Supplementary information for

The genetics of cortical organisation and development: a study of 2,347 neuroimaging
phenotypes

Supplementary Figures 2
Supplementary Figure 1: Consistency in genetic effects between ABCD and UKB 2
Supplementary Figure 2: Clustering of global phenotypes using phenotypic (A) and

genetic (B) correlation matrices. 3
Supplementary Figure 3: Phenotypic structural equation model 4
Supplementary Figure 4: Mendelian randomisation analysis for causal relationships
between genetic effects on global brain phenotypes. 5
Supplementary Figure 5: Forest plots and leave-one-out plots 6
Supplementary Figure 6: Co-localisation lots of all clusters with cluster size > 30 7
Supplementary Figure 7: Co-localisation lots of all clusters with cluster size > 30 8
Supplementary Figure 8: Co-localisation and regional association plot for Fl and ICI-
6:125424383-127540461 9
Supplementary Figure 9: Regional heritability 10
Supplementary Figure 10: Spin permutation based enrichment of mean SNP
heritability across mesulam classes and Yeo & Krienen communities. 11
Supplementary Figure 11: Spin permutation based enrichment of mean genetic
correlations within mesulam classes and Yeo & Krienen communities. 12
Supplementary Figure 12: Topography of the first phenotypic principal components.
13

Supplementary notes and associated figures 14
Supplementary Note 1: Phenotypic factor analysis and structural equation modelling
14
Supplementary Note 2: ldentifying causal factors for folding using Mendelian
Randomisation 15

Supplementary Note 3: Adjusting for global phenotypes can bias regional GWAS 16
Supplementary Figure 13: Acyclic graphs for the association between genetic variant

and regional phenotypes 17
Supplementary Figure 14: Correlation between regional phenotypes and global
phenotypes 18
References 19



Supplementary Figures

Supplementary Figure 1: Consistency in genetic effects between ABCD and UKB
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(A) Correlation in effect size (regression beta from GWAS) between ABCD and UKB cohorts for all 237
genome-wide significant SNPs in the UKB: Pearson’s correlation coefficient, r =0.54 with 95% confidence
interval 0.45-0.63. (B) Genetic correlation (points) and 95% confidence intervals (lines) for 12 global phenotypes
in the UKB and ABCD cohorts. Given the relatively small size of ABCD, the intercept has been constrained as
there is no participant overlap between the UKB and ABCD and there is no inflation in test statistics due to
uncontrolled population stratification. Consequently, estimates of genetic correlation can be above 1.



Supplementary Figure 2: Clustering of global phenotypes using phenotypic (A) and genetic (B) correlation matrices.
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Consistency of clustering approaches was assessed using 3 methods for hierarchical clustering: clustering using Ward’s criterion, complete linkage, and average linkage.



Supplementary Figure 3: Phenotypic structural equation model
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Phenotypic SEM path diagram demonstrating the underlying latent structure of 12 of the 13 global phenotypes
and the interfactor genetic correlations. Covariance relationships = double-headed arrows connecting two
variables, variance estimates = double-headed arrows connecting variable to itself, regression relationships =
one-headed arrows pointing from independent variable to dependent variable. Circles indicate latent variables,
squares indicate measured phenotypes. Abbreviations: cortical surface area (SA), grey matter volume (Vol),
folding index (Fl), local gyrification index (LGl), mean curvature (MC), gaussian curvature (GC), fractional
anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICVF), isotropic volume fraction (ISOVF),
and orientation dispersion index (ODI).



Supplementary Figure 4: Mendelian randomisation analysis for causal relationships between genetic effects on global brain phenotypes.
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Scatter plots for the bidirectional MR effects between surface area and folding index, intrinsic curvature index, and local gyrification index. A, B, and C are scatterplots where
surface area is the exposure, and D, E, and F are scatterplots where surface area is the outcome. All scatter plots are for MR analyses conducted by splitting the UKB into two
samples of similar sample sizes. All estimates were statistically significant in scatterplots A,B, and C. Inverse-variance weighted MR failed to reach statistical significance in

scatterplots D,E, and F.



Supplementary Figure 5: Forest plots and leave-one-out plots
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Forest plots (A, B, and C) and leave-one-out (D, E, and F) between surface area and folding index (FI, A and D), Intrinsic curvature index (ICl, B and E), and local gyrification

index (LGI, C and F).
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Supplementary Figure 6: Co-localisation lots of all clusters with cluster size > 30
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Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with
cluster size 30 for volume and surface area. Clusters are coloured in black. For each plot, the relevant
phenotype and the SNP identified as the candidate causal variant for the cluster is provided.



