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Neonatal brain dynamic functional
connectivity in term and preterm infants
and its association with early childhood
neurodevelopment
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Brain dynamic functional connectivity characterises transient connections
between brain regions. Features of brain dynamics have been linked to emo-
tion and cognition in adult individuals, and atypical patterns have been asso-
ciated with neurodevelopmental conditions such as autism. Although reliable
functional brain networks have been consistently identified in neonates, little
is known about the early development of dynamic functional connectivity. In
this study we characterise dynamic functional connectivity with functional
magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in
term-born (n = 324) and preterm-born (n = 66) individuals. We show that a
dynamic landscape of brain connectivity is already established by the time of
birth in the human brain, characterised by six transient states of neonatal
functional connectivity with changing dynamics through the neonatal period.
The pattern of dynamic connectivity is atypical in preterm-born infants, and
associated with atypical social, sensory, and repetitive behaviours measured
by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18
months of age.

Resting-state functional magnetic resonance imaging (fMRI) is often
used to infer how different areas of the brain function together1 and to
establish whole-brain functional connectivity networks2, assuming a
condition of stationarity. While this is a useful approach to ascertain
“on average” characteristics of brain activity, connectivity of the brain
is intrinsically dynamic, i.e., non-stationary3,4. Addressing this problem,
dynamic functional connectivity (dFC) measures the constant neural
adjustments needed to control different brain states, adapt to

transient situations, and integrate information5. The dynamical prop-
erties characterising the continuous shifting between connectivity
profiles or “states” have been linked to processes such as language6,7,
cognition8–11, and motor function12,13. Importantly, altered brain
dynamics have also been linked to the clinical features and/or cogni-
tive dysfunction in neurodevelopmental conditions such as
schizophrenia3, attention deficit hyperactivity disorder14 and autism
spectrum disorder (ASD)15. Individuals with ASD, for example, have
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been reported to switch between different connectivity profiles more
directly, whereas typically developing individuals switch between
those same brain states via an intermediate connectivity profile15.
However, although it is increasingly appreciated that neurodevelop-
mental conditions likely have their origins in the perinatal period, little
is known about the brain’s dynamic properties at this critical juncture.
Moreover, it is also not clear whether neonatal dFC characteristics are
associated with later childhood neurodevelopment, and in particular
which of these characteristics signal a higher likelihood of later neu-
rodevelopmental difficulties.

Conventional studies of “static” functional brain connectivity in
early life have shown that the spatial representation of resting state
networks (RSNs) appears to be relatively mature and adult-like even
soon after birth16–18, with mature primary RSNs and emerging asso-
ciation RSNs, consistent with a primary-to-higher-order ontogenetic
sequenceof brain development19. It has also been confirmed that these
RSNs may be disrupted by perinatal exposures, such as preterm
birth16,19–21, which increase the likelihood of neurodevelopmental
impairments22. However, despite the evidence for the importance of
dynamics in older groups, the dynamics of these networks in early life
remain to be described.

In this study, we applied state-of-the-art techniques to evaluate
fMRI in a cohort of term-born (n=324) andpreterm-born babies (n=66)
scanned at term equivalent age from of the developing Human Con-
nectome Project (dHCP), the largest publicly available population-based
dataset of the healthy new-born brain23. We used two methods that tap
into dynamic brain function. First, we characterised global dynamics
usingKuramotoOrder Parameter (KOP)24 basedmeasures, namelymean
synchronisation and metastability25,26 as global measures of brain syn-
chronicity and flexibility25,27. Second, we characterised modular dynam-
ics. That is, we identified sub-networks involved in temporal “states”, i.e.,
paroxysmal modes representing synchronisation of the brain, using
Leading Eigenvector Analysis (LEiDA)which is a time-resolvedmetric28,29.
We assessed whether neonatal brain state features (fractional occu-
pancy, dwell times, state mean synchronisation, and state metastability)
and state transition probabilities were associated with postmenstrual
age (PMA) at scan, postnatal days (PND) at scan and preterm-birth; and
whether they correlate with neurodevelopmental outcomes at 18
months measured using the Bayley Scales of Infant and Toddler Devel-
opment, 3rd Edition (Bayley-III)30, and atypical social, sensory and
repetitive behavioursmeasured by theQuantitative Checklist for Autism
in Toddlers (Q-CHAT)31. This allowed us to test three hypotheses: 1) that
neonatal brain dynamics quickly develop with age at scan; 2) that pre-
term birth alters the typical pattern of functional brain dynamics; and 3)
that neonatal brain dynamics are linked to neurodevelopmental and
behavioural outcome measures at age 18 months.

Results
Global brain dynamics
We first assessed the association of global dynamic features with age
andpostnatal days at scan (PMAandPNDat scan, respectively) in term-

born individuals only (n = 324). We did not observe any associations
between PMA at scan and global dynamic features. Nevertheless, there
was an association between PND at scan with metastability (t = −2.4;
p =0.017, Table 1). In comparison to term-born infants, preterm-born
infants had lower mean synchronisation (Cohen’s D =0.567—medium
effect size; p < 0.001) and metastability (D =0.454—medium effect
size; p <0.001) (Fig. 1a, b, Table 1). We then analysed associations
between global dynamic features (mean synchronisation and metast-
ability) and neurodevelopmentalmarkers, namelyQ-CHAT andBayley-
III scores for the entire cohort (term- and preterm-born, n = 390).
Across the whole cohort, there was no significant association between
metastability and any neurodevelopmental outcome, although mean
synchronisation showed a weak but significant association with
Q-CHAT scores (t = −2.6; p = 0.011), i.e., lower neonatal mean syn-
chronisation was associated with higher Q-CHAT scores, indicative of
more atypical social, sensory, and repetitive behaviours at 18 months
of age. Resultswere robust to the choice of atlasparcellation, as similar
findings were obtained with the Melbourne Children’s Regional Infant
Brain (M-CRIB) atlas (Supplementary Table S1), including a significant
association of metastability with PND at scan (p =0.019), and reduced
mean synchronisation andmetastability in preterm-born infants when
compared with term counterparts (Cohen’s D =0.628, p < 0.001; and
Cohen’s D =0.480, p <0.001 respectively, see Supplementary
Table S1). Analogously, M-CRIB’s mean synchronisation was also sig-
nificantly associated with Q-CHAT scores (t = −2.7, p = 0.009).

