streamwise velocity using
MEMS-fabricated 30 μm hot wires (nanoscale thermal
anemometry probes, NSTAPs) [22–24] and conventional
hot wires. The time series were converted into one-dimen-
sional spatial velocity fields by assuming the advection of
turbulent fluctuations with the local mean velocity U, i.e.,
x ¼ Ut (Taylor’s hypothesis) [25]. We have verified that the
turbulence intensities found in our experiments allow the
application of Taylor’s hypothesis by studying the effect of a
random sweeping model [26,27] on model spectra [21,28]
and by comparing the results of experiments with different
turbulence intensities. In all experiments, the wire lengths
were ≲4η. Details on the active grid as well as the
measurement accuracy can be found in the Supplemental
Material [29], which includes Refs. [17,22,24,30–36].
Here we investigate structure functions (Sn) and their

slopes as functions of the scale r=η (Fig. 1). These
functions can typically be separated into three regimes:
the viscous subrange [where S2 approaches ðr=ηÞ2 toward
small scales], the inertial subrange [where it is hypoth-
esized that S2 ∼ ðr=ηÞζn ], and the large scales (where S2
approaches 2u02 ¼ const toward large scales). Figure 1
(upper) shows S2 and S3 compensated by the K41 pre-
dictions [Eq. (2)], so that the inertial subrange presents as
an approximate plateau, one that extends to larger r=η at
larger Rλ. We compare with atmospheric measurements (at
Rλ ≈ 17 000 [10]) and recent computer simulation of the
Navier-Stokes equations in a periodic box (at Rλ ¼ 2250
[5]). The data have been collapsed artificially at r=η ¼ 10
to offset errors in measurements of ε. The direct numerical
simulation (DNS) data are in approximate agreement with
our data up to about 103η, where the experimental curves
fall beneath the DNS. This difference occurs at scales that
we show below are Rλ-independent in the experiment. The
difference between the experiments and DNS may be
attributed to the forcing scheme applied in computer
simulations at large scales [37].
We take special note of the third-order structure function

at Rλ ¼ 2680, since an exact result exists for the S3 (and not
for any other order) at Rλ → ∞, which is the 4=5 law, S3 ¼
−ð4=5Þεr [1,38]. Figure 1(top) shows that the data
approach this scaling approximately in the vicinity of 200η.
To reveal power laws unambiguously, it is convenient to

study the slopes of the structure functions or the local
scaling exponents as functions of r,

ζnðrÞ≡ d logðSnÞ
d logðrÞ ; ð3Þ

where ζnðrÞ is a constant independent of r wherever
scaling laws prevail. We observe in Fig. 1 (bottom) that
ζ2ðrÞ decreases monotonically. As expected due to inter-
mittency, we do not observe the K41 prediction of
ζ2 ¼ 2=3. Models of intermittent turbulence predict ζ2 ≳
2=3 (e.g., [6]), consistent with a region of approximately
constant ζ2 ≈ 0.73 that we find between 100η and 200η.
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In any case, L≳ 104η for these data, so that scaling would
be expected between η < r < 104η and far beyond 200η.
In contrast to this expectation, note that in the interval of
scales between about 300η and 5000η, ζ2 is not constant
and depends on r, decreasing from above 0.7 to below
0.6 (and below 2=3 given by K41). Within this range, it
appears that ζ2ðrÞ, whatever its shape, is independent
of Rλ.
To further interrogate the evolution of the structure

functions with increases in the Reynolds number, we
compare the local slopes [Eq. (3)] measured at different
Reynolds numbers. Figure 2 shows the differences (β2)
between the local slopes measured at the highest Rλ (5779)
and those measured at lower Rλ, such that

β2ðr; RλÞ ¼
ζ2ðr; RλÞ − ζ2ðr; 5779Þ

ζ2ðr; 5779Þ
: ð4Þ

For this calculation, the local slope at the highest Rλ has
been smoothed with splines to suppress noise (see red line
in Fig. 2, top). At viscous scales r≲ 20η, we find that

FIG. 2. Bottom: the local scaling exponent differences β2ðr; RλÞ
[Eq. (4)] from their values at Rλ ¼ 5779 for 413 ≤ Rλ ≤ 4998.
The local slopes for Rλ ¼ 5779 are reproduced from Fig. 1. Red
shading indicates �5% intervals. The data have been shifted
vertically in proportion to logðRλÞ, and the colors indicate
logðRλÞ. A representative sample of 29 datasets is shown. Top:
reference case ζ2ðrÞ measured at Rλ ¼ 5779. The red line
indicates the smoothed data used to calculate βðr; RλÞ.