Supplementary Figure 7: Co-localisation lots of all clusters with cluster size > 30
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Cortical topographical plots demonstrating topographical distribution of co-localisation clusters with
cluster size 30 for all phenotypes except volume and surface area. Clusters are coloured in black. For
each plot, the relevant phenotype and the SNP identified as the candidate causal variant for the
cluster is provided.



Supplementary Figure 8: Co-localisation and regional association plot for FI and ICI-
6:125424383-127540461
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A: Cortical topographic plots of two co-localised loci with IClI and Fl. B and E: Global GWAS for Fl and
ICI respectively. C and F regional GWAS (FEF region) that was part of the co-localised cluster in Fl and
ICI respectively. D and G: regional GWAS (p24 region) that was outside the co-localised cluster in Fl
and ICL.



Supplementary Figure 9: Regional heritability
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A. The distribution of the SNP heritability for the regional phenotypes of the 13 neuroimaging
modalities. B. The cortical spatial topology of SNP heritability for the 13 neuroimaging modalities.
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Supplementary Figure 10: Spin permutation based enrichment of mean SNP heritability
across mesulam classes and Yeo & Krienen communities.
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A. The average SNP heritability for each Mesulam class (dots) overlaid onto a null distribution of the
heritability in that class obtained by spinning the parcellation 1000 times (and computing the
average heritability within each permutation). Thus, if the real average heritability (dots) are within
the tail ends (5%) of the null distribution it could be concluded that this heritability is higher in that
class and for that feature than would be expected from a spatially random distribution of the
heritability across the cortex. Only idiotypic regions for some phenotypes (cortical thickness, volume,
mean, gaussian and intrinsic curvature, mean diffusivity and isotropic volume fraction) show this
relative spatial enrichment. B. The same type of spatial enrichment analysis for the Yeo and Krienen
communities.
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Supplementary Figure 11: Spin permutation based enrichment of mean genetic correlations
within mesulam classes and Yeo & Krienen communities.
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matrix for regions belonging to the same class) for each Mesulam class (dots) overlaid onto a null
distribution obtained by spinning the parcellation 1000 times (and computing the average similarity
within each permutation). Thus, if the real genetic correlations for a given class (dots) are within the
tail ends (5%) of the null distribution it could be concluded that this genetic correlation within
regions belonging to the same class is higher in that class and for that feature than would be
expected from a spatially random distribution across the cortex. B. The same type of spatial
enrichment analysis for the Yeo and Krienen communities.
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Supplementary Figure 12: Topography of the first phenotypic principal components.
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Colorscales depict the relative eigenvector ranging from -20 to +29, in all plots the midpoint is
defined as 0. It should be notes that the definition of Ax=Ax as the PCA eigenvector means that the
sign is somewhat ambiguous and that the magnitude is relative to its own scaling (in this case within
each phenotype for which the PCA is performed). Thus, in this context, the colour scale indicates to
what extent regions show more homogenous similarity (i.e., regions with more similar colour have
more similar covariance).
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Supplementary notes and associated figures

Supplementary Note 1: Phenotypic factor analysis and structural equation modelling

Using the quality controlled phenotypic dataset which was included in the GWAS, we
conducted exploratory factor analysis on half of the sample (N,.., = 28,794, N,.s = 14,397 ),
randomly selected. We conducted confirmatory factor analysis in the other half of the
sample. All phenotypes were scaled. Examination of the phenotypic correlation matrix
indicated that, with the exception of CT, most phenotypes exhibited a pattern of high
absolute correlation with at least one other phenotype and low correlations with others. In
contrast, CT exhibited moderate correlation with almost all phenotypes, in line with the idea
that multiple cell types underlie CT.

We next investigated if our data is amenable to factor analysis using Bartlett’s test of
sphericity Kaiser-Meyer-Olkin measure of sampling adequacy. The overall measure of
sampling adequacy was 0.5, which is the minimum acceptable for factor analysis. Inspecting
individual measures of sampling adequacy identified very low sampling adequacy for CT
(0.29), consistent with earlier findings that CT does not cluster very well with other
phenotypes. Excluding CT produced a better overall measure of sampling adequacy (0.57).
Bartlett’s test confidence was significant both before and after excluding CT.

