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Abstract
Eye tracking is prevalent in scientific and commercial applications. Recent computer vision and deep learning methods 
enable eye tracking with off-the-shelf webcams and reduce dependence on expensive, restrictive hardware. However, such 
deep learning methods have not yet been applied and evaluated for remote, online psychological experiments. In this study, 
we tackle critical challenges faced in remote eye tracking setups and systematically evaluate appearance-based deep learn-
ing methods of gaze tracking and blink detection. From their own homes and laptops, 65 participants performed a battery of 
eye tracking tasks including (i) fixation, (ii) zone classification, (iii) free viewing, (iv) smooth pursuit, and (v) blink detection. 
Webcam recordings of the participants performing these tasks were processed offline through appearance-based models of 
gaze and blink detection. The task battery required different eye movements that characterized gaze and blink prediction 
accuracy over a comprehensive list of measures. We find the best gaze accuracy to be 2.4° and precision of 0.47°, which 
outperforms previous online eye tracking studies and reduces the gap between laboratory-based and online eye tracking 
performance. We release the experiment template, recorded data, and analysis code with the motivation to escalate afford-
able, accessible, and scalable eye tracking that has the potential to accelerate research in the fields of psychological science, 
cognitive neuroscience, user experience design, and human–computer interfaces.

Keywords  Online · Low resolution · Eye tracking · Deep learning · Computer vision · Eye gaze · Fixation · Free viewing · 
Smooth pursuit · Blinks

Introduction

Eye movements offer direct insight into the dominant visual 
stream of attention and have been widely studied across disci-
plines of cognitive neuroscience and psychology to understand 
human behavior, perception, and attention (Radach et al., 2003). 
The diverse set of events that can be recorded from the eye, 
such as fixations, saccades, smooth pursuit, and blinks, make 
eye tracking a valuable method for researchers and practition-
ers. However, though eye tracking methods have a long history 
of development and application (Buswell, 1935; Delabarre, 

1898; Huey, 1898; Yarbus, 1967), popular recording methods to 
measure ocular activity mostly rely on expensive, specialized, 
and delicate hardware that limits the application of eye tracking 
to highly controlled and unnaturalistic setups. Such hardware-
based eye trackers (e.g., EyeLink 1000 by SR Research; iView 
X systems by SensoMotoric Instruments) provide high spatial 
and temporal resolution of recorded data but impose limitations 
on the recording environment, user movements, and scalability 
of data collection. Development of portable hardware in the 
form of wearable glasses or head-mounted devices (e.g., Pupil 
Core headset; Tobii Pro glasses; UltraFlex headgear by Positive 
Science) aids in improving affordability, adaptability, and non-
intrusiveness of eye trackers, however they have seen limited 
adoption to large-scale "in-the-wild" applications. Additionally, 
the majority of these methods are developed as proprietary 
closed-source solutions, limiting user-driven development, 
customization and extension of offered methods, extensive 
performance evaluation, and compatibility of vendor products 
with external hardware or software.

Software-based approaches, applying sophisticated com-
putational algorithms, have demonstrated the ability to track 
eye movements using general-purpose, consumer-grade, 
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off-the-shelf cameras in unrestricted environments (Hansen 
& Pece, 2005; Papoutsaki et al., 2016; Krafka et al., 2016; 
Zhang et al., 2015; Xu et al., 2015; Zhang et al., 2019; Kell-
nhofer et al., 2019). Such methods greatly reduce depend-
ence on specialized hardware and allow highly affordable, 
large-scale applications of eye tracking. These software-
based approaches can be broadly classified into model-based 
and appearance-based methods. Model-based methods (see 
Hansen & Ji, 2010, for an overview) estimate geometric eye 
shapes or 2D features, such as pupil-center, position of cor-
neal reflection, eye corners, iris contours, etc., from images 
of the eye typically captured using infrared light sources. 
These features are used to fit a person-specific, 3D model 
of the eye to detect gaze or to directly estimate gaze using 
regression. Due to their rigid geometric assumptions, model-
based methods are highly sensitive to lighting or illumina-
tion changes, head movements, user distance, intrinsic and 
extrinsic camera parameters, and preset thresholds. Appear-
ance-based methods (see Cheng et al., 2021, for an over-
view), on the other hand, rely on high-level visual features 
extracted from RGB images of the face and/or eyes to predict 
outputs such as gaze angle, point of gaze, and blink prob-
ability using robust machine learning models. Appearance-
based methods have lately surpassed model-based methods 
for in-the-wild applications with low-resolution images and 
are more robust to changing environments in less restricted 
setups (Zhang et al., 2019, provide a detailed comparison).

One potential application for appearance-based eye track-
ing is in online, webcam-based scientific experiments or user 
research. Online studies incorporating eye tracking enable 
researchers to sample global populations in shorter time frames 
and to replicate results cross-culturally, potentially improving 
the ecological and external validity of research. Nonetheless, 
the task of tracking eye movements from a limited resolution 
webcam image in an online experiment setting is challenging, 
given the high variability in participant appearance, environ-
mental factors (lighting, reflection, etc.), and hardware speci-
fications (screen size, camera resolution, etc.). Video artefacts, 
such as motion blur, and unrestricted movement parameters, 
such as head pose, further add to this challenge. Existing online 
webcam-based gaze-tracking methods apply real-time image 
processing and computer vision to learn a regression function 
from observed facial features, such as pupil coordinates or eye 
image pixels, to predict gaze points on the screen (Papoutsaki 
et al., 2016; realeye.io; xlabsgaze.github.io; Xu et al., 2015). 
These methods make online eye tracking accessible and con-
venient; however, their robustness to diverse eye-movement 
types, environments, subjects, and long trial lengths is limited. 
Previous studies have reported a gaze accuracy between 3 and 
4° using the best performing WebGazer model (Papoutsaki 
et al., 2016; Semmelmann & Weigelt, 2018).

Here, for the first time, we applied appearance-based deep 
learning methods for eye tracking to webcam videos recorded 

during an online experiment. We characterized the perfor-
mance of these methods using a battery of eye tracking tasks: 
fixation, zone classification, smooth pursuit, free viewing, and 
blink detection. The battery provided an extensive benchmark-
ing of eye-tracker performance across different types of ocular 
movements and allowed comparison with laboratory-based 
eye tracking from EyeLink 1000 and Pupil Core, evaluated 
on the same tasks by other researchers (Ehinger et al., 2019). 
We used three of the best-performing gaze-estimation mod-
els: MPIIGaze (Zhang et al., 2015), ETHXGaze (Zhang et al., 
2020), and FAZE (Park et al., 2019); and two blink detection 
algorithms: EAR (Soukupová & Cech, 2016) and RT-BENE 
(Cortacero et al., 2019), to analyze the data collected in our 
online study. We split the online data collection and offline 
model inference steps, reducing the computational restriction 
of real-time browser inference and allowing flexible, within-
subject, comparison of multiple models.