FIG. 1. Top: S2 and S3 (S3 trusted for r > 50η) compensated by
the K41 predictions at three Reynolds numbers and compared
with numerical simulations at Rλ ¼ 2250 [5] (gray triangles). The
arrows indicate r ¼ L. S3 approaches the 4=5 law between about
150η and 300η, and the tilt of S2=ðεrÞ2=3 toward a positive slope
in this interval is a signature of intermittency, which generates
ζ2 > 2=3. Bottom: the local slopes ζ2ðrÞ [Eq. (3)] reveal addi-
tional details in the shapes of the structure functions, including a
monotonic decrease over a range of scales up to and beyond
L≳ 104η. In addition to ζ2ðrÞ of the datasets above, we show
atmospheric data at Rλ ≈ 17 000 [10] (gray squares). The orange
line is for reference and is proportional to 1 − b logðr=ηÞ. The
black arrows indicate the subranges we identify within the inertial
range. Inset: local slope of S3 for the three VDTT datasets.
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βðr; RλÞ ≈ 0 for all Rλ, indicating the expected universality
of the scaling exponent in the viscous subrange, where
ζ2 ¼ 2. Data for which Rλ ≳ 2000 also exhibit a range of
scales where βðrÞ ≈ 0 at intermediate scales r≳ 100η,
indicating that for these cases the local slopes (ζ2)—
whatever their particular values—are close to those in
the highest Reynolds number dataset. For instance, the
differences in ζ2ðrÞ between Rλ ¼ 2033 and Rλ ¼ 5779
are less than �5% within about one decade in r=η. Above
Rλ ≈ 3000 this range further extends to over two decades in
r=η. The implication is that, throughout these intermediate
scales, ζ2ðrÞ does not change with increases in Rλ. That is,
while S2 remains r dependent in a way not described by
power laws, S2 does not appear to depend on Rλ at
intermediate scales 102 < r=η < 104.
In summary, we observe two subranges in structure

functions (indicated by the black arrows in the lower panel
of Fig. 1) consistent with other laboratory experiments,
DNS, and the experiments in the atmosphere: (1) a narrow
interval centered near r ≈ 150η, whose width is approx-
imately constant despite increases in Rλ and within which a
scaling exponent may be identified that is approximately
the same for the experiments, DNS, and atmosphere
(ζ2 ≈ 0.73) and (2) an interval r > 300η that widens with
increasing Rλ as expected for the inertial range, but within
which ζ2ðrÞ decreases with increasing r in a way inde-
pendent of Rλ, albeit with subtle differences between the
experimental, DNS, and atmospheric data.
Discussion.—We assembled a dataset of active-grid-

generated turbulence over a wider range of Rλ than ever
before measured in a single setup and found that the
second-order velocity increment statistics quantified by
ζ2ðrÞ is independent of Rλ, but remains dependent on r
within a broad range of intermediate scales consistent with
the inertial range. The short range of approximately
constant ζ2 near r=η ≈ 150 is consistent with the oscillation
in structure described in Refs. [39,40] and is not necessarily
indicative of a nascent power law. In other words, the
expected r independence of ζ2 for Rλ → ∞ is not observed
in this dataset.
Our results agree with those from computer simulations

and atmospheric flows up to ≈400η, noting that our
Reynolds numbers are higher than in simulations and
our experiments are better controlled than the atmosphere.
In the following, we discuss how statistical anisotropy and
nonstationarity may impact our results.
It is well known that real flows do not exhibit the ideal

conditions of isotropy and statistical stationarity under
which the theoretical limits are constructed, which can
cause deviations from theoretical predictions [3,7,41–43].
Anisotropic contributions can be separated from isotropic
ones by expanding Sn in spherical harmonics, provided one
has directional information [43,44]. Scales must be con-
sidered relative to the scale of the source of anisotropy,
which is on the order of the energy injection scale L.

