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Abstract 
 

Brain dynamic functional connectivity characterises transient connections between brain 
regions, changing over time. Features of brain dynamics have been linked to emotion and 
cognition in adult individuals, and atypical patterns have been associated with 
neurodevelopmental conditions such as autism. Although reliable functional brain networks 
have been consistently identified in neonates, little is known about the early development of 
dynamic functional connectivity. In this study we characterise dynamic functional 
connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of 
postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a 
dynamic landscape of brain connectivity is already established by the time of birth in the 
human brain, characterised by six transient states of neonatal functional connectivity with 
changing dynamics through the neonatal period. The pattern of dynamic connectivity is 
atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive 
behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores 
at 18 months of age. 
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Introduction 
 
 
A fundamental feature of the brain’s activity is the dynamic properties of its functional 
connectivity, with continuous shifting between different connectivity profiles or ‘states’. These 
dynamic properties are linked to processes such as language1,2, cognition3–6, and motor 
function7,8. Importantly, altered brain dynamics have also been linked to the clinical features 
and/or cognitive dysfunction in neurodevelopmental conditions such as schizophrenia9, 
attention deficit hyperactivity disorder (ADHD)10 and autism spectrum disorder (ASD)11. 
Individuals with ASD, for example, have been reported to switch between different 
connectivity profiles more directly, whereas typically developing individuals switch between 
those same brain states via an intermediate connectivity profile11. However, although it is 
increasingly appreciated that neurodevelopmental conditions likely have their origins in the 
perinatal period, little is known about the brain’s dynamic properties at this critical juncture. 
Moreover, it is also not clear whether its dynamic characteristics are associated with later 
childhood neurodevelopment, and in particular, which of these characteristics signal a higher 
likelihood of later neurodevelopmental difficulties.  
 
Conventional studies of “static” functional brain connectivity in early life have shown that the 
spatial representation of resting state networks (RSNs) appears to be relatively mature and 
adult-like even soon after birth12–14. It has also been confirmed that these RSNs may be 
disrupted by perinatal exposures, such as preterm birth12,15–17, which increase the likelihood of 
neurodevelopmental impairments18. However, despite the evidence for the importance of 
dynamics in older groups, the dynamics of these networks in early life remain to be described.  
 
In this study we applied state-of-the-art techniques to evaluate functional Magnetic Resonance 
Imaging (fMRI) in a cohort of term-born (n=324) and preterm-born babies (n=66) scanned at 
term equivalent age from of the developing Human Connectome Project (dHCP), the largest 
publicly available population-based dataset of the healthy new-born brain19. We used two 
methods that tap into dynamic brain function. First, we characterised global dynamics using 
Kuramoto Order Parameter (KOP)20 based measures, namely mean synchronisation and 
metastability21,22 as global measures of brain synchronicity and flexibility21,23. Second, we 
characterised modular dynamics. That is, we identified sub-networks involved in temporal 
“states”, i.e., paroxysmal modes representing synchronisation of the brain, using Leading 
Eigenvector Analysis (LEiDA) which is a time-resolved metric24,25. We assessed whether 
neonatal brain state features (fractional occupancy, dwell times, state mean synchronisation, 
and state metastability) and state transition probabilities were associated with postmenstrual 
age (PMA) at scan, postnatal days (PND) at scan and preterm-birth; and correlate with 
neurodevelopmental outcomes at 18 months measured using the Bayley Scales of Infant and 
Toddler Development, 3rd Edition (Bayley-III)26, and atypical social, sensory and repetitive 
behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT)27. This 
allowed us to test three hypotheses: 1) that neonatal brain dynamics quickly develop with age 
at scan; 2) that preterm birth alters the typical pattern of functional brain dynamics; and 3) that 
neonatal brain dynamics are linked to neurodevelopmental and behavioural outcome measures 
at age 18 months. 
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Results 
Global brain dynamics. We first assessed the association of global dynamic features with age 
and postnatal days at scan (PMA and PND at scan, respectively) in term-born individuals only 
(n = 324). We did not observe any associations between PMA at scan and global dynamic 
features. Nevertheless, there was an association between PND at scan with metastability (t = -
2.4; p = 0.017, Table 1). In comparison to term-born infants, preterm-born infants had lower 
mean synchrony (Cohen's D = 0.567 – medium effect size; p < 0.001) and metastability (D = 
0.454 – medium effect size; p < 0.001) (Figure 1AB, Table 1). We then analysed associations 
between global dynamic features (mean synchronisation and metastability) and 
neurodevelopmental markers, namely Q-CHAT and Bayley-III scores for the entire cohort 
(term- and preterm-born, n = 390). Across the whole cohort, there was no significant 
association between metastability and any neurodevelopmental outcome, although mean 
synchronisation showed a weak but significant association with Q-CHAT scores (t = -2.6; p = 
0.011), i.e., lower neonatal mean synchronisation was associated with higher Q-CHAT scores, 
indicative of more atypical social, sensory, and repetitive behaviours at 18 months of age. 
Results were robust to the choice of atlas parcellation, as similar results were obtained with the 
Melbourne Children’s Regional Infant Brain (M-CRIB) atlas (Supplementary Table S1), 
including a significant association of metastability with PND at scan (p = 0.019), and reduced 
mean synchronisation and metastability in preterm-born infants when compared with term 
counterparts (Cohen's D = 0.628, p < 0.001; and Cohen's D = 0.480, p < 0.001 respectively, 
see Supplementary Table S1). Analogously, M-CRIB’s mean synchronisation was also 
significantly associated with Q-CHAT scores (t = -2.7, p = 0.009). 
 
 
 
 

 
Figure 1 | Association of preterm-birth with mean synchronisation (a) and metastability (b). * 
p-values obtained with a two-sided permutation test – results surviving FDR multiple 
comparison correction with a error at 5%. D: Cohen’s effect size. Term (n = 324) and preterm 
(n = 66) born individuals. Boxplots showing 0th, 25th, 50th, 75th and 100th centiles. Outliers 
defined when value larger than 1.5*IQR + 75th centile. D: Cohen’s D. Source data are provided 
as Source Data file. 
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Neonatal brain states. We defined six different brain states, obtained heuristically from K-
Means clustering, using the LEiDA approach24,25 (Figure 2). Briefly, we averaged the fMRI 
timeseries into 90 cortical and subcortical regions defined by the Anatomical Automated 
Labels (AAL) atlas adapted to the neonatal brain28. We estimated the phase synchronisation 
between each pair of parcels, obtaining a dynamic functional connectivity matrix for each fMRI 
timepoint29. We calculated the first eigenvector of each matrix, for each instant of time, and 
clustered those with K-Means with K = 6 (see more details in Methods section). Three of the 
six states we identified showed widespread phase concordance amongst brain parcels, we refer 
to these as whole-brain global synchronisation states, namely global state A, global state B, 
and global state C. Three states were more regionally constrained: one state showed 
synchronous phases in the occipital cortex (Occ. State); one state represented high synchrony 
for regions mainly in the sensorimotor cortex (SM State); and one state comprised high levels 
of synchronisation in the frontal cortex, angular gyrus, and posterior cingulate gyrus (for 
simplicity we refer to this as frontoparietal or FP state).  
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Figure 2 | Brain states in neonates, ordered from left to right by level of global 
synchronicity. (a) LEiDA vectors for each of the six brain states identified in the neonatal 
brain using AAL parcels. (b) Representation of LEiDA on brain surfaces (right side view). (c) 
Representation of LEiDA on brain surfaces (left side view). Glb.: Global. Occ.: Occipital. SM: 
Sensorimotor. FP: Frontoparietal. Source data are provided as Source Data file. 
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Landscape of modular brain dynamics in term-born neonates. We compared the main 
dynamic features of the six identified states in term-born participants (n = 324) via mean 
synchronisation, metastability, fractional occupancy and dwell times markers for each state. 
There were significant differences between states in mean synchronisation, metastability, 
fractional occupancy, and dwell times when tested using a Type III ANOVA model with 
Satterthwaite’s method: F(5, 1615) = 13163; p < 0.001 for mean synchronisation, F(5, 1615) = 
291; p < 0.001 for mean metastability, F(5, 1938) = 514; p < 0.001 for mean fractional 
occupancy, and F(5, 1938) = 734; p < 0.001 for mean dwell times. Between state effects 
showed that global state A had increased mean synchronisation, mean fractional occupancy, 
and mean dwell times when compared with the other 5 states. Moreover, global states B and C 
also had a heightened mean synchronisation which was intermediate between the values 
recorded for global state A and the other states (see Supplementary Figure S1 for between-
group effects statistics). We characterised the normative brain state transition probabilities 
landscape in Figure 3A. Most occurrences are those of dwelling sequences, i.e., repeated 
continuous occurrences of the same state, with probabilities above 89% for all six states. 
Excluding those dwelling sequences, a complex dynamic profile is displayed by the 12 most 
frequent transitions. For instance, the brain transitions to and from global state A (which has 
high levels of synchronisation), via global states B and C (which have intermediate levels of 
synchronisation), while brain transitions into FP state occur through both global and regionally 
constrained states: global state B, occipital state, and SM state. 
 