Method

The study procedure was pre-registered prior to any human 
observation, and prior to the full collection of data, together 
with an addendum specifying updates on defining criteria 
to exclude noisy recordings (Saxena et al., 2021). All ethi-
cal approvals, participation criteria, and general procedures 
can be found in more detail there. We designed and system-
atically compared calibration strategies to estimate physical 
parameters and improve gaze prediction accuracy, in our 
previous publication (Saxena et al., 2022), using a subset of 
data from the current experiment. The current paper utilizes 
the best performing calibration strategy from our previous 
results and reports calibration results on the final dataset in 
Supplementary Information.

Participants

Participants in our experiment were recruited through a data-
base of community volunteers of the Max Planck Institute 
for Empirical Aesthetics, the institute website, and social 
media channels. In total, 118 participants completed the 
online study. Data for 53 participants had to be excluded 
based on inconsistent recording frame rates, face detection 
failures, and missing files (for a detailed report on unex-
pected data attrition and updated exclusion criteria, see 
“Addendum to OSF_Prereg_WebET.pdf” in Saxena et al., 
2021). The final dataset consisted of 65 participants (20 male 
and 45 female), aged 20 to 35 years (M = 26, SD = 3). 
Forty-six of the participants reported having normal vision 
and 19 reported corrected-to-normal vision. Fifty-six identi-
fied as students. Prior to the study, participants confirmed 
they met the following requirements: aged between 18 and 
35 years (inclusive); not wearing glasses; normal hearing 
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ability; not prone to epilepsy or migraine; not suffering from 
any neurological disease; slept longer than 5 h the previous 
night; not under the influence of drugs or alcohol (in the past 
72 h). Participants took around 48 min (IQR: 41.75–52.67 
min) to complete the study and were reimbursed 14€, with 
an additional 7€ per half hour if they took more than 60 min.

Apparatus

Stimulus presentation and data (webcam video and partici-
pant responses) recording for our study were done online 
on the LabVanced (Goeke et al., 2017) platform. All tasks 
were performed in full-screen mode and were designed to 
be presented in a fixed coordinate system of frame units 
(FU) where 1° (visual degree) = 54.05 FU (for estimation of 
visual angles see Device Calibration in Saxena et al., 2022, 
and the Procedure section below). All stimuli were presented 
within a window size of 29.6° × 16.65° (1600 × 900 FU), 
centered on the screen for all screen sizes. A laptop screen 
equal to or larger than this size was therefore required for 
participating. During the experiment, events were recorded 
as UNIX timestamps and participant responses during 
tasks were collected using the left-click button. The online 
experiment was preloaded on the participant’s device and 
all recordings were transferred only at the end of the experi-
ment to ensure precise stimulus timing and no data loss dur-
ing transfers. Further, the online experiment tested runtime 
execution time at regular intervals (every 5 s). We used the 
mean and standard deviation of recorded execution times 
of these functions to ensure a working network bandwidth.

Eye tracking task battery

To evaluate eye tracking recordings and benchmark model 
performance, we build upon a published battery of eye track-
ing tasks (Ehinger et al., 2019), selecting the fixation, free 
viewing, smooth pursuit, and blink detection tasks, which 
could be executed with the temporal and spatial resolution 
of the current webcam methods. We complement the battery 
with a new zone classification task, which resembles task 
settings requiring less precise fixations in a region-of-interest.

Fixation  The fixation task was implemented similar to Ehinger 
et al.’s, 2019, small-grid task. The fixation target was presented 
at one of 13 screen locations, with the serial order of locations 
randomized for each trial and participant. The locations were 
a subset from locations within a 7 × 7 grid, equally spaced in a 
range from – 6.2° to 6.2° (visual degrees) vertically and – 11.1° 
to 11.1° horizontally (see Fig. 1, showing all 13 locations). 
The fixation target used was a combination of bullseye and 
cross-hair (Ehinger et al., 2019) with the diameter fixed to 0.6°. 
Participants were instructed to respond when they fixated on 
the displayed target and to keep fixating until the target moved 
to a new location, and repeat. The target moved after a fixed 
duration of 2500 ms, starting and ending in the center position 
for each block of trials. Note that the fixation task differed from 
our fix-point calibration task in our Gaze Calibration procedure 
in several aspects, such as the fixation target, the requirement 
of a visual discrimination task, and the presentation locations 
of the fixation target on the screen (see fix-point calibration in 
Saxena et al., 2022).

Fig. 1   Overview of the experimental procedure and tasks. Task blocks (pink) were book-ended by calibration blocks (green). The timeline in the 
figure represents one possible sequence of tasks
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Zone classification  We split the presentation screen into 
a non-visible 4 × 4 grid of equally sized units (7.4° × 
4.2°). In each trial, a rangoli pattern appeared for 1500 ms 
sequentially in one of all 16 grid locations, with the serial 
order of locations randomized, and a 200-ms gap between 
presentation offset and onset at a different location. The 
rangoli pattern was monochrome with multiple centers to 
motivate different fixational target locations within the 
pattern (see Fig. 1; different from Fig. 1, the grid was not 
visible). Participants were instructed to look at the dis-
played pattern such that their gaze was constrained within 
its outer boundary.

Free viewing  The free-viewing task presented a subset of 16 
images from a publicly available dataset (Judd et al., 2009) 
to each participant in a randomized order. Each trial pre-
sented a single image and participants were instructed to 
freely explore these images. All images were scaled to maxi-
mum presentation size (29.6° × 16.65°), saving the aspect 
ratio, and displayed for a duration of 3 s each, followed by a 
fixation cross for 1 s between every two images.

Smooth pursuit  The smooth pursuit task was an adaptation 
of the step ramp paradigm (Ehinger et al., 2019; Liston & 
Stone, 2014). The target for this task was a bullseye with a 
black outer circle of diameter 0.5° and a white inner circle 
of diameter 0.25°. Participants were instructed to fixate on 
the target located in the center of the screen and initiate the 
movement of the target, which started with a random delay 
sampled from an exponential distribution with mean 0.5 s, 
a constant offset of 0.2 s, and truncated at 5 s. The target 
moved linearly at a speed of 15°/s and the direction of move-
ment was chosen randomly without replacement from one 
of 12 possible angles spread evenly across the center of a 
unit circle (see Fig. 1, depicting all possible angles; none of 
the directions was visualized on the screen but only the tar-
get was visible). The starting point for each movement was 
chosen such that it took 0.2 s for the target to move from the 
starting point to the center, minimizing the chance of catch-
up saccades. The movement ended when the target reached a 
distance of 8.3° from the center. Participants were instructed 
to closely follow the target movement with their gaze.

Blink detection  The blink detection task was implemented 
as in Ehinger et al., 2019. Participants were instructed to 
fixate on a central fixation target (same as fixation task) and 
blink each time they heard a beep sound. The beep sound 
was a 100-ms 300-Hz sine wave apodized (fade in/out) at the 
beginning and end, generated using the ThinkDSP (Downey, 
2013/2022) Python library. Each trial of the task consisted 
of seven beeps with a pause of 1.4 s between beeps, uni-
formly jittered by ± 0.2 s to make beeps less predictable to 
participants.