Anisotropic contributions decrease relative to isotropic
ones toward small scales. We choose ζ2ð200ηÞ as a
reference value within the region exhibiting the smallest
variation of ζ2 with respect to changes in r. If anisotropy
were the primary contributor to the observed variation in ζ2
toward larger spatial scales, one would expect that an
increase in scale separation L=η ∼ R3=2

λ would tend to cause
the anisotropic contributions to diminish. Figure 3 shows
that this is not likely the case for Rλ > 2000: ζ2 at a fixed
scale r0 < L (we chose 1200η) does not approach ζ2ðr ¼
200ηÞ with increasing L=η. Thus, anisotropy is unlikely to
fully explain the scale dependence of ζ2 depicted in Fig. 1.
Wind tunnel flows are not statistically stationary due to

the downstream decay of turbulent kinetic energy, which is
in contrast to computer simulations in periodic boxes that
are forced and do not decay. The influence of decay on one-
dimensional turbulence statistics can be estimated using
closure models for the statistically averaged Navier-Stokes
equations (e.g., the Karman-Howarth equation) [38]. We
follow Yang et al. [9], which accounts for a constant
integral length scale, as this condition prevailed approx-
imately in our experiments. We altered the model to include
an intermittent inertial-range exponent (see Supplemental
Material [29], which includes Refs. [9,45,46]). Adapting
the remaining free parameter of the model to fit our data at
low Rλ, we estimate that Rλ ≈ 106 would be necessary for a
decade of inertial-range scaling to appear when the model is
applied. These Reynolds numbers are close to those found

FIG. 3. Difference in the local scaling exponent ζ2 at two
different values of r within the inertial range: 200η, where the
statistics can be assumed to be the most isotropic, and 1200η,
which tends to be more anisotropic due to its relative proximity to
the large scales. When Rλ > 2000, the inertial range extends from
200η to 1200η and beyond. To the right of this point, changes in
the difference of ζ2 are smaller than to the left. The squares
indicate data from the VDTT with a passive grid of rigid bars
installed [20]. The light blue lines are a model of decaying
turbulence in a confined domain [9] for different choices of the
parameter −Ak [0.6 (light), 0.7, 0.9 (dark)]. The black horizontal
line indicates power law scaling in S2. The measured values of
L=η differ slightly from those read off from this graph due to a
different ways of estimating ε ∼ u3=L.
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on Jupiter [47]. The model, however, does not capture the
detailed shape of the observed structure functions.
Furthermore, our data suggest an even slower approach (if
any) to a power law than themodel, which tends to follow the
data up to Rλ ≈ 2000, but not beyond (see Fig. 3).
The data do not exclude an Rλ dependence of the odd-

order local slopes leading to power-law scaling (including
the 4=5 law) at finite Rλ. Our data suggest that Rλ ≈ 105

would be required for the 4=5 law to appear. Differences in
scaling behavior between odd and even orders have
recently been attributed to gradual increases in the velocity
time series (ramp) followed by sudden drops (cliff) [48]. In
general, third-order statistics are sensitive to the transfer of
energy, whereas second-order statistics measure the dis-
tribution of energy.
This Letter demonstrates a range of scales outside the

viscous range whose shape is Rλ-independent to within
experimental error. Our findings suggest that the inertial
range is more complex than anticipated and an increase in
Rλ might not necessarily yield an approach to power laws.
The observed behavior questions the appropriateness of
power laws for the description of real-world flows at large
Reynolds numbers, in general. They therefore ultimately
put into question the practical relevance of a separation of
turbulence into viscous, inertial, and large scales, at least at
a quantitative level.
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