Modular brain state features associated with age at scan in term-born neonates. Higher 
PMA at scan was positively correlated with increased dwell times (t =4.4; p < 0.001), increased 
fractional occupancy (t = 5.3, p < 0.001), and increased mean synchronisation (t = 3.6; p < 
0.001) for global state C; and with increased fractional occupancy (t = 2.8, p < 0.001) and mean 
synchronisation in the sensorimotor state (t = 3.1; p = 0.002). PMA at scan was negatively 
correlated with increased fractional occupancy in the global state B (t = -2.8; p = 0.004). 
Postnatal age (PND at scan) was associated with shorter dwell times in the global state B (t = -
2.8; p = 0.004), occipital state (t = -2.5; p = 0.013), and sensorimotor state (t = -2.8; p = 0.006). 
Significant associations of brain state features with PMA and PND at scan that survive FDR 
multiple comparison are summarised in Figure 3C and Figure 3D; and compared in Figure 4G. 
 

Brain state transitions associated with age at scan in term-born neonates. Higher PMA at 
scan was positively associated with an increased likelihood of transitioning from global state 
A to C (t = 3.2; p = 0.002), from global state B to frontoparietal state (t = 3.1; p = 0.002), and 
to stay (dwell) in global state C (t = 3.2; p = 0.001). Older PMA was also associated with a 
lower likelihood of transitioning from global state C to occipital state (t = -2.8; p = 0.006); and 
lower probability of staying in global state B (t = -2.9; p = 0.005). Significant associations of 
state transition probabilities with PMA at scan are shown in Figure 3E. Increased postnatal age 
(PND at scan) was associated with increased transitions from frontoparietal and occipital states 
into global state B [(t = 3.1; p = 0.002) and (t = 3.3; p = 0.001), respectively]; increased 
transition from the occipital state into state C (t = 3.1; p = 0.002); a reduction of transition 
likelihood from state B into a frontoparietal state (t = -3.0; p = 0.003); and a reduction of 
probability to stay (dwell) in state C (t = -2.7; p = 0.007), occipital state (t = -3.4; p = 0.001), 
and sensorimotor state (t = -2.7; p = 0.007). Significant associations of state transition 
probabilities with PND at scan, all surviving FDR multiple comparison corrections, are 
summarised in Figure 3F). For a comparison of the distinct effect of age (PMA at scan) and 
postnatal experience (PND at scan) in brain state transitions see Figure 4H. Age at scan and 
postnatal experience had distinct correlates: for example, transitions from intermediate whole-
brain synchronisation state C to the occipital state decreased with PMA at scan, while 
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transitions in the opposite direction (from occipital state to synchronisation state C) were 
increased with PND at scan.   

 

 
Figure 3 | Brain dynamics in term-born children (n = 324). (a) All transitions including 
dwelling state sequences. (b) Main transitions (top 12) between states excluding dwelling 
sequences. (c) Summary of brain state features significantly associated with PMA at scan. (d) 
Summary of brain state features significantly associated with PND at scan. (e) Summary of 
significant correlations between state transitions probabilities and PMA at scan. (f) Summary 
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of significant correlations between state transitions probabilities and PND at scan. †GLM1 
(including 324 term-born babies): 𝑦 ∼ 𝛽0 + 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4Motion outliers 
(FD). Values shown in c and d indicate t-statistics. All significant associations (two-sided 
permutation test) shown in this figure survive FDR multiple comparison correction with a error 
at 5%. Glb.: Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. PMA: 
Postmenstrual age. PND: Postnatal days. Source data are provided as Source Data file. 

Atypical modular brain state features in preterm born neonates. Compared to term-born 
participants, preterm-born babies had shorter dwell times for the global state A (t = -4.6; p < 
0.001, Figure 4A); decreased fractional occupancy for the global state A (t = -4.1; p < 0.001); 
and increased fractional occupancy for global state B (t = 3.4; p = 0.001), occipital state (t 
= 2.2; p = 0.030), and frontoparietal state (t = 2.7; p = 0.009) (Figure 4B). Preterm birth was 
also associated with lower mean synchronisation of global state A (t = -5.1; p < 0.001), global 
state B (t = -3.4; p = 0.001), global state C (t = -2.8; p = 0.005), occipital state (t = -2.2; p = 
0.031), and frontoparietal state (t = -2.6; p = 0.010)) (Figure 4C); and reduced metastability 
for the global state A (t = -2.5; p = 0.014) and frontoparietal state (t = -4.3; p < 0.001) (Figure 
4D). 

Effect of preterm birth on brain dynamics and brain state transition probability. Preterm 
birth was associated with an increased transition towards an occipital connectivity profile, i.e., 
an increased transition probability from global state A to C (t = 4.7; p = < 0.001) and from 
global state C to occipital (t = 3.1; p = 0.002); as well as a reduction in the probability staying 
(dwelling) in global state A (t = -4.4; p < 0.001); see Figure 4F. A similar profile of results was 
obtained when assessing how brain dynamic features changed with gestational age at birth 
which essentially captures preterm and term birth in a linear way, see Supplementary Figure 
S2. Significant changes in transition probabilities associated with preterm-birth and their 
relation to associations with PMA and PND at scan are summarised in Figure 4H. 
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Figure 4 | Association of preterm birth with features of brain dynamics (n = 390). (a) Mean 
dwell times (DT). (b) Mean fractional occupancy (FO). (c) Mean synchronisation. (d) 
Metastability. (e) Summary of significant associations with preterm birth (f) Association of 
state transitions probabilities and preterm birth. (g) Summary of brain state features 
significantly associated with preterm birth, and comparison with those significantly associated 

***

0

10

20

30

40

M
ea

n 
D

T 
(s

)
Term

Preterm

a

***

***

* **

0%

25%

50%

75%

M
ea

n 
FO

b

***

** **

*

**

0.25

0.50

0.75

M
ea

n 
sy

nc
hr

on
is

at
io

n

c

*

***

0.05

0.10

0.15

0.20

Glb.A Glb.B Glb.C Occ. SM FP
State

M
ea

n 
m

et
as

ta
b.

d

−5.09

−3.40

−2.79

−2.18

−2.58

−2.50

−4.26

−4.09

 3.39

 2.16

 2.73

−4.64

FP

SM

Occ.