Procedure

The online experiment began by providing a description of 
the study objectives and collecting participants’ consent and 
general information. This was followed by a Device Cali-
bration procedure, which was important to estimate physi-
cal screen–camera–participant relationships. The Device 
Calibration consisted of two tasks. Participants’ screen size 
and resolution were estimated by placing an ID card onto the 
screen and adjusting a reference image to the standardized 
measure of the card. The distance between participant and 
screen was controlled by estimating the location of the blind 
spot in the eye, given a required sitting distance of 50 cm (± 
3.5 cm). Physical parameters calculated from these two tasks 
allowed presenting consistent stimuli on different screen sizes 
and reinforced participants’ viewing distance for gaze pre-
dictions (see Saxena et al., 2022, for a detailed description). 
Then the task blocks followed, consisting of repeated Gaze 
Calibration and the tasks from our eye tracking battery (see 
Fig. 1 for an overview). Gaze Calibration was realized by a 
16-pt fixation task, as well as a rectangular smooth pursuit 
task (fix-point calibration and pursuit calibration; see Saxena 
et al., 2022 for a detailed description; see Saxena et al., 2022 
and Supplementary Information provided in this paper for 
comparisons of the efficiency of different calibration strate-
gies). Together, Device Calibration and Gaze Calibration took 
about 3 min (median time spent for a single trial of fix-point 
calibration: 14.39 s, and smooth pursuit calibration: 26.35 s).

Each task in the battery was performed for ten trials except 
for the free-viewing task which consisted of 16 trials (one for 
each image) in total. The trials for each task were equally split 
into two identical blocks, bookended by the two Gaze Cali-
bration tasks. The first block included one additional example 
trial for all tasks. The sequence of tasks inside the blocks was 
balanced with a Latin square design. The sequence of two 
calibration tasks was randomized every time for each block. 
An example series of tasks one participant might experience 
during the experiment is presented in Fig. 1.

Gaze and blink detection models

To evaluate the performance of more sophisticated deep learn-
ing architectures for online experimentation we selected three 
models: the LeNet-based MPIIGaze (Zhang et al., 2015), 
which was among the first-ever models to apply deep learn-
ing for gaze estimation, the FAZE (Park et al., 2019), which 
utilizes meta-learning to train an adaptable gaze estimator, 
and ETHXGaze (Zhang et al., 2020) that was trained on a 
high-quality large-scale dataset collected under extreme head 
pose and gaze variation. In addition to the gaze estimation 
models, we selected two blink estimation methods termed 
as RT-BENE and EAR for detecting blinks from webcam 
recordings. RT-BENE (Cortacero et al., 2019) uses a trained, 
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end-to-end, convolutional neural network (CNN) that takes 
the left and right eye images as input and outputs a blink prob-
ability score. The network is trained on a custom dataset with 
over 10,000 blink instances. In contrast, EAR (Soukupová & 
Cech, 2016) detects blinks using a simple measure called “Eye 
Aspect Ratio”, which represents the portion of the eye visible 
in a frame, calculated as pixel distances of eye landmarks. The 
EAR method leverages robust accuracy of deep-learning-based 
facial landmark estimators and classifies blinks in real-time.

We applied the models from their open-source implementa-
tions, with default image processing and data normalization 
steps. Face detection models used to extract facial keypoints 
for MPIIGaze, ETHXGaze, and EAR were updated from the 
default histogram of gradients method in Dlib (King, 2009) 
to the more accurate and robust max-margin (MMOD) CNN 
face detector in Dlib (King, 2015). The MMOD model resulted 
in quicker inference due to Graphics Processing Unit (GPU) 
compatibility and could detect faces under varying head poses, 
lighting conditions, and occlusion, allowing inclusion of four 
additional participants. All analysis code used to classify eye 
movements and compute task measures defined below is made 
available publicly (see Data & Code Availability).

Data treatment

Data exclusion was performed based on incomplete data record-
ings and missing data due to inconsistent frame rates or face 
detection failures (see “Addendum to OSF_Prereg_WebET.
pdf” in Saxena et al., 2021, for further description). The final 
dataset consisted of webcam recordings with a mean frame rate 
of 29.9 frames per second (fps) (SD = 0.66, SEM = 0.08) that 
were processed offline through the gaze estimation and blink 
detection models.

Prior to model inference, all videos were resized to a 
resolution of 640*480 using OpenCV’s (Bradski, 2008) 
inter-area interpolation. Resized frames were fed sequen-
tially to each model, generating time series of predictions. 
Timestamps recorded during the experiment were mapped 
to video frame numbers using a constant fps, calculated 
from the recorded meta data, and used to mark events in the 
predicted time series. All spatial distances were calculated 
in FU and converted to visual degree (see Apparatus). For 
aggregating task measures over all trials and participants we 
use 20% winsorized means, as in Ehinger et al., 2019 (i.e., 
setting data below the 10th percentile to the 10th percentile, 
and data above the 90th percentile to the 90th percentile). 
While this is the proper way to ensure a fair comparison with 
their results, we do realize that winsorizing shapes the data 
in favor of accuracy.

Event detection for eye tracking with 30-Hz resolution is 
not well established and cannot directly borrow from the tra-
ditional velocity- and density-based approaches (Andersson 
et al., 2010; Salvucci & Goldberg, 2000; Shic et al., 2008). 

We therefore extract eye movements for fixation, smooth 
pursuit, and zone classification tasks by time locking gaze 
predictions around the respective target movement presented 
to the participants. For the free-viewing and blink detection 
tasks, we propose suitable event detection methods that can 
be applied to data with 30-Hz resolution.

To compare model performance across tasks we select one 
accuracy measure from each task (see Model comparisons 
across tasks). Accuracy from the fixation task and angular 
deviation from smooth pursuit task were log-transformed to 
satisfy approximate normality and have similar variations to 
the other task scores. Classification accuracy from zone clas-
sification task and the average AUC score from smooth pur-
suit task were inverted to have similar order as other scores, 
i.e., lower magnitude is better. All task scores were z-scored.

Task measures

Fixation  We calculate accuracy and precision measures for 
the fixation task. Accuracy refers to the offset between dis-
played target and estimated gaze prediction, while precision 
captures consistency in recorded data by taking into account 
the dispersion within predicted gaze points. Fixations were 
estimated as medians of raw gaze predictions (see examples 
in Fig. 2, top row) over the 2500-ms target display duration. 
For precision, we calculated the root-mean-square (RMS) and 
standard deviation (STD) between gaze samples. RMS meas-
ures inter-sample distances and is calculated as the square root 
of the mean of squared distances between consecutive sam-
ples. STD provides a more intuitive measure of the precision 
as the spread of gaze point predictions around the mean. It is 
calculated as the square root of the mean of squared distances 
of each sample from the mean fixation location (x̄, ȳ). Good 
precision reflects less variance (noise) and more reliability in 
predicted gaze points. In the case of both accuracy and preci-
sion metrics, a lower value is better. The final accuracy calcu-
lated in such tasks is significantly dependent on the velocity or 
dispersion thresholds of the applied identification algorithm. 
Final measures were aggregated by calculating winsorized 
means, first over all 13 locations, then over the ten trials, and 
finally over all 65 participants.