Neonatal brain states
We defined six different brain states, obtained heuristically from
K-Means clustering, using the LEiDA approach28,29 (Fig. 2). Briefly, we
averaged the fMRI timeseries into 90 cortical and subcortical regions
defined by the Anatomical Automated Labels (AAL) atlas adapted to
the neonatal brain32. We estimated the phase synchronisation between
each pair of parcels, obtaining a dynamic functional connectivity
matrix for each fMRI timepoint33.We calculated the first eigenvector of
eachmatrix, for each instant of time, and clustered thosewith K-Means
withK = 6 (seemore details inMethods section). Three of the six states
we identified showed widespread phase concordance amongst brain
parcels, we refer to these as whole-brain global synchronisation states,
namely global state A, global state B, and global state C. Three states
were more regionally constrained: one state showed synchronous
phases in the occipital cortex (Occ. State); one state represented high
synchrony for regions mainly in the sensorimotor cortex (SM State);
and one state comprised high levels of synchronisation in the frontal
cortex, angular gyrus, and posterior cingulate gyrus (for simplicity we
refer to this as frontoparietal or FP state).

Landscape of modular brain dynamics in term-born neonates
We compared the main dynamic features of the six identified states in
term-born participants (n = 324) via mean synchronisation, metast-
ability, fractional occupancy and dwell times markers for each state.
There were significant differences between states in mean

Table 1 | Associationof global dynamic features (synchronisationandmetastability)withPMAandPNDatscan, andassociation
with preterm birth

Term (n = 324) Term vs Preterm (n = 390)

PMA at scan PND at scan Term (n = 324) Preterm (n = 66) Cohen’s D p valueb

ta p valuea ta p valuea [mean (S.D.)]

Mean synchronisation 0.039 0.970 1.143 0.259 0.52 (0.08) 0.48 (0.08) 0.567 p < 0.001c

Metastability 0.877 0.379 −2.403 0.017c 0.20 (0.02) 0.19 (0.02) 0.454 p < 0.001c

p values obtained with a two-sided permutation test.
aGLM1 (including 324 term-born babies): y ~ β0 +β1PMA +β2PND + β3Sex + β4Motion outliers (FD).
bGLM2 (including 324 term-born and 66 preterm-born babies): y ~ β0 + β1Preterm-born + β2PMA + β3Sex + β4Motion outliers (FD).
cIndicates results surviving FDR multiple comparison correction with α error at 5%.
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synchronisation, metastability, fractional occupancy, and dwell times
when tested using a Type III ANOVA model with Satterthwaite’s
method: F(5, 1615) = 13163; p < 0.001 for mean synchronisation, F(5,
1615) = 291; p <0.001 formeanmetastability, F(5, 1938) = 514; p <0.001
for mean fractional occupancy, and F(5, 1938) = 734; p < 0.001 for
meandwell times. Between state effects showed that global state A had
increased mean synchronisation, mean fractional occupancy, and
meandwell timeswhen comparedwith the otherfive states.Moreover,
global states B and C also had a heightened mean synchronisation
whichwas intermediate between the values recorded for global state A
and the other states (see Supplementary Fig. S1 for between-group
effects statistics). We characterised the normative brain state transi-
tion probabilities landscape in Fig. 3a. Most occurrences are those of
dwelling sequences, i.e., repeated continuous occurrences of the same
state, with probabilities above 89% for all six states. Excluding those
dwelling sequences, a complex dynamic profile is displayed by the 12
most frequent transitions. For instance, the brain transitions to and
from global state A (which has high levels of synchronisation), via
global states B and C (which have intermediate levels of synchronisa-
tion), while brain transitions into FP state occur through both global
and regionally constrained states: global state B, occipital state, and
SM state.

Modular brain state features associatedwith age at scan in term-
born neonates
Higher PMA at scan was positively correlated with increased dwell
times (t = 4.4; p < 0.001), increased fractional occupancy (t = 5.3,
p <0.001), and increased mean synchronisation (t = 3.6; p <0.001) for
global state C; and with increased fractional occupancy (t = 2.8,
p <0.001) andmean synchronisation in the sensorimotor state (t = 3.1;
p =0.002). PMA at scan was negatively correlated with increased
fractional occupancy in the global state B (t = −2.8; p = 0.004). Post-
natal age (PND at scan) was associated with shorter dwell times in the
global state B (t = −2.8; p = 0.004), occipital state (t = −2.5; p =0.013),
and sensorimotor state (t = −2.8; p =0.006). Significant associations of
brain state features with PMA and PND at scan that survive False Dis-
covery Rate (FDR) multiple comparison are summarised in Fig. 3c, d;
and compared in Fig. 4g.

Brain state transitions associated with age at scan in term-born
neonates
Higher PMA at scan was positively associated with an increased like-
lihood of transitioning from global state A to C (t = 3.2; p = 0.002),

from global state B to frontoparietal state (t = 3.1; p =0.002), and to
stay (dwell) in global state C (t = 3.2; p = 0.001). Older PMA was also
associated with a lower likelihood of transitioning from global state C
to occipital state (t = −2.8; p = 0.006); and lower probability of staying
in global state B (t = −2.9; p =0.005). Significant associations of state
transition probabilities with PMA at scan are shown in Fig. 3e.
Increased postnatal age (PND at scan) was associated with increased
transitions from frontoparietal and occipital states into global state B
[(t = 3.1; p = 0.002) and (t = 3.3; p =0.001), respectively]; increased
transition from the occipital state into state C (t = 3.1; p = 0.002); a
reduction of transition likelihood from state B into a frontoparietal
state (t = −3.0; p =0.003); and a reduction of probability to stay (dwell)
in state C (t = −2.7; p =0.007), occipital state (t = −3.4; p =0.001), and
sensorimotor state (t = −2.7; p =0.007). Significant associations of
state transition probabilities with PND at scan, all surviving FDR mul-
tiple comparison corrections, are summarised in Fig. 3f). For a com-
parisonof thedistinct associationwith age (PMAat scan) andpostnatal
experience (PND at scan) in brain state transitions see Fig. 4h. Age at
scan and postnatal experience had distinct correlates: for example,
transitions from intermediate whole-brain synchronisation state C to
the occipital state decreased with PMA at scan, while transitions in the
opposite direction (from occipital state to synchronisation state C)
were increased with PND at scan.