Given the above points, we excluded CT from factor analysis and conducted exploratory
factor analysis on 12 of the 13 global phenotypes. Scree plot and parallel analysis indicated
four factors, in line with the number of clusters identified from hierarchical clustering.
Exploratory factor analysis identified four factors: 1: Cortical expansion; 2: Cortical
curvature; 3: Neurite density; and 4: Water diffusion (SF 3). There was significant and high (>
0.5) cross-loading of ICl onto two factors (cortical expansion and cortical curvature). Multiple
iterations of the confirmatory factor analyses when including ICI failed to produce
satisfactory models. After removing ICI, we identified a similar four factor model relating to
cortical expansion, cortical curvature, neurite density and water diffusion with acceptable fit
indices (CFI: 0.85, SRMR: 0.79).
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Supplementary Note 2: Identifying causal factors for folding using Mendelian Randomisation

Understanding the processes that underlie cortical folding has proven elusive. Several
theories have tried to explain folding including skull constraint, axonal tension, and
differential tangential growth®. Skull constraint and axonal tension do not account for the
uniform nature of folding across among humans. The cellular model for differential
tangential expansion posits that folding occurs through two mechanisms: first, the outer
layers expand more than the inner layers, causing the cortex to fold and second, there is
heterogeneous distribution of progenitors across the brains, leading to differences in
neurogenesis'™. In humans, one way to test this is to investigate if genetic variants
underlying surface area increase measures of curvature. We used multiple Mendelian
Randomisation methods to investigate this.

First, we split the UK Biobank into two datasets of roughly equal sample size to ensure that
there is limited participant overlap and conducted MR. Inverse-variance weighted MR
demonstrated that genetically predicted surface area increased genetically predicted local
gyrification index (LGI), intrinsic curvature index (ICl), and folding index (Fl) after Bonferroni
correction. These results were statistically significant after applying methods that are robust
to various assumptions: median-weighted* MR and MR-Presso®, and after removing outliers
by Steiger filtering®. These results also had consistent effect direction when using MR-Egger’,
which is statistically underpowered compared to other methods. However, in the reverse
direction, we did not obtain consistent results to indicate that genetic variants associated
with these measures increased genetically predicted surface area (SF 4). Visual inspection of
the forest plots and leave-one-out plots did not indicate that the results were driven by one
or two genetic variants (SF 5).

We confirmed our findings first by using a different method that can model both correlated
and uncorrelated pleiotropy (CAUSE)® using two sets of instruments - one created from SNPs
with p < 5x10%, and another with SNPs with p < 1x1073, as previously demonstrated by the
developers of the method. CAUSE suggested that SA causally increased LGlI, Fl and ICI. In the
reverse direction, CAUSE identified a shared model between LGI, Fl, and SA, and a causal
model between SA and ICI. Consistent results suggesting that genetically predicted surface
area increased genetically predicted measures of folding were obtained when MR was run
using ABCD and UKB. Altogether, MR provides support for the differential tangential growth
theory for some measures of folding, but suggests that other mechanisms may contribute to
other measures of folding.
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Supplementary Note 3: Adjusting for global phenotypes can bias regional GWAS

Following Aschard and colleagues®, we consider four scenarios in which a genetic variant
may be associated with regional phenotypes. Acyclic graphs are provided below (SF 13).

Scenario 1: A genetic variant is associated with a global phenotype but not associated with a
regional phenotype.

Scenario 2: A genetic variant is associated with a regional phenotype but not associated with
global phenotypes.

Scenario 3: A genetic variant is independently associated with both regional and global
phenotypes.

Scenario 4: The genetic effect of a variant on a regional phenotype is mediated partly or
completely by global phenotypes.

For Scenarios 2 and 4, controlling for the global phenotype will not affect the association
between the genetic variant and the regional phenotype. However, for scenarios 1 and 3,
correcting for the global phenotype will induce a correlation between the genetic variant
and the regional phenotype. The estimate will be biased by B.p., Where B.is the effect of
the genetic variant on the covariate (in this case the global phenotype), and pg, is the
correlation between the covariate (the global phenotype) and outcome. In our study, the 3.
for the standardised global phenotypes range from (-1.47) to (1.16) for the genome-wide
significant loci, and the correlations between the global phenotypes and regional
phenotypes are high and displayed in (SF 14). Therefore, correcting for the global
phenotypes will bias the regional estimates.
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Supplementary Figure 13: Acyclic graphs for the association between genetic variant and
regional phenotypes

Scenario 1l Scenario 2
Scenario 3 Scenario 4

Acyclic graphs demonstrating causal relationship between genetic variant (X;) and regional
phenotype (Yg), in the presence of the global phenotype which is the covariate (C;) and
other genetic and environmental factors (G/E) which contribute to the phenotypic
correlation between the regional phenotype and the global phenotype.
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Supplementary Figure 14: Correlation between regional phenotypes and global phenotypes
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Pearson’s correlation coefficient between regional phenotypes and global phenotypes.
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