Zone classification  This task provides a less strict measure 
of gaze prediction accuracy and resembles tasks that define 
"regions-of-interest" for gaze locations. The performance for 
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this task was evaluated by the accuracy of correctly classify-
ing gaze predictions to the viewed zone. Raw gaze predic-
tions over a presentation trial were aggregated for each of the 
16 presented locations (zones) as the median of gaze points 
for the 1500 ms duration the pattern was presented in that 
zone. For each participant, classification accuracy over the 
ten trials was evaluated by classifying the calculated medi-
ans to one of the 16 zones based on their position on the 
grid. Accuracy is higher when predicted zones (calculated 
medians) are classified to the corresponding presented zones 
highlighted to the participant. Final accuracy was calculated 
as the winsorized mean accuracy over all 65 participants. A 
confusion matrix, aggregated over all 65 participants, dem-
onstrates the winsorized mean accuracy of classifying the 
predicted zone to the presented zone. We also report average 
precision for the classification analysis, that is, the ratio of 
times a zone was correctly identified out of all instances that 
zone was predicted.

We calculated classification measures using raw gaze 
predictions and strictly defined zone boundaries; however, 
it is important to note that classification accuracy is highly 
dependent on classification criteria. For example, Akinyelu 
& Blignaut, 2020 proposed a “Loosely Correct Estimation 
Rate” measure, which allows lenient boundaries for zones, 
accounting for misclassified gaze points near the boundary 
and therefore improves final classification accuracy.

Free viewing  The free-viewing task evaluates model pre-
dictions in unrestricted gaze movement scenarios where 
participants were free to view anywhere on the screen. We 
extracted fixations from the time series of gaze recordings 
for each presented image. Models were compared on the 
mean number of fixations recorded in a trial and the gaze 
entropy of recorded fixations. The calculated fixations were 
used to compute heatmaps and scanpaths that provide a 
quantitative measure of eye movement complexity. The 
calculation of heatmaps and scanpaths is largely dependent 
on the algorithm used for event-classification in such tasks, 
which in turn is dependent on the spatiotemporal resolution 
of the eye tracking data. Since acceleration/velocity thresh-
olds used in standard fixation detection algorithms are not 
reliable with low sample rates, we applied a modified den-
sity-based clustering algorithm (Cakmak et al., 2021), lev-
eraging both spatial and temporal domain features to detect 
fixations. The spatial density threshold was defined as half of 
the calculated RMS precision values in the fixation task for 
each model (MPIIGaze: 1.13°, ETHXGaze: 0.89°, FAZE: 
0.26°), and the temporal threshold was set to six samples (~ 
200 ms) (Manor & Gordon, 2003). Fixation clusters had a 
minimum size of two samples and were defined by their cen-
troid (x, y) location. The first fixation cluster was discarded 
for each trial to reduce the effect of initial center fixation. 
Detected fixation clusters were used to calculate scanpaths 

and gaze heatmaps. Continuous gaze heatmaps from the 
eye tracking data were obtained by convolving a Gaussian 
filter across participant fixations, with sigma equal to the 
approximate size of fovea i.e., one degree of visual angle to 
match the filter size used in Judd et al. (2009).
Smooth pursuit  The smooth pursuit task records dynamic 
eye movements generated when the eyes fixate on a mov-
ing target. Performance on this task was evaluated using 
the mean deviation of predicted gaze movement angle from 
the target movement angle. Raw gaze predictions during the 
smooth pursuit target movement duration were extracted and 
smoothed using a Savitsky Golay filter (order = 1, window 
length = n/2, n = length of gaze sequence). We estimated the 
angle of eye movement by fitting a linear regression model 
on the smoothed predictions. For each trial, deviation from 
the target movement was calculated as the absolute differ-
ence between the estimated gaze direction and target move-
ment angle. Final scores were aggregated by calculating 
winsorized means, first over all 12 target movement angles, 
then over all ten trials, and finally over all 65 participants.

We also applied custom event detection algorithms to 
calculate the smooth pursuit movement onset latency and 
duration. Event detection for 30-Hz gaze-tracking data is 
a complicated task, as the traditional velocity and density-
based algorithms used with laboratory-based eye trackers 
are not suitable. Here, we applied time series analyses to 
identify onset and offset of the smooth pursuit in the critical 
interval between self-paced initiation of the trial by mouse 
click and the stop of the target movement. Raw gaze data 
were smoothed using a Savitsky Golay filter (order = 1, 
window length = n/3, n = length of gaze sequence), fol-
lowed by offline changepoint detection on the first derivative 
time series of the smoothed gaze points, using the ruptures 
library (Truong et al., 2018). The changepoint detection 
algorithm finds an optimal segmentation of the time series 
using two changepoints by computing costs for all possible 
subsequences identified with a dynamic programming search 
method (minimum distance between changepoints was set 
to three). The two changepoints marked the onset and offset 
of smooth pursuit movement in each trial. These measures 
allowed us to also perform additional temporal analysis and 
compare performance of our method with laboratory-based 
eye tracking methods, which was not feasible initially (see 
Analysis plan in Saxena et al., 2021).

Blink detection  For this task, a series of “Eye Aspect Ratio” 
values and blink probabilities were predicted using the two 
methods EAR and RT-BENE, respectively. The two time 
series were used to calculate the number of detected blinks 
per trial. Given the task requirements, we expected the num-
ber of blinks per trial to be seven, and temporally close to 
the auditory cue.
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Similar to smooth pursuit, we applied offline change-
point detection with the ruptures library (Truong et al., 
2018) to the two resulting time series (from each model) 
for detecting potential blink onsets or offsets. To optimize 
computation with the longer blink time series we used 
the linearly penalized segmentation (Killick et al., 2012). 
Then, we eliminated false positives by making sure there 
was in fact a peak detected after a change point. If no peak 
was identified within the neighboring six frames (~ 200 
ms) of a change-point, that point was discarded as a false 
identification. Filtered change-points were then clustered 
using agglomerative clustering (distance threshold = 25 
frames) to classify identified change-points as onset and 
offset of each blink. In addition to the number of blinks 
detected per trial, we calculate blink latencies as the time 
offset between beep onset and detected blink onset, as well 
as blink durations as the time difference between blink offset 
and onset.