Glb.C

Glb.B

Glb.A

Dwell times Mean synchronisation
Fractional Occupancy Metastability

St
at

e

Effect of preterm−birth†† (t-statistic) e

Glb.AGlb.B

Glb.C

Occ. SM

FP

t =  3.115

t = −4.394

t =  4.651

Transitions influenced by preterm−birth††
f

Decreased

Increased

FP

FP

SM

Occ.

Glb.C

Glb.B

Glb.A

Dwelling times Mean synchronisation
Fractional Occupancy Metastability

St
at

e

g h

PND†PMA† Preterm-birth††Decreased Increased Less likely More likely

Glb.C

Occ. SM

Glb.B Glb.A

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2023. ; https://doi.org/10.1101/2022.11.16.516610doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516610
http://creativecommons.org/licenses/by/4.0/


with PMA and PND at scan. (h) Summary of brain state transition probabilities associated with 
increased PMA, increased PND, and/or preterm-birth. †GLM1 (324 term-born babies): 𝑦 ∼ 𝛽0 
+ 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4Motion outliers (FD). ††GLM2 and (a) (b) (c) (d) (324 term-
born and 66 preterm-born babies): 𝑦 ∼ 𝛽0 + 𝛽1Preterm-born + 𝛽2PMA + 𝛽3Sex + 𝛽4Motion 
outliers (FD). * p < 0.05. ** p < 0.01. *** p < 0.001 obtained with a two-sided permutation 
test. Values shown in e indicate t-statistics. Boxplots showing 0th, 25th, 50th, 75th and 100th 
centiles. Outliers defined when value larger than 1.5*IQR + 75th centile. All significant 
associations highlighted survive FDR multiple comparison correction with a error at 5%. Glb.: 
Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. PMA: Postmenstrual age. PND: 
Postnatal days. DT: Dwell time. FO: Fractional occupancy. Metastab.: Metastability. Source 
data are provided as Source Data file. 

 

Neonatal brain states and early childhood neurodevelopment. Lastly, we investigated 
associations between brain states dynamics after birth and neurodevelopmental outcomes at 18 
months of age measured with Bayley-III and Q-CHAT scores. Higher mean synchronisation 
of the sensorimotor state in neonates was associated with poorer performance on both Bayley’s 
cognitive and motor scores assessed at 18 months of age (t = -3.2, p = 0.002; and t = -3.4, p = 
0.002 respectively; Figure 5A). Higher Q-CHAT scores at 18 months of age were associated 
with reduced mean synchronisation (t = -2.7, p = 0.008) and higher fractional occupancy of 
sensorimotor state and reduced fractional occupancy of global state A (t = 2.5, p = 0.014; and 
t = -2.6, p = 0.010 respectively; Figure 5B).  

 
 

 
Figure 5 | Summary of associations of brain state features with neurodevelopmental 
outcomes at 18 months corrected age. Association of average (a) mean synchronisation and 
(b) fractional occupancy in each of the six defined brain states during perinatal period with 
cognitive, language and motor Bayley-III composite scores and Q-CHAT scores. GLM3 (257 
term-born and 48 preterm-born babies for Bayley-III; and 254 term-born and 46 preterm-born 
babies for Q-CHAT): 𝑦 ∼ 𝛽0 + 𝛽1GA + 𝛽2PMA + 𝛽3Sex + 𝛽4Motion outliers (FD) + 
𝛽5[Corrected age at assessment] + 𝛽6[Assessed component] + 𝛽7[Index of multiple 
deprivation]. Values shown in in both panels indicate t-statistics. All significant associations 
(two-sided permutation test) highlighted survive FDR multiple comparison correction with a 
error at 5%. Glb.: Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. Cog.: 
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Cognitive. Lang.: Language. Mot.: Motor. Comp.: Component. Q-CHAT: Quantitative 
Checklist for Autism in Toddlers. Source data are provided as Source Data file. 
 

A similar pattern of regional brain dynamics was obtained with an alternative 
parcellation scheme. The six brain states obtained with the alternative M-CRIB neonatal atlas 
were compatible with the ones obtained for the AAL atlas (Supplementary Figure S3), with 
three global synchronisation states and three more regionally constrained. States 1, 2 and 3 
obtained with the M-CRIB atlas were consistent with global synchronisation states obtained 
with the AAL atlas. The M-CRIB’s State 4 featured some of the structures present in occipital 
state, State 5 featured similar structures to the sensorimotor state, and State 6 was concordant 
with FP state obtained from AAL. 

Moreover, for the analyses using the M-CRIB atlas in term-born babies (Supplementary Figure 
S4), PMA was also associated with increased fractional occupancy (t = 2.9; p = 0.002) and 
mean synchronisation (t = 3.0; p = 0.003) for State 5 (~SM); and PND was associated with 
reduced dwell times (t = -2.5; p = 0.012) for State 5 (~SM). Transitions from States 6 (~FP) to 
State 2 (~Glb.) also increased with PND (t = 3.3; p = 0.002). Pre-term birth was also associated 
with similar changes in state metrics for M-CRIB atlas (Supplementary Figure S5) with 
increased fractional occupancy for State 4 (~Occ.) (t = 2.3; p = 0.020) and State 6 (~FP) (t = 
3.0; p = 0.002); and reduced mean synchronisation for State 6 (~FP) (t = -2.2; p = 0.027). See 
Supplementary Figure S6 for a similar analysis with GA. 

Association with developmental outcomes in cognitive (t = -4.0; p < 0.001) and motor (t = -
3.4; p < 0.001) components of Bayley-III showed negative associations with mean 
synchronisation for State 5 (~SM) and higher Q-CHAT scores were associated with reduced 
fractional occupancy for State 1 (t = -2.6; p = 0.008), see Supplementary Figure S7 for a 
summary. A detailed description of results using M-CRIB atlas for parcellation is available in 
Supplementary Materials. 
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Discussion 
 

We used global and modular fMRI signal analysis tools to investigate the characteristics of 
dynamic functional connectivity in a large sample of term and preterm born neonates. This 
study characterises the fundamental features of the neonatal repertoire of brain states and their 
dynamics during early in human development. We found that brain dynamics are disrupted in 
preterm-born infants and that the profile of brain dynamics in early postnatal life is associated 
with a range of early childhood neurodevelopmental and behavioural outcomes at 18 months 
of age. 