Atypical modular brain state features in preterm born neonates
Compared to term-bornparticipants, preterm-bornbabies had shorter
dwell times for the global state A (t = −4.6; p < 0.001, Fig. 4a);
decreased fractional occupancy for the global state A (t = −4.1;
p <0.001); and increased fractional occupancy for global state B
(t = 3.4; p = 0.001), occipital state (t = 2.2; p =0.030), and frontopar-
ietal state (t = 2.7; p = 0.009) (Fig. 4b). Preterm birth was also asso-
ciated with lower mean synchronisation of global state A (t = −5.1;
p <0.001), global state B (t = −3.4; p =0.001), global state C (t = −2.8;
p =0.005), occipital state (t = −2.2; p =0.031), and frontoparietal state
(t = −2.6; p = 0.010)) (Fig. 4c); and reduced metastability for the global
state A (t = −2.5; p =0.014) and frontoparietal state (t = −4.3;
p <0.001) (Fig. 4d).

Association with preterm birth on brain dynamics and brain
state transition probability
Preterm birth was associated with an increased transition towards an
occipital connectivity profile, i.e., an increased transition probability
from global state A to C (t = 4.7; p <0.001) and from global state C to
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Fig. 1 | Association of preterm birth with (a) mean synchronisation and (b)
metastability. *p values obtained with a two-sided permutation test—results sur-
viving FDR multiple comparison correction with α error at 5%. D: Cohen’s effect

size. Term (n = 324) and preterm (n = 66) born individuals. Boxplots showing 0th,
25th, 50th, 75th, and 100th centiles. Outliers definedwhen value larger than 1.5*IQR
+ 75th centile. D: Cohen’s D. Source data are provided as Source Data file.
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occipital (t = 3.1; p =0.002); as well as a reduction in the probability
staying (dwelling) in global state A (t = −4.4; p <0.001); see Fig. 4f. A
similar profile of results was obtained when assessing how brain
dynamic features changed with gestational age at birth which

essentially captures preterm and term birth in a continuous way, see
Supplementary Figure S2. Significant changes in transition prob-
abilities associated with preterm-birth and their relation to associa-
tions with PMA and PND at scan are summarised in Fig. 4h.

State Glb.A State Glb.B State Glb.C State Occ. State SM State FP

−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0−1.0 −0.5 0.0 0.5 1.0
Precentral L
Precentral R

Frontal Sup L
Frontal Sup R

Frontal Sup Orb L
Frontal Sup Orb R

Frontal Mid L
Frontal Mid R

Frontal Mid Orb L
Frontal Mid Orb R
Frontal Inf Oper L
Frontal Inf Oper R

Frontal Inf Tri L
Frontal Inf Tri R

Frontal Inf Orb L
Frontal Inf Orb R
Rolandic Oper L
Rolandic Oper R

Supp Motor Area L
Supp Motor Area R

Olfactory L
Olfactory R

Frontal Sup Medial L
Frontal Sup Medial R

Frontal Med Orb L
Frontal Med Orb R

Rectus L
Rectus R

Insula L
Insula R

Cingulum Ant L
Cingulum Ant R
Cingulum Mid L
Cingulum Mid R
Cingulum Post L
Cingulum Post R
Hippocampus L
Hippocampus R

ParaHippocampal L
ParaHippocampal R

Amygdala L
Amygdala R
Calcarine L
Calcarine R

Cuneus L
Cuneus R
Lingual L
Lingual R

Occipital Sup L
Occipital Sup R
Occipital Mid L
Occipital Mid R

Occipital Inf L
Occipital Inf R

Fusiform L
Fusiform R

Postcentral L
Postcentral R

Parietal Sup L
Parietal Sup R

Parietal Inf L
Parietal Inf R

SupraMarginal L
SupraMarginal R

Angular L
Angular R

Precuneus L
Precuneus R

Paracentral Lobule L
Paracentral Lobule R

Caudate L
Caudate R
Putamen L
Putamen R
Pallidum L
Pallidum R

Thalamus L
Thalamus R

Heschl L
Heschl R

Temporal Sup L
Temporal Sup R

Temporal Pole Sup L
Temporal Pole Sup R

Temporal Mid L
Temporal Mid R

Temporal Pole Mid L
Temporal Pole Mid R

Temporal Inf L
Temporal Inf R

a

State Glb.A State Glb.B State Glb.C State Occ. State SM State FPb

State Glb.A State Glb.B State Glb.C State Occ. State SM State FPc

−1.0 −0.5 0.0 0.5 1.0
LEiDA

Fig. 2 | Transient brain states in neonates. Ordered from left to right by level of
global synchronicity. a LEiDA vectors for eachof the six brain states identified in the
neonatal brain using AAL parcels. b Representation of LEiDA on brain surfaces

(right side view). c Representation of LEiDA on brain surfaces (left side view). Glb.
Global, Occ. Occipital, SM Sensorimotor, FP Frontoparietal. Source data are pro-
vided as Source Data file.
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Fig. 3 | Brain dynamics in term-born neonates (n = 324). a All transitions
including dwelling state sequences. b Main transitions (top 12) between states
excluding dwelling sequences. c Summary of brain state features significantly
associated with PMA at scan. d Summary of brain state features significantly
associated with PND at scan. e Summary of significant correlations between state
transitions probabilities and PMA at scan. f Summary of significant correlations
between state transitions probabilities and PNDat scan. †GLM1 (including 324 term-

born babies): y ~ β0 + β1PMA+ β2PND + β3Sex + β4Motion outliers (FD). Values
shown in (c) and (d) indicate t-statistics. All significant associations (two-sided
permutation test) shown in this figure survive FDRmultiple comparison correction
with α error at 5%. Glb. Global, Occ. Occipital, SM Sensorimotor, FP Frontoparietal,
PMA Postmenstrual age, PND Postnatal days. Source data are provided as Source
Data file.
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Neonatal brain states and early childhood neurodevelopment
Lastly, we investigated associations between brain states dynamics
after birth and neurodevelopmental outcomes at 18 months of age
measured with Bayley-III and Q-CHAT scores. Higher mean synchro-
nisation of the sensorimotor state in neonates was associated with
poorer performance on both Bayley’s cognitive and motor scores
assessed at 18months of age (t = −3.2, p = 0.002; and t = −3.4, p =0.002
respectively; Fig. 5a). Higher Q-CHAT scores at 18 months of age were
associated with reduced mean synchronisation of frontoparietal state
(t = −2.7, p =0.008), higher fractional occupancy of sensorimotor
state (t = 2.5, p =0.014), and reduced fractional occupancy of global
state A (t = −2.7, p =0.010; Fig. 5b).

A similar pattern of regional brain dynamics was obtained with
an alternative parcellation scheme
The six brain states obtainedwith the alternativeM-CRIBneonatal atlas
were compatible with the ones obtained for the AAL atlas (Supple-
mentary Fig. S3), with three global synchronisation states and three
more regionally constrained. States 1, 2, and 3 obtained with the
M-CRIB atlas were consistent with global synchronisation states
obtainedwith the AAL atlas. TheM-CRIB’s State 4 featured someof the
structures present in occipital state, State 5 featured similar structures
to the sensorimotor state, and State 6 was concordant with FP state
obtained from AAL.