Results

Fixation

Raw gaze predictions from all three models for a single 
trial are presented in Fig. 2A. We compared fixation accu-
racy from the three models using a one-factorial, repeated 
measures ANOVA, F(2, 128) = 13.10, p < 0.01, η2 = 
0.09. Post hoc t tests found significant differences between 
MPIIGaze and FAZE t(64) = 9.79, p < 0.01, and ETHX-
Gaze and FAZE, t(64) = 3.69, p < 0.01, but not between 
ETHXGaze and MPIIGaze, t(64) = 0.32, p = 0.75. Over-
all accuracy was 3.70° (IQR: 2.74–4.59°) for MPIIGaze, 
3.40° (IQR: 2.67–4.13°) for ETHXGaze, and 2.44° (IQR: 
1.86–2.90°) for FAZE. Figure 2B plots the mean fixa-
tion accuracy at each target location for the three models. 
Accuracy was much better at the center of the screen, get-
ting worse towards the screen edges. We followed up on 

Fig. 2   Comparison of gaze predictions from the three deep learning 
models on the fixation task. A Single trial raw gaze predictions from 
each model. B Aggregated fixation locations over all 65 participants. 
Crosses represent the displayed fixation target locations; dots rep-
resent mean predicted fixations. The ellipse axes represent standard 

deviation in x and y directions, respectively. C Mean fixation accu-
racy accumulated over all locations, compared to accuracy over loca-
tions presented in the corners of screen [1,3,10,12], center of screen 
edges [2,6,7,11], and near the center of screen [4,5,8,9]; see coding of 
locations by numbers at the right part of Fig. 2C
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this effect of eccentricity with a post hoc ANOVA, includ-
ing models as one factor and three eccentricity ranges  
(see Fig. 2C) as a second factor. The main effect of model 
was significant, F(2, 128) = 55.22, p < 0.01, η2 = 0.15, as 
was the main effect of eccentricity, F(2, 128) = 266.71, 
p < 0.01, η2 = 0.21. The interaction was also significant, 
F(4, 256) = 31.35, p < 0.01, η2 = 0.02. The differences 
in accuracy between the three eccentricities were more 
pronounced for MPIIGaze and ETHGaze models, as com-
pared to FAZE; however, the order remained the same, i.e. 
accuracy at locations [1,3,10,12] > [2,6,7,11] > [4,5,8,9], 
for all three models, with statistically significant differ-
ences for all comparisons, all t’s > 5.44, all p’s < 0.01. 
One factorial ANOVA comparisons on the RMS and STD 
values of the three models showed a significant effect of 
model (RMS: F(2, 128) = 409.33, p < 0.01, η2 = 0.63, and 
STD: F(2, 128) = 183.89, p < 0.01, η2 = 0.30). Post hoc 
t tests revealed significant differences between all three 
models, all t’s > = 8.36, all p’s < 0.01 (detailed report of 
all post hoc statistics available in the code repository asso-
ciated with this paper). Winsorized mean RMS was 2.33° 
(IQR: 1.88–2.75) for MPII, 1.80° (IQR: 1.28–2.29°) for 
ETH, and 0.47° (IQR: 0.29–0.64) for FAZE. Winsorized 
mean STD was 2.96° (IQR: 2.32–3.57°) for MPII, 2.39° 
(IQR: 1.70–2.98) for ETH and 1.63°(IQR: 1.06–2.07°) for 
FAZE.

Zone classification

Figure 3A shows raw single trial gaze time series (x and y 
coordinates) from all three gaze prediction models. Zone-
wise classification accuracy (can vary between 0 to 1 with 
1 being 100% accurate), aggregated over all participants, 
is presented in Fig. 3B. All models capture the gaze move-
ments in a similar pattern, however, with varying accuracy 
and precision, as was also seen in the fixation task. A one-
factorial ANOVA identified a significant effect of model 
on classification accuracy, F(2, 128) = 34.44, p < 0.01, η2 
= 0.16, with FAZE being significantly better than the other 
two models (MPII and FAZE: t(64) = 7.63, p < 0.01, and 
ETH and FAZE: t(64) = 7.38, p < 0.01). FAZE predictions 
provided the best classification accuracy (accuracy = 0.65 
and precision = 0.70), followed by ETHXGaze (accuracy 
= 0.46 and precision = 0.53) and then by MPIIGaze (accu-
racy = 0.43 and precision = 0.48). Further analyzing the 
classification matrix (Fig. 3C) we find that misclassifi-
cations for a zone were made mostly for its neighboring 
zones, particularly the vertical neighbors marked by paral-
lel diagonals in the matrix. 

 In contrast to aggregating computed classification meas-
ures from all participants, we also performed stimulus-level 
analysis by aggregating gaze predictions over all trials and 
participants for each zone (see Fig. 3D). The classification 

accuracy in this case was 0.53 for MPIIGaze (average preci-
sion = 0.69), 0.54 for ETHXGaze (average precision = 0.67), 
and 0.76 for FAZE (average precision = 0.81). We again 
found classification errors to be highly concentrated in the 
neighboring zones and proceeded to quantify the classifica-
tion accuracy improvement with a larger zone. We, therefore, 
calculated classification accuracy on different levels of grid 
division, varied by changing the size of the grid to 2 × 2 
(Fig. 3E), 1 × 2 (Fig. 3F), and 2 × 1 (Fig. 3G), where W × 
H grid size represents divisions across the width (W) and 
divisions across the height (H) of the screen. Larger zones 
increased classification accuracy and precision for all three 
models (see Fig. 3E–G and Table 1). Consistent with the 
higher number of misclassifications made for vertical neigh-
bors in a 4 × 4 grid, we find that for binary screen splits, the 2 
× 1 grid yielded higher accuracy than 1 × 2 (see Fig. 3F, G).

Free viewing

In Fig. 4A, gaze heatmaps from the fixations identified by 
the three models are presented for a subset of free-viewing 
task images. The calculated fixation locations for a single 
trial could be used to plot scan paths (Fig. 4B), providing 
a visual representation of the gaze prediction performance 
of the three models. One factorial ANOVAs identified a 
significant effect of model on the mean number of fixa-
tions recorded in a trial, F(2, 128) = 20.86, p < 0.01, η2 
= 0.09 and the mean gaze entropy, F(2, 128) = 48.46, 
p < 0.01, η2 = 0.17. MPIIGaze recorded a significantly 
higher number of fixations (M = 14, IQR: 12–18) than 
ETHXGaze (M = 13, IQR: 10–15) and FAZE (M = 12, 
IQR: 11–13). Meanwhile the mean entropy for MPIIGaze 
was M = 0.40 (IQR: 0.38–0.44), for ETHXGaze M = 
0.38 (IQR: 0.35–0.41), and for FAZE M = 0.35 (IQR: 
0.33–0.37), with significant differences between each 
pair, all t’s > = 4.70, all p’s < 0.01. Averaging gaze heat-
maps from all images outlined the classic central fixation 
bias (Tatler, 2007) as shown in Fig. 4C.

Smooth pursuit

Figure 5A shows the x dimension of gaze predictions for 
a single trial where the target moved along the horizontal 
axis (movement angle = 0°), along with estimated move-
ment onsets and offsets (vertical lines). We compared 
angular deviations from the three models using a one-
factorial, repeated measures ANOVA, F(2, 128) = 9.36, 
p < 0.01, η2 = 0.06. Post hoc t tests showed significant 
differences between MPIIGaze and ETHXGaze, t(64) = 
2.35, p = 0.02, and between MPIIGaze and FAZE, t(64) 
= 4.16, p < 0.01. The aggregated deviation for the three 
models were, MPIIGaze: 13.39° (IQR: 17.03–7.37°), 
ETHXGaze: 9.55° (IQR: 11.88–6.99°) and FAZE: 8.09° 
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Fig. 3   Comparison of gaze predictions from the three models on zone 
classification accuracy. A Single trial raw gaze predictions, repre-
sented as a time series of x (left panel) and y (right panel) coordi-
nates. All the models capture similar eye movement patterns, but with 
differing levels of noise in their predictions. B Gaze classification 
accuracy for each zone independently. Classification accuracy is high-
est in the center of the screen as observed in the fixation task. C Clas-
sification matrix for each model (MPIIGaze, ETHXGaze and FAZE). 