We found that global dynamic features remained relatively stable in early postnatal 
development (37-44 weeks PMA at scan) in a term-born population, although lower 
metastability was observed with more postnatal days at scan, suggesting that ex-utero life 
experience reduces brain dynamic flexibility after birth, and promotes more stable connectivity 
patterns. This is consistent with our observation that preterm born infants scanned at term 
equivalent age, and thus with greater exposure to postnatal life experience at the time of scan, 
had lower metastability than term born children. However, preterm babies also had lower mean 
synchronisation at term-equivalent age suggesting a unique pattern of alteration in brain 
dynamics associated with preterm birth which is independent of the extent of ex-utero life 
exposure (PND at scan). Lower metastability has been previously associated with impairments 
in cognitive flexibility of mature individuals after traumatic brain injury6. However, the 
negative association between duration of postnatal life and metastability observed here is 
unlikely to relate to cognitive flexibility, but rather reflect a refinement of network dynamics 
driven by primary sensory stimulation associated with ex-utero life experience. Metastability 
seems to be additionally reduced by term equivalent age in preterm born babies, which may be 
consistent with theories suggesting perinatal stress atypically accelerates brain maturation, with 
potentially negative long-term impact30.  

Our study extends prior work which has observed that, later in childhood, very preterm born 
infants have suboptimal neural synchrony and altered global dynamic connectivity patterns 
when scanned later in childhood31. Our metrics suggest that the association of preterm birth 
with brain dynamics may begin much earlier in life. Such differences in preterm-born babies 
may have their roots in alterations in the framework of structural and functional networks 
reported to accompany preterm birth. For example, previous studies have shown that preterm 
birth is associated with altered brain structure32,33, global functional architecture15,34, and 
structural network changes in the neonatal period35 which continue to be present at school-
age36 and into young adulthood37,38. Global dynamic features were linked to later behaviour: 
lower mean synchronisation in the neonatal brain was associated with higher Q-CHAT scores 
at 18 months.  Although high scores on the Q-CHAT indicate more autistic traits, in this study, 
the Q-CHAT captured a continuum of social, sensory, and repetitive behaviours across the 
normal distribution27,39. Thus, while global metrics might usefully signpost the trajectory of 
foundational dynamic steps of human brain development, their association with Q-CHAT 
should not be over-interpreted as our study was not a study of ASD and we did not examine 
children at an age where neurodevelopmental diagnoses begin to be formalised.  

Summary metrics of global dynamics are likely themselves to be underpinned by much more 
complex activity. Therefore, we explored the emergence and behaviour of modular brain states 
in the early postnatal period. We characterised six transient states in the newborn brain at term 
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equivalent age. Amongst the three states that showed widespread concordance (global states 
A-C), the first encompassed nearly all of the analysed cortical regions, the second showed a 
higher contribution of all sensory regions (auditory, sensorimotor, and visual) and the third 
state showed a higher contribution of visual and frontoparietal cortices. The other three states 
had a more restricted/regional span with distinct contributions from sensorimotor, visual and 
frontoparietal regions. The majority of these states thus encompassed primary sensory 
networks which are already known to mature earlier than higher order networks12,15,40. This 
adds confidence to the results reported in studies of dynamic FC in neonates around birth. For 
example, Ma et al. (2020), described dynamic functional connectivity with four brain states 
that encompassed default-mode, dorsal attention, auditory, sensorimotor, and visual networks 
in 37 term neonates41. Here we establish a series of six brain states and describe associations 
with age at scan and postnatal days in a larger cohort with 324 term neonates. We observed 
that in newborn infants, whole-brain synchrony state A had the highest mean synchronisation, 
as well as largest fractional occupancy and dwell times; thus suggesting that newborn infants 
spend a large amount of their time in a state of global phase synchrony which is a similar to 
the previously described dominant pattern of whole-brain synchronisation seen with both 
fMRI41,42 and EEG43. Together with prior studies, our work supports the idea that large scale 
activity plays a crucial role in early brain development. Our results also align with the concept 
that this activity could support large scale cortical network formation and may foster the 
associated long-range connections, which are known to subsequently mature during the first 
postnatal year44,45.   

We observed a positive correlation of occupancy and mean synchronisation within the 
sensorimotor cortices with increasing PMA at scan. This supports existing evidence that this 
system is relatively mature, both in function and structure in comparison to other systems at 
birth. This may be the product of significant short-range functional reorganisation during the 
last foetal trimester46,47 to support the  functional specificity needed to respond to sensory 
information coming from feet, hands and mouth48,49. We also found that increased PMA at 
scan, was associated with an increased probability of transitioning into frontoparietal 
synchronicity states comprising the anterior part of the Default Mode Network (DMN)50. This 
is concordant with other evidence that, although this system is relatively immature at birth, it 
undergoes significant changes postnatally with increasing recruitment of frontoparietal areas 
into the network12,15. Our work suggests that this system is recruited more and more with age 
in the postnatal period. There was also a significant effect of PND at scan on an increasing 
probability of transition from occipital to whole-brain synchronisation states. This finding is in 
line with key stages of neurodevelopment.  Specifically, changes in transitions from an 
occipital cortex profile may help the maturation of visuomotor abilities and sensory integration 
in early infancy in the environment outside the womb51. Finally, we observed increased 
transitions from sensorimotor to frontoparietal structures with increasing duration of postnatal 
life, perhaps reflecting the emerging of functional maturation of frontoparietal systems which 
coincides with high interneuron migrations to these regions52, relative to the already mature 
sensorimotor systems47. 

Preterm birth has been associated with a higher likelihood of atypical neurodevelopment18 
including a greater rate of autism diagnosis53–58. Previous studies from our group have shown 
preterm born infants have alterations in their functional architecture12,15,34. Here, we extend this 
work to report that dynamic functional connectivity is also altered in preterm born infants, 
showing increasing fractional occupancy of occipital and frontal states and increased 
transitions from global to occipital state; and decreased dwelling for whole-brain high 
synchronisation state. Only one other study has investigated the association of preterm birth 
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with atypical dynamic functional connectivity41. They reported significantly shorter mean 
dwell times in a state with stronger connectivity between sensorimotor and auditory cortices 
and significantly higher mean dwell times for a global state41. Direct comparison with our 
findings is challenging however, given the higher resolution of our study in terms of a larger 
number of ROIs included in our study but also the power available from our larger sample. We 
observed multiple global states in neonates with diverse contributions from occipital and 
frontoparietal regions and a negative effect of prematurity on dwell times in state A. In 
summary, preterm born infants show shifts in dynamic functional connectivity towards 
occipital and frontoparietal synchrony profiles and suppresses whole-brain synchronisation 
modes. Preterm-birth is known to impact on cognition throughout the lifespan59,60. Our results 
raise the possibility, that alterations in brain dynamic functional connectivity that are present 
soon after birth have functional consequences. 

Our work and others consistently recognise the neonatal period as a key time for sensorimotor 
cortical development46,48,49 and subsequent transition to higher order network connectivity12,15. 
We extended this observation here, to show that altered brain dynamics contributes to both 
general developmental outcomes and more specific social, sensory, and repetitive behaviours 
at age 18 months. Lower levels of synchrony in the sensorimotor state around term were 
positively correlated with better cognitive and motor outcomes (Bayley-III) at 18 months. This 
association is evident in the analyses with both the AAL and M-CRIB atlases. However, when 
there was lower fractional occupancy of the high whole-brain synchronisation state A and 
increased fractional occupancy of the sensorimotor state around birth, there were more atypical 
social, sensory, and repetitive traits present at 18 months, as captured by the Q-CHAT in AAL 
atlas. Thus, our work indicates that the link between brain dynamics and autistic traits is not 
only limited to state transitions in adulthood11,61 but may comprise alterations in state 
occupancy and overall synchronicity as well as transitions established during early 
development. One possible explanation for the association between the sensorimotor cortex 
dynamics and later social, sensory and repetitive traits, is that altered brain dynamics in the 
neonatal period may predispose individuals to exhibit unusual responses to sensory stimuli62. 
The positive correlation of higher fractional occupancy of the sensorimotor state and a higher 
Q-CHAT score could also represent an overreliance on that particular network during the 
neonatal period – which may impact upon the development of higher order networks.  