Moreover, for the analyses using the M-CRIB atlas in term-born
babies (Supplementary Fig. S4), PMA was also associated with
increased fractional occupancy (t = 2.9; p =0.002) and mean syn-
chronisation (t = 3.0; p = 0.003) for State 5 (~SM); and PND was asso-
ciated with reduced dwell times (t = −2.5; p =0.012) for State 5 (~SM).
Transitions from States 6 (~FP) to State 2 (~Glb.) also increased with
PND (t = 3.3; p = 0.002). Pre-termbirth was also associated with similar
changes in state metrics for M-CRIB atlas (Supplementary Fig. S5) with
increased fractional occupancy for State 4 (~Occ.) (t = 2.3; p =0.020)
and State 6 (~FP) (t = 3.0; p =0.002); and reduced mean synchronisa-
tion for State 6 (~FP) (t = −2.2; p =0.027). See Supplementary Figure S6
for a similar analysis with GA.

Association with developmental outcomes in cognitive (t = −4.0;
p <0.001) and motor (t = −3.4; p <0.001) components of Bayley-III
showed negative associations with mean synchronisation for State 5
(~SM) and higher Q-CHAT scores were associated with reduced frac-
tional occupancy for State 1 (t = −2.6; p =0.008), see Supplementary
Fig. S7 for a summary. A detailed description of results using M-CRIB
atlas for parcellation is available in Supplementary Materials.

Discussion
We used global and modular fMRI signal analysis tools to investigate
the characteristics of dynamic functional connectivity in a large sample
of term and preterm born neonates. This study characterises the fun-
damental features of the neonatal repertoire of brain states and their
dynamics during early human development. We found that brain
dynamics are disrupted in preterm-born infants and that the profile of
brain dynamics in early postnatal life is associated with a range of early
childhood neurodevelopmental and behavioural outcomes at
18 months of age.

We found that global dynamic features remained relatively stable
in early postnatal development (37-44 weeks PMA at scan) in a term-
born population, although lower metastability was observed with
more postnatal days at scan, suggesting that ex-utero life experience
reduces brain dynamicflexibility after birth, and promotesmore stable
connectivity patterns. This is consistent with our observation that
preterm born infants scanned at term equivalent age, and thus with
greater exposure to postnatal life experience at the time of scan, had
lower metastability than term born children. However, preterm babies
also had lower mean synchronisation at term-equivalent age suggest-
ing a unique pattern of alteration in brain dynamics associated with
preterm birth which is independent of the extent of ex-utero life
exposure (PND at scan). Lower metastability has been previously
associated with impairments in cognitive flexibility of mature indivi-
duals after traumatic brain injury11. However, the negative association
between duration of postnatal life and metastability observed here is
unlikely to relate to cognitive flexibility, but rather reflect a refinement
of network dynamics driven by primary sensory stimulation associated
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Fig. 5 | Summary of associations of brain state features with neurodevelop-
mental outcomes at 18 months corrected age. Association of average (a) mean
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during perinatal period with cognitive, language and motor Bayley-III composite
scores and Q-CHAT scores. GLM3 (257 term-born and 48 preterm-born babies for
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with ex-utero life experience. Metastability seems to be additionally
reduced by term equivalent age in preterm born babies, whichmay be
consistent with theories suggesting perinatal stress atypically accel-
erates brain maturation, with potentially negative long-term impact34.

Our study extends prior work which has observed that, later in
childhood, very preterm born infants have suboptimal neural syn-
chrony and altered global dynamic connectivity patterns when scan-
ned later in childhood35. Our metrics suggest that the association of
pretermbirth with brain dynamicsmay beginmuch earlier in life. Such
differences in preterm-born babies may have their roots in alterations
in the framework of structural and functional networks reported to
accompany preterm birth. For example, previous studies have shown
that preterm birth is associated with altered brain structure36,37, global
functional architecture19,38, and structural network changes in the
neonatal period39 which continue to be present at school-age40 and
into young adulthood41,42. Global dynamic features were linked to later
behaviour: lower mean synchronisation in the neonatal brain was
associated with higher Q-CHAT scores at 18 months. Although high
scores on the Q-CHAT indicate more autistic traits, in this study, the
Q-CHAT captured a continuum of social, sensory, and repetitive
behaviours across the normal distribution31,43. Thus, while global
metricsmight usefully signpost the trajectory of foundational dynamic
steps of human brain development, their association with Q-CHAT
should not be over-interpreted asour studywasnot a study of ASDand
we did not examine children at an age where neurodevelopmental
diagnoses begin to be formalised.

Summary metrics of global dynamics are likely themselves to be
underpinned bymuch more complex activity. Therefore, we explored
the emergence and behaviour of modular brain states in the early
postnatal period. We characterised six transient states in the newborn
brain at term equivalent age. Amongst the three states that showed
widespread concordance (global states A–C), the first encompassed
nearly all of the analysed cortical regions, the second showed a higher
contribution of all sensory regions (auditory, sensorimotor, and visual)
and the third state showed a higher contribution of visual and fron-
toparietal cortices. The other three states had a more restricted/
regional span with distinct contributions from sensorimotor, visual
and frontoparietal regions. The majority of these states thus encom-
passed primary sensory networks which are already known to mature
earlier than higher order networks16,19,44. This adds confidence to the
results reported in studies of dynamic FC in neonates aroundbirth. For
example,Maet al. describeddynamic functional connectivitywith four
brain states that encompassed default-mode, dorsal attention, audi-
tory, sensorimotor, and visual networks in 37 termneonates45. Herewe
establish a series of six brain states and describe associations with age
at scan and postnatal days in a larger cohort with 324 term neonates.
We observed that in newborn infants, whole-brain synchrony state A
had the highest mean synchronisation, as well as largest fractional
occupancy and dwell times; thus suggesting that newborn infants
spend a large amount of their time in a state of global phase synchrony
which is a similar to the previously described dominant pattern of
whole-brain synchronisation seen with both fMRI45,46 and EEG47.
Togetherwithprior studies, ourwork supports the idea that large scale
activity plays a crucial role in early brain development. Our results also
align with the concept that this activity could support large scale
cortical network formation and may foster the associated long-range
connections, which are known to subsequentlymature during the first
postnatal year48,49.