Please find the coding of grid locations as numbers in the upper right 
of this Fig.  3. The diagonal represents the correct classifications of 
predicted zones to the corresponding highlighted zone. Misclassi-
fications are predominantly made in neighboring zones, highlighted 
by lines parallel to the diagonal. D Winsorized mean gaze predic-
tion over all participants, for each zone presentation. E Classification 
accuracies for grid size of 2 × 2. F Classification accuracies for grid 
size of 1 × 2. G Classification accuracies for grid size of 2 × 1
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(IQR: 9.97–5.34°). Angle-wise deviations can be seen in 
Fig. 5B below. The highest error in predicted gaze direc-
tions occurred when the target moved vertically (90° or 
270°) on the screen. Predicted angles over all trials and 
participants are presented in Fig. 5C and E. There was 
a significant effect of model on calculated onset laten-
cies, F(2, 128) = 47.42, p < 0.01, η2 = 0.14, and smooth 
pursuit durations, F(2, 128) = 52.12, p < 0.01, η2 = 
0.24. Mean onset latencies for smooth pursuit movement 

(Fig. 5D) were: M = 267.16 ms (IQR: 215.04–307.08 ms) 
for MPIIGaze, M = 291.42 ms (IQR: 251.87–330.95 ms) 
for ETHXGaze, and M = 323.58 ms (IQR: 292.03–368.61 
ms) for FAZE predictions, with significant differences 
between each pair, all t’s > 4.56, all p’s < 0.01. The mean 
smooth pursuit durations (Fig. 5D) calculated from the 
onset and offsets were: 539.86 ms (IQR: 524.12–563.01 
ms) for MPIIGaze, 569.86 (IQR: 544.01–599.19 ms) for 
ETHXGaze and 587.91 ms (IQR: 568.48–607.25) for 

Table 1   Winsorized mean model accuracy and precision for different zone size divisions

Zone divisions are represented according to WxH, where W represents the number of divisions across the width of the screen and H represents 
the divisions across the height of the presentation screen

Accuracy Precision

2 × 2 2 × 1 1 × 2 2 × 2 2 × 1 1 × 2

MPIIGAZE 0.78 0.94 0.82 0.80 0.95 0.84
ETHXGAZE 0.80 0.96 0.83 0.83 0.96 0.86
FAZE 0.88 0.98 0.89 0.90 0.98 0.91

Fig. 4   Analysis of gaze prediction of the three models on the free-
viewing task. A Gaze heatmaps (rows 2–4) for a sample of images 
(row 1) from the Judd dataset (Judd et  al., 2009). Heatmaps calcu-
lated from FAZE predictions represent discrete clusters better than 

ETHXGaze and MPIIGaze. B Example scan paths calculated for a 
single trial from a single participant, based on the sequence of fixa-
tion locations. C Average gaze heatmaps calculated from fixations of 
all participants over all images
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FAZE predictions, with significant differences between 
each pair, all t’s > = 3.76, all p’s < 0.01.

Blink detection

Figure 6A shows the predicted time series from the two blink 
detection methods for a randomly selected trial. The aver-
age number of blinks detected per trial by the two methods 
was found to be significantly different using a one-factorial, 
repeated measures ANOVA, F(1, 61) = 54.72, p < 0.01, 
η2 = 0.36. The number of blinks per trial was 6.9 (IQR: 
6.3–7.2) for EAR and 5.3 (IQR: 4.9–6) for RT_BENE. The 
winsorized mean onset latency of blinks was 381 ms (IQR: 

293–427 ms) for EAR and 419 ms (IQR: 318–502 ms) for 
RT_BENE (see Fig. 6B, first column). The winsorized mean 
duration of blinks was 403 ms (IQR: 383–424 ms) for EAR 
and 212 ms (IQR: 157–243 ms) for RT_BENE (see Fig. 6B, 
third column). Figure 6C shows the detected blink onsets 
after the auditory beep onset time for all seven beeps.

Comparison of online webcam results 
to in‑laboratory eye tracking

The fixation, smooth pursuit, and blink detection tasks in 
our study were implemented as similarly as possible to the 
corresponding tasks in Ehinger et  al., 2019. Their study 

Fig. 5   Analysis of smooth pursuit movements from the gaze pre-
diction of all three models. A X coordinates of a single trial gaze 
prediction time series from all three models. The target movement 
for this trial was in the horizontal direction (0°). Dashed lines (--) 
represent predicted onset of smooth pursuit movement; continu-
ous vertical lines represent predicted offset. B Error in predicted 
gaze movement, calculated as the difference between predicted 
gaze angle and the target movement angle for each trial. The differ-

ence was highest when the target moved in vertical directions (90° 
and 270°) and lowest when the target moved horizontally (0° and 
180°). C Winsorized mean predicted angle over all trials for each 
target movement. D Histograms of predicted onsets and durations 
of smooth pursuits for each of the models. E Mean angle of gaze 
movement over all trials and participants. The width of the bars 
represents the standard deviation for each angle and the colors/
length represent the different models
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simultaneously evaluated two eye trackers with a higher 
sampling rate (SR Research’s EyeLink 1000: sampling rate at 
500 Hz; Pupil Labs’ Pupil Core glasses: sampling rate at 120 
Hz), in a laboratory-based setup. We compare their reported 
measures on these tasks with the best performing model/strategy 
of our webcam-based methods in Table 2. It is not astonishing 
that eye trackers outperform the webcam estimations, as the first 
have a much higher spatial and temporal resolution. Moreover, 
a fair comparison would require simultaneous recording from 
all methods. We provide these comparisons, nevertheless, to 
document differences between eye trackers and webcam deep 
learning methods, as well as the unexpected high consistency 
regarding timing (smooth pursuit, blink detection).

For the free-viewing task, we computed another measure 
of accuracy by comparing the heat maps from our gaze pre-
dictions to the fixation heat maps from Judd et al. (2009). 
For relating the spatial locations and features of the heat 
maps, we calculated three indices: Area under ROC curve 
(AUC), Pearson’s correlation coefficient (CC), and similarity 
(SIM) scores and report averages for the 16 images. Mean 
AUC scores were M = 0.50 (IQR: 0.47–0.52) for MPIIGaze, 
M = 0.53 (IQR: 0.51–0.56) for ETHXGaze, and M = 0.61 
(IQR: 0.58–0.63) for FAZE. Mean CC scores were  = 0.46 
(IQR: 0.43–0.49) for MPIIGaze,  = 0.47 (IQR: 0.42–0.52) 
for ETHXGaze, and M = 0.58 (IQR: 0.54–0.63) for FAZE. 
Mean SIM scores were M = 0.37 (IQR: 0.35–0.38) for 

Fig. 6   Comparison of blink predictions from the two  blink models. 
A Single trial raw blink predictions from the RT_BENE and EAR 
methods. Black lines represent predicted blink offsets and grey lines 
represent predicted blink onsets. B Histograms of average blink onset 

latency, number of blinks per trial, and blink duration, over all partic-
ipants, calculated for both models. C Blink onset latency distributions 
for each of the cued blinks separately. Dashed lines represent auditory 
beep (cue) onset
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MPIIGaze, M = 0.38 (IQR: 0.36–0.41) for ETHXGaze, and 
M = 0.43 (IQR: 0.41–0.46) for FAZE. For all three indi-
ces, the models differed significantly and FAZE was better 
than the other two models, all t’s > = 4.62, all p’s < 0.01. 
As before, please note that the fixation heatmaps taken as 
ground truth were recorded with much higher temporal reso-
lution, under highly controlled environments.