We emphasise that we did not follow-up the children with higher Q-CHAT scores beyond 18 
months, thus our work did not evaluate predictors of a confirmed diagnosis of ASD, nor is our 
study about diagnosed autism. However, children who go on to receive a diagnosis of autism 
and those with a broader phenotype may already show emerging traits of the condition. This 
was the basis for development of the Q-CHAT27,39. There is also accumulating evidence across 
different modalities that infants who go on to receive a diagnosis of autism have differences in 
their neurobiology and physiology from as young as 6-9 months63–68  Thus our work links 
emerging social cognitive profile relevant to ASD, also to dynamic functional connectivity at 
birth, especially within sensory networks. This correlation between higher scores on an 
instrument, which captures early features relevant to ASD (though not necessarily diagnostic) 
to the dynamics of sensory systems, is in agreement with the importance of sensory processes 
throughout the lifespan in individuals who have an ASD diagnosis. Longitudinal studies are 
clearly needed, but our work adds to the evidence for a neurodiverse trajectory of sensory 
systems to autistic features across the lifespan.  Sensory differences are among the first features 
to signal a diagnosis of ASD66,69 and persist, remaining core to the diagnosis70. For example, 
we have previously reported that neonates with an increased familial likelihood of ASD had 
higher regional homogeneity in the sensorimotor cortex71, which fits with the higher fractional 
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occupancy we record in this region. Studies of diagnosed individuals have reported atypical 
activation of the motor cortex72, which likely affects the translation of visual input into motor 
understanding, with a potential impact on social interaction. These functional brain differences 
in sensory systems are thought to arise from alterations in excitation-inhibition pathways, 
especially GABA neurotransmission. Evidence includes a tight relationship between sensory 
processing and differences in sensory cortex GABA levels73 and we have reported direct 
experimental proof in adults, that visual processing differences in ASD are GABA-
dependent74.  

Some strengths and limitations of our study should be mentioned. We studied state-of-the-art 
infant fMRI acquired with a dedicated neonatal multiband EPI pipeline which features high 
temporal resolution (TR = 392 ms) but acknowledge this has relatively low signal-to-noise 
ratio in the deep grey matter structures, including thalamus, basal ganglia, and brainstem75. We 
chose a LEiDA processing pipeline, as it provides time-resolved metrics of brain states and has 
been successfully applied to study brain dynamics in adults24,25. A majority of prior studies of 
dynamic brain functional connectivity have adopted sliding window approaches, which 
necessitates the choice of arbitrary parameters in the analysis, such as window and step sizes. 
There is little consensus on these parameters as the use of small windows can magnify spurious 
variations and large windows can soften sharper changes in brain dynamics76–78. Thus, the 
choice of a time-resolved approach like LEiDA is a strength in our methodology, though other 
techniques such as Hidden Markov Models (HMMs) are also available 79. Our analysis treated 
brain state occurrence in an independent fashion, i.e., without memory. Future studies could 
benefit from developing a metric that considers how brain states are impacted by previously 
occurring states. Our results are also potentially limited by the use of the AAL atlas to define 
our regions of interest. While this atlas has been adapted for neonatal use28, structurally defined 
atlases could potentially poorly correlate with functional boundaries in the brain, particularly 
during the neonatal period80,81. A possible solution for future work could be the adaptation and 
use of multi-modal generated surface atlases for neonatal fMRI studies82. However, we 
reproduced our pipeline using an alternative parcellation scheme (the M-CRIB atlas), obtaining 
similar results to those featured by the neonatal AAL atlas. The dHCP cohort focused on 
characterising typical development, hence this study features an unbalanced number of term vs 
preterm infants. Preterm-born babies included were predominantly moderate or late preterm, 
and mostly “healthy”, with no incidental findings of clinical significance. While this may be 
better representative of general preterm population (80% of preterm infants are born moderate 
or later preterm83) we cannot extrapolate our results to very or extremely preterm born babies, 
or to those with significant white matter damage. In our analysis, we also didn’t consider the 
effect of socio-demographic factors and social deprivation in early neurodevelopmental 
outcomes beyond using the Index of Multiple Deprivation scores as a covariate. However, 
multiples studies have shown that family psychosocial and socio-demographic factors have a 
significant impact on brain development in childhood; with factors such as maternal stress, 
depression, low education, maternal immigration status, maternal age greater than 35 years, 
paternal age over 38 years and low household income all being linked to poorer developmental 
outcomes84–88. Thus, further studies could benefit from evaluating links between these wider 
socio-demographic markers and brain dynamics in early childhood89. 

In conclusion, in this study we evaluated global functional brain dynamics and transient brain 
states in the newborn brain. Our approach allowed us to define a set of six fundamental transient 
brain states, which are comprised by structures previously shown to be established in earlier 
phases of brain development. We have highlighted the impact brain maturation has on brain 
dynamics, as well as atypical patterns associated with preterm birth. Brain state dynamics at 
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birth appear to be functionally relevant as they are correlated with a range of 
neurodevelopmental outcomes in early childhood. This encourages further work to understand 
their prognostic value and regulation to guide support and intervention where appropriate.  
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Methods 
 
Participants. We analysed a total of 390 (out of 809) datasets from the dHCP (release 3)19 
acquired from both term (n = 324) and preterm born (gestational age (GA) at birth < 37 weeks; 
n = 66) babies. Full inclusion and exclusion criteria and sample excluded at each step are 
detailed in Supplementary Figure S8. Term-born babies were born at median GA at birth of 
40.14 weeks (IQR = 1.86 weeks) and scanned soon after birth (median postmenstrual age 
(PMA) at scan = 41.57, IQR = 2.43 weeks). Preterm-born babies were born at a median GA at 
birth of 33.36 weeks (IQR = 5.86 weeks) and scanned at term-equivalent age (median PMA at 
scan = 40.5 (IQR = 2.71)). Table 2 shows demographic data of the sample. The distribution of 
PMA at scan and GA at birth for the individuals included in this study is shown in 
Supplementary Figure S9. All children were invited to the Centre for the Developing Brain, St 
Thomas’ Hospital, London, for neurodevelopmental evaluation by experienced paediatricians 
or psychologists at 18 months after expected delivery date. The Bayley Scales of Infant and 
Toddler Development, Third Edition (Bayley-III)26 were used to assess general developmental 
outcomes across motor, language and cognitive domains in 305 individuals from the total 
population, comprising 257 infants born at term and 48 born preterm (higher scores indicate 
greater skills). The Quantitative Checklist for Autism in Toddlers (Q-CHAT)27 at 18 months 
corrected age was available in 300 individuals (254 born at term and 46 born preterm), as a 
measure of atypical social, sensory and repetitive behaviours which occur as a continuum in 
the population27. Although higher Q-CHAT scores may indicate more threshold or 
subthreshold autistic traits, we emphasize our use of this instrument was to capture behaviours 
not tapped by the BSID-III, rather than to screen for ASD. The index of multiple deprivation 
(IMD) rank – a composite measure of geographical deprivation estimated from the address of 
the mother at the time of birth90 – was obtained for every subject and included as a covariate 
for models aimed at assessing the relationship between neonatal brain dynamics and 
subsequent neurodevelopmental and behavioural outcomes. 
 