We observed a positive correlation of occupancy and mean syn-
chronisation within the sensorimotor cortices with increasing PMA at
scan. This supports existing evidence that this system is relatively
mature, both in function and structure in comparison to other systems
at birth. This may be the product of significant short-range functional
reorganisation during the last foetal trimester50,51 to support the
functional specificity needed to respond to sensory information

coming from feet, hands, and mouth52,53. We also found that increased
PMA at scan, was associated with an increased probability of transi-
tioning into frontoparietal synchronicity states comprising the ante-
rior part of the Default Mode Network54. This is concordant with other
evidence that, although this system is relatively immature at birth, it
undergoes significant changes postnatally with increasing recruitment
of frontoparietal areas into the network16,19. Ourwork suggests that this
system is recruited more and more with age in the postnatal period.
There was also a significant association with PND at scan on an
increasing probability of transition from occipital to whole-brain syn-
chronisation states. This finding is in line with key stages of neurode-
velopment. Specifically, changes in transitions fromanoccipital cortex
profile may help the maturation of visuomotor abilities and sensory
integration in early infancy in the environment outside the womb55.
Finally, we observed increased transitions from sensorimotor to
frontoparietal structures with increasing duration of postnatal life,
perhaps reflecting the emerging of functional maturation of fronto-
parietal systems, which coincides with high interneuron migrations to
these regions56, relative to the already mature sensorimotor systems51.

Preterm birth has been associated with a higher likelihood of
atypical neurodevelopment22 including a greater rate of autism
diagnosis57–62. Previous studies from our group have shown preterm
born infants have alterations in their functional architecture16,19,38.
Here, we extend this work to report that dynamic functional con-
nectivity is also altered in preterm born infants, showing increasing
fractional occupancy of occipital and frontal states and increased
transitions from global to occipital state; and decreased dwelling for
whole-brain high synchronisation state. Only one other study has
investigated the association of preterm birth with atypical dynamic
functional connectivity45. They reported significantly shorter mean
dwell times in a statewith stronger connectivity between sensorimotor
and auditory cortices and significantly higher mean dwell times for a
global state45. Direct comparison with our findings is challenging
however, given the higher resolution of our study in terms of a larger
number of ROIs included but also the power available from our larger
sample. We observed multiple global states in neonates with diverse
contributions from occipital and frontoparietal regions and a negative
association with prematurity on dwell times in state A. In summary,
preterm born infants show shifts in dynamic functional connectivity
towards occipital and frontoparietal synchrony profiles and sup-
presseswhole-brain synchronisationmodes. Preterm-birth is known to
impact on cognition throughout the lifespan63,64. Our results raise the
possibility, that alterations in brain dynamic functional connectivity
that are present soon after birth have functional consequences.

Our work and others consistently recognise the neonatal period
as a key time for sensorimotor cortical development50,52,53 and sub-
sequent transition to higher-order network connectivity16,19. We
extended this observation here, to show that altered brain dynamics
contribute tobothgeneral developmental outcomes andmore specific
social, sensory, and repetitive behaviours at age 18 months. Lower
levels of synchrony in the sensorimotor state around term were posi-
tively correlatedwith better cognitive andmotor outcomes (Bayley-III)
at 18 months. This association is evident in the analyses with both the
AAL and M-CRIB atlases. However, when there was lower fractional
occupancy of the high whole-brain synchronisation state A and
increased fractional occupancyof the sensorimotor state aroundbirth,
there were more atypical social, sensory, and repetitive traits present
at 18 months, as captured by the Q-CHAT in AAL atlas. Thus, our work
indicates that the link between brain dynamics and autistic traits is not
only limited to state transitions in adulthood15,65 but may comprise
alterations in state occupancy and overall synchronicity as well as
transitions established during early development. One possible
explanation for the association between the sensorimotor cortex
dynamics and later social, sensory and repetitive traits, is that altered
brain dynamics in the neonatal period may predispose individuals to
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exhibit unusual responses to sensory stimuli66. Thepositive correlation
of higher fractional occupancy of the sensorimotor state and a higher
Q-CHAT score could also represent an overreliance on that particular
network during the neonatal period—which may impact upon the
development of higher order networks.

We emphasise that we did not follow-up the children with higher
Q-CHAT scores beyond 18 months, thus our work did not evaluate
predictors of a confirmed diagnosis of ASD, nor is our study about
diagnosed autism. However, children who go on to receive a diagnosis
of autism and those with a broader phenotype may already show
emerging traits of the condition. Thiswas the basis for development of
the Q-CHAT31,43. There is also accumulating evidence across different
modalities that infants who go on to receive a diagnosis of autism have
differences in their neurobiology and physiology from as young as
6–9 months67–72 Thus our work links emerging social cognitive profile
relevant to ASD, also to dynamic functional connectivity at birth,
especially within sensory networks. This correlation between higher
scores on an instrument, which captures early features relevant to ASD
(though not necessarily diagnostic) to the dynamics of sensory sys-
tems, is in agreement with the importance of sensory processes
throughout the lifespan in individuals who have an ASD diagnosis.
Longitudinal studies are clearly needed, but our work adds to the
evidence for a neurodiverse trajectory of sensory systems to autistic
features across the lifespan. Sensory differences are among the first
features to signal a diagnosis of ASD70,73 and persist, remaining core to
the diagnosis74. For example, we have previously reported that neo-
nates with an increased familial likelihood of ASD had higher regional
homogeneity in the sensorimotor cortex75, which fits with the higher
fractional occupancy we record in this region. Studies of diagnosed
individuals have reported atypical activation of the motor cortex76,
which likely affects the translation of visual input into motor under-
standing, with a potential impact on social interaction. These func-
tional brain differences in sensory systems are thought to arise from
alterations in excitation-inhibition pathways, especially GABA neuro-
transmission. Evidence includes a tight relationship between sensory
processing and differences in sensory cortex GABA levels77 and we
have reported direct experimental proof in adults, that visual proces-
sing differences in ASD are GABA-dependent78.