Model comparisons across tasks

We selected single measures from each task to represent 
task performance. We used accuracy from the fixation task, 
classification accuracy from the zone classification task, 
average AUC score from free viewing, and angular devia-
tion from the smooth pursuit task, to compare the perfor-
mance of all three gaze prediction models between all four 
tasks, with a 3 × 4 ANOVA. Note that all selected meas-
ures evaluate performance of the three models on the task 
parameters, with the exception of AUC score for the free-
viewing task, which compares each model’s performance 
to the computed heatmaps from the original study (Judd 
et al., 2009). Nonetheless, all three models were compared 
to the same ground truth, providing a measure of accuracy 
of the three deep learning models relative to each other 
on this task. There was a significant main effect of model, 
F(2, 128) = 57.12, p < 0.01, ηp

2 = 0.04. Task did not have 
a significant effect on performance, and there was also no 

interaction between the task and model factors. Overall, 
FAZE outperformed ETHXGaze, t(64) = 7.75, p < 0.01 
and MPIIGaze, t(64) = 10.88, p < 0.01, and ETHXGaze 
outperformed MPIIGaze, t(64) = 2.47, p = 0.05 (see Fig. 7 
for accuracy distribution over tasks).

Discussion

We are the first to systematically assess the application 
of appearance-based, deep learning, gaze and blink 
estimation models in online experiments. Combined with 
our calibration strategies (see Saxena et  al., 2022, and 
Supplementary Information), the proposed methods achieve 
a fixation accuracy of 2.4° and precision of 0.47° with 
the FAZE model (Park et al., 2019), making webcam eye 
tracking a robust addition to online research. In comparison 
with web-browser-based eye tracking performance reported 
in previous studies (Bánki et al., 2022; Papoutsaki et al., 
2016; Semmelmann & Weigelt, 2018; Yang & Krajbich, 
2021) with accuracy ranging between 3–4°, this accuracy 
is substantially better and further reduces the gap between 
online and laboratory-based eye tracking. We provide 
our experiment template, recorded data, and analysis 
code, including novel event-detection algorithms for low 
resolution eye  tracking data, to aid future research and 
applications.

Table 2   Comparison of webcam results (means) from this study and published results based on high-speed laboratory-based eye trackers (PL: 
Pupil Labs’ Pupil Core glasses and EL: SR Research’s EyeLink 1000)

One-sample t tests compare the webcam results of the closest model (marked by *) with the respective laboratory-based eye-tracker results

Task measure Webcam results Laboratory-based results Comparisons

Fixation
Accuracy MPIIGaze 3.70° PL 0.82° t = 10.61, p < 0.01

ETHXGaze 3.40° EL 0.57° t = 12.12, p < 0.01
FAZE* 2.44°

Precision (RMS) MPIIGaze 2.33° PL 0.119° t = 13.47, p < 0.01
ETHXGaze 1.80° EL 0.023° t = 17.02, p < 0.01
FAZE* 0.47°

Precision (STD) MPIIGaze 2.96° 0.311° t = 14.97, p < 0.01
ETHXGaze 2.39° EL 0.193° t = 16.29, p < 0.01
FAZE* 1.63°

Smooth pursuit
Onset latency MPIIGaze* 0.267 s PL 0.245 s t = 2.84, p < 0.01

ETHXGaze 0.291 s EL 0.241 s t = 3.40, p < 0.01
FAZE 0.323 s

Blink detection
Number of blinks EAR* 6.9 PL 5.3 t = 15.7, p < 0.01

RT_BENE 5.3 EL 7.1 t = 0.98, p = 0.3
Blink duration EAR 0.403 s PL 0.214 s t = 0.15, p = 0.88

RT_BENE* 0.212 s EL 0.190 s t = 2.40, p = 0.02
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Our task battery utilized common eye tracking tasks to 
characterize performance of three gaze-estimation models: 
MPIIGaze (Zhang et al., 2015), ETHXGaze (Zhang et al., 
2020) and FAZE (Park et al., 2019), along with two blink 
detection methods: EAR (Soukupová & Cech, 2016) and RT-
BENE (Cortacero et al., 2019). The most common meas-
ures of eye-tracker performance are accuracy and precision, 
which we calculated using the fixation task. Consistent with 
common eye-tracker reports, accuracy was found to be better 
near the center of the screen, reducing as gaze moved toward 
the screen edges (Fig. 2C). The degree of this eccentricity 
effect was, however, dependent on the model, indicating that 
choice of model architecture can resolve this inconsistency. 
Interestingly, the best and worst prediction accuracy for each 
model was for different subjects (see Supplementary Fig. 2), 
highlighting each model’s differing reliance on appearance 
features, such as lighting, camera angle, reflections, skin/eye 
color etc. Model architecture and pipeline also has a signifi-
cant effect on the reliability of reproducing gaze predictions 
during a fixation, represented by the precision measure.

The zone classification task replicates another common 
experimental paradigm (preferential looking) in psycho-
logical studies that requires participants to shift gaze to 
specific regions-of-interest on the screen, instead of small 
fixation targets. The best performing model, FAZE (Park 
et al., 2019), achieved 65% classification accuracy for a 4 × 
4 grid. Studies on visual attention often apply preferential 
looking paradigms to regions-of-interest, but typically with 
lower numbers of regions and/or spatially larger areas, which 
are placed along the vertical or horizontal axis of the screen 
(e.g., Liu et al., 2011; Schofield et al., 2012). Therefore, 
we evaluated classification accuracy also for the underlying 
grids 2 × 1, 1 × 2, 2 × 2. Indeed, accuracy was higher when 
the size of the areas was increased (e.g., FAZE = 98% for 
2 × 1 grid). Importantly, classification error was higher for 
vertical divisions depicted by the higher accuracy for the 2 × 
1 as compared to 1 × 2 grid (Fig. 3F and 3G), misclassified 

zones in 4 × 4 grid (Fig. 3C), and single trial data (Fig. 3A). 
Researchers should therefore prefer horizontal left-right over 
vertical top-down screen-splits for similar paradigms.