 
MRI acquisition. We evaluated fMRI scans obtained as part of the dHCP at the Evelina 
Newborn Imaging Centre, Evelina London Children’s Hospital, using a 3 Tesla Philips 
Achieva system (Philips Medical Systems). Ethical approval was given by the UK National 
Research Ethics Authority (14/LO/1169), and written consent was obtained from all 
participating families prior to data collection. Scans were performed without sedation in a 
dedicated neonatal set-up with optimised transport system, positioning devices, hearing 
protection, and custom-built 32-channel receive head coil and acoustic hood91. Scans were 
supervised by a neonatal nurse or paediatrician who monitored heart rate, oxygen saturation 
and temperature throughout the duration of the scan. Blood-oxygen-level-dependent (BOLD) 
fMRI was acquired using a multi-slice echo planar imaging sequence with multiband excitation 
(factor 9) (repetition time (TR) = 392 ms, echo time (TE) = 38 ms, voxel size = 2.15 x 2.15 x 
2.15 mm, flip angle = 34°, 45 slices, total time = 15 m 3 s, number of volumes = 2300)19. 
Anatomical images were acquired for brain morphometry and clinical reporting19. T1-weighted 
images had a reconstructed spatial resolution = 0.8 x 0.8 x 0.8 mm, field of view = 145 x 122 
x 100 mm, TR = 4795 ms. T2-weighted images had a reconstructed spatial resolution = 0.8 x 
0.8 x 0.8 mm, field of view = 145 x 145 x 108 mm, TR = 12 s, TE = 156 ms. fMRI datasets 
with excessive motion (more than 10% of motion outliers15), or incidental MRI findings of 
clinical significance (radiology scores 4 or 5 which indicate major lesions within white matter, 
cortex, basal ganglia or cerebellum – as described in dHCP database19) were excluded.  In cases 
of twin/triplet scans only one infant was included (the one with least motion outliers during 
acquisition).  
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Data processing. Individual fMRI datasets were pre-processed according to the dHCP 
dedicated neonatal pipeline (Fitzgibbon et al., 2020). Briefly, local distortion due to field 
inhomogeneity was corrected using topup92; intra- and inter-volume motion correction; and 
associated dynamic distortions correction using rigid-body realignment and slice-to-volume 
eddy93. Residual motion, multiband acquisition, and cardiorespiratory artefacts were regressed 
out using FSL FIX94.  
 
Head motion has been shown to produce spurious and systematic correlations in resting state 
fMRI95. In addition to specific processing steps within the dHCP pipeline implemented to 
minimise motion artifact on the BOLD signal75, we also evaluated motion magnitude for each 
dataset using framewise displacement (FD)95. To minimise the effects of motion (and/or any 
likely associated differences) on the determination of brain states, only participants with less 
than 10% motion outliers (defined as FD > 75th centile + 1.5*IQR) were selected for the final 
analysed subsample. The total number of motion outliers was additionally used as a covariate 
of control in the analysis models described in the statistics section. 
 
We segmented the T2-weighted volumes into 9 tissue types including white matter, grey 
matter, and cerebrospinal fluid with a dedicated neonatal tissue segmentation pipeline96. We 
parcellated each subject’s T2-weighted volume in 90 cortical and subcortical parcels using the 
Anatomical Automated Labels (AAL) atlas97, mapped to the neonatal brain28, adapted and 
manually corrected into the dHCP high-resolution template98. We transformed the AAL atlas 
from template space into each subject’s native space with a non-linear registration based on a 
diffeomorphic symmetric image normalisation method (SyN)99 using T2-weighted contrast and 
the segmentation obtained previously. Grey matter segmentation and parcels were propagated 
from T2-weighted native space into each subject’s fMRI space with a boundary-based linear 
registration available as part of the functional dHCP processing pipeline75. Average BOLD 
timeseries were then calculated for each of the 90 AAL parcels in their intersection with grey 
matter, deep grey matter, or basal ganglia segmentation masks, as appropriate. An alternative 
parcellation scheme was also used, following the same procedure but using 80 cortical regions 
from the M-CRIB atlas100, a neonatal adaptation of the Desikan-Killiany atlas101.  
 
Analysing BOLD timeseries. We filtered the BOLD timeseries with a bandpass Butterworth 
second order filter in the range of 0.02-0.10 Hz25 and obtained the phases 𝜑j(𝑡) for each parcel 
in time with the Hilbert transform. For a given real signal 𝑠(𝑡), we built a complex signal 
z(t)29,102 given by: 
 
𝑧(𝑡) = 𝑠(𝑡) + 𝑖𝐻[𝑠(𝑡)]																						 (1) 

 
In which 𝐻[𝑠(𝑡)] represented a Hilbert transform applied to the real signal s(t) and is defined 
below, with p.v. consisting of Cauchy principle value102: 
 
𝐻[𝑠(𝑡)] = 𝑝. 𝑣. ∫ !(#$%)

'#
𝑑𝑡(

$(                    (2) 

 
The phases 𝜑j(𝑡) for each parcel can be calculated directly from z(t): 
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𝜑(𝑡) = arctan	 8)[!(#)]
!(#)

9      (3) 
 
 
Kuramoto Order Parameter. The Kuramoto Order Parameter (KOP) measures the global 
level of synchronicity of multiple oscillators and is defined in equation below, where 𝜑𝑗(𝑡) is 
the signal phase of an oscillator 𝑗 at a given time. In our study, each brain parcel (AAL region) 
is treated as an independent oscillator. 
 
𝐾𝑂𝑃(𝑡) = ,

- =∑ 𝑒./!(#)-
∀ 23, =																																	(4)	

 
Once KOP was obtained for every time point, we obtained the mean KOP (synchrony aggregate 
over time, referred as “mean synchronisation”), KOP standard deviation (referred as 
“metastability”)21,22. Mean KOP provides a broad measure of whole brain synchronicity, 
whereas metastability provides a measure of how synchronisation between different oscillators 
fluctuates over time, i.e., brain flexibility6,21,23.  
 
The Leading Eigenvector Analysis (LEiDA). KOP analyses can provide insight on global 
dynamic properties over all oscillators (brain parcels); but cannot inform which specific brain 
structures might be involved in those changes. To evaluate such modular (local) properties we 
applied the LEiDA approach – which allowed us to investigate phase coherence in different 
sets of parcels. To do so we first calculated the phase difference between a parcel 𝑖 and a parcel 
𝑗 at every instant (TR), using the cosine distance: 
 
Δφij(t)=cos 8φj(𝑡)-φi(t)9																								(5) 

 
This results in a symmetric dynamic functional connectivity matrix for each fMRI volume. We 
then obtain a lower-dimensional representation with the LEiDA approach24,25, whereby the 
LEiDA vector corresponds to the first eigenvector of the decomposition of the matrix Δ𝜑𝑖𝑗(𝑡). 
This method has been previously shown to reveal information on the community structure of 
networks and graphs103. Once the LEiDA vectors were obtained, we clustered them using K-
Means24,25 with the optimal 𝐾 (six) determined heuristically with the Calinski-Harabasz and 
Davies-Bouldin methods (Supplementary Figure S10. 
 