Some strengths and limitationsofour study shouldbementioned.
We studied state-of-the-art infant fMRI acquired with a dedicated
neonatal multiband EPI pipeline which features high temporal resolu-
tion (TR = 392ms) but acknowledge this has relatively low signal-to-
noise ratio in the deep grey matter structures, including thalamus,
basal ganglia, and brainstem79. We chose a LEiDA processing pipeline,
as it provides time-resolved metrics of brain states and has been suc-
cessfully applied to study brain dynamics in adults28,29. A majority of
prior studies of dynamic brain functional connectivity have adopted
sliding window approaches, which necessitates the choice of arbitrary
parameters in the analysis, such aswindowand step sizes. There is little
consensus on these parameters as the use of small windows can
magnify spurious variations and large windows can soften sharper
changes in brain dynamics80–82. Thus, the choice of a time-resolved
approach like LEiDA is a strength in our methodology, though other
techniques such as Hidden Markov Models are also available83. Our
analysis treated brain state occurrence in an independent fashion, i.e.,
without memory. Future studies could benefit from developing a
metric that considers how brain states are impacted by previously
occurring states. Our results are also potentially limited by the use of
the AAL atlas to define our regions of interest.While this atlas has been
adapted for neonatal use32, structurally defined atlases could poten-
tially poorly correlate with functional boundaries in the brain, parti-
cularly during the neonatal period2,84. A possible solution for future
work could be the adaptation and use of multi-modal generated sur-
face atlases for neonatal fMRI studies85. However, we reproduced our
pipeline using an alternative parcellation scheme (the M-CRIB atlas),

obtaining similar results to those featured by the neonatal AAL atlas.
The dHCP cohort focused on characterising typical development,
hence this study features an unbalanced number of term vs preterm
infants. Preterm-born babies included were predominantly moderate
or late preterm, and mostly “healthy”, with no incidental findings of
clinical significance.While thismay be better representative of general
pretermpopulation (80% of preterm infants are bornmoderate or late
preterm86) we cannot extrapolate our results to very or extremely
pretermbornbabies, or to thosewith significant whitematter damage.
In our analysis, we also did not consider the association with socio-
demographic factors and social deprivation in early neurodevelop-
mental outcomes beyond using the Index of Multiple Deprivation
scores as a covariate. However, multiples studies have shown that
family psychosocial and socio-demographic factors have a significant
impact on brain development in childhood; with factors such as
maternal stress, depression, low education, maternal immigration
status, maternal age greater than 35 years, paternal age over 38 years
and low household income all being linked to poorer developmental
outcomes87–91. Thus, further studies couldbenefit fromevaluating links
between these wider socio-demographic markers and brain dynamics
in early childhood92.

In conclusion, in this study we evaluated global functional brain
dynamics and transient brain states in the newborn brain. Our
approach allowed us to define a set of six fundamental transient
brain states, which are comprised by structures previously shown to
be established in earlier phases of brain development. We have
highlighted the impact brain maturation has on brain dynamics, as
well as atypical patterns associated with preterm birth. Brain state
dynamics at birth appear to be functionally relevant as they are
correlated with a range of neurodevelopmental outcomes in early
childhood. This encourages further work to understand their prog-
nostic value and regulation to guide support and intervention where
appropriate.

Methods
Participants
We analysed a total of 390 (out of 809) datasets from the dHCP
(release 3)23 acquired from both term (n = 324) and preterm born
(gestational age (GA) at birth <37 weeks; n = 66) babies. Full inclusion
and exclusion criteria and sample excluded at each step are detailed in
Supplementary Figure S8. Term-born babies were born at median GA
at birth of 40.14 weeks (IQR = 1.86 weeks) and scanned soon after birth
(median postmenstrual age (PMA) at scan = 41.57, IQR = 2.43 weeks).
Preterm-born babies were born at a median GA at birth of 33.36 weeks
(IQR= 5.86weeks) and scanned at term-equivalent age (medianPMAat
scan = 40.5 (IQR = 2.71)). Table 2 shows demographic data of the
sample. The distribution of PMA at scan and GA at birth for the indi-
viduals included in this study is shown in Supplementary Fig. S9. All
children were invited to the Centre for the Developing Brain, St Tho-
mas’ Hospital, London, for neurodevelopmental evaluation by
experienced paediatricians or psychologists at 18 months after
expected delivery date. The Bayley Scales of Infant and Toddler
Development, Third Edition (Bayley-III)30 were used to assess general
developmental outcomes across motor, language and cognitive
domains in 305 individuals from the total population, comprising 257
infants born at term and 48 born preterm (higher scores indicate
greater skills). The Quantitative Checklist for Autism in Toddlers (Q-
CHAT)31 at 18 months corrected age was available in 300 individuals
(254born at termand46bornpreterm), as ameasureof atypical social,
sensory and repetitive behaviours which occur as a continuum in the
population31. Although higher Q-CHAT scores may indicate more
threshold or subthreshold autistic traits, we emphasise our use of this
instrument was to capture behaviours not tapped by the BSID-III,
rather than to screen for ASD. The index of multiple deprivation (IMD)
rank – a composite measure of geographical deprivation estimated
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from the addressof themother at the timeof birth93 –wasobtained for
every subject and included as a covariate for models aimed at asses-
sing the relationship between neonatal brain dynamics and sub-
sequent neurodevelopmental and behavioural outcomes.

MRI acquisition
We evaluated fMRI scans obtained as part of the dHCP at the Evelina
Newborn Imaging Centre, Evelina London Children’s Hospital, using a
3 Tesla Philips Achieva system (Philips Medical Systems). Ethical
approval was given by the UK National Research Ethics Authority (14/
LO/1169), and written consent was obtained from all participating
families prior to data collection. Scans were performed without seda-
tion in a dedicated neonatal set-up with optimised transport system,
positioning devices, hearing protection, and custom-built 32-channel
receive head coil and acoustic hood94. Scans were supervised by a
neonatal nurse or paediatrician who monitored heart rate, oxygen
saturation and temperature throughout the duration of the scan.
Blood-oxygen-level-dependent (BOLD) fMRI was acquired using a
multi-slice echo planar imaging sequence with multiband excitation
(factor 9) (repetition time (TR) = 392ms, echo time (TE) = 38ms, voxel
size = 2.15 × 2.15 × 2.15mm, flip angle = 34°, 45 slices, total time = 15m
3 s, number of volumes = 2300)23. Anatomical images were acquired
for brain morphometry and clinical reporting23. T1-weighted images
had a reconstructed spatial resolution = 0.8 × 0.8 × 0.8mm, field of
view = 145 ×122 x 100mm, TR = 4795ms. T2-weighted images had a
reconstructed spatial resolution = 0.8 × 0.8 × 0.8mm, field of view =
145 × 145 × 108mm,TR = 12 s, TE = 156ms. fMRI datasetswith excessive
motion (more than 10%ofmotionoutliers19), or incidentalMRIfindings
of clinical significance (radiology scores 4 or 5 which indicate major
lesions within white matter, cortex, basal ganglia or cerebellum—as
described in dHCP database23) were excluded. In cases of twin/triplet
scans only one infant was included (the one with least motion outliers
during acquisition).