Our proposed event-detection algorithms robustly iden-
tified fixations for 30-Hz eye tracking recording during the 
free-viewing task. This identification of fixations was impor-
tant, as including raw gaze points during saccades results in 
an overestimation of the central fixation bias in the heat maps. 
Therefore, our heat maps were based on fixations only. We 
found discernable clusters of salient objects in the generated 
heatmaps. Salient clusters in generated heatmaps and the shape 
of scanpaths were noticeably different for each model, high-
lighting the qualitative differences between their gaze predic-
tions. Despite this dissimilarity, all three models identified a 
comparable number of fixations and gaze entropy over the pre-
sented images, even though they differed in statistical terms. 
Importantly, FAZE outperformed the other models when 
comparing the computed heatmaps with the recorded fixation 
heatmaps of the original study, which were recorded with a 
high-speed eye tracker with high resolution (Judd et al., 2009). 
These results demonstrate the utility of the current method 
for studying visual behavior and saliency with visual stimuli.

In the smooth pursuit task, gaze movement angles were 
accurately predicted with as low as 8.09° error (FAZE). We 
found higher error for vertical (Fig. 5B), compared to horizon-
tal, smooth pursuit movements, replicating a known asymmetry 
of smooth pursuit movements (Ke et al., 2013). Similar to the 
free-viewing analysis we developed customized event detec-
tion algorithms (see Smooth pursuit in Task measures) that 
robustly detect smooth pursuit onsets and offsets. Even with 
the low sample frequency, the calculated onset latencies were 
comparable to high-speed eye trackers (Table 2). Interestingly, 
we calculated slightly longer onset latencies with FAZE than 
the other models, which can likely be attributed to the signal 
delay introduced by the Kalman filtering in the model pipeline.

Beyond gaze estimation, we evaluated two blink detec-
tion algorithms that identified up to 6.9 of the 7 (Fig. 6B) 

Fig. 7   Model-wise distribution of transformed scores for each task
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instructed blinks per trial. Typically, blink detection algo-
rithms apply anomaly detection on eye tracking time series 
data to identify blinks. In contrast to this indirect approach, 
appearance-based methods compute blink probabilities 
directly from visual features in recorded video frames, pro-
viding better accuracy for lower sampling rates. The proposed 
methods can be applied independently for accurate blink 
detection, but also in conjunction with gaze estimation to fur-
ther improve accuracy by filtering out blinks which are typi-
cally represented as irregular or null predictions for samples 
with partially or completely closed eyes. We again introduce 
robust methods to analyze and detect blinks from eye tracking 
time series and make them available for interested readers.

Characterizing model performance over the full task battery 
provides us with important considerations for future applica-
tions and development of gaze-tracking methods. Overall, our 
proposed method is highly reliable. In particular, the broad 
range of tasks with very different task requirements and eye 
movement behaviors demonstrate the utility of our method. 
Webcam-based eye tracking has the potential to make con-
ventional laboratory-based eye tracking superfluous, and is 
already a suitable alternative for the highlighted experimental 
paradigms. For a majority of task measures, FAZE (Park et al., 
2019) outperforms ETHXGaze (Zhang et al., 2020), which 
in turn outperforms MPIIGaze (Zhang et al., 2015) predic-
tions. However, this increased performance is at the expense 
of increased computational cost (12 fps for MPIIGaze, 4 fps 
for ETHXGaze and 1 fps for FAZE, where fps represents infer-
ence speed in frames per second) which should be considered 
by researchers when selecting a model architecture.

In comparison to laboratory-based eye tracking, the 
methods proposed in this paper escalate scalability and 
affordability of eye tracking research but suffer in terms of 
accuracy and precision. Only for blink detection is the per-
formance similar to laboratory-based methods, depending 
on the model and metric of interest. Tasks and measures 
requiring spatial accuracy below 2.4°, or temporal resolution 
over 30 Hz still need to rely on eye tracking with specialized 
hardware. Moreover, the high inference time of these models 
restricts browser-based gaze-contingent paradigms and calls 
for special emphasis towards data privacy, from the experi-
menter. Recent frameworks, such as ONNX Runtime Web 
and WebGPU accelerate deep learning inference in web-
browsers; however, the temporal resolution of eye tracking 
predictions might be significantly reduced from 30 Hz. A 
comparative study (Gudi et al., 2020) reported CNN infer-
ence speeds as fast as 15 Hz, without GPU acceleration, 
when using single eye inputs for gaze detection. However, 
this speed came at the cost of reduced gaze estimation accu-
racy. Offline inference, on the other hand, ensures high spa-
tiotemporal resolution and provides the ability to re-analyze 
raw data, apply offline correction, and infer multiple meas-
ures such as gaze, blinks, gesture recognition, and motion 

tracking (Chen & McDuff, 2018; Savchenko et al., 2022) on 
the same data. These benefits aid the development, optimiza-
tion, and evaluation of robust computational methods. For 
instance, we found that updating the default face detection 
model used in the eye tracking methods resulted in fewer 
missing data and improved gaze predictions (see section 
“Gaze and blink detection models”). Such an optimiza-
tion can be easily made in offline setups but would require 
re-collection of data for browser-based real-time methods 
which do not allow recalculation from raw data. An ideal 
method should, therefore, allow this flexibility of online and 
offline inferencing which is feasible with the deep learning 
approach proposed in our paper.

With respect to remote, online studies, we have devel-
oped and validated an approach to webcam-based eye track-
ing that outperforms previously proposed methods. We are 
enthusiastic about the potential for this approach to offer 
novel, cross-cultural insights into human perception, atten-
tion, and subjective experience. This approach opens pos-
sibilities of large-scale data collection with limited time and 
cost spending over different device types. For example, pre-
vious studies have implemented similar methods on mobile 
phones (Valliappan et al., 2020), and tablets (Krafka et al., 
2016), driven by the advancements of selfie-cameras and 
application-specific integrated circuits on these devices. 
Moreover, this approach allows researchers to recruit partici-
pants from populations that cannot come into the laboratory 
(e.g., those with mobility limitations, immunocompromisa-
tion, the elderly, or those in other countries). In summary, 
our results improve the state-of-the-art in webcam-based eye 
tracking for online experiments, encouraging further devel-
opment of open-sourced, affordable, and scalable eye track-
ing methods that improve validity of scientific studies.

Data and code availability

All analysis code and anonymized, summary data tables 
to recreate the figures and statistical analyses reported 
in this paper are opensourced at https://github.com/
ShreshthSaxena/Eye_Tracking_Analysis.

Given the sensitivity of video images of participant’s 
faces, we were very clear about our intended data processing 
procedures and participants’ rights to privacy. We offered 
three levels of consent to participants in our study, span-
ning publication of processed data to publication of camera 
recordings. The complete data including camera recordings 
for the 16 participants who selected level 3 are shared pub-
licly in the following data repository: https://osf.io/qh8kx

The study was pre-registered (Saxena et al., 2021) and 
a detailed account of designing and comparing calibration 
strategies for webcam eye tracking studies was published in 
Saxena et al., 2022, using a subset of the current sample. A 
template of the online experiment used for data collection 

https://github.com/ShreshthSaxena/Eye_Tracking_Analysis
https://github.com/ShreshthSaxena/Eye_Tracking_Analysis
https://osf.io/qh8kx
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is available at https://www.labvanced.com/page/editors/
experimentView/41124 and can be used to replicate the entire 
experiment.
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tary material available at https://​doi.​org/​10.​3758/​s13428-​023-​02190-6.
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