Each cluster represents a set of LEiDAs, and we refer to each of these as a brain state. The 
dynamics of such states can be studied with three main metrics: fractional occupancy – which 
refers to the total proportion of time spent in a given state or probability of that state; dwell 
time – which consists of the average continuous time spent on each state; and Markovian 
probabilities of transitions between each state24,25. In addition, we also calculated values for 
mean synchronisation and metastability for each state by averaging those for the volumes 
belonging to each cluster. 
 
Statistics. Firstly, we restricted our sample to the term-born individuals only (n = 324) and 
evaluated the effect of brain maturation and ex-utero experience (with PMA and PND at scan, 
respectively) in global and modular brain dynamics. Secondly, we evaluated the effects of 
prematurity in brain dynamics by studying the entire sample of 390 individuals. Prematurity 
was coded as a binary variable with 1 for preterm-born individuals (GA at birth less than 37 
weeks) and 0 for term-born participants (GA at birth of 37 weeks or more). Finally, we 
evaluated the association of global and modular dynamic features with later 
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neurodevelopmental outcomes at 18 months corrected age (n = 305 – Bayley-III; n = 300 – Q-
CHAT). 
 
Global dynamics. We characterised the effect of age and postnatal experience (PMA and PND 
at scan) by fitting the linear model GLM1 (324 term-born babies): 𝑦 ∼ 𝛽0 + 𝛽1PMA + 𝛽2PND 
+ 𝛽3Sex + 𝛽4[Motion outliers (FD)]. To characterise the effect of preterm birth on brain 
dynamics, we fitted the linear model GLM2 (324 term-born and 66 preterm-born babies): 𝑦 ∼ 
𝛽0 + 𝛽1Preterm-born + 𝛽2PMA + 𝛽3Sex + 𝛽4[Motion outliers (FD)]. We assessed the 
association of brain global dynamics with cognitive and behavioural outcome measures, i.e., 
Bayley-III and Q-CHAT, at 18 months in a model given by GLM3 (257 term-born and 48 
preterm-born babies for Bayley-III scores; and 254 term-born and 46 preterm-born babies for 
Q-CHAT): 𝑦 ∼ 𝛽0 + 𝛽1GA + 𝛽2PMA + 𝛽3Sex + 𝛽4[Motion outliers (FD)] + 𝛽5[Corrected age 
at assessment] + 𝛽6[Assessed Component] + 𝛽7[Index of Multiple Deprivation] (with Assessed 
Component consisting of Bayley’s cognitive, Bayley’s language, Bayley’s motor, or Q-CHAT 
total scores). 
 
Modular dynamics: brain states. Firstly, we tested differences between the brain states 
defined in this study in terms of their mean synchronisation, metastability, fractional 
occupancy, and dwell times per subject via a type III ANOVA with Satterthwaite’s method104 
and the linear mixed effects model GLME1 (including 324 term-born): 𝑦 ∼ 𝛽0 + 𝛽1State + (1 
| Subject ID) – with Subject ID accounting for the random effect. By fitting GLM1 (324 term-
born babies): 𝑦 ∼ 𝛽0 + 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4[Motion outliers (FD)], we characterised 
the effect of age (PMA at scan) and postnatal experience (PND at scan) on fractional 
occupancy, dwell times, mean synchronisation, and metastability for each of the six brain 
states. 
 
Secondly, to characterise the effect of preterm birth on brain states and state-change 
probabilities, we fitted GLM2 (324 term-born and 66 preterm-born babies): 𝑦 ∼ 𝛽0 + 
𝛽1Preterm-born + 𝛽2PMA + 𝛽3Sex + 𝛽4[Motion outliers (FD)] and GLM3 (324 term-born and 
66 preterm-born babies): 𝑦 ∼ 𝛽0 + 𝛽1GA + 𝛽2PMA + 𝛽3Sex + 𝛽4[Motion outliers (FD)]. 
 
Thirdly, we assessed the association of brain dynamics with neurodevelopmental outcome 
measures (i.e., Bayley-III and Q-CHAT at 18 months) in a model given by GLM4 (257 term-
born and 48 preterm-born babies for Bayley-III; and 254 term-born and 46 preterm-born babies 
for Q-CHAT): 𝑦 ∼ 𝛽0 + 𝛽1GA + 𝛽2PMA + 𝛽3Sex + 𝛽4[Motion outliers (FD)] + 𝛽5[Corrected 
age at assessment] + 𝛽6[Assessed component] + 𝛽7[Index of Multiple Deprivation] (with 
Assessed Component consisting of Bayley’s cognitive, Bayley’s language, Bayley’s motor, or 
Q-CHAT total scores). 
 
Statistical significance and repeated measures. We evaluated the statistical significance of 
each variable of interest with two-sided permutation tests with 10,000 repetitions for all GLMs. 
P-values are reported uncorrected, highlighting those surviving multiple comparison correction 
across states using Benjamini-Hochberg False Discovery Rate (FDR) method with a error at 
5%105.  

Data Availability 
The AAL-UNC atlas adapted to the dHCP template space, and pre-processed BOLD timeseries 
data generated in this study have been deposited in the Zenodo database under accession code 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2023. ; https://doi.org/10.1101/2022.11.16.516610doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516610
http://creativecommons.org/licenses/by/4.0/


10.5281/zenodo.7053984. The fMRI datasets and clinical data are available under restricted 
access as per dHCP data release conditions, access can be obtained via 
https://data.developingconnectome.org. Source data are provided with this paper. 

Code Availability 
Dynamic properties of the BOLD signal fluctuations were assessed with dynFC: CoDe-Neuro's 
Dynamic Functional Connectivity Tools 106, a set of scripts written in Python v3.7 (https://code-
neuro.github.io/dynfc/), and supporting libraries Numpy, SciPy, Scikit-learn, pickle, h5py, 
pandas, os, sys, and feather.  

Statistics and figures were produced in R programming language and auxiliary packages 
ggplot2, tidyr, dplyr, cowplot, purrr, RColorBrewer, knitr, janitor, ggExtra, stringr, rjson, 
broom, Tidymodels, coin, shadowtex, effsize, modelr, ggimage, ggpubr, patchwork, 
ggbeeswarm, ggrepel, ggtext, MetBrewer, lmerTest, forcats, stateR, p-testR, broom.mixed, 
lme4, and DiagrammeR. 

Brain volume images were produced with BrainNet Viewer and Tools for NIfTI and 
ANALYZE images. All scripts used in this article’s statistics and figures; and relevant 
instructions on how to run them, are available in https://github.com/CoDe-Neuro/neonatal_dfc 
106,107. 
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Tables 

Table 1 | Association of global dynamic features (synchrony and metastability) with PMA 
and PND at scan, and effect of preterm birth.  
 

 Term (n = 324) Term vs Preterm (n = 390) 
 PMA at scan PND at scan Term  

(n = 324) 
Preterm 
(n = 66) 

Cohen’s 
D 

p-
value†† 

 t† p-value† t† p-value† [mean (S.D.)]  
Mean 
synchronisation 

0.039 0.970 1.143 0.259 0.52 
(0.08) 

0.48 
(0.08) 

0.567 p < 
0.001* 

Metastability 0.877 0.379 -2.403 0.017* 0.20 
(0.02) 

0.19 
(0.02) 

0.454 p < 
0.001* 

 
†GLM1 (including 324 term-born babies): 𝑦 ∼ 𝛽0 + 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4Motion 
outliers (FD). ††GLM2 (including 324 term-born and 66 preterm-born babies): 𝑦 ∼ 𝛽0 + 
𝛽1Preterm-born + 𝛽2PMA + 𝛽3Sex + 𝛽4Motion outliers (FD). p-values obtained with a two-
sided permutation test. * Indicates results surviving FDR multiple comparison correction with 
a error at 5%). 
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Table 2. Demographic details of the term- and preterm-born groups. 
 