Data processing
Individual fMRI datasets were pre-processed according to the dHCP
dedicated neonatal pipeline79. Briefly, local distortion due to field
inhomogeneity was corrected using topup95; intra- and inter-volume
motion correction; and associated dynamic distortions correction

using rigid-body realignment and slice-to-volume eddy96. Residual
motion, multiband acquisition, and cardiorespiratory artefacts were
regressed out using FSL FIX97.

Headmotion has been shown to produce spurious and systematic
correlations in resting state fMRI98. In addition to specific processing
steps within the dHCP pipeline implemented to minimise motion
artefact on the BOLD signal79, we also evaluatedmotionmagnitude for
each dataset using framewise displacement (FD)98. To minimise the
effects of motion (and/or any likely associated differences) on the
determination of brain states, only participants with less than 10%
motionoutliers (defined asFD>75th centile + 1.5*IQR)were selected for
the final analysed subsample. The total number of motion outliers was
additionally used as a covariate of control in the analysis models
described in the statistics section.

We segmented the T2-weighted volumes into nine tissue types
including white matter, grey matter, and cerebrospinal fluid with a
dedicated neonatal tissue segmentation pipeline99. We parcellated
each subject’s T2-weighted volume in 90 cortical and subcortical
parcels using the Anatomical Automated Labels (AAL) atlas100,
mapped to the neonatal brain32, adapted and manually corrected
into the dHCP high-resolution template101. We transformed the AAL
atlas from template space into each subject’s native space with a
non-linear registration based on a diffeomorphic symmetric image
normalisation method (SyN)102 using T2-weighted contrast and the
segmentation obtained previously. Grey matter segmentation and
parcels were propagated from T2-weighted native space into each
subject’s fMRI space with a boundary-based linear registration
available as part of the functional dHCP processing pipeline79.
Average BOLD timeseries were then calculated for each of the 90
AAL parcels in their intersection with grey matter, deep grey
matter, or basal ganglia segmentation masks, as appropriate. An
alternative parcellation scheme was also used, following the same
procedure but using 80 cortical regions from the M-CRIB atlas103, a
neonatal adaptation of the Desikan-Killiany atlas104.

Analysing BOLD timeseries
We filtered the BOLD timeseries with a bandpass Butterworth second
orderfilter in the range of 0.02–0.10Hz29 andobtained the phasesφj(t)
for each parcel in time with the Hilbert transform. For a given real

Table 2 | Demographic details of the term- and preterm-born groups

Term (n = 324) Preterm (n = 66) Statistic p value

Demographics & Clinical Details

GA at birth [in weeks], Mean (SD, range) 40.04 (1.26, 37.00–42.71) 32.79 (3.40, 23.71–36.86) 12.814a p < 0.001

PMA at scan [in weeks], Mean (SD, range) 41.60 (1.67, 37.43–44.86) 40.60 (2.13, 37.00–45.14) 3.615a p < 0.001

PND at scan [in weeks], Mean (SD, range) 1.56 (1.34, 0.00–7.00) 7.81 (4.62, 0.14–19.72) −9.857a p < 0.001

IMDe, Mean (SD, range) 13892.19 (7481.54, 614–32731) 17960.02 (7679.92, 3393–31478) −3.182a p < 0.001

Sex [female count] (%) 149 (45.99%) 26 (39.39%) 0.716b p = 0.398

% FD outliers (S.D.) 5.38 (2.62) 4.52 (2.49) 2.451a p = 0.014

Follow-up

Corrected age at follow-upa [months], Mean (SD, range) 18.83 (1.30, 17.27–24.33) 18.71 (1.35, 17.47–23.87) 0.672a p =0.503

Uncorrected age at follow-upa [months], Mean (SD, range) 18.82 (1.34, 16.97–24.47) 20.40 (1.45, 18.30–24.87) −7.060a p < 0.001

Bayley IIIc - cognitive (S.D.) 101.56 (10.70) 99.90 (13.11) 0.618a p = 0.538

Bayley IIIc - motor (S.D.) 102.25 (9.72) 99.65 (10.26) 1.733a p = 0.083

Bayley IIIc - language (S.D.) 99.33 (15.72) 95.69 (15.85) 1.155a p = 0.249

Q-CHATd (S.D.) 29.90 (8.51) 31.63 (11.81) −0.682a p = 0.497

FD framewise displacement.
aZ (Mann-Whitney U test).
bχ2-test.
cBayley Scales of Infant Development: Third Edition (Bayley-III) - # of complete assessments: 257 term, 48 preterm.
dQuantitative Checklist for Autism in Toddlers (Q-CHAT) - # of complete assessments: 254 term, 46 preterm.
eIndex of Multiple Deprivation - # of complete assessments: 247 term, 43 preterm.
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signal s(t), we built a complex signal z(t)33,105 given by:

z tð Þ= s tð Þ+ iH s tð Þ½ � ð1Þ

In which H s tð Þ½ � represented a Hilbert transform applied to the
real signal s(t) and is defined below, with p.v. consisting of Cauchy
principal value105:

H s tð Þ½ �=p:v:
Z 1

�1

s t � τð Þ
πt

dt ð2Þ

The phases φj(t) for each parcel can be calculated directly from
z(t):

φ tð Þ= arctan
H s tð Þ½ �
sðtÞ

� �
ð3Þ

Kuramoto order parameter
The Kuramoto Order Parameter (KOP) measures the global level of
synchronicity of multiple oscillators and is defined in equation below,
where φj(t) is the signal phase of an oscillator j at a given time. In our
study, each brain parcel (AAL region) is treated as an independent
oscillator.

KOP tð Þ= 1
N

XN
8j = 1

eiφj tð Þ
�����

����� ð4Þ

Once KOP was obtained for every time point, we obtained the
mean KOP (synchrony aggregate over time, referred as “mean syn-
chronisation”), KOP standarddeviation (referred as “metastability”)25,26.
Mean KOP provides a broad measure of whole brain synchronicity,
whereas metastability provides a measure of how synchronisation
between different oscillators fluctuates over time, i.e., brain
flexibility11,25,27.

The Leading Eigenvector Analysis (LEiDA)
KOP analyses can provide insight on global dynamic properties over all
oscillators (brain parcels); but cannot inform which specific brain
structures might be involved in those changes. To evaluate such
modular (local) properties we applied the LEiDA approach—which
allowed us to investigate phase coherence in different sets of parcels.
To do sowe first calculated the phase differencebetween aparcel i and
a parcel j at every instant (TR), using the cosine distance:

Δφij tð Þ= cos φjðtÞ � φiðtÞ
� �

ð5Þ

This results in a symmetric dynamic functional connectivity
matrix for each fMRI volume. We then obtain a lower-dimensional
representation with the LEiDA approach28,29, whereby the LEiDA vector
corresponds to the first eigenvector of the decomposition of the
matrix Δφij(t). This method has been previously shown to reveal
information on the community structure of networks and graphs106.
Once the LEiDA vectors were obtained, we clustered them using
K-Means28,29 with the optimal K (six) determined heuristically with the
Calinski-Harabasz and Davies-Bouldin methods (Supplementary
Figure S10.

Each cluster represents a set of LEiDAs, and we refer to each of
these as a brain state. The dynamics of such states can be studied with
three main metrics: fractional occupancy—which refers to the total
proportion of time spent in a given state or probability of that state;
dwell time—which consists of the average continuous time spent
on each state; and Markovian probabilities of transitions between
each state28,29. In addition, we also calculated values for mean

synchronisation andmetastability for each state by averaging those for
the volumes belonging to each cluster.

Statistics
Firstly, we restricted our sample to the term-born individuals only
(n = 324) and evaluated the association with brain maturation and ex-
utero experience (with PMA and PND at scan, respectively) in global
and modular brain dynamics. Secondly, we evaluated the association
brain dynamics with preterm birth by studying the entire sample of
390 individuals. Prematurity was coded as a binary variable with 1 for
preterm-born individuals (GA at birth less than 37 weeks) and 0 for
term-born participants (GA at birth of 37 weeks or more). Finally, we
evaluated the association of global andmodular dynamic featureswith
later neurodevelopmental outcomes at 18 months corrected age
(n = 305 – Bayley-III; n = 300 – Q-CHAT).

Global dynamics
We characterised the association with age and postnatal experience
(PMAandPNDat scan) byfitting the linearmodelGLM1 (324 term-born
babies): y ~ β0 + β1PMA + β2PND + β3Sex + β4[Motion outliers (FD)]. To
characterise the association with preterm birth on brain dynamics,
we fitted the linear model GLM2 (324 term-born and 66 preterm-born
babies): y ∼ β0 + β1Preterm-born + β2PMA + β3Sex + β4[Motion outliers
(FD)]. We assessed the association of brain global dynamics with cog-
nitive and behavioural outcome measures, i.e., Bayley-III and Q-CHAT,
at 18 months in a model given by GLM3 (257 term-born and
48 preterm-born babies for Bayley-III scores; and 254 term-born
and 46 preterm-born babies for Q-CHAT): y ∼ β0 + β1GA + β2PMA +
β3Sex + β4[Motion outliers (FD)] + β5[Corrected age at assessment] +
β6[Assessed Component] + β7[Index of Multiple Deprivation] (with
Assessed Component consisting of Bayley’s cognitive, Bayley’s lan-
guage, Bayley’s motor, or Q-CHAT total scores).

Modular dynamics: brain states
Firstly, we tested differences between the brain states defined in this
study in terms of their mean synchronisation, metastability, fractional
occupancy, and dwell times per subject via a type III ANOVA with Sat-
terthwaite’s method107 and the linear mixed effects model GLME1
(including 324 term-born): y∼β0 + β1State+ (1 | Subject ID) –with Subject
ID accounting for the random effect. By fitting GLM1 (324 term-born
babies): y ∼ β0+ β1PMA+β2PND + β3Sex+β4 [Motion outliers (FD)], we
characterised the association with age (PMA at scan) and postnatal
experience (PND at scan) on fractional occupancy, dwell times, mean
synchronisation, and metastability for each of the six brain states.

Secondly, to characterise the association with preterm birth on
brain states and state-change probabilities, we fitted GLM2 (324 term-
born and 66 preterm-born babies): y ∼ β0 + β1Preterm-born + β2PMA +
β3Sex + β4[Motion outliers (FD)] and GLM3 (324 term-born and 66
preterm-born babies): y ∼ β0 + β1GA+ β2PMA + β3Sex + β4 [Motion out-
liers (FD)].

Thirdly, we assessed the association of brain dynamics with neu-
rodevelopmental outcome measures (i.e., Bayley-III and Q-CHAT at
18 months) in a model given by GLM4 (257 term-born and 48 preterm-
born babies for Bayley-III; and 254 term-born and 46 preterm-born
babies for Q-CHAT): y ∼ β0 + β1GA+ β2PMA + β3Sex + β4 [Motion
outliers (FD)] + β5[Corrected age at assessment] + β6[Assessed
component] + β7[Index of Multiple Deprivation] (with Assessed Compo-
nent consisting of Bayley’s cognitive, Bayley’s language, Bayley’s
motor, or Q-CHAT total scores).

Statistical significance and repeated measures
We evaluated the statistical significance of each variable of interest
with two-sided permutation tests with 10,000 repetitions for all GLMs.
P-values are reported uncorrected, highlighting those surviving
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multiple comparison correction across states using Benjamini-
Hochberg FDR method with α error at 5%108.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The AAL-UNC atlas adapted to the dHCP template space, and pre-
processed BOLD timeseries data generated in this study have been
deposited in the Zenodo database under accession code 10.5281/
zenodo.7053984. The fMRI datasets and clinical data are available
under restricted access as per dHCP data release conditions, access
can be obtained via https://data.developingconnectome.org. Source
data are provided with this paper.

Code availability
Dynamicproperties of the BOLD signalfluctuationswere assessedwith
dynFC: CoDe-Neuro’s Dynamic Functional Connectivity Tools109, a set
of scripts written in Python v3.7 (https://code-neuro.github.io/dynfc/),
and supporting libraries Numpy, SciPy, Scikit-learn, pickle, h5py, pan-
das, os, sys, and feather.

Statistics and figures were produced in R programming language
and auxiliary packages ggplot2, tidyr, dplyr, cowplot, purrr, RColor-
Brewer, knitr, janitor, ggExtra, stringr, rjson, broom, Tidymodels, coin,
shadowtex, effsize, modelr, ggimage, ggpubr, patchwork, ggbeeswarm,
ggrepel, ggtext, MetBrewer, lmerTest, forcats, stateR, p-testR, broom.-
mixed, lme4, and DiagrammeR.

Brain volume images were produced with BrainNet Viewer and
Tools for NIfTI and ANALYZE images. All scripts used in this article’s
statistics andfigures; and relevant instructions onhow to run them, are
available in https://github.com/CoDe-Neuro/neonatal_dfc109,110.
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