 Term (n = 324) Preterm (n = 66) Statistic p-value 

Demographics & Clinical Details 
GA at birth [in weeks], Mean (SD, range) 40.04 (1.26, 

37.00 – 42.71) 
32.79 (3.40, 

23.71 – 36.86) 
12.814a p < 0.001 

PMA at scan [in weeks], Mean (SD, range) 41.60 (1.67, 
37.43 – 44.86) 

40.60 (2.13, 
37.00 – 45.14) 

3.615a p < 0.001 

PND at scan [in weeks], Mean (SD, range) 1.56 (1.34, 0.00 
– 7.00) 

7.81 (4.62, 0.14 
– 19.72) 

-9.857a p < 0.001 

IMD†††, Mean (SD, range) 13892.19 
(7481.54, 614 – 

32731) 

17960.02 
(7679.92, 3393 

– 31478) 

-3.182a p < 0.001 

Sex [female count] (%) 149 (45.99%) 26 (39.39%) 0.716b p = 0.398 
% FD outliers (S.D.) 5.38 (2.62) 4.52 (2.49) 2.451a p = 0.014 
     
Follow-up 
Corrected age at follow-up† [months], Mean 
(SD, range)  

18.83 (1.30, 
17.27 – 24.33) 

18.71 (1.35, 
17.47 – 23.87) 

0.672a p = 0.503 

Uncorrected age at follow-up† [months], Mean 
(SD, range)  

18.82 (1.34, 
16.97 – 24.47) 

20.40 (1.45, 
18.30 – 24.87) 

-7.060a p < 0.001 

Bayley III† - cognitive (S.D.) 101.56 (10.70) 99.90 (13.11) 0.618a p = 0.538 
Bayley III† - motor (S.D.) 102.25 (9.72) 99.65 (10.26) 1.733a p = 0.083 
Bayley III† - language (S.D.) 99.33 (15.72) 95.69 (15.85) 1.155a p = 0.249 
Q-CHAT†† (S.D.) 29.90 (8.51) 31.63 (11.81) -0.682a p = 0.497 
†Bayley Scales of Infant Development: Third Edition (Bayley-III)- # of complete assessments: 257 term, 48 
preterm 
††Quantitative Checklist for Autism in Toddlers (Q-CHAT)- # of complete assessments: 254 term, 46 preterm 
††† Index of Multiple Deprivation - # of complete assessments: 247 term, 43 preterm 
aZ (Mann-Whitney U-test), bc2-test 
FD – Framewise Displacement  
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Figure Legends 

Figure 1 | Association of preterm-birth with mean synchronisation (a) and metastability (b). * 
p-values obtained with a two-sided permutation test – results surviving FDR multiple 
comparison correction with a error at 5%. D: Cohen’s effect size. Term (n = 324) and preterm 
(n = 66) born individuals. Boxplots showing 0th, 25th, 50th, 75th and 100th centiles. Outliers 
defined when value larger than 1.5*IQR + 75th centile. D: Cohen’s D. Source data are provided 
as Source Data file. 
 
Figure 2 | Brain states in neonates, ordered from left to right by level of global 
synchronicity. (a) LEiDA vectors for each of the six brain states identified in the neonatal 
brain using AAL parcels. (b) Representation of LEiDA on brain surfaces (right side view). (c) 
Representation of LEiDA on brain surfaces (left side view). Glb.: Global. Occ.: Occipital. SM: 
Sensorimotor. FP: Frontoparietal. Source data are provided as Source Data file. 

Figure 3 | Brain dynamics in term-born children (n = 324). (a) All transitions including 
dwelling state sequences. (b) Main transitions (top 12) between states excluding dwelling 
sequences. (c) Summary of brain state features significantly associated with PMA at scan. (d) 
Summary of brain state features significantly associated with PND at scan. (e) Summary of 
significant correlations between state transitions probabilities and PMA at scan. (f) Summary 
of significant correlations between state transitions probabilities and PND at scan. †GLM1 
(including 324 term-born babies): 𝑦 ∼ 𝛽0 + 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4Motion outliers 
(FD). Values shown in c and d indicate t-statistics. All significant associations (two-sided 
permutation test) shown in this figure survive FDR multiple comparison correction with a error 
at 5%. Glb.: Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. PMA: 
Postmenstrual age. PND: Postnatal days. Source data are provided as Source Data file. 
 
Figure 4 | Association of preterm birth with features of brain dynamics (n = 390). (a) Mean 
dwell times (DT). (b) Mean fractional occupancy (FO). (c) Mean synchronisation. (d) 
Metastability. (e) Summary of significant associations with preterm birth (f) Association of 
state transitions probabilities and preterm birth. (g) Summary of brain state features 
significantly associated with preterm birth, and comparison with those significantly associated 
with PMA and PND at scan. (h) Summary of brain state transition probabilities associated with 
increased PMA, increased PND, and/or preterm-birth. †GLM1 (324 term-born babies): 𝑦 ∼ 𝛽0 
+ 𝛽1PMA + 𝛽2PND + 𝛽3Sex + 𝛽4Motion outliers (FD). ††GLM2 and (a) (b) (c) (d) (324 term-
born and 66 preterm-born babies): 𝑦 ∼ 𝛽0 + 𝛽1Preterm-born + 𝛽2PMA + 𝛽3Sex + 𝛽4Motion 
outliers (FD). * p < 0.05. ** p < 0.01. *** p < 0.001 obtained with a two-sided permutation 
test. Values shown in e indicate t-statistics. Boxplots showing 0th, 25th, 50th, 75th and 100th 
centiles. Outliers defined when value larger than 1.5*IQR + 75th centile. All significant 
associations highlighted survive FDR multiple comparison correction with a error at 5%. Glb.: 
Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. PMA: Postmenstrual age. PND: 
Postnatal days. DT: Dwell time. FO: Fractional occupancy. Metastab.: Metastability. Source 
data are provided as Source Data file. 

 
Figure 5 | Summary of associations of brain state features with neurodevelopmental 
outcomes at 18 months corrected age. Association of average (a) mean synchronisation and 
(b) fractional occupancy in each of the six defined brain states during perinatal period with 
cognitive, language and motor Bayley-III composite scores and Q-CHAT scores. GLM3 (257 
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term-born and 48 preterm-born babies for Bayley-III; and 254 term-born and 46 preterm-born 
babies for Q-CHAT): 𝑦 ∼ 𝛽0 + 𝛽1GA + 𝛽2PMA + 𝛽3Sex + 𝛽4Motion outliers (FD) + 
𝛽5[Corrected age at assessment] + 𝛽6[Assessed component] + 𝛽7[Index of multiple 
deprivation]. Values shown in in both panels indicate t-statistics. All significant associations 
(two-sided permutation test) highlighted survive FDR multiple comparison correction with a 
error at 5%. Glb.: Global. Occ.: Occipital. SM: Sensorimotor. FP: Frontoparietal. Cog.: 
Cognitive. Lang.: Language. Mot.: Motor. Comp.: Component. Q-CHAT: Quantitative 
Checklist for Autism in Toddlers. Source data are provided as Source Data file